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Ray tracing plays a vital role in black hole imaging, modeling the emission mechanisms of pulsars,
and deriving signatures from physics beyond the Standard Model. In this work we focus on one specific
application of ray tracing, namely, predicting radio signals generated from the resonant conversion of axion
dark matter in the strongly magnetized plasma surrounding neutron stars. The production and propagation
of low-energy photons in these environments are sensitive to both the anisotropic response of the
background plasma and curved spacetime; here, we employ a fully covariant framework capable of treating
both effects. We implement this both via forward and backward ray tracing. In forward ray tracing, photons
are sampled at the point of emission and propagated to infinity, whilst in the backward-tracing approach,
photons are traced backwards from an image plane to the point of production. We explore various
approximations adopted in prior work, quantifying the importance of gravity, plasma anisotropy, the
neutron star mass and radius, and imposing the proper kinematic matching of the resonance. Finally, using
a more realistic model for the charge distribution of magnetar magnetospheres, we revisit the sensitivity of
current and future radio and sub-mm telescopes to spectral lines emanating from the Galactic Center
magnetar, showing such observations may extend sensitivity to axion masses ma ∼OðfewÞ × 10−3 eV,
potentially even probing parameter space of the QCD axion.
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I. INTRODUCTION

Astronomy is the art of inferring details about astro-
physical environments through indirect measurements on
the messengers they emit, be they photons, gravitational
waves or neutrinos. A basic problem in astronomy is
therefore to model the production and propagation of these
messengers from their point of emission to the moment
of detection at the observatory. Taking the case of electro-
magnetic signals, this entails calculating the photon pro-
duction mechanism and the subsequent evolution of
photons as they pass through astrophysical media. In
general this requires tracking, amongst other things, their

intensity, frequency, polarization and refraction. In turn
these features affect the power, directional dependence,
time variation and spectral morphology of the signal.
Geometric ray tracing is a method that has been

developed to accurately trace the propagation and proper-
ties of evolving wavefronts moving in inhomogeneous
media or regimes of strong gravity. This technique has been
successfully applied to a wide variety of different problems
in astronomy and astrophysics, including, e.g., the
reconstruction of images of black holes (see e.g., [1–6]),
the reconstruction of light curves from neutron stars (see
e.g., [7–13]), the treatment of nonlinear scattering proc-
esses of low energy photons escaping the ionosphere of the
sun (see e.g., [14–16]), and in understanding extended
theories of gravity [17–19] or particle physics [20–24]. In
recent years, ray tracing has also emerged as a fundamental
tool in the search for one of the most well-motivated
candidates of new fundamental physics, axions [21–23,25].
Axions were originally introduced many decades ago to

address one of the major outstanding problems in high-
energy theory, the so-called Strong CP Problem [26–29];
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this is effectively the question of why QCD seems to
conserve charge-parity symmetry, or equivalently, why
the electric dipole moment of the neutron appears to be so
unnaturally small. Today, the term axion is typically used,
however, to refer to the broader class of light pseudo-
scalars, regardless of whether they solve the strong CP
problem; such particles are nevertheless well-motivated
candidates for new fundamental physics, as they generi-
cally arise in well-motivated high energy theories such as
String Theory [30–34].
One of the recent and more compelling proposals to

indirectly search for axions in astrophysical environments
involves looking for radio photons generated from axion-
photon mixing in the magnetospheres of neutron stars,
where the large magnetic fields and ambient plasma serve
to resonantly amplify the mixing process. The presence of
axions in these environments can give rise to a number
of distinctive signatures at radio energies, including
narrow spectral lines from the conversion of axion
dark matter [21,22,35–50], and large broadband emission
generated from axions locally sourced in the magneto-
sphere itself [25,51,52]. In recent years, ray tracing has
played an increasingly prominent role in understanding
of the inhomogeneity, spectrum, and temporal evolution
of these radio signals, and has proven to be a fundamental
tool in accurately interpreting radio searches for
axions [22,25,44,49,50].
The goal of this manuscript is to develop a generalized

ray tracing framework capable of treating the production of
radio photons from axions in astrophysical plasma, with a

particular focus on the treatment of ray tracing through a
highly magnetized plasma in curved spacetime, as is
required for axion searches near neutron stars. To date,
the ray tracing algorithms used in this field have only
incorporated a subset of the relevant effects, including
either the presence of an anisotropic plasma [22] or curved
spacetime effects in an isotropic plasma [23]. Moreover, the
methodology of these two algorithms differ markedly, with
one approach back-propagating photons from an asymp-
totic observer, and the other forward propagating photons
from the point of production (see Fig. 1 for an illustrative
example of the two setups). This work serves to unite these
frameworks, highlighting a variety of important subtitles in
the field which have thus far gone overlooked. While the
focus of this paper will be directed toward applications of
ray tracing for axion searches, the formalism is sufficiently
general to be applicable, and of interest for, the broader
astronomy and astrophysics communities.
The structure of this paper is organized as follows. In

Sec. II we present an overview of geometric ray tracing. In
particular, we derive a general formalism in which asymp-
totic observables (such as the radiated power in a given
emission direction from a source) can be reconstructed by
either (i) backward propagating rays from an infinitesimal
surface element located far away from the emitting region,
or (ii) forward propagating rays from the emitting region to
asymptotic distances. This formalism can be straightfor-
wardly applied to arbitrary spacetime metrics and any
background medium—the generalization of these tech-
niques to photons and axions in magnetized plasmas and

FIG. 1. Demonstration of forward and backward ray tracing. Backward ray tracing (left) and forward ray tracing (right) procedures.
We show the Langmuir-Ordinary (LO) modes for a Goldreich-Julian plasma density in a strong magnetic field plasma with dispersion
relation of Eq. (23). Rays emanate from a plasma isosurfaceωp ¼ 10−5 eV. In the case of backward ray tracing, we show an image plane
at θ ¼ 1.2 whilst in forward-tracing gray trajectories show all rays sampled from the isosurface, whilst red rays denote those binned into
a viewing angle of θ ¼ 0.7. Other values were B ¼ 1014 G, ma ¼ 10−5 eV, α ¼ 0, P ¼ 2π, MNS ¼ 1M⊙.
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to curved spacetime are the focus of Secs. III and IV. In
Sec. V, we apply the formalism developed in the preceding
sections to the specific problem of searching for radio
spectral lines produced from the resonant conversion of
axion dark matter in the magnetospheres of neutron stars.
We investigate the interplay of a number of important
effects, including, e.g., the impact of plasma anisotropy,
strong gravity, multiply reflected photons, and a proper
kinematic matching of the resonance. We also revisit the
extent to which radio observations can be used to search for
axions near the galactic center magnetar SGR J1745-2900;
here, we apply an improved modeling of the charge
distribution in the magnetosphere, showing that expected
e� densities found in the closed magnetic field lines of
magnetars shift the expected signal to higher frequencies,
potentially generating signals in the Oð100Þ GHz–THz
regime. Using rough rough estimates of the magnetic field
and charge normalization, we show that an improved
understanding of the properties of SGR J1745-2900 allow
current and future radio and sub-mm telescopes to probe
unexplored regions of the axion parameter space. We
conclude in Sec. VII.

II. RAY TRACING

In this section, we outline the basics of ray tracing
required to describe radiative transport in arbitrary media.
We introduce Hamilton’s equations, which allow one to
identify the wordlines of photons, and discuss distribu-
tion functions of photons and their phase-space integrals,
which allow for the computation of observables such as
energy flux or radiant intensity. We use two distinct
methods to numerically calculate observational signa-
tures relevant for astronomy. The first approach uses
image-based, backward ray tracing from the observer
[23] and the second implements a forward ray tracing
routine which directly samples the phase-space of pho-
tons produced at source, and reconstructs asymptotic
observables by propagating these photons to large dis-
tances [22].
When discussing radiative transport, we are typically

interested in radiation whose wavelength is much smaller
than characteristic variational scales of the medium through
which the radiation propagates. In that case, geometric
optics applies, and one can describe photons in terms of
their local phase-space coordinates given by position xμ

momentum kμ.
The dispersion relation of these photons is then

described by setting a Hamiltonian H ¼ Hðk; xÞ to zero
H ¼ 0, which gives a relation k0 ¼ k0ðk;x; tÞ describing
the energy of the mode. This defines a family of curves
ðkμðλÞ; xμðλÞÞ in phase-space, where λ is the wordline-
parameter on such curves, along which H is everywhere
vanishing: i.e. dHðkðλÞ; xðλÞÞ=dλ ¼ 0. By applying the
chain-rule, one can see that

dH
dλ

¼ dkμ
dλ

∂H
∂kμ

þ dxμ

dλ
∂H
∂xμ

¼ 0; ð1Þ

which is satisfied provided xμ and kμ obey

dxμ

dλ
¼ ∂H

∂kμ
;

dkμ
dλ

¼ −
∂H
∂xμ

: ð2Þ

Equations (2) are the well-known Hamilton’s equations,
which allow one to determine the trajectory of photons
from the source to the observer.
In order to connect the properties of the source (e.g.,

emissivity) with the asymptotic observables (e.g., observed
flux), we can introduce Boltzmann’s equation [53,54]

∂kH · ∂xfγ − ∂xH · ∂kfγ ¼ S½k; x�; ð3Þ

where f ¼ fðk; xÞ is the phase-space distribution of pho-
tons and S½k; x� is a source term whose precise structure
depends on the emission process. Here, one can see that
Hamilton’s equations [Eq. (2)] give the characteristics (or
orbits) of the Liouville-Vlasov operator appearing on the
left-hand side of Eq. (3). Thus, along worldlines, we have

dfγ
dλ

¼ S½λ�; ð4Þ

in the absence of collisions (S ¼ 0), this implies that fγ is
conserved along rays, i.e.,

dfγ
dλ

¼ 0; ð5Þ

which is equivalent to Liouville’s theorem [53].
Equation (5) is the key equation in numerical ray tracing
routines; it allows the asymptotic distribution of photons
to be reconstructed by saturating the space with rays,
computing the value of fγ at source, and propagating this
conserved quantity along rays. In other words, ray tracing
effectively amounts to solving the eight-dimensional
Eq. (3), which describes the spacetime dependence of
the photon distribution function fγ .
By integrating Eq. (3), one can also derive a continuity

equation for energy [54]. Assuming a (quasi)stationary
background (such that ∂tH ¼ 0), Eq. (3) can be pre-
multiplied by k0, placed on shell, and integrated over
3-momentum d3k and a spatial volume d3x ¼ dV. This
procedure yields

d
dt

Z
dV

Z
d3kωfγ þ

Z
d3k

Z
dA · vgωfγ ¼

Z
dVQ;

ð6Þ

where dA is the surface element of V (which we assume
lies outside the source), ω is the (on shell) photon
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frequency, vg is the photon group-velocity, and Q is
defined by

Q≡
Z

d3kωC½k; t;x�; ð7Þ

where C ¼ S=ð∂k0HÞ is a renormalized collision kernel
whose denominator arises from dividing both sides of
Eq. (3) by ∂k0H before integrating over phase space to
obtain Eq. (6). For a stationary solution, the first term on the
left-hand side of Eq. (6) vanishes, and the total power
emanating from the source is

P ¼
Z

d3k
Z

dA · vgωfγ: ð8Þ

Equations (7) and (8) are essential for ray tracing, as they
allow for the construction of observables from the indi-
vidual rays. As we will show in the following subsections,
Eq. (7) lies at the heart of the forward ray-tracing
procedure, while Eq. (8) is key to understanding backward
tracing; Eq. (6) serves to unite these frameworks, since for
stationary solutions these two quantities are equal.

A. Backward ray tracing and imaging

Backward ray tracing is the traditional approach used to
infer the emission properties in different directions from a
source. This approach proceeds by constructing an infini-
tesimal surface far from the object (oriented with a surface
normal parallel to the line of sight), and tracing parallel rays
from the surface “backwards” in time until they encounter
the source itself. The differential power flowing the
infinitesimal surface is given by

dP ¼ d3kdAvg cos θgωfγ; ð9Þ

where θg is the angle between the photon group velocity
and the surface. Note that if the infinitesimal surface is
sufficiently far from the source then one can safely assume
the photon to be in vacuum, implying vg ¼ 1, cos θg ¼ 1,
and d3k ¼ dΩω2dω. Following [21,23], the power per
solid angle per unit frequency is then given by a summation
over each of the rays i, appropriately weighted by their
contribution to the surface area dAi, their energy ωi, and
their phase space factor fiγ, i.e.,

dPi

dΩdω
¼

X
i

dAiω
3
i f

i
γ: ð10Þ

The only unknown quantity in Eq. (9) is fiγ, which is
determined by defining fγ at the source, and using the fact
that fγ is conserved along rays.
In order to implement this procedure numerically, we

define the asymptotic surface to be a plane consisting of

square pixels with side length Δb. Rays are sourced
through the center of each pixel, labeled by ði; jÞ, in a
direction perpendicular to the surface itself. For simplicity,
we assume photons are monochromatic, which allows one
to evade sampling over energy. This procedure generates a
differential power given by

dPðθ;φÞ
dΩdω

¼
X
i;j

Δb2ω3fi;jγ : ð11Þ

Note, however, that nonuniform sampling of the asymptotic
surface can, in general, dramatically expedite the numerical
calculation.

B. Forward ray tracing

An alternative approach to backward ray tracing is to
directly simulate photon production from the collision
integral Eq. (7), and trace the rays forward to all parts
of the sky surrounding the source. For a (quasi)stationary
background, the power flowing at infinity is simply equal to
the power produced at the source, i.e.,

P ¼
Z

d3x
Z

d3kωC½k; t;x�: ð12Þ

Rather than sampling rays from an asymptotic surface
(as in backward ray tracing), forward ray tracing works
by stochastically sampling the photon phase space at the
source, i.e., it uses Monte Carlo integration to directly
compute the right hand side of Eq. (12). Photons are then
propagated away from the source and binned on a sphere at
infinity; the angular power distribution in a direction ðθ;ϕÞ
is then reconstructed by summing over the weighted rays
which end up in a small bin centered about ðθ;ϕÞ.
At this point, one may be concerned by the fact that

Eq. (12) relates the integrated power locally to the
integrated power at infinity, while the forward ray tracing
procedure described above relies on the fact that this
connection between local and asymptotic power also holds
at the differential level. Notice that from Liouville’s
theorem, it follows that the number of particles in a
phase-space element is conserved along rays, so that dN ¼
d3kd3xf is constant along rays. More explicitly, we can
write this as dN ¼ d3k cos θgvgdtdA, so that the power
flowing through an infinitesimal surface at the point of
emission, is equal to the power flowing out of another
surface at infinity (so long as these points are connected by
a ray). It is ultimately for this reason that the forward
propagation approach is valid, since all rays in a given part
of the sky conserve the phase-space element. An equivalent
way of viewing this is via the conservation of etendue. This
means that not only is the total integrated power conserved
(and invariant under a repartitioning of the Monte Carlo
integration), but any two subsurfaces connected by rays,
also have conserved power flowing between them, and are
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therefore also invariant under a repartitioning of the
Monte Carlo integration.
In order to provide an illustrative example of the forward

ray tracing procedure, consider the case of uniform
isotropic emission from a finite volume VC. By drawing
Ns uniform samples over d3x and d3k, one can write
the differential power flowing through a patch of the sky
ðθ0 � ϵθ;ϕ0 � ϵϕÞ as

Pθ;ϕ≃
1

Ns

X
i

ωiCðx⃗i; k⃗iÞDðθf;i;θ0;ϵθÞDðϕf;i;ϕ0;ϵϕÞ; ð13Þ

where θf;i and ϕf;i are the final angular coordinates of the
photon after propagation, and we have defined the function

Dðx; y; ϵÞ ¼
�
1 if y − ϵ ≤ x ≤ yþ ϵ

0 else
: ð14Þ

As in the case of backward propagation, the choice of
uniform sampling may not be optimal, and one may instead
prefer to implement importance sampling.
As illustrated by this example, the forward-tracing

method is fully general and can be used to solve the
radiative transport problem in any setup. Ultimately, how-
ever, our purpose is to study the production of photons from
axions; this problem is more subtle in that axion-photon
mixing is a one-to-one process, meaning that it only occurs
on particular surfaces in phase space (namely at locations
where the dispersion relations of axions and photons
become degenerate). This condition collapses Eq. (12) to
a momentum-weighted sum over kinematic surfaces rather
than volumes. In the following sections we provide a more
detailed discussion on how to generalize the Monte Carlo
integration procedure to the case of axions.

C. Comparing forward and backward ray tracing

Having summarized the general approach to forward and
backward ray tracing, we outline here the potential advan-
tages and disadvantages of each:

(i) Forward propagation inevitably generates samples
across the entire sky (i.e., the sphere at infinity
surrounding the source). In the event that the
observing angle is known, i.e., one is only interested
in the power radiated in a particular direction on the
sky, the forward propagation approach clearly suf-
fers from oversampling, since only a fraction of the
samples are actually used in the computation of the
relevant observable. In the event that this sampling is
uniform, the over sampling may be severe, however
there exist many forms of adaptive sampling algo-
rithms which can be used to improve the sampling
efficiency. This is not a problem for backward
propagation, since by construction all samples origi-
nate from the angle of interest. The issue of over-
sampling can be seen in the comparison provided
in Fig. 2; in this example, low-energy photons are
assumed to be sourced from axions near a neutron
star (see Sec. III), and their point of origin for
a particular viewing angle [taken here to be
ðθ;ϕÞ ¼ ð35°; 0°Þ] is reconstructed using both back-
ward and forward ray tracing techniques. While the
rays originate from the same location near the
neutron star, the density of samples in the forward
ray-tracing approach is significantly reduced with
respect to the backward ray-tracing example.

(ii) Conversely, generating full sky distributions of the
flux is more complicated in the context of backward
propagation, as one must scan over (and interpolate
between) many viewing angles (whereas this is a
natural output of the forward sampling procedure).

FIG. 2. Photon emission points. Subset of photon emission points from rays which propagate to an observing direction
ðθ;ϕÞ ¼ ð35°; 0°Þ, projected onto the point of photon production, for the case of backward ray tracing (left) and forward ray tracing
(right). Gray contours illustrate the 2D surface around the neutron star defined by ma ¼ ωp. Results are shown for the case of an
anisotropic dispersion relation in curved spacetime, with MNS ¼ 1 and ma ¼ 10−5 eV.
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Full-sky distributions can prove useful for under-
standing the fundamental physics and observables in
the problem at hand, extracting the time profile of
the signal, and in some cases, full sky distributions
are required in order to marginalize over uncertain-
ties associated with an unknown viewing angle. This
could be circumvented by sampling the observing
directions and positions on the observing plane (see
Ref. [23]) stochastically (i.e., via Monte Carlo in-
tegration) rather than deterministically.

(iii) Backward propagation also allows one to recon-
struct physical images (see Fig 3). In this work, we
are concerned principally with neutron stars, which
are too small to resolve and so the precise structure
of the image plays no role from a data analysis
perspective in that context, since at low resolution,
one is sensitive only to the integrated power over the
image plane. While image reconstruction could
become important in other contexts, it is unclear
whether any additional information is added that
cannot be directly obtained from the photon source
locations (which is information that is available in
both approaches).

(iv) As will be shown shortly, divergences arise in the
conversion probability for axion-photon mixing.
These divergences are naturally regulated by the
phase-space measure [see discussion around
Eq. (20)]. The removal of these divergences in the
forward tracing is therefore somewhat tautologous,
as the cancellation occurs as soon as the integral
Eq. (20) is written down. This integral (which is

then Monte Carlo sampled in the forward-tracing
numerical routine) is therefore trivially convergent.
However, in backward ray tracing, the conversion
probability leads to quantities which diverge at an
individual ray-level; in principle, these divergences
should be regulated by the phase-space measure in
the image plane. Backward ray tracing therefore
provides a powerful consistency check for the treat-
ment of phase space, kinetic theory and the con-
version probability in this work and [54], and indeed
the equivalence and finiteness of forward and back-
ward results is ensured by the expression Eq. (6).
The existence of two independent numerical rou-
tines has therefore proved extremely fruitful in
developing both numerical and analytic understand-
ing of the problem at hand.

(v) Gravity plays a stabilizing role in backward ray
tracing, since rays must be back-propagating from
regions of high refractive index, to regions where
rays are almost evanescent (ωp ≃ ω). This has a
tendency to deflect rays away from the production
surface. In the absence of gravity, ultrahigh numeri-
cal precision is therefore needed for rays to converge
to the point of resonance where ωp ∼ma ≃ ω. In the
case of forward propagation this problem is evaded,
allowing one to independently study the impact of
gravity on ray propagation.

D. Revisions, theory and code testing

In this section, we briefly outline some of the changes
which have been made both to our presentation and
understanding of the theory concerning ray tracing methods
since previous work [22,23]. We also describe revisions
and improvements to the underlying codes. The backward
ray tracing code is implemented in Mathematica, whilst the
forward ray tracing code uses Julia, with both requiring
parallelization on computing clusters.
We have carried out extensive tests of the methods used

in this paper. We have verified at a ray-by-ray level that the
two codes produce the same photon worldlines according
to Eqs. (2) by backward propagating rays with initial
conditions inferred from forward propagation from the
source. We carried out this comparison for two equivalent
forms of the dispersion relation presented in [56,57]. Note
that two important realizations emerged in attempting to
generate agreement at the ray-by-ray level. First, funda-
mental constants (such as the speed of flight) need to be
defined equivalently to a high level of precision, and
second, the image plane in the backward ray tracing
approach needs to be placed at sufficiently large dis-
tances such that the vacuum approximation is valid
(which is an order of magnitude larger than that used
in the original work of [23]). In addition, high-precision
ordinary differential equations (ODE) solvers must be
applied in both cases.

FIG. 3. Imaging in backward ray tracing. Image plane from
backward ray tracing. Displayed is the intensity (energy per unit
area, per unit time) flowing through the image plane in the
direction θ ¼ 35° for ma ¼ 10 μeV in the Goldreich-Julian
plasma model [55]. See Secs. III–V for more details.
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We checked that rays which escape to a particular
direction ðθ;φÞ in the sky emanate from the same sourcing
regions as those given by back-propagating from that same
part of the sky (see Fig. 2). We confirmed that the total
power computed from forward propagation [which is
trivially consistent with Eq. (12)] is equivalent to the
power inferred by backward tracing to within a few percent.
This was also done across a full range of observing angles,
and for different photon frequencies.
We have also verified mathematically, using analytic

expressions found in [23,58], that, for an isotropic plasma
and a spherical emission surface, the analytic expressions
Eq. (11) for the power from backward tracing, and Eq. (12)
for forward tracing, are equal. Note we even verified this in
curved spacetime for a Schwarzschild metric.
We also now implement correct kinematic matching of

axions and photons at ka ¼ kγ , and incorporate a variety of
curved-spacetime effects in each code. In addition, we
make use of the new conversion probability derived in
Ref. [54]. In particular, the methods implemented here
provide a much deeper understanding of phase space, and
verify numerically that the divergence in the probability is
regulated by phase space measure.
In the backward ray-tracing code, we have also imple-

mented an improved event-location routine to identify
where photons are produced. Additionally, we now choose
to describe ray tracing in terms of the photon distribution
function fγ, rather than the radiant intensity Iγ of the
photon (as was done in previous work [23]). These are
equivalent and related by fγ ¼ Iγ=ðω3nrÞ, where nr is the
ray-refractive index described in [59]. In particular, our
discussion of phase-space in this work and Ref. [54] now
allows us to properly understand the connection between
the forward and backward ray tracing methods of [22,23].
As discussed in the sections below, the original work
of [23] did not include the possibility of photon
reflection—ray tracing was terminated when the first
stopping condition, ma ¼ ωp, was encountered. This can
prove problematic for photons sourced near the neutron star
surface, since a sizable fraction of these photons undergo
rapid oscillations between large plasma gradients. This has
now been corrected by tracing photons for a much longer
period of time, ensuring they have entered, and then
escaped, the magnetosphere. Finally, in the backward ray
tracing code we now implement a coupled set of first-order
ODEs in Eq. (2) rather than a single second-order ODE
given by Eq. (20) of Ref. [23], which is only possible in an
isotropic medium.
The forward ray tracing code of [22] also included one

notable update of the surface sampling procedure, which
now allows one to appropriately treat the resonance
condition (defined by the location where kγμ ¼ kaμ, rather
than ωp ¼ ma, with the plasma frequency defined as
ω2
p ≡ 4πne=me). Note that the modified resonance con-

dition implies that photons are not sourced by a single

surface, but rather a foliation of surfaces, each being locally
defined by the relative orientation of the axion momentum
and the magnetic field; as such, the new Monte Carlo
sampling procedure picks out a single surface within the
foliation by first defining the orientation of k̂a, and
then proceeding to uniformly sample the associated two-
dimensional surface (as outlined in [22]).

III. AXION-PHOTON CONVERSION AND
MAGNETIZED PLASMAS

We turn now to the application of ray tracing to the
production of photons from axions in magnetized plasmas.
In Ref. [54], it was shown that the axion collision integral is
equivalent to

C½kγ;x� ¼
1

∂k0H

Z
d3ka

ð2πÞ32Ea
ð2πÞ4δðEγðkγ;xÞ − EaðkaÞÞ

× δð3Þðkγ − kaÞjMa→γj2faðka;xÞ; ð15Þ

where jMa→γj2 is an effective squared-matrix element for
axion-photon conversion, fa is the phase-space distribution
of axions, and the axion energy Ea is defined by
E2
a ¼ k2 þm2

a. Note the 3-momentum integral can be
performed trivially so that upon substituting Eq. (15) into
Eq. (12) we find the power is defined as

P¼
Z

d3k
Z

d3xδðEγðk;xÞ−EaðkÞÞ
πjMa→γj2

∂k0H
fa: ð16Þ

Using the integral identity for any smooth function GZ
Rn

dnzδðGðzÞÞ ¼
Z
G−1ð0Þ

dΣ
1

j∇Gj ; ð17Þ

where dΣ is the area element on the surface defined by
GðzÞ ¼ 0, the integration of the delta function in Eq. (16)
can then be performed with respect to the spatial integral,
giving

P ¼
Z

d3k
Z

dΣk
πjMa→γj2
∂k0Hj∇xEγj

fa; ð18Þ

where Σk is a surface defined by the set of points

Σk ¼ fx∶Eaðk;xÞ − EaðkÞ ¼ 0g; ð19Þ

so that over a continuum of k values, the Σk define a
foliation of distinct surfaces.
As a special case, note that for an isotropic (unmagne-

tized) cold plasma, we have and Eγ ¼ k2 þ ω2
p so that the

surface on which the energies become degenerate is given
simply by ωp ¼ ma, in which case the foliation collapses to
a single surface Σ, independent of k. In general, however,
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the dispersion relation (and hence Eγ) can also depend on
the direction of k, generating a distinct surface for each
value of the momentum; as described below, this is the case
in a strongly magnetized plasma, as found near the surfaces
of neutron stars.
Returning to the expression Eq. (18) for the axion

collision integral, we can then insert a factor of va and
cos θn in the denominator and the numerator, where cos θn
is the cosine of the angle between the phase velocity
vp ¼ k=Eγ and the normal to the surface surface Σk. Here
vp is the phase velocity of the axion, equal to that of the
photon at the resonant surface. We then also use the
relation Σk cos θnvp ¼ dΣp · vp and vg cos θnj∇xEγj ¼
jvp ·∇xEγj. This allows us to write

P ¼
Z

d3k
Z

dΣk · vaPaγωfa; ð20Þ

where

Paγ ¼
πjMa→γj2

Eγ∂k0Hjva ·∇xEγj
ð21Þ

is a conversion probability, which, as shown in Ref. [54],
defines the ratio of axion to photon phase-space densities at
the resonance,

Paγγðk;xÞ≡ fγðk;xÞ
faðk;xÞ

: ð22Þ

The general form of Paγ of course depends on the
medium in question. For strongly magnetized plasmas (as
is relevant for this work), the photon mode of interest is the
Langmuir-Ordinary (LO) mode (see [22]); in nonrelativ-
istic plasmas, the energy of the LO mode satisfies

E2
γ ¼

1

2

�
ω2
p þ k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 þ ω4

p þ 2k2ω2
pð1 − 2 cos2 θB

q
Þ
�
;

ð23Þ

where θB is the angle between B and k. Using this
expression for the photon energy, one finds a conversion
probability given by [54]

Paγ ¼
π

2
·

g2aγγjBextj2E4
γ sin2 θ

cos2 θω2
pðω2

p − 2E2
γÞ þ E4

γ
·

1

jva · ∇xEγj
: ð24Þ

Equation (20) thus relates the power P flowing through a
bounding surface A to a term involving an integration over
axion phase-space at the source. The surface A can then be
chosen to be the sphere at infinity, thus relating the power at
source to the power measured by observers far away.
As a reminder, the general idea behind the forward

propagation approach is to directly compute the right-hand

side of Eq. (20) locally at the source using Monte Carlo
integration, and then use ray tracing to relate the local
properties of emission to the asymptotic properties by
exploiting the fact that fγ is conserved along trajectories
once outside the source [Eq. (5)]. Alternatively, the back-
ward ray tracing approach tracks the conserved phase-space
density fγ along photon worldlines until kγ ¼ ka, at which
point one assigns a value fγ ¼ Paγ × fa. Note that in the
case of backward ray tracing, trajectories must be traced
until they have passed through and fully escaped the
gravitational potential of the neutron stars—this is a
consequence of the fact that each photon worldline can
encounter multiple level crossings, and the total photon
phase space is the weighted sum of each of these.

IV. GENERALIZATION TO CURVED SPACETIME

In this section, we discuss how to generalize the results
presented in previous sections to curved spacetime. We
focus in particular on the case of photon production via
axions in strongly magnetized plasmas in the presence of
gravitational fields. This is particularly relevant in the
vicinity of neutron stars, which are the most compact stars
in existence, with the ratio of the Schwarzschild radius to
the neutron star radius being rs=R ∼ 0.3.
The importance of incorporating gravitational effects

is multifaceted. Firstly, gravity alters photon trajectories
relative to flat spacetime, acting as an attractive force
which counteracts repulsive refraction due to plasma
gradients [23,53,57,58]. Next, axions fall towards the star
along geodesics of the stellar spacetime metric. Energy-
momentum conservation demands that axions and photons
should have matching 4-momenta at the point of creation,
kaμ ¼ kγμ. For kinematic self-consistency, one should there-
fore demand that gravitational effects are incorporated self-
consistently in the axion and photon dispersion relations.
By doing so, one changes the geometry of the foliation Σk
in Eq. (20) relative to flat space, with the innermost and
outermost surfaces in the foliation separated by a greater
distance than in flat space. In addition, metric contributions
will enter the infinitesimal area dΣk appearing in the
collision integral.
A related consequence is the fact that gravity increases

the density of axion near the star [36]—this arises because
geodesic bundles of axions become focused in regions of
strong gravity (causing a greater number of axions to cross
the resonant conversion region per unit time), and can lead
to a sizable enhancement of the amplitude of the radio flux.
This effect has been included in previous work via a
renormalization of fa, but in generalization must be done
self-consistently with the aforementioned effects.
Turning to the production process itself, the analytic

expression for the conversion probability in flat space is
intimately connected to phase space, kinematics, dispersion
relations, and worldlines of photons and axions [54].

J. I. MCDONALD and S. J. WITTE PHYS. REV. D 108, 103021 (2023)

103021-8



Crucially, divergences emerging in the conversion proba-
bility are shown in flat space to be canceled by compensat-
ing terms in the phase-space integration in Eq. (20). As a
result, a fully self-consistent generalization of kinetic
theory and ray tracing to curved spacetime is also relevant
for properly describing the efficiency with which photons
are produced.
Finally, as pointed out in [44], strong magnetic fields

and larger values of gaγγ can lead to Oð1Þ axion-photon
transitions. Computing the radio signals in this scenario
requires self-consistently tracking axion and photon tra-
jectories through all resonant crossings (as well as the
trajectories of axions and photons sourced from those
resonances); although we do not go beyond perturbative
production in this work, the techniques developed here lay
the groundwork for such follow-up analyses.
In the remainder of this section, we outline how to

incorporate curved spacetime effects into each step of
the problem.

A. Magnetized plasmas in curved spacetime

Let us begin by defining the generalized Hamiltonian
that describes the covariant treatment of waves in a
magnetized plasma. The covariant treatment of waves in
a magnetized plasma on curved spacetime can be found
in [56,57,60–62] (the less general case of an isotropic
plasma is studied in [53,58]). For a nonrelativistic plasma,
with fluid velocity uμ, phase space coordinates ðxμ; kμÞ and
background electromagnetic field strength tensor Fμν and
spacetime metric gμν, we find the Hamiltonian is given by

Hðx; kÞ ¼ ðω2 − p2Þ½ω2ω2
Lðω2 − ω2

p − p2Þ þ ω2
pðωL · pÞ2�

− ω2ðω2 − ω2
pÞðω2 − ω2

p − p2Þ2; ð25Þ

where

ω ¼ uμkμ; p ¼ h · k; ð26Þ

and

hμν ¼ gμν þ uμuν; u2 ¼ −1; ð27Þ

with

ωL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLμω

μ
L

q
; ωμ

L ¼ e
2me

εμναβuνBαβ; ð28Þ

where Bαβ ¼ hαμhβνFμν, εμναβ is the Levi-Civita tensor, hμν
is the projection operator onto the rest frame of the plasma,
ωL is the Larmour frequency, and ω and pμ are the
frequency and 4-momentum in the rest frame of the plasma.
We can also define the magnetic field via [57]

Bμ ¼ εμνρσFνρuσ: ð29Þ

Using these relations, we have

ωμ
L ¼ e

2m
Bμ; ð30Þ

ωL · p ¼ ωL · k ð31Þ

p2 ¼ k2 þ ω2; ð32Þ

where the first two identities follow from the antisymmetric
properties of the Levi-Civita tensor when contracted with
multiple uμ, which also implies u · ωL ¼ 0. It therefore
follows that the Hamiltonian can be rewritten as

Hðx; kÞ ¼ k2½ω2ω2
Lðk2 þ ω2

pÞ − ω2
pðωL · kÞ2�

− ω2ðω2 − ω2
pÞðk2 þ ω2

pÞ2: ð33Þ

We can now go to the strong magnetization limit relevant
for neutron star magnetospheres. This is characterized by
the limit ωL ≫ ω;ωp. In that limit, the dispersion relation
H ¼ 0 can be equivalently realized by the Hamiltonian

H ¼ gμνkμkν þ ðω2 − k2kÞ
ω2
p

ω2
; ð34Þ

where kk ¼ k · B=
ffiffiffiffiffiffiffiffi
B:B

p
, which is identical to the

dispersion relation in [57] in the limit of a nonrelativistic
plasma.1

We can also define an angle between Bμ and kμ

cos θB ¼ B · k
kB

; ð35Þ

where k ¼ ffiffiffiffiffiffiffiffiffi
k · k

p
. This allows us to write k2k ¼ k2 cos2 θB.

For stationary plasmas and spacetimes, we can choose
the fluid to be instantaneously at rest with respect to the
spacetime metric. For example, for a Schwarzschild metric

ds2 ¼ −Adt2 þ A−1dr2 þ r2dΩ2; ð36Þ

where A≡ ð1 − rs=rÞ and rs ≡ 2GM, we can define
generalized phase-space coordinates ðt; r; θ;φÞ and
ðkt; kr; kθ; kφÞ and a fluid velocity

uμ ¼
� ffiffiffiffiffiffiffiffiffiffi

−g−1tt
q

; 0; 0; 0
�
: ð37Þ

In this case, ω2 ¼ −gttk2t and hence, k2 ¼ gttk2t þ gijkikj ¼
−ω2 þ jkj2, with jkj2 ¼ gijkikj and where i; j∈ ðr; θ;φÞ
label the spatial components of tensors. We also have
B0 ¼ 0. Hence in this frame, we can write the dispersion
relation as

1Note some sign differences due to a different metric signature
used between Refs. [56,60–62] and [57].
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ω2ðω2 − jkj2 − ω2
pÞ þ jkj2ω2

p cos2 θB ¼ 0; ð38Þ

which gives

ω2 ¼ 1

2

"
jkj2 þ ω2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj4 þ ω4

p þ 2jkj2ω2
pð1 − 2 cos2 θBÞ

q �
; ð39Þ

with the “þ” and “−” signs corresponding respectively to
the LO mode and Alfén mode of Eq. (23). Hence, to
construct rays in curved spacetime, we solve Hamilton’s
equation [Eq. (2)] with Eq. (34). In the next subsection, we
describe how to generalize forward ray tracing to curved
spacetime, focusing in particular on how to generalize the
area measure Σk appearing in Eq. (20).

B. Radiative transport in curved spacetime

In this section, we discuss how to generalize the kinetic
theory for the production of photons to curved spacetime.
In particular, generalizing forward ray tracing to curved
spacetime necessitates generalizing the expression Eq. (12),
or, more specifically to axions, the surface integrals in
Eq. (20). In flat space the infinitesimal power flowing per
unit time dt can be written as

dE ¼ dtd3kdΣk cos θnvaωPaγfa; ð40Þ

where we have explicitly written dΣk · vp ¼ dΣk cos θnva
with va ¼ jkj=ω.
To generalize this to curved spacetime, we recognize that

dtdΣk is to be interpreted as the spacetime volume element
on a (2þ 1)-dimensional submanifold. For a metric of the
form Eq. (36), the temporal piece of the volume element is
generalized by taking

dt →
ffiffiffiffiffiffiffiffi
jgttj

p
dt: ð41Þ

The generalization of dΣk to curved spacetime is given
by taking

dΣk ¼
ffiffiffiffiffiffiffiffi
jhkj

p
; ð42Þ

where jhkj is the determinant of the pullback metric hk
corresponding to embedding the surfaces in Eq. (19) in the
background spacetime of gμν. The metric h corresponds to a
2D spatial surface, which we can label by their coordinates
ðθ;φÞ with the radial coordinate of the surface correspond-
ing given by

r ¼ rkðθ;φÞ; ð43Þ

where the k subscript reminds us that these surfaces form a
foliation parametrized by k. The hk ¼ hkðθ;φÞ can be read

off from the spatial line-element ds̄2 of the Schwarzschild
metric, defined by

ds̄2 ≡ A−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð44Þ

Using the chain rule we can project this line element onto
the surfaces corresponding to Eq. (43), giving

dr ¼ ð∂θrkÞdθ þ ð∂φrkÞdφ: ð45Þ

Inserting this result into Eq. (44), one can directly read of
the elements of hαβ; the determinant is then given by

ffiffiffiffiffiffiffiffi
jhkj

p
¼ A1=2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin2 θ þ A−1ðð∂θrÞ2 sin2 θ þ ð∂ϕrÞ2Þ

q
;

ð46Þ

ffiffiffiffiffiffiffiffi
jgttj

p
¼

�
1 −

rs
r

	
1=2

; ð47Þ

where, for compactness, we have dropped the k subscript
on r. This provides the generalization of dΣk to curved
spacetime. Notice that the expression in Eq. (46) gives
precisely the gravitational redshift factor that accounts
for energy loss of photons propagating out of the gravi-
tational potential.
Putting everything together, we find the power integral

in curved spacetime can be expressed as

P ¼
Z

d3k
Z

dθdφ
ffiffiffiffiffiffiffiffi
jhkj

p
cos θnvaωPaγfa: ð48Þ

Notice that here d3k corresponds to the volume element
of any orthonormal tetrad on the manifold used to define
momentum space locally. It can be rotated into any other
orthonormal tetrad basis using a local SO(3) rotation,
which does not change the momentum volume measure,
because the determinant of the SO(3) matrix is 1. The angle
θn should be defined covariantly via

cos θn ¼ nμkμffiffiffiffiffiffiffiffiffi
k · k

p ; ð49Þ

where nμ is the unit normal to the surface Σk.

C. Gravitational focusing of axions

In general, the asymptotic axion distribution is
expected to follow a Maxwell-Boltzmann distribution with
a nonrelativistic momentum dispersion k0 ¼ mav0 with
v0 ∼ 220 km=s, so that

lim
jxj→∞

faðx;kÞ ¼
na;∞

ðπk20Þ3=2
e−jkj2=k20 ; ð50Þ
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where we have assumed for simplicity that the pulsar is
at rest with respect to the rest frame of the asymptotic
axion distribution.
To compute the phase-space density near the star, we first

make use of conservation of energy,

jkðsÞj2
2ma

−
GMma

jxðsÞj ¼ jk∞j2
2ma

; ð51Þ

where jk∞j is the asymptotic momentum of the axion at
infinity and s is an axion worldline parameter. Note that
knowledge of the asymptotic solutions, Liouville’s theo-
rem, and kinematic constraints like Eq. (51), are in general
not sufficient to solve for the functional form of the
distribution function globally—that is precisely why ray
tracing is employed. However, in the present context,
owing to the uniform and isotropic boundary conditions,
we can construct solutions using simple conservation
arguments, which effectively allow us to circumvent ray
tracing for axions, allowing us to determine their distribu-
tion analytically. We know, by Liouville’s theorem that

faðxðsÞ;kðsÞÞ ¼ fðx∞;k∞Þ
¼ na;∞

ðπk20Þ3=2
e−jk∞j2=k2

0 ð52Þ

and using the energy conservation equation [i.e., Eq. (51)]
on the right-hand side, and Liovuille’s theorem on the
left-hand side, one has

fðxðsÞ;kðsÞÞ ¼ na;∞
ðπk20Þ3=2

exp

�
−
1

k20

�
jkðsÞj2 − 2GMm2

a

jxðsÞj
�	

:

ð53Þ

Since this holds for any ray worldlines kðsÞ and xðsÞ, this
must therefore give the global solution

faðx;kÞ ¼
na;∞

ðπk20Þ3=2
exp

�
−

1

k20

�
jkj2 − 2GMm2

a

jxj
�	

: ð54Þ

The reason we are able to determine the distribution of
axions given boundary conditions on a surface at infinity,
without needing to ray-trace, is a special case arising from
the high degree of symmetry in the problem. Indeed,
the solution we have constructed is nothing more than fa ∝
expð−Ha=k20Þ whereHaðx;kÞ ¼ k2=ð2mÞ − 2GMma=jxj,
with the normalization fixed by boundary conditions. This
is a trivial solution to the collisionless, stationary, axion
Boltzmann equation

fHa; fag≡ ∂kHa ·∇xfa − ∂xHa ·∇xfa ¼ 0; ð55Þ

where the left-hand side gives the Poisson bracket. Clearly
the solution we have constructed satisfies this equation

since fa ¼ faðHaÞ gives a trivially vanishing poisson
bracket. For more complicated distributions, such as,
e.g., the scenario in which axions are predominantly
confined to gravitationally bound miniclusters, these
simple solutions do not apply, and one must also apply
ray tracing to the in-fall of axions, see, e.g., [49].
Returning to our main discussion, we see the distribution

in Eq. (50) gives axions with characteristic asymptotic
momentum Oðk0Þ, for simplicity, we therefore choose to
evaluate the ray tracing algorithms by isolating a single
momentum k ¼ k0, for axions, i.e.,

lim
jxj→∞

faðx;kÞ ≃
na;∞
4πk20

δðjkj − k0Þ; ð56Þ

that is, a monochromatic, zero-width distribution with
characteristic momentum k ¼ k0. This procedure can be
shown to yield nearly an identical density enhancement as
the Maxwellian distribution,2 but significantly reduces the
sampling required in the backward ray tracing approach
since only a single photon frequency must be sampled
in the image plane.3 We return in the later sections to illu-
strate the impact of this simplifying assumption. Following
similar arguments to above, we determine the global
distribution to be

faðx;kÞ ¼
na;∞
4πk20

δ

��
jkj2 − 2GMm2

a

jxj
�
1=2

− k0

	
; ð57Þ

In particular, integrating this equation over momentum
space, gives

nðxÞ ¼
Z

d3kfaðx;kÞ

¼ na;∞
kcðjxjÞ
k0

; ð58Þ

where k2c ¼ k20 þ 2GMm2
a=jxj so that the axion number

density is enhanced by the ratio of the asymptotic
and escape velocities, due to focusing of the gravitational
field. Putting this together, we can express the axion
distribution function in terms of the local number density
of axions,

faðx;kÞ ¼ vana;c
δðω − ωcÞ

4πk2
; ð59Þ

2This can be computed by replacing v∞ → v∞½v½x⃗�� (where
v½x⃗� is the local velocity at a point x⃗ along a fixed trajectory) in
Eq. (56), assuming fa is conserved along rays, and integrating
over d3v at a fixed radii near the neutron star.

3Note that in a nonstationary background the photon frequency
could evolve notably away from the central value, and a more
sophisticated frequency sampling may be required. This effect is
not expected to be important in the case axions however [22,23].
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where ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ k2c
p

and nc and va are the axion
number density and phase velocity, respectively, both
evaluated at source.
One might wonder why it is that this gravitational

focusing of axions is not reversed when photons climb
out of the gravitational potential. The reason for this, is that
photons do not experience the same refractive index as
axions as they exit the potential—they are in plasma, not
vacuum, and asymptote to a refractive index nγ → 1 as they
move away from the star, whilst axions approach na → v0.
This is especially clear in the isotropic plasma, where
the distribution function f ¼ I=ðω3n2rÞ is conserved
along rays [23,53]; here, we have defined nr, the refractive
index, and I is the radiant intensity. Using conservation of f
thus implies

I∞a
ω3
∞ðn∞r;aÞ2

¼ Ica
ω3
cðncr;aÞ2

¼ 1

Paγ

Icγ
ω3
cðncr;γÞ2

¼ 1

Paγ

I∞γ
ω3
∞ðn∞r;γÞ2

; ð60Þ

where in the second to third equations, we used
fγ ¼ Paγfa. Putting this together, we see firstly that
Ica ∝ ðncr;aÞ2=ðn∞r;aÞ2I∞a ∼ ð2GM=v0Þ2I∞a ≫ I∞a so that gra-
vitational focusing increases the intensity of axions.
Secondly, we have

I∞γ ¼ Paγ
n2γ;∞
n2a;∞

I∞a ≃ Paγ
I∞a
v20

; ð61Þ

where we used, n∞r;γ ¼ 1 and n∞r;a ¼ v0. We see that (in this
illustrative isotropic case) the extent to which the gravita-
tional focusing of axions is undone as photons exit the
plasma potential, is precisely captured by the ratio of the
asymptotic refractive indices of the two species. We notice
that by equating each of the equations Eqs. (60) and (61),
the volume element change [23] from gravitational infall
of axions, ∝ ðωc=ω∞Þ3 ≃ ð1 − rs=rÞ−3=2, is undone when
photons exit the plasma, since this term is purely gravita-
tional. However, the ratio of the refractive indices in
Eq. (61) quantifies the difference of the two potentials
through which axions enter and photons exit the plasma.
Similar logic holds for the anisotropic medium.

D. Conversion probability in curved spacetime

The conversion probability for axion-photon conversion
in 3D magnetized plasmas has recently been computed in
flat space [54], yielding the result given in Eq. (24) (an
expression which is valid in a (quasi)stationary back-
ground). Formally, given we are including curved space-
time effects in our analysis, self-consistency implies

we should also generalize the production rate in Eq. (24)
to curved spacetime.
One important reason for doing so is that divergences

in the conversion probability should be regulated by the
phase-space measure. More specifically, in flat space the
surface normal of Σk is parallel to ∇xEγ , so that diver-
gences occurring when the phase-velocity va is per-
pendicular to ∇xEγ are regulated by the fluxlike projection
vp · Σk, where Σk is the directed surface element.
The generalization of the conversion probability to

the case of an isotropic plasma in curved spacetime is
straightforward. The dispersion relation is given by

gμνkμkν þ ω2
p ¼ 0; ð62Þ

which gives

Eiso
γ

2 ¼ jkj2 þ ω2
p: ð63Þ

From Eq. (19), this implies that family of surfaces Σk
collapses to a single emission surface Σ, on which

ωp ¼ ma; ð64Þ

which is independent of k. In that case, the unit normal to
surface Σ is given by

nisoμ ¼ ∂μω
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂ðω2
pÞ · ∂ðω2

pÞ
q ð65Þ

and the angle in Eq. (49) between this normal and the phase
velocity, is given by

cos θison ¼ k · ∂μω2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½∂ðω2
pÞ · ∂ðω2

pÞ�½k · k�
q : ð66Þ

We also generalize the conversion probability in the
isotropic case by modifying the flat-space results
according to

va · ∇xEiso
γ → ðkμ=Eiso

γ Þ · ∂μEiso
γ ; ð67Þ

where in the isotropic case we have

∂μEiso
γ ¼ ∂μðω2

pÞ
2Eiso

γ
: ð68Þ

Collectively, this yields a conversion probability given by

Piso
aγ ¼ πg2aγγjBextj2sin2θ

Eγ

jk · ∂ðω2
pÞj

: ð69Þ
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If this is inserted into Eq. (48), the divergence occurring
in the conversion probability Eq. (69) (arising when
k · ∂ω2

p → 0), is regulated by the cosine angle in the
measure of Eq. (48), such that

Piso ¼
Z

d3k
Z

dΣ cos θnvaEiso
γ Paγfa

¼
Z

d3k
Z

dθdφ
ffiffiffiffiffiffiffiffi
jhkj

p
Eiso
γ

πg2aγγjBextj2
j∂ðω2

pÞj
: ð70Þ

where j∂ðω2
pÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ðω2

pÞ · ∂ðω2
pÞ

q
is the modulus of

∂μðω2
pÞ. This is manifestly convergent.

Generalizing Eq. (69) to the anisotropic case in curved
spacetime is nontrivial, as this involves formulating kinetic
theory for photons in curved spacetime [63]—note that this
is similar to what is done for the case of scalars in Ref. [64].
Such a generalization is clearly important, but lies beyond
the scope of the present work. Instead, for the purpose of
making progress, we employ a phenomenological gener-
alization of the conversion probability similar to what is
presented above, taking as before the substitution

va ·∇x → ðkμ=EγÞ · ∂μEγ ð71Þ

to arrive at an ansatz for the anisotropic conversion
probability in curved spacetime of the form

Paniso
aγ ¼ π

2

g2aγγjBextj2E4
γ sin2 θ

cos2 θω2
pðω2

p − 2E2
γÞ þ E4

γ

Eγ

jk · ∂Eγj
: ð72Þ

Similarly, we generalize the angle in curved space by taking

cos θn ¼ k · ∂Eγ

jkjj∂Eγj
ð73Þ

which guarantees that the differential power computed
using the forward propagation approach is convergent.
However, since this is only a partial generalization to
curved spacetime, divergences are not canceled in the
backward ray tracing approach (see Appendix A for a
more detailed discussion of the origin of these divergen-
ces). In order to regulate these divergences, we introduce an
IR cutoff in the backward ray tracing approach on the
effective conversion length, defined by Lc ≡ k̂ · ∂Eγ, which
serves to exclude any contribution with Lc > 1 km.4 This
should not be confused with any type of formal regulatory
procedure; rather it is a means to excise points which lead
to divergences that would otherwise be regulated with a
formal generalization of the conversion probability to
curved spacetime.

V. AXION DARK MATTER DETECTION
WITH NEUTRON STARS

Having outlined the generalized ray tracing procedure,
we can now return to the problem at hand; namely, the
application of these approaches to radio searches for axion
dark matter near neutron stars. We choose to focus in
particular on spectral lines arising from a smooth back-
ground distribution of axion dark matter, which are among
the most well-studied indirect probes of axions in these
environments [21,22,35,36,38,39,41,43–45,48,50,65]. One
should bear in mind, however, that these tools are more
broadly applicable to similar searches, such as those
looking for transient lines from the encounters of mini-
clusters and axion stars with neutron stars [40,42,46,47,49],
and broadband radio searches generated from a locally
sourced population of axions [25,51,52].
We begin by establishing a set of fiducial parameters

which define our baseline model, given by an axion
mass of ma ¼ 10−5 eV, an axion-photon coupling gaγγ ¼
10−12 GeV−1, a neutron star mass of MNS ¼ 1M⊙,
a neutron star radius of rNS ¼ 10 km, a surface dipolar
magnetic field of B0 ¼ 1014 G, a neutron star rotational
frequency of ΩNS ¼ 1 Hz, and a misalignment angle
θm ¼ 0 radians. In what follows we normalize the
axion distribution to asymptotic number density na;∞ ¼
0.45 ×m−1

a GeVcm−3. Deviations from these parameters
below are always explicitly stated.
Each of the examples in this section is illustrated

assuming a perfectly dipolar magnetic field and a
Goldreich-Julian (GJ) charge density, defined by a e�
charge density

nGJ ≃
2Ω⃗ · B⃗

e

≃
ΩB0

e

�
rNS
r

	
3

½3 cos θm̂ · r̂ − cos θm�; ð74Þ

where θm is the misalignment angle between the rotational
and magnetic axis, and the time dependence of the plasma
due to rotation has been embedded in the term m̂ · r̂ ¼
cos θm cos θ þ sin θm sin θ cosðΩtÞ, where θ is a polar angle
given by taking rotational axis as the north pole.
Throughout this paper, we choose coordinates such that
θ also gives the angle between line of sight to an observer
and the rotational axis. The GJ charge distribution is
expected to be a reasonable approximation across most
of the closed field lines of standard pulsars, and near the
surfaces of dead neutron stars [38,66,67]. We revisit this
assumption when applying our results to the Galactic
Center magnetar, as the charge densities near such objects
are expected to be highly enhanced with respect to the
GJ model [68].
Before illustrating how each assumption and free para-

meter impacts the projected radio signal, we begin by
4We have verified that adjusting this threshold by a factor of 2

leads to negligible changes in asymptotic power.
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illustrating the agreement between forward and backward
ray tracing, using the formalism developed in the preceding
sections. In Fig. 4 we show the differential power (averaged
over the rotational period of the neutron star) generated
from resonant axion-photon transitions, and computed
using either an anisotropic, or an isotropic, dispersion
relation in curved spacetime. We show results for an axion
mass of 10−5 eV, but have also confirmed agreement at
other masses. These numerical results confirm the equiv-
alence of forward and backward ray tracing, in accordance
with the theory laid out in Sec. II. This demonstrates
explicitly the equivalence of sampling the collision integral
and explicitly evaluating the asymptotic flux via back-
tracing, with each scenario manifested in the right- and left-
hand side of Eq. (6), respectively.
Before continuing, it is worth highlighting that achieving

such a high level of agreement requires not only a unified
formalism (see Sec. II), but also high-precision numerics,
with the results being strongly sensitive to a variety
of different factors, such as the initial conditions of the
photon in the backward ray tracing procedure, the value of
fundamental constants (we find maintaining consistency
across many decimal places is typically required), the
precision of the ODE solver, etc. We now go on to illustrate
how varying the size of different physical phenomena
discussed in this and proceeding sections affect observa-
tional signatures from axion dark matter conversion in
neutron stars.

A. Physics of ray tracing

The goal of this subsection is to illustrate the importance
of the various physical effects within our models, which
until now, have not yet been self-consistently incorporated.
This includes the combined impact of plasma anisotropy
and curved space on photon propagation, the effect of

varying the neutron star mass and radius, the importance
of including multiply reflected photons, and the impact of
simplifications to the asymptotic velocity distribution of
axions prior to in-fall. In Appendix B we also examine the
extent to which gravity can be encoded in the initial
conditions of the photons, and the importance of imposing
the proper kinematic matching condition.5 In each case, we
analyze the impact of including and/or neglecting an effect
by computing the rotation-period averaged differential
power hdP=dθi as a function of the viewing angle, θ.
We emphasize that it is not always straightforward to
isolate individual effects, since a self-consistent treatment
usually involves not just one, but many modifications. As
an example, one can consider that gravity plays a role not
only in modifying the trajectories of individual rays, but
also enters the photon initial conditions (which in turn enter
the conversion probability, producing an effect both on the
weighting of photons and their propagation) and axion
number density. We clarify below when isolating an effect
breaks self-consistency.
In the next two subsections, we begin by addressing

the question of the relative importance of treating the
anisotropy of the plasma and curve spacetime, the former
having been treated in [22] and latter in [23].

1. Plasma anisotropies

We now examine differential power for an axion mass
of 10−5 eV and 10−6 eV, assuming either an isotropic or
anisotropic plasma, which correspond to the dispersion
relations of Eqs. (62) and (39), respectively. In each case,
we also adopt a conversion probability that is self-
consistent with the choice of dispersion relation; namely,
we use Piso

aγ [Eq. (69)] for the isotropic plasma, and Paniso
aγ

[Eq. (72)] for the anisotropic plasma. Modifying the photon
dispersion relation only redistributes outgoing photons
in phase space, keeping modifying how power is distri-
buted on the sky while maintaining a fixed sky-integrated
power (assuming photon absorption can be neglected).
Meanwhile, changing the conversion probability between
the isotropic and anisotropic cases affects the overall
normalization of the power, in accordance with Eq. (20).
In particular, this leads to a larger overall power output for
an anisotropic plasma. For comparison, we also plot a
comparison between the anisotropic and isotropic scenar-
ios, but setting the conversion probability in both cases to 1
for all rays—this allows us to isolate the impact of plasma
anisotropy on the evolution of photon trajectories. The
effect of gravity is included in all cases.
The results for isotropic and anisotropic plasmas are

shown in Fig. 5 (the left panel includes the conversion

FIG. 4. Equivalence of forward and backward ray tracing.
Period-averaged differential power as would be seen by an
observer viewing at an angle θ with respect to the rotational
axis, computed using forward (solid) and backward (dashed,
points) ray tracing. Results are shown for the isotropic (iso) and
anisotropic (aniso) dispersion relations and an axion mass of
ma ¼ 10−5 eV.

5We reserve these comparisons for the Appendix as they are
not fully self-consistent, and as such both their implementation
and interpretation is something of a subtlety that could cause
confusion for less familiar readers.
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probability, while in the right panel it is set to unity). We see
that for the parameters chosen, the axion mass plays the
dominant role in changing both the morphology and the
normalization of the power profile, with the plasma
anisotropy driving a more subtle, although non-negligible,
change of shifting power away from the poles and
equatorial plane—this latter effect arises from the θB
dependence in the photon dispersion relation. At larger
masses (ma ¼ 10−5 eV), we see that differential power
varies by an order of magnitude across θ∈ ð0; πÞ, while
the effect of assuming an isotropic plasma can induce
variations (for fixed values of θ) at the order of magnitude
level, although it is worth noting that the average differ-
ence is not so pronounced. For an axion mass of 10−6 eV
(where the conversion surface extends to larger character-
istic radii), the differential power across the sky can vary
by more than three orders of magnitude, with the effect of
plasma anisotropy introducing as much as a one order of
magnitude shift in the power (although only a certain
viewing angles).
A range of approximations [21,22,36,41,44,50,69]

have been used throughout the literature to model plasma
physics in the context of axion searches, both at the level of
dispersion relations and production itself. In this work, we
are now in a position to collate these various approxima-
tions and make some assessment of their relative impor-
tance from a observational point of view. More explicitly,
given the results reported in Fig. 5, the question arises as
to the significance of the differences between simplified
isotropic scenarios and more complete anisotropic plasma
descriptions, the latter combining anisotropic effects both
in dispersion relations and conversion probabilities.
One should bear in mind that the results of Fig. 5 concern

aligned rotators (θm ¼ 0), whilst in general neutron stars
are nonaligned with θm ≠ 0. In the case of a frequency
domain analysis (in which one uses time-integrated obser-
vations), the primary effect of inducing a misaligned

rotation axis is to isotropize the period-averaged flux
(see e.g., the differential power curves in [22]).

2. Curved spacetime plasma effects

Having discussed the effect of plasma anisotropy, we
turn now to the role of curved spacetime effects. We begin
by focusing on the role of gravity in altering the photon
dispersion relation (and hence ray propagation) [70], and
then return to the impact of gravity on the local intensity
emitted at the conversion surface.
In order to understand the effect of gravity we begin by

running the ray-tracing analysis using a variety of different
neutron star masses ranging from MNS ¼ 0.5M⊙ to
MNS ¼ 2.2M⊙. We begin by isolating the effect of gravity
on the propagation of photons by rescaling the photon
weights in such a way that the sky-integrated asymptotic
power remains fixed. This is done by setting the conversion
probability of each ray to one, and rescaling each photon by
a factor

Ri ≡ 1 cm−3

naðriÞ
ma

jk⃗aðriÞj
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − rs=ri
p ; ð75Þ

where ri is the initial radius of the photon at the resonance.
Note that the choice of normalization of the axion number
density and photon momentum are arbitrary, and thus one
should not attempt to interpret the normalization of the
differential power as being physical. The result of this
procedure is shown for two choices of axion mass in Fig. 6.
For ma ¼ 10−5 eV (i.e., when the conversion surface is
close to the neutron star), the effect is most pronounced
near the magnetic poles, leading to a variation in the
differential power up to a factor of ∼5 at other viewing
angles, however, the effect is typically no more than factor
of two. As expected, the effect of increasing the neutron star
mass leads to an isotropization of the radio flux [23].

FIG. 5. Effects of plasma anisotropy. Period-averaged differential power as would be seen by an observer viewing at an angle θ with
respect to the rotational axis. Results are shown for two choices of the axion mass (ma ¼ 10−5 and 10−6 eV). The isotropic (iso) case
combines a dispersion relation gμνkμkν þ ω2

p ¼ 0 and conversion probability Piso
aγ of Eq. (69). The anisotropic (aniso) uses the dispersion

relation of Eq. (39) and the conversion probability Paniso
aγ in Eq. (72). All results include gravity. Plots are generated using the fiducial

parameters of the main text.
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For smaller axion masses, the conversion surface shifts
away from the neutron star and the effect of gravity on the
propagation of rays is suppressed; specifically, for the
case of ma ¼ 10−6 eV, we find gravity only modifies ray
propagation at the Oð10%Þ level. In the Appendix, we
attempt to understand the extent to which previous approxi-
mations adopted in [22] are valid; in particular, we show
that embedding the effect of gravity into the initial con-
ditions, but neglecting gravity during the propagation,
tends to induce negligibly small errors in the differential
power (we caution, however, that this is an empirical result,
and is not guaranteed to hold in all contexts).
We now return to analyzing the full effect of gravity,

which enters not only the propagation of rays but also the
local power emitted from the resonant conversion surface.
We plot in Fig. 7 the impact of increasing the neutron star
mass from 1M⊙ to the maximally allowed value of ∼2.2M⊙
for two choices of axion masses (unlike Fig. 6, here we
maintain the conversion probability and the appropriate
weights of the rays). Figure 7 illustrates that the neutron
star mass plays a non-negligible role in the prediction of the
radio flux, and should likely be included in future modeling.

In Fig. 8 we illustrate the impact of varying the neutron
star radius, assuming a neutron star mass of either 1M⊙ or
2.2M⊙. Here, we see that the characteristic neutron star
radius adopted in previous works tends to lead to an
underestimation of the radio flux by a factor of ∼2; this
effect is nearly uniform over the sky, and arises primarily
from the fact that the increase of radius (at fixed surface
magnetic field strength) tends to increase the net surface
area over which resonant axion-photon transitions take
place.
The initial ray tracing performed in Refs. [22,23] had

observed notable deviations in the inferred time profiles
induced by resonant axion-photon mixing (note that time
variation is directly related to the variation of the differ-
ential power with viewing angle, θ). Reference [23] had
attributed this difference to the effect of gravity—it was
argued that gravity tends to isotropize the signal, washing
out the strong variation observed in the time profiles
of [22]. Here, we show that this conclusion is not correct;
instead, the variation observed in Ref. [22] was larger due
to three contributing factors: (i) [22] focused on lower
mass axions, which have larger time variation due to the

FIG. 6. Neutron star mass (renormalized). Same as Fig. 7, but setting the axion-photon conversion probability to 1 for all rays, and
renormalizing the weights of each ray by the factor Ri given in Eq. (75) (this renormalization ensures the sky-integrated power is fixed
across all neutron star masses). Result is shown for an axion mass of ma ¼ 10−5 eV (left) and 10−6 eV (right).

FIG. 7. Neutron star mass. Same as Fig. 5, but showing the impact of varying the neutron star mass from 1M⊙ to 2.2M⊙. Result is
shown for an axion mass of ma ¼ 10−5 eV (left) and 10−6 eV (right). Bottom panel in each case shows the relative difference (in
percent) with respect to the fiducial neutron star mass of 1M⊙.
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larger characteristic conversion surface; (ii) Ref. [23]
had not included multiply reflected photons, which tends
to increase the time variation (see Fig. 9, and the
following subsection); and (iii) the anisotropy of the
plasma at low masses can further enhance the variation in
the time domain.

3. Multiply reflected photons

The backward ray tracing method [23] is essentially a
standard approach to the problem of radiative transfer [59].
Photon production is calculated via an integral along the
photon worldline, as depicted in Eq. (4). As the photon
worldline is backpropagated, it can encounter multiple sites
of photon production from axions. This happens wherever
axion and photon dispersion relations become degenerate,
corresponding to a family of discrete values λi of the
worldline parameter at which photons are produced. In the
original work [23] we only considered the first level

crossing6 and λ ¼ λ1. In the present work, we include
contributions to the asymptotic value of the photon dis-
tribution fγðλ → ∞Þ from all production sites along the
photon worldline, so that fγðλ → ∞Þ ¼ P

i fγðλiÞ. This
effect is especially pronounced within the throats of the
magnetosphere, where the worldines of photons experience
multiple reflections, causing them to repeatedly encounter
level crossings.
In Fig. 9, we illustrate the impact of including these

multiply reflected photons for two different axion masses.
Here, one can see that accounting for multiply reflected
photons tends to induce a factor of ∼2 enhancement in the
differential power for viewing angles that are roughly
aligned with the throats of the magnetosphere. This effect
is enhanced for smaller axion masses, where the throats
become more prominent.

4. Asymptotic velocity distribution

The examples provided thus far have assumed for
simplicity that the asymptotic axion speed distribution
can be treated as a delta function fixed to jv⃗j ∼ 220 km=s,
corresponding to a monochromatic photon signal. This is
the assumption adopted in [23,39,50], while [22,44] treated
the full Maxwellian distribution. In Fig. 10, we show that
for both axion masses of interest, the simplification
of neglecting the width of the asymptotic energy distribu-
tion tends to induce negligible variations in the inferred
power. Importantly, however, this statement is only valid
when the neutron star is assumed to be at rest with respect
to the galaxy, and may not hold for strongly boosted
neutron stars.

FIG. 8. Neutron star radius. Same as left panel of Fig. 5 but
varying the neutron star radius and neutron star mass between
rNS ∈ ½10; 12� km and MNS ⊂ ½1; 2.2�M⊙. As before we show in
the bottom panel the relative difference (in percentage) with
respect to the fiducial models (taken to be those with
rNS ¼ 10 km).

FIG. 9. Multiple photon production. The impact of including
multiple resonant photon productions along the photon worldline
in backward ray tracing. For ma ¼ 10 μeV and the same fiducial
NS parameters used in previous plots.

FIG. 10. Finite line width effects. The impact of including the
velocity dispersion (as opposed to adopting a delta function on
the asymptotic speed jv⃗∞j ¼ 220 km=s for two choices of the
axion mass.

6Strictly speaking, we multiplied fγðλ1Þ by a factor 2 (as
in [21]) to model the effect of photons which are produced by
axions moving in the opposite direction to the photon.
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VI. GALACTIC CENTER MAGNETAR

The Galactic Center magnetar SGR J1745–2900 has
an inferred dipolar field strength of 1.6 × 1014 G, a rota-
tional period P ∼ 3.76 s, and has a two-dimensional
projected distance from the Galactic Center of ∼0.17 pc
[71], making it a promising target for axion searches. SGR
J1745–2900 is in fact frequently adopted as a benchmark
for developing projected sensitivities for future observa-
tions [21,22,36,39,44], and various groups have attempted
to place constraints using existing radio observations (see
e.g., [48]). All analyses to date have assumed that the
charge distribution can be described by the GJ model,
which is derived by determining the minimal corotating
charge density needed to screen the product of E⃗ · B⃗.
Magnetars, however, are expected to have magnetospheres
which differ markedly from the standard pulsar population,
with charge densities greatly exceeding the minimal co-
rotating density. Bearing in mind that the current under-
standing of magnetar magnetospheres is far from complete
(see e.g., [72,73] for recent reviews outlining the current
understanding of magnetars), we describe below the
expected properties of these systems, and use the tech-
niques outlined in the previous section to revisit sensitivity
estimates that could be achieved with existing and future
data. Needless to say, the validity of these projections
hinges upon a variety of rough approximations, and thus
they should be treated with some skepticism; nevertheless,
these projections serve to answer the important question of
whether magnetars could be useful in the future to probe
regions of axion parameter space which are conventionally
inaccessible to other indirect axion searches.
Magnetars are very young and highly magnetized objects

whose bright x-ray emission is powered magnetically,
rather than rotationally (implying the energy losses exceed
the spin-down power of the neutron star), see e.g., [73].
These objects are strongly variable and exhibit a broad
range of phenomenon ranging from x-ray bursts, glitches
and antiglitches, nonuniform spin-down, giant flares, and
even fast radio bursts (see, e.g., [74] for a recent association
between fast radio bursts and a nearby magnetar).
It is believed that the variable magnetar activity is driven

by the evolution of the ultrastrong magnetic field—a
shifting in the structure of the magnetic field internal to
the neutron star deforms the crust, inducing a strong
shearing of the crust which subsequently drives electric
currents into the magnetosphere. The net result is a twisted,
nearly force-free, magnetosphere threaded by strong elec-
tric currents j⃗ ∼∇ × B⃗. Phenomena like flaring can then
be explained, e.g., via the presence of instabilities that
appear as the magnetic twist exceeds a critical threshold
(see e.g., [68,72,73,75]).
In the context of axions, there are two important

distinctions between the magnetospheres of magnetars
and those of standard pulsars. First, the assumption of a

purely dipolar field is broken—the twisted magnetosphere
induces a complex topology to the magnetic structure, and
the magnetic field strength may easily exceed the inferred
dipolar value [76–80]. The second important distinction
comes from the fact that the minimum charge density
flowing from the twisted field configuration greatly
exceeds the minimum corotational charge density identified
in the GJ model. This can be seen by noting that the force-
free condition, E⃗ · B⃗ ¼ 0, implies a minimal charge density
near the neutron star given by [75]

ρ ¼ ∇ · E⃗ ¼ Ω · ½−2B⃗þ r⃗ × ð∇ × B⃗Þ� ¼ ρGJ þ ρtws; ð76Þ

where the first term is the GJ charge density, and the second
ρtws is the minimal charge density required to support a
twisted field configuration; note that for nontwisted field
configurations (as e.g., is the case with a standard dipolar
field) ∇ × B⃗ ¼ 0, and thus ρ ∼ ρGJ (at least in the closed
zone near the neutron star, where the force-free condition is
expected to be satisfied). The twisted-field configuration
expected to arise in the magnetospheres of magnetars is
supported and stabilized by the presence of a strong
electromagnetic current jjj ∼∇ × B⃗ ≫ ρGJ, which is
sourced from e� pair production processes near the neutron
star. The electron/positron number density ne� can be
derived by writing the local charge and current density as

ρ ¼ eðnþ − n−Þ ð77Þ

jj⃗j ¼ eðnþvþ − n−v−Þ; ð78Þ

where n� and v� are the number density and velocity of the
e�, and then directly solving for nþ þ n−; for a semi-
relativistic plasma [68] with jjj ≫ ρ this quantity is roughly
bounded to be n� ≳ 2jj⃗j=e [75,81].
Reference [75] investigated the charge distribution in

the context of a globally twisted dipole configuration,
showing this leads to a characteristic current on the order of
(see also [81])

j⃗ðr; θÞ ¼ ∇ × B⃗ ≃
sin2 θψ

r
B⃗: ð79Þ

Introducing a charge multiplicity factor λ (defined
with respect to the minimal charge density ∼2jj⃗j=e) and
assuming the magnetic field strength is purely a function
of radius, decaying as a dipolar magnetic field
jBj ∼ B0ðrNS=rÞ3, one finds

ne ∼ λ
ψ

er
sin2θB0

�
rNS
r

	
3

∼
7 × 1015

cm3
λsin2θ

�
ψ

0.2

	�
B0

2 × 1014 G

	�
rNS
r

	
4

: ð80Þ
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Near the neutron star surface, the charge density implied by
Eq. (80) can exceed the GJ value [see Eq. (74)]

nGJe ∼
2 × 1012

cm3

�
3.76
P

	�
B0

2 × 1014 G

	�
rNS
r

	
3

ð81Þ

by a factor ne=nGJe ∼ 103 × λ, which is in agreement with
inferences of the charge densities obtained from observa-
tions of the resonant cyclotron absorption of x-rays [82].
Notice that Eq. (80) implies the magnetospheres of magnet-
ars may support resonances for axions with masses near,
and above, 10−2 eV.
One of the fundamental questions sitting at the forefront

of the field for many years is how such strong currents
are sustained in magnetar magnetospheres. Recent work on
the electrodynamics in super-QED field strengths has
shown that the hard x-ray spectrum extending to energies
E≳ 10 keV observed in many magnetars can arise from a
highly collisional semirelativistic plasma with a character-
istic density 10–20 times larger than the minimal current
density given in Eq. (79). These enhanced densities
are sustained via a combination of ohmic heating and
pair creation, and may be necessary in order to explain a
number of observed phenomena including rapid x-ray
brightening, concentrated thermal hotspots, and thermal
x-ray emission [68].
The goal of this section is not to provide an accurate

description of axion conversion in magnetar magneto-
spheres, but merely to point out the extent to which the
axion searches performed in, e.g., Ref. [48], are modified
when more realistic assumptions are adopted. In this vein,
we take four fiducial models, which, in spite of their
simplicity, are expected to give some rough estimation of
the sensitivity that radio experiments could have to axion-
photon conversion in these systems. These models consider
two distinct values of magnetic fields, one with the minimal
value B0 ¼ 1.6 × 1014 G (corresponding to the pure dipo-
lar magnetic field) and the other with B0 ¼ 4 × 1014 G
(while this number is somewhat ad hoc, intended to show
the impact of a moderate magnetic enhancement although
an order-one enhancement, we note that it could be seen as
roughly consistent with the twist factor inferred in [83]),
and two distinct values of charge multiplicity parameter λ
(specifically, we take a uniform value of λ ¼ 1, and
λ ¼ 20); note that the λ ¼ 1 is intended to represent a
minimal lower bound, with λ ∼Oð10Þ being closer to
the value predicted by [68]. We therefore consider four
magnetar models, M1: λ ¼ 1; B ¼ 1.6 × 1014 G, M2:
λ ¼ 20; B ¼ 1.6 × 1014 G, M3: λ ¼ 1; B ¼ 4 × 1014 G,
M4: λ ¼ 20; B ¼ 4 × 1014 G.
In order to simplify the analysis, we treat the magnetic

field as being purely dipolar (despite this assumption being
inconsistent with the adopted charge density magnetic field
structures); in general, the magnetic field structure should
be obtained by solving the Grad-Shafranov equation

(see e.g., [84]), however including such an effect is beyond
the scope of this work. We note, however, that there are
three effects which are expected to arise as one includes the
geometric effects appearing in twisted configurations. First,
Oð1Þ angular factors shift the photon production efficiency,
and therefore induce comparable shifts in the photon
anisotropy (as compared with a dipolar field configuration).
Next, the radial dependence of twisted magnetic fields is
modified with respect to the dipolar case (falling as r−2þp,
with p < 1 for a twisted field and p ¼ 1 for the dipolar
field) [75,85]. Finally, and most importantly, the optical
depth for highly twisted fields can be increased. For the
moment, we estimate the optical depth using the dipolar
configuration but caution that a more careful assessment of
this effect may be needed in the future.
In order to be conservative, we choose to remove axion-

photon conversion in open magnetic field lines, since active
pair production and current flows in these regions are
expected to require a more sophisticated level of modeling.
These excised regions correspond to the white hatching
in Fig. 11. Using Eq. (80) we see that field lines are
characterized by the curves r= sin2 θ ¼ L, where L gives
the maximal radial distance of the field line from the
neutron star. Open field lines are those which extend
beyond the light-cylinder at rLC ¼ Ω−1

NS, i.e., they satisfy
L ≥ Ω−1

NS. When considering axion-photon conversion,
we do not include photon production occurring on open
magnetic field lines.
As a word of caution, dense return currents running

along the closed field line could produce secondary effects
not included by this “cutting” procedure, such as the
redirection and funneling photons near the conversion
surface. These effects are not included here, but will be
investigated in future work.
Resonant cyclotron absorption, occurring when the

frequency of the radiation matches the cyclotron frequency
ω ¼ ωc, can be increasingly important for low-frequency
radiation emitted near highly magnetized objects [Ref. [22]
had shown using the GJ model that the optical depth can be
Oð1Þ for the Galactic Center magnetar]. Assuming the
cyclotron resonance occurs at large distances from the
magnetar where the trajectories can be approximated as
radial, the optical depth is roughly given by [22]

τ ∼
π

3

�
ω2
p

ω

	
r; ð82Þ

where it is understood that all quantities are evaluated at the
point of resonance.
The characteristic charge densities spanned by Eq. (80)

suggest that magnetars will be efficiently producing radi-
ation across frequencies from Oð1Þ GHz–Oð5Þ THz, and
thus we use a combination of sub-mm telescopes to develop
our sensitivity projections. In particular, we adopt projec-
tions for current telescopes based on observations by the
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Green Bank Telescope (GBT), the Atacama Large
Millimeter Array (ALMA), and the Stratospheric
Observatory for Infrared Astronomy (SOFIA), which have
broad bandwidth coverage over the Oð10Þ GHz–THz
regime. In addition, we include a separate set of projections
for the Square Kilometer Array (SKA), which will cover
frequencies from 50MHz to 24 GHz.We compute the radio

spectrum at seven fixed axion masses, corresponding to
observing frequencies of ∼2.4 GHz, 20 GHz, 35 GHz,
100 GHz, 500 GHz, 1 THz, and 4 THz. SKA observations
will cover the lowest two frequency bins, and assuming a
system equivalent flux density SEFD ¼ 0.098 Jy, a band-
width of 10−5 ×ma, and an observing time of 10 hours,
SKA will have sensitivity (at the 95% confidence level) to

FIG. 11. Magnetar plasma distributions. Left: Log-10 of the plasma frequency in the GJ model for an aligned rotator with B0 ¼
1.6 × 1014 G and P ¼ 3.76 s. The vacuum regions defining charge separation in the GJ model can clearly be seen extending across the
diagonals. Center: Log-10 of the plasma frequency as computed using Eq. (80) for the same parameters. Right: Log-10 of the ratio of the
plasma frequency in the preceding models. In all cases the open field lines have been excised (shown with white hatched region) as
the charge densities are expected to differ notably from the minimal force-free values in this region.

FIG. 12. Axion searches with Galactic Center magnetar. Projected sensitivity to the Galactic Center magnetar SGR 1745-2900 using
four distinct models based on the magnetar charge distribution given in Eq. (80); model M1 is defined taking λ ¼ 1; B ¼ 1.6 × 1014 G,
model M2 for λ ¼ 20; B ¼ 1.6 × 1014 G, model M3 with λ ¼ 1; B ¼ 4 × 1014 G, model M4 is defined with λ ¼ 20; B ¼ 4 × 1014 G.
Results are shown assuming a distance of d ¼ 8.3 kpc, an NFW profile (with rs ¼ 20 kpc, and ρ⊕ ¼ 0.346 GeV=cm3),MNS ¼ 1.4M⊙,
rNS ¼ 12 km, and θm ¼ 0. Left panel corresponds to sensitivity that could be achieved using current telescopes (namely a combination
of GBT, ALMA, and SOFIA), while the right panel includes projected sensitivity from SKA. The vertical bars on each point reflect the
1σ variation in the inferred limits which are obtained by randomly sampling the orientation of Earth as defined with respect to the
rotational axis. Shown for reference are current the QCD axion band (purple) [90], and constraints from globular clusters (gray) [91],
CAST (dark blue) [92], axion haloscopes (gold) [93–110], pulsar polar cap cascades (light blue) [25], and GBT observations of the
Galactic Center (green) [44].
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radio lines at each observing frequency of 5 and 2 μJy [86].
We use the GBT telescope to establish sensitivity in the
lowest three frequencies; here, we adopt a sensitivity
(across all frequencies) consistent with the quoted 95% con-
fidence upper limit used in the analysis of [48], Slim ∼
0.3 mJy (computed using a bin width of δf ∼ 28 MHz).
At 100 GHz7 and 500 GHz, we adopt a sensitivity for
ALMA consistent with the quoted capability for 60 seconds
of observations and a line width of8 δf=f ∼ 10−6, which
corresponds to Slim ∼ 5 mJy and 25 mJy for 100 and
500 GHz respectively [87]. Note that GC magnetar has
been observed up to frequencies of a few hundred GHz,
with the observed flux density sitting below the 10 mJy
level [88]. The sensitivity of the two highest-frequency bins
is set to 100 mJy, which is roughly the 4σ line sensitivity for
900 seconds of observation estimated in [89]. In general,
one would either marginalize over the unknown parame-
ters, or take the value which give the most conservative
constraints [48,50]—since our goal, however, is only to
provide an indicative idea of rough sensitivity, we simply
fix θm¼0, d ¼ 8.3 kpc,MNS ¼ 1.4M⊙, and rNS ¼ 12 km.
Note that since we do not vary θm, which plays an important
role in determining the line width, we make the simplifying
assumption that the entirety of the signal is contained
within a single frequency bin—this bin is assumed to have
a value of 10−5 ×ma for all telescopes except GBT, where
we take the bin width used in the observations of Ref. [48].
The projected sensitivity to the axion-photon coupling in

each of our four magnetar models M1–M4 motivated
above, is shown in Fig. 12. In this figure we show the
flux predicted at a typical viewing angle, defined by
generating 103 samples and selecting the median value,
and the �1σ variations about the median value. Figure 12
illustrates that SGR 1745-2900 may produce observable
radio emission up to ∼4 THz, however only if there exists a
sizable nondipolar contribution to the magnetic field and
the charge density exceeds the minimal expected value by
an order 10 value; nevertheless, emission up to ∼500 GHz
is still expected across all models, potentially allowing
parts of the QCD axion band to be explored using existing
instruments. These sensitivities should still be interpreted
with caution, as systematic uncertainties have not been
folded in, and the impact of nondipolar field modeling has
not yet been explored.

VII. CONCLUSIONS

In this work, we have constructed a generalized ray
tracing framework capable of analyzing radio signals

sourced from resonant axion-photon mixing in astrophysi-
cal plasmas, focusing in particular on the treatment of these
interactions in highly magnetized plasmas and curved
spacetime. We have explicitly shown how these calculations
can be self-consistently embedded using either a “forward
ray tracing” approach (in which one samples from the
photon phase-space at production, propagates the photons
to far distances, and reconstructs observables from the final
photon distribution) or a “backward ray tracing” approach
(the more conventional ray tracing approach, in which one
propagates rays from an observing plane far away from the
source to the point of production); while these approaches
use different methodology, we have shown using detailed
phase-space arguments (Secs. II–III) that these must yield
identical results. We then demonstrated this spectacular
agreement explicitly through extensive numerical compari-
son of the two codes. Note that this is a highly nontrivial
result, as even small deviations in the definitions of
fundamental constants or accumulated errors in the ODE
solvers can generate sizable effects.
Previous work on ray tracing in astrophysical axion

searches have included only a subset of the effects studied
here, focusing either on the propagation of photons through
a magnetized plasma in flat space [22] (using forward
propagation) or through an isotropic plasma in curved
space [23] (using backward propagation). This work unites
these frameworks and allows for a thorough investigation
of each of the assumptions adopted in the literature thus far.
Our primary conclusions are as follows:

(i) In curved space, the anisotropy of the plasma tends
to squeeze the radiated power to small angles (but
away from the magnetic pole). This can cause the
observed power to deviate from the isotropic sce-
nario by potentially an order of magnitude or so,
depending on the axion mass and the viewing angle.

(ii) For large neutron star and axion masses, gravity can
induce sizable modifications to photon trajectories,
and tends to isotropize the radiated flux. For small
neutron star and axion masses this effect becomes
negligible. Interestingly, we find that previous ap-
proaches which had included the effect of gravity in
the initial conditions but not in the propagation of
photons are extremely accurate, despite not being
self-consistent.

(iii) Varying the neutron radius within a range of values
permitted by the equation of state can lead to a factor
of ∼2 shift in the sky-integrated power. This effect is
predominantly driven by the change in the resonant
surface area.

(iv) The improved backward ray tracing algorithm now
accounts for multiple photon production sites along
photon worldlines (see Sec. VA 3). Including this
effect can enhance the total power by a factor of a
few (the effect being more pronounced for smaller
axion masses). Crucially though, the inclusion of

7GBT can also observe at 100 GHz—using the online
sensitivity calculator for GBT, we find a couple hours of
observation tends to give comparable sensitivity estimates.

8The line studied here is expected to be slightly wider than this
level, however the sensitivity scales weakly with bandwidth, and
can easily be compensated for using additional observing time.

GENERALIZED RAY TRACING FOR AXIONS IN … PHYS. REV. D 108, 103021 (2023)

103021-21



these effects is needed to have agreement between
the two ray tracing approaches used in this paper.

In this work (and Ref. [54]), we have gone to great
lengths to fully develop kinetic theory in anisotropic media,
which has additional complications relative to isotropic
backgrounds. In particular, generalizing the dispersion
relation for photons in anisotropic plasmas to curved
spacetime [57,60–62], is somewhat more involved that
an isotropic plasma [53,58]. Similarly, the geometry of the
conversion surface is also more complicated (both in flat
and curved spacetime), and consists of a foliation of
multiple production surfaces. In turn, these correspond
to more complicated kinematic matching of axions and
photons at the conversion surface.
Related to this discussion of anisotropic media, we have

paid particular attention to including curved spacetime
effects in our routines, which are required to self-consistently
incorporate gravity across the full range of physical effects.
For self-consistency, gravity should also be incorporated into
the conversion probability itself, such that when integrating
over phase space (see Sec. III) the resulting power is
convergent. In this work, and Ref. [54], we have shown
that in flat space, both the isotropic and anisotropic con-
version probability gives finite results. In Sec. IV, we also
offered arguments for generalizing the conversion proba-
bility in isotropic plasmas to curved spacetime, showing that
this generalized form of the conversion probability leads to
convergent results. One of the remaining open problems,
however, remains a full generalization of the anisotropic
conversion probability to curved spacetime. Presumably the
answer lies somewhere in generalizing the phase-space
and kinetic theory arguments of the present work using
techniques laid out in Refs. [63,64], though we leave such
derivations for future work.
With a view to observations, in Sec. V, we have used our

newly developed ray-tracing framework to revisit sensi-
tivity estimates of radio and microwave telescopes to
spectral lines emanating from Galactic Center magnetar
SGR J1745-2900. Here, we provided an extensive
discussion on the state-of-the-art knowledge of charge
distributions in magnetars, showing that previous approxi-
mations relaying on the Goldreich-Julian charge distribu-
tion have likely underestimated the characteristic plasma
frequency near the surface of the star. Using four distinct
models, we show that the high plasma densities near the
surface of the magnetar are capable of generating electro-
magnetic signatures up to the OðTHzÞ regime, with current
and future infrastructure potentially covering significant
unexplored regions of axion parameter space. This work
provides greater motivation for understanding magnetar
charge densities, as such searches may provide one of the
unique avenues for indirectly probing this well-motivated
region of axion parameter space.
Ray tracing has proven to be an invaluable tool in

astronomy and astrophysics, and in recent years has

emerged an increasingly important approach in the indirect
search for axions. This paper has developed the funda-
mentals necessary to incorporate ray tracing into astro-
physical axion searches, and has for the first time
investigated and quantified the validity of a variety of
different assumptions adopted in previous applications and
searches. While there still exist open questions which need
to be addressed, such as the impact of uncertainties in the
charge distribution and near-field magnetic field configu-
ration, and how axions and photons mix in high magnetized
environments, the framework developed here lays the much
needed groundwork for the future development of indirect
axion searches in neutron star magnetospheres.
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APPENDIX A: ANISOTROPIC CONVERSION
IN CURVED SPACE; AN OPEN PROBLEM

At this point, a few remarks are in order about the present
difficulties in generalizing the results of this subsection to
curved spacetime. Firstly, following results of Ref. [54],
one could conjecture that the width of the resonance can be
inferred from the governing Boltzmann equation projected
along photon wordlines, which gives

dfγðxðλÞ; kðλÞ
dλ

¼ g2aγγjk · F̃ext · εj22πδðgμνðλÞkμðλÞkνðλÞ −m2
aÞfa:

ðA1Þ

Clearly, in an isotropic medium, the argument of the
delta function just becomes ω2

p −m2
a, and we recover

the result above when performing the integration over λ,
which gives terms in the denominator proportional to
dω2

p=dλ ∝ k · ∂μðω2
pÞ. For a more general dispersion rela-

tion, however, the integration of the delta function yields
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fγ ¼
πg2aγγjk · F̃ext · εj2

jk ·DHj fa; ðA2Þ

where H is the photon Hamiltonian defined in [54] and

Dμ ¼
∂

∂xμ
þ Γσ

μρkσ
∂

∂kρ
; ðA3Þ

is the generalized covariant derivative appearing in [63,64].
To arrive at Eq. (A2) we used Hamiltonian equations
[Eq. (2)] for xμðλÞ and kμðλÞ to express their λ derivatives
in terms of derivatives ofH. We also assumed a Levi-Civita
connection in which gμν is covariantly constant, so that
∇σgμν ¼ 0, allowing us to reexpress partial derivatives of
∂σgμν in terms of Cristoffel symbols Γσ

μρ. The following
ansatz would then lead to a conversion probability

Paγ ¼
πg2aγγjk · F̃ext · εj2

jk ·DHj : ðA4Þ

Clearly a divergence occurs when k is perpendicular to DH.
One might therefore hope that this divergence is regulated
by the phase-space measure appearing in Eq. (20); how-
ever, the key difficulty is generalizing Eq. (20) to curved
space is to generalize the step of Eq. (17), which proves
difficult since one picks up additional derivatives of the
metric in the term gμνkμkν, which at face value do not lead
to appropriate cancellations with the phase space measure.
The authors suspect that there may exist a subtlety in the
generalization of this formula to curved space, however
this is highly nontrivial and thus it will become the subject
of future work.

APPENDIX B: COMPARISON WITH PREVIOUS
APPROXIMATION SCHEMES

In the following, we attempt to make connections with
simplifying approximations adopted in previous work [22].
Despite the fact that these simplified approaches are not

fully self-consistent, we show the net effect on the differ-
ential power is rather minimal.
The first simplifying approximation, applied in the context

of forward ray tracing [22,41], is that gravity can be
embedded in the initial conditions of the photon, but
neglected in the propagation. That is to say, the initial energy
and momentum of the photon are consistent with being
produced within a gravitational potential sourced a neutron
star of mass MNS, but MNS is set to zero in Hamilton’s
equations [Eq. (2)]. The results of performing this “flat”
analysis are shown in Fig. 13 for two choices of neutron star
mass, and both an anisotropic and isotropic dispersion
relation. Here, we see that the impact of the flat approxi-
mation is typically extremely small. Importantly, this ap-
proximation scheme is not equivalent to taking MNS → 0

(since the initial conditions for the photon momentum here
are fixed in both the curved and flat space analysis), and thus
we do not expect the results to mimic those of Fig. 6.
The second approximation, which was adopted

in [22,41,49], assumes the resonance occurs along a
single two-dimensional surface appearing at ma ≃ ωp.
As mentioned in the main text (see Sec. IV B), resonances
occur across a foilation of surfaces, defined by kaμ ¼ kγμ,

FIG. 13. Artificial gravity. Result of adopting initial conditions consistent with photon production from axions near a neutron star with
mass MNS ¼ 1M⊙ (left) and 2.2M⊙ (right), but setting MNS ¼ 0 in the ray-tracing procedure.

FIG. 14. Kinematics and conversion surface geometry. Same as
left panel of Fig. 5, but illustrating the impact of incorrectly
imposing a resonant condition of ma ≃ ωp, rather than kaμ ¼ kγμ.
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which can extend to slightly larger and smaller radii than
what one would infer by applying the former approxi-
mation. In Fig. 14, we show the relative importance of
including, or neglecting, the proper kinematic matching
condition. Note that in the latter case, in order to ensure
the photon in on shell, we set initial conditions of photons
by taking ωγ ¼ ωa and the unit 3-momentum vectors to
satisfy k̂a ¼ k̂γ. The normalization jkj of the photon

3-momentum is then inferred from Eq. (38). The radial
width of the foliation of surfaces defined by the appro-
priate resonance condition kaμ ¼ kγμ tends to be below the
10% level, and thus the effect is not expected to be large;
this expectation is confirmed in Fig. 14, which shows that
the differential power is only slightly modified for a
narrow region of viewing angles.

[1] C. Bambi, Astrophys. J. 761, 174 (2012).
[2] K. Akiyama et al. (Event Horizon Telescope Collabora-

tion), Astrophys. J. Lett. 875, L6 (2019).
[3] K. Akiyama et al. (Event Horizon Telescope Collabora-

tion), Astrophys. J. Lett. 875, L5 (2019).
[4] F. H. Vincent, M. Wielgus, M. A. Abramowicz, E.

Gourgoulhon, J. P. Lasota, T. Paumard, and G. Perrin,
Astron. Astrophys. 646, A37 (2021).

[5] A. Cárdenas-Avendaño, A. Lupsasca, and H. Zhu, Phys.
Rev. D 107, 043030 (2023).

[6] Z. Hu, Z. Zhong, P.-C. Li, M. Guo, and B. Chen, Phys.
Rev. D 103, 044057 (2021).

[7] S. Bhattacharyya, T. E. Strohmayer, M. C. Miller, and
C. B. Markwardt, Astrophys. J. 619, 483 (2005).

[8] C. Cadeau, S. M. Morsink, D. Leahy, and S. S. Campbell,
Astrophys. J. 654, 458 (2007).

[9] D. A. Leahy, S. M. Morsink, and Y. Chou, Astrophys. J.
742, 17 (2011).

[10] D. Psaltis and F. Özel, Astrophys. J. 792, 87 (2014).
[11] D. Psaltis, F. Özel, and D. Chakrabarty, Astrophys. J. 787,

136 (2014).
[12] F. H. Vincent et al., Astrophys. J. 855, 116 (2018).
[13] S. Bogdanov, F. K. Lamb, S. Mahmoodifar, M. C. Miller,

S. M. Morsink, T. E. Riley, T. E. Strohmayer, A. K. Tung,
A. L. Watts, A. J. Dittmann et al., Astrophys. J. Lett. 887,
L26 (2019).

[14] A. Riddle, Sol. Phys. 35, 153 (1974).
[15] R. Robinson, Publ. Astron. Soc. Austr. 5, 208 (1983).
[16] C. V. Sastry, Astrophys. J. 697, 1934 (2009).
[17] B. Cropp, S. Liberati, A. Mohd, and M. Visser, Phys. Rev.

D 89, 064061 (2014).
[18] A. E. Broderick, T. Johannsen, A. Loeb, and D. Psaltis,

Astrophys. J. 784, 7 (2014).
[19] Y. Mizuno, Z. Younsi, C. M. Fromm, O. Porth, M. De

Laurentis, H. Olivares, H. Falcke, M. Kramer, and L.
Rezzolla, Nat. Astron. 2, 585 (2018).

[20] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F.
Runarsson, Int. J. Mod. Phys. D 25, 1641021 (2016).

[21] M. Leroy, M. Chianese, T. D. P. Edwards, and C. Weniger,
Phys. Rev. D 101, 123003 (2020).

[22] S. J. Witte, D. Noordhuis, T. D. P. Edwards, and C.
Weniger, Phys. Rev. D 104, 103030 (2021).

[23] R. A. Battye, B. Garbrecht, J. I. McDonald, and S.
Srinivasan, J. High Energy Phys. 09 (2021) 105.

[24] H. An, X. Chen, S. Ge, J. Liu, and Y. Luo, arXiv:2301
.03622.

[25] D. Noordhuis, A. Prabhu, S. J. Witte, A. Y. Chen, F. Cruz,
and C. Weniger, Phys. Rev. Lett. 131, 111004 (2023);
(2022), arXiv:2209.09917.

[26] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977); 328 (1977).

[27] R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977).
[28] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[29] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[30] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[31] E. Witten, Phys. Lett. 149B, 351 (1984).
[32] M. Cicoli, M. Goodsell, and A. Ringwald, J. High Energy

Phys. 10 (2102) 146.
[33] J. P. Conlon, J. High Energy Phys. 05 (2006) 078.
[34] P. Svrcek and E. Witten, J. High Energy Phys. 06

(2006) 051.
[35] M. S. Pshirkov and S. B. Popov, J. Exp. Theor. Phys. 108,

384 (2009).
[36] A. Hook, Y. Kahn, B. R. Safdi, and Z. Sun, Phys. Rev. Lett.

121, 241102 (2018).
[37] F. P. Huang, K. Kadota, T. Sekiguchi, and H. Tashiro,

Phys. Rev. D 97, 123001 (2018).
[38] B. R. Safdi, Z. Sun, and A. Y. Chen, Phys. Rev. D 99,

123021 (2019).
[39] R. A. Battye, B. Garbrecht, J. I. McDonald, F. Pace, and

S. Srinivasan, Phys. Rev. D 102, 023504 (2020).
[40] J. H. Buckley, P. S. B. Dev, F. Ferrer, and F. P. Huang,

Phys. Rev. D 103, 043015 (2021).
[41] J. W. Foster et al., Phys. Rev. Lett. 125, 171301 (2020).
[42] T. D. P. Edwards, B. J. Kavanagh, L. Visinelli, and C.

Weniger, Phys. Rev. Lett. 127, 131103 (2021).
[43] A. Prabhu and N. M. Rapidis, J. Cosmol. Astropart. Phys.

10 (2020) 054.
[44] J. W. Foster, S. J. Witte, M. Lawson, T. Linden, V. Gajjar,

C. Weniger, and B. R. Safdi, Phys. Rev. Lett. 129, 251102
(2022).

[45] A. J. Millar, S. Baum, M. Lawson, and M. C. D. Marsh,
J. Cosmol. Astropart. Phys. 11 (2021) 013.

[46] Y. Bai, X. Du, and Y. Hamada, J. Cosmol. Astropart. Phys.
01 (2022) 041.

[47] S. Nurmi, E. D. Schiappacasse, and T. T. Yanagida,
J. Cosmol. Astropart. Phys. 09 (2021) 004.

J. I. MCDONALD and S. J. WITTE PHYS. REV. D 108, 103021 (2023)

103021-24

https://doi.org/10.1088/0004-637X/761/2/174
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.1051/0004-6361/202037787
https://doi.org/10.1103/PhysRevD.107.043030
https://doi.org/10.1103/PhysRevD.107.043030
https://doi.org/10.1103/PhysRevD.103.044057
https://doi.org/10.1103/PhysRevD.103.044057
https://doi.org/10.1086/426383
https://doi.org/10.1086/509103
https://doi.org/10.1088/0004-637X/742/1/17
https://doi.org/10.1088/0004-637X/742/1/17
https://doi.org/10.1088/0004-637X/792/2/87
https://doi.org/10.1088/0004-637X/787/2/136
https://doi.org/10.1088/0004-637X/787/2/136
https://doi.org/10.3847/1538-4357/aab0a3
https://doi.org/10.3847/2041-8213/ab5968
https://doi.org/10.3847/2041-8213/ab5968
https://doi.org/10.1007/BF00156964
https://doi.org/10.1017/S132335800001688X
https://doi.org/10.1088/0004-637X/697/2/1934
https://doi.org/10.1103/PhysRevD.89.064061
https://doi.org/10.1103/PhysRevD.89.064061
https://doi.org/10.1088/0004-637X/784/1/7
https://doi.org/10.1038/s41550-018-0449-5
https://doi.org/10.1142/S0218271816410212
https://doi.org/10.1103/PhysRevD.101.123003
https://doi.org/10.1103/PhysRevD.104.103030
https://doi.org/10.1007/JHEP09(2021)105
https://arXiv.org/abs/2301.03622
https://arXiv.org/abs/2301.03622
https://arXiv.org/abs/2209.09917
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1016/0370-2693(84)90422-2
https://doi.org/10.1007/JHEP10(2012)146
https://doi.org/10.1007/JHEP10(2012)146
https://doi.org/10.1088/1126-6708/2006/05/078
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1134/S1063776109030030
https://doi.org/10.1134/S1063776109030030
https://doi.org/10.1103/PhysRevLett.121.241102
https://doi.org/10.1103/PhysRevLett.121.241102
https://doi.org/10.1103/PhysRevD.97.123001
https://doi.org/10.1103/PhysRevD.99.123021
https://doi.org/10.1103/PhysRevD.99.123021
https://doi.org/10.1103/PhysRevD.102.023504
https://doi.org/10.1103/PhysRevD.103.043015
https://doi.org/10.1103/PhysRevLett.125.171301
https://doi.org/10.1103/PhysRevLett.127.131103
https://doi.org/10.1088/1475-7516/2020/10/054
https://doi.org/10.1088/1475-7516/2020/10/054
https://doi.org/10.1103/PhysRevLett.129.251102
https://doi.org/10.1103/PhysRevLett.129.251102
https://doi.org/10.1088/1475-7516/2021/11/013
https://doi.org/10.1088/1475-7516/2022/01/041
https://doi.org/10.1088/1475-7516/2022/01/041
https://doi.org/10.1088/1475-7516/2021/09/004


[48] R. A. Battye, J. Darling, J. I. McDonald, and S. Srinivasan,
Phys. Rev. D 105, L021305 (2022).

[49] S. J. Witte, S. Baum, M. Lawson, M. C. D. Marsh, A. J.
Millar, and G. Salinas, Phys. Rev. D 107, 063013 (2023).

[50] R. A. Battye, M. J. Keith, J. I. McDonald, S. Srinivasan,
B. W. Stappers, and P. Weltevrede, Phys. Rev. D 108,
063001 (2023).

[51] A. Prabhu, Phys. Rev. D 104, 055038 (2021).
[52] D. Noordhuis, A. Prabhu, C. Weniger, and S. J. Witte,

arXiv:2307.11811.
[53] J. Bicak and P. Hadrava, Astron. Astrophys. 44, 389

(1975).
[54] J. I. McDonald, B. Garbrecht, and P. Millington, arXiv:

2307.11812.
[55] P. Goldreich and W. H. Julian, Astrophys. J. 157, 869

(1969).
[56] B. Turimov, B. Ahmedov, A. Abdujabbarov, and C.

Bambi, Int. J. Mod. Phys. D 28, 2040013 (2019).
[57] M. Gedalin and D. B. Melrose, Phys. Rev. E 64, 027401

(2001).
[58] A. Rogers, Mon. Not. R. Astron. Soc. 451, 17 (2015).
[59] G. Befki, Radiation Processes in Plasmas (Wiley,

New York, 1966).
[60] R. A. Breuer and J. Ehlers, Proc. R. Soc. A 370, 389

(1980).
[61] R. A. Breuer and J. Ehlers, Proc. R. Soc. A 374, 65 (1981).
[62] R. A. Breuer and J. Ehlers, Astron. Astrophys. 96, 293

(1981).
[63] R. O. Acuña Cárdenas, C. Gabarrete, and O. Sarbach,

Gen. Relativ. Gravit. 54, 23 (2022).
[64] A. Hohenegger, A. Kartavtsev, and M. Lindner, Phys. Rev.

D 78, 085027 (2008).
[65] G.-y. Huang, T. Ohlsson, and S. Zhou, Phys. Rev. D 97,

075009 (2018).
[66] A. Spitkovsky and J. Arons, ASP Conf. Ser. 271, 81

(2002).
[67] J. Pétri, J. Heyvaerts, and S. Bonazzola, Astron. Astrophys.

384, 414 (2002).
[68] C. Thompson and A. Kostenko, Astrophys. J. 904, 184

(2020).
[69] F. P. Huang, K. Kadota, T. Sekiguchi, and H. Tashiro,

Phys. Rev. D 97, 123001 (2018).
[70] J. McDonald, Phys. Rev. Lett. 88, 091304 (2002).
[71] K. Mori et al., Astrophys. J. Lett. 770, L23 (2013).
[72] R. Turolla, S. Zane, and A. Watts, Rep. Prog. Phys. 78,

116901 (2015).
[73] V. M. Kaspi and A. M. Beloborodov, Annu. Rev. Astron.

Astrophys. 55, 261 (2017).
[74] C. D. Bochenek, V. Ravi, K. V. Belov, G. Hallinan, J.

Kocz, S. R. Kulkarni, and D. L. McKenna, Nature
(London) 587, 59 (2020).

[75] C. Thompson, M. Lyutikov, and S. Kulkarni, Astrophys. J.
574, 332 (2002).

[76] L. Stella, S. Dall’Osso, G. Israel, and A. Vecchio, As-
trophys. J. 634, L165 (2005).

[77] J. A. Pons and R. Perna, Astrophys. J. 741, 123 (2011).
[78] N. Rea, G. L. Israel, P. Esposito, J. A. Pons, A. Camero-

Arranz, R. P. Mignani, R. Turolla, S. Zane, M. Burgay, A.
Possenti et al., Astrophys. J. 754, 27 (2012).

[79] K. Makishima, T. Enoto, J. S. Hiraga, T. Nakano, K.
Nakazawa, S. Sakurai, M. Sasano, and H. Murakami,
Phys. Rev. Lett. 112, 171102 (2014).

[80] A. P. Igoshev, R. Hollerbach, T. Wood, and K. N.
Gourgouliatos, Nat. Astron. 5, 145 (2021).

[81] A. M. Beloborodov and C. Thompson, Astrophys. J. 657,
967 (2007).

[82] N. Rea, S. Zane, R. Turolla, M. Lyutikov, and D. Gotz,
Astrophys. J. 686, 1245 (2008).

[83] F. C. Zelati et al., Mon. Not. R. Astron. Soc. 449, 2685
(2015).

[84] A. M. Beloborodov, Astrophys. J. 703, 1044 (2009).
[85] M. Lyutikov and P. Sharma, Mon. Not. R. Astron. Soc.

513, 1947 (2022).
[86] Ska telescope specifications, https://www.skao.int/en/

science-users/118/ska-telescope-specifications, accessed:
2023-07-18.

[87] A. Wootten, in Large Ground-Based Telescopes (SPIE,
Bellingham, WA, 2003), Vol. 4837, pp. 110–118.

[88] P. Torne, G. Desvignes, R. Eatough, R. Karuppusamy,
G. Paubert, M. Kramer, I. Cognard, D. Champion, and L.
Spitler, Mon. Not. R. Astron. Soc. 465, stw2757 (2016).

[89] R. Gehrz, E. Becklin, I. De Pater, D. Lester, T. Roellig, and
C. Woodward, Adv. Space Res. 44, 413 (2009).

[90] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli,
Phys. Rep. 870, 1 (2020).

[91] M. J. Dolan, F. J. Hiskens, and R. R. Volkas, J. Cosmol.
Astropart. Phys. 10 (2022) 096.

[92] V. Anastassopoulos et al. (CAST Collaboration), Nat.
Phys. 13, 584 (2017).

[93] P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).
[94] S. DePanfilis, A. C. Melissinos, B. E. Moskowitz, J. T.

Rogers, Y. K. Semertzidis, W. U. Wuensch, H. J. Halama,
A. G. Prodell, W. B. Fowler, and F. A. Nezrick, Phys. Rev.
Lett. 59, 839 (1987).

[95] C. Hagmann, P. Sikivie, N. S. Sullivan, and D. B. Tanner,
Phys. Rev. D 42, 1297 (1990).

[96] C. Hagmann et al. (ADMX Collaboration), Phys. Rev.
Lett. 80, 2043 (1998).

[97] S. J. Asztalos et al. (ADMX Collaboration), Phys. Rev. D
64, 092003 (2001).

[98] S. J. Asztalos et al. (ADMX Collaboration), Phys. Rev.
Lett. 104, 041301 (2010).

[99] N. Du et al. (ADMX Collaboration), Phys. Rev. Lett. 120,
151301 (2018).

[100] T. Braine et al. (ADMX Collaboration), Phys. Rev. Lett.
124, 101303 (2020).

[101] R. Bradley, J. Clarke, D. Kinion, L. J. Rosenberg, K. van
Bibber, S. Matsuki, M. Mück, and P. Sikivie, Rev. Mod.
Phys. 75, 777 (2003).

[102] S. J. Asztalos et al., Phys. Rev. D 69, 011101 (2004).
[103] T. M. Shokair et al., Int. J. Mod. Phys. A 29, 1443004

(2014).
[104] B. M. Brubaker et al. (HAYSTAC Collaboration), Phys.

Rev. Lett. 118, 061302 (2017).
[105] L. Zhong et al. (HAYSTAC Collaboration), Phys. Rev. D

97, 092001 (2018).
[106] K. M. Backes et al. (HAYSTAC Collaboration), Nature

(London) 590, 238 (2021).

GENERALIZED RAY TRACING FOR AXIONS IN … PHYS. REV. D 108, 103021 (2023)

103021-25

https://doi.org/10.1103/PhysRevD.105.L021305
https://doi.org/10.1103/PhysRevD.107.063013
https://doi.org/10.1103/PhysRevD.108.063001
https://doi.org/10.1103/PhysRevD.108.063001
https://doi.org/10.1103/PhysRevD.104.055038
https://arXiv.org/abs/2307.11811
https://arXiv.org/abs/2307.11812
https://arXiv.org/abs/2307.11812
https://doi.org/10.1086/150119
https://doi.org/10.1086/150119
https://doi.org/10.1142/S0218271820400131
https://doi.org/10.1103/PhysRevE.64.027401
https://doi.org/10.1103/PhysRevE.64.027401
https://doi.org/10.1093/mnras/stv903
https://doi.org/10.1098/rspa.1980.0040
https://doi.org/10.1098/rspa.1980.0040
https://doi.org/10.1098/rspa.1981.0011
https://doi.org/10.1007/s10714-022-02908-5
https://doi.org/10.1103/PhysRevD.78.085027
https://doi.org/10.1103/PhysRevD.78.085027
https://doi.org/10.1103/PhysRevD.97.075009
https://doi.org/10.1103/PhysRevD.97.075009
https://doi.org/10.1051/0004-6361:20020044
https://doi.org/10.1051/0004-6361:20020044
https://doi.org/10.3847/1538-4357/abbe87
https://doi.org/10.3847/1538-4357/abbe87
https://doi.org/10.1103/PhysRevD.97.123001
https://doi.org/10.1103/PhysRevLett.88.091304
https://doi.org/10.1088/2041-8205/770/2/L23
https://doi.org/10.1088/0034-4885/78/11/116901
https://doi.org/10.1088/0034-4885/78/11/116901
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1038/s41586-020-2872-x
https://doi.org/10.1038/s41586-020-2872-x
https://doi.org/10.1086/340586
https://doi.org/10.1086/340586
https://doi.org/10.1086/498685
https://doi.org/10.1086/498685
https://doi.org/10.1088/0004-637X/741/2/123
https://doi.org/10.1088/0004-637X/754/1/27
https://doi.org/10.1103/PhysRevLett.112.171102
https://doi.org/10.1038/s41550-020-01220-z 
https://doi.org/10.1086/508917
https://doi.org/10.1086/508917
https://doi.org/10.1086/591264
https://doi.org/10.1093/mnras/stv480
https://doi.org/10.1093/mnras/stv480
https://doi.org/10.1088/0004-637X/703/1/1044
https://doi.org/10.1093/mnras/stac868
https://doi.org/10.1093/mnras/stac868
https://www.skao.int/en/science-users/118/ska-telescope-specifications
https://www.skao.int/en/science-users/118/ska-telescope-specifications
https://www.skao.int/en/science-users/118/ska-telescope-specifications
https://www.skao.int/en/science-users/118/ska-telescope-specifications
https://doi.org/10.1093/mnras/stw2757
https://doi.org/10.1016/j.asr.2009.04.011
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1088/1475-7516/2022/10/096
https://doi.org/10.1088/1475-7516/2022/10/096
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.59.839
https://doi.org/10.1103/PhysRevLett.59.839
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevLett.80.2043
https://doi.org/10.1103/PhysRevLett.80.2043
https://doi.org/10.1103/PhysRevD.64.092003
https://doi.org/10.1103/PhysRevD.64.092003
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.124.101303
https://doi.org/10.1103/PhysRevLett.124.101303
https://doi.org/10.1103/RevModPhys.75.777
https://doi.org/10.1103/RevModPhys.75.777
https://doi.org/10.1103/PhysRevD.69.011101
https://doi.org/10.1142/S0217751X14430040
https://doi.org/10.1142/S0217751X14430040
https://doi.org/10.1103/PhysRevLett.118.061302
https://doi.org/10.1103/PhysRevLett.118.061302
https://doi.org/10.1103/PhysRevD.97.092001
https://doi.org/10.1103/PhysRevD.97.092001
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1038/s41586-021-03226-7


[107] B. T. McAllister, G. Flower, E. N. Ivanov, M. Goryachev, J.
Bourhill, and M. E. Tobar, Phys. Dark Universe 18, 67
(2017).

[108] N. Crescini et al. (QUAX Collaboration), Phys. Rev. Lett.
124, 171801 (2020).

[109] J. Choi, S. Ahn, B. Ko, S. Lee, and Y. Semertzidis, Nucl.
Instrum. Methods Phys. Res., Sect. A 1013, 165667
(2021).

[110] A. Álvarez-Melcón et al., J. High Energy Phys. 10
(2021) 075.

J. I. MCDONALD and S. J. WITTE PHYS. REV. D 108, 103021 (2023)

103021-26

https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1103/PhysRevLett.124.171801
https://doi.org/10.1103/PhysRevLett.124.171801
https://doi.org/10.1016/j.nima.2021.165667
https://doi.org/10.1016/j.nima.2021.165667
https://doi.org/10.1016/j.nima.2021.165667
https://doi.org/10.1007/JHEP10(2021)075
https://doi.org/10.1007/JHEP10(2021)075

