
Accelerating global parameter estimation of gravitational waves
from Galactic binaries using a genetic algorithm and GPUs

Stefan H. Strub ,* Luigi Ferraioli , Cédric Schmelzbach , Simon C. Stähler , and Domenico Giardini
Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland

(Received 7 July 2023; accepted 5 October 2023; published 13 November 2023)

The Laser Interferometer Space Antenna (LISA) is a planned space-based gravitational wave telescope
with the goal of measuring gravitational waves in the millihertz frequency band, which is dominated by
millions of Galactic binaries. While some of these binaries produce signals that are loud enough to stand
out and be extracted, most of them blur into a confusion foreground. Current methods for analyzing the full
frequency band recorded by LISA to extract as many Galactic binaries as possible and to obtain Bayesian
posterior distributions for each of the signals are computationally expensive. We introduce a new approach
to accelerate the extraction of the best fitting solutions for Galactic binaries across the entire frequency band
from data with multiple overlapping signals. Furthermore, we use these best fitting solutions to omit the
burn-in stage of a Markov chain Monte Carlo method and to take full advantage of graphics processing unit
(GPU)-accelerated signal simulation, allowing us to compute posterior distributions in 2 s per signal on a
laptop-grade GPU.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by the LIGO
detector in 2015 marked a significant breakthrough in
astrophysics [1]. This achievement spurred the develop-
ment of the Laser Interferometer Space Antenna (LISA), a
space-based interferometric system capable of detecting
low-frequency GWs in the [0.1, 100] mHz range, free from
terrestrial seismic and anthropogenic noise sources [2].
LISA is an L-class mission of the European Space Agency
and currently set for launch in the 2030s.
The primary sources in the LISA frequency band are tens

of millions of Galactic binaries (GBs) emitting quasimo-
nochromatic gravitational waves. These sources are far
from merging, allowing for their gravitational waves to be
continuously measured during LISA’s nominal 4 year
operational time [2]. It is estimated that tens of thousands
of these overlapping signals are resolvable by an experi-
ment of LISA’s arm length, resolution and measurement
duration, while the rest blurs into a galactic foreground
noise. Accurately estimating the parameters of GBs pro-
vides valuable information for studying the dynamical
evolution of binaries [3–7].
Several methods have been proposed for extracting GB

signals, including maximum likelihood estimate (MLE)
[8–10] and Bayesian approaches. MLE methods are used to
find the best matching simulated signal to the data, while
Bayesian methods provide a posterior distribution that
describes the uncertainty of the source parameters. The

most successful Bayesian approaches are Markov chain
Monte Carlo (MCMC)-based methods, such as blocked
annealed Metropolis-Hastings [11–13], an MCMC algo-
rithm with simulated annealing, or the reversible jump
Markov chain Monte Carlo [14,15] method, which allows
for varying parameter dimensions and thus variable num-
bers of GBs to construct the posterior distribution.
In our previous work [16], we demonstrated that signal

extraction can be divided into two parts for both isolated
and overlapping signals in the frequency domain. The first
part involves optimizing the GB parameters in order to
achieve the best fit between the simulated signal and the
available data. In the second part, Gaussian process
regression [17] is used to model the log-likelihood func-
tion, which allows for the computation of the posterior
distribution without the need to simulate the GW signal for
each sample. In this paper, we extend the work to analyze
the full Galactic signal population from a simulated LISA
data stream.
Furthermore, with recent advances in simulating a GB

signal using graphics processing units (GPUs), we swapped
the Gaussian process regression modeling with directly
computing the log-likelihood function using a GPU [18].
For sampling, we use a Metropolis-Hastings algorithm with
a proposal distribution independent of the current state
of the chain. Therefore, we can make full use of calculating
the log-likelihood for 10 000 signals in parallel and build
the Markov chain in the next step. That way we are able to
compute the posterior distribution of a single signal within
only 1.8 s on a late 2018-released Quadro RTX 4000
Mobile GPU built inside a laptop. We demonstrate the*stefan.strub@erdw.ethz.ch

PHYSICAL REVIEW D 108, 103018 (2023)

2470-0010=2023=108(10)=103018(14) 103018-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2307-1357
https://orcid.org/0000-0002-6203-8544
https://orcid.org/0000-0003-1380-8714
https://orcid.org/0000-0002-0783-2489
https://orcid.org/0000-0002-5573-7638
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.103018&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1103/PhysRevD.108.103018
https://doi.org/10.1103/PhysRevD.108.103018
https://doi.org/10.1103/PhysRevD.108.103018
https://doi.org/10.1103/PhysRevD.108.103018


benefit of such a speedup by solving for the GB of the LISA
data challenge (LDC)1–4, part of LDC1, which is also
called Radler [19]. This challenge encompasses a dataset
containing instrument noise as well as 26 million GB
signals. Additionally, the pipeline has also been tested on
LDC2a, called Sangria, where the injected Massive Black
Hole Binaries (MBHBs) are subtracted, resulting in a
dataset comprising 30 million GBs along with instrument
noise [19].
In Sec. II we introduce Bayesian parameter estimation,

and Sec. III provides a detailed description of the new
pipeline. In Sec. IV the performance of the pipeline is
showcased through its successful handling of the LISA data
challenges LDC1–4 and LDC2a. Lastly, Sec. V discusses
the performance of the pipeline and the potential for further
pipeline development.

II. BAYESIAN FORMULATION
FOR SIGNAL EXTRACTION

Gravitational waves are ripples in the fabric of spacetime
caused by the acceleration of massive objects, such as
merging black holes, neutron stars and white dwarfs. LISA
is a planned space-based mission designed to detect these
elusive signals with unprecedented precision. However, the
expected LISA data, denoted as dðtÞ, will be contaminated
by instrument noise and unresolved signals, making the
extraction of the underlying gravitational wave signal,
denoted as sðt; θÞ, a challenging task. To tackle this,
Bayesian inference and data analysis techniques provide
a powerful framework. For convenience, we will omit the
notation for dependence on t for the data d and the signals
sðθÞ in the following.
In Bayesian inference, we aim to infer the probability

distribution of the parameters θ describing the gravitational
wave signal sðθÞ given the observed data d. This is done
using Bayes’ theorem, which relates the posterior distri-
bution pðθjdÞ, the prior distribution pðθÞ, the likelihood
pðdjθÞ, and the model evidence pðdÞ as follows:

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdÞ : ð1Þ

The posterior distribution pðθjdÞ represents the updated
probability distribution of the parameters θ after taking into
account the measured data d. The prior distribution pðθÞ
incorporates any prior knowledge or assumptions about the
parameters. The model evidence pðdÞ is a normalization
factor that ensures the posterior distribution integrates to
unity, and it is independent of θ and, hence, does not affect
the relative probabilities.
In GW data analysis, the likelihood pðdjθÞ quantifies the

probability of measuring the data stream d given the
parameters θ of the gravitational wave signal. The log-
likelihood is commonly used due to its mathematical
convenience and is defined as

logpðdjθÞ ¼ −
1

2
hd − sðθÞjd − sðθÞi; ð2Þ

where hxðtÞjyðtÞi is the scalar product between two time-
domain signals xðtÞ and yðtÞ, and it is defined as

hxðtÞjyðtÞi ¼ 4R
�Z

∞

0

x̃ðfÞỹ�ðfÞ
SðfÞ df

�
: ð3Þ

Here, x̃ðfÞmarks the Fourier transform of xðtÞ, and SðfÞ
is the one-sided power spectral density of the noise, which
characterizes the noise properties of the LISA detector.
The noise is estimated and constantly updated during the
search. The noise estimate for GB analysis is discussed in
Secs. III C and III F.
To eliminate the laser noise in the LISA arms’ laser

measurements, time-delay interferometry (TDI) will be
employed, which combines the measurements into three
observables: X, Y, and Z [20–24]. Consequently, the data d
and the signal sðθÞ consist of TDI responses with multiple
channels, and we write the inner product as the following
sum:

hd − sðθÞjd − sðθÞi ¼
X
α∈M

hdα − sαðθÞjdα − sαðθÞi: ð4Þ

Here,M ¼ X; Y; Z represents the default TDI setting, or
M ¼ A; E; T where

A ¼ 1ffiffiffi
2

p ðZ − XÞ;

E ¼ 1ffiffiffi
6

p ðX − 2Y þ ZÞ;

T ¼ 1ffiffiffi
3

p ðX þ Y þ ZÞ ð5Þ

are uncorrelated with respect to instrument noise [25]. In
this work we utilize A, E, and T. However, to save
computational time, we consider only A and E for signals
with frequencies f < f�=2 ¼ 1=ð4πLÞ ≈ 9.55 mHz, as the
contribution of the gravitational wave response for T is
suppressed [14]. By setting the threshold at half the transfer
frequency f�, we adopt a more conservative approach than
including the T channel only for signals with f > f�.

III. EXTRACTING GALACTIC BINARY SIGNALS
IN THE FULL LISA FREQUENCY BAND

The simulation of a GW from a GB system involves
eight parameters denoted as θ ¼ fA; λ; β; f; ḟ; ι;ϕ0;ψg
[26]. These parameters are utilized to model the GW
signal, where A represents the amplitude and λ and β
correspond to the sky coordinates in terms of ecliptic
longitude and ecliptic latitude, respectively. The parameter
f represents the frequency of the GW, ḟ denotes the
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first-order frequency derivative, ι represents the inclination
angle, ϕ0 represents the initial phase, and ψ corresponds to
the polarization angle. In this study, we consider only the
first-order frequency derivative and neglect higher-order
frequency derivatives.
To obtain the MLE we can maximize the signal-to-noise

ratio (S=N) defined as

ρ ¼ hdjsðθ0Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsðθ0Þjsðθ0Þip ¼ hdjsðθÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsðθÞjsðθÞip ; ð6Þ

which is independent of A with θ0 ¼ θnfAg, and obtain

Amax ¼
hdjsðθ0Þi

hsðθ0Þjsðθ0Þi ð7Þ

analytically [16].

A. Frequency segments

Because fitting >10 000 signals globally is a currently
untractable problem, we split the data into small segments
in the frequency domain. In order to have a few signals in
one segment while keeping the number of segments small
for stability and efficiency, we determine the segment size
to be double the size of the broadest signal expected
for each frequency segment BsegmentðfÞ ¼ 2BmaxðfÞ. The
width of a signal in the frequency domain is influenced by
various factors contributing to signal broadening. These
factors include the frequency change of the source itself,
LISA’s orbital motion around the Sun, and LISA’s cart-
wheel motion.
To obtain the widest expected broadening we multiply

the highest-frequency derivative with the observation time
BF ¼ ḟmaxTobs, where ḟmax is determined by [14]

ḟ ¼ 96

5
π8=3M5=3

c f11=3; ð8Þ

where Mc¼ ðm1m2Þ3=5
ðm1þm2Þ1=5 is the chirp mass and f the fre-

quency. For ḟmax the masses of the binary are set to the
Chandrasekhar limit m1 ¼ m2 ¼ 1.4M⊙ [27].
LISA’s orbit around the Sun and cartwheel motion smear

the signal by BO ¼ 10−4f and BC ¼ 4 · 1
1 yr, respectively,

due to Doppler shift [28]. Since the smearing can increase
or decrease the frequency, the resulting bandwidth is 2BO
and 2BC, respectively. As a result, the broadest signal
expected has a width of Bmax ¼ BF þ 2BO þ 2BC which is
shown in Fig. 1.
In Algorithm 1, we outline the procedure for generating

the list of frequency segments Bsearch for a given global
frequency interval. The lower bound of the frequency
range, fmin ¼ 0.3 mHz, is chosen based on the absence
of expected detectable GBs at frequencies lower than
0.3 mHz. The upper bound fmax ¼ fNyquist is determined

by the sampling frequency where the Nyquist criterion
states that the sampling frequency should be at least twice
the maximum frequency of interest in order to accurately
capture the signal [29].

B. Prior

In Table I we list the prior distribution Θ for all
parameters. The frequency boundary is the padded fre-
quency segment of interest fsegment ∈Bsearch. The padding
is half of the broadest signal expected fpadding ¼
ðmaxðfsegmentÞ −minðfsegmentÞÞ=4 in case a signal is at
the boundary of two neighboring segments like for example
the yellow and gray signals at 4.226 mHz in Fig. 2. For the
upper bound of ḟ we use ḟmax determined by (8). Since we

FIG. 1. Frequency segment widths to analyze GBs for
Tobs ¼ 2 yr.

TABLE I. Boundaries of the prior distribution Θ.

Parameter Lower bound Upper bound

sin β −1 1
λ −π π
f minðfsegmentÞ − fpadding maxðfsegmentÞ þ fpadding
ḟ −5 × 10−6f13=3 1.02 × 10−6f11=3

logA logAðρ ¼ 7Þ logAðρ ¼ 1000Þ
cos ι −1 1
ϕ0 0 2π
ψ 0 π

Algorithm 1. Generating the list of frequency segments
Bsearch for searching GBs within the given ranges.

Function segmentingðfmin; fmaxÞ
Bsearch ← f g
f ← fmin
while f < fmax do

fnext ← f þ 2BmaxðfÞ
Bsearch append ½f; fnext�
f ← fnext

return Bsearch
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search for detached and interacting binaries the lower
bound ḟ is negative and is the same as in [14]. The
amplitude boundary is determined by a lower and upper
bound S=N and is related to the amplitude by [14]

AðρÞ ¼ 2ρ

�
SðfÞ

Tobssin2ðf=f�Þ
�

1=2
: ð9Þ

C. Noise estimate within a frequency segment

For estimating the maximum likelihood of the GBs
within a frequency segment the noise is estimated indi-
vidually for each segment by calculating the periodogram
[30,31]

SAðfÞ ¼
2jAðfÞj2
Nfsample

ð10Þ

for each frequency window including the padding as
determined for the prior listed in Table I. N marks the
number of bins within the padded window and fsample

represents the sampling frequency of the data d. In order to
reduce the influence of loud signals within the window
itself, the median of SAðfÞ is taken as the constant estimate
for the full padded frequency segment. This brings a
dynamic noise estimate during the search of signals which
is updated after each found signal is subtracted from the
data. The estimate for other TDI variables E, T is analog to
the estimate of A.

D. Galactic binary search algorithm
within a frequency segment

In Algorithm 2 we present the GB search algorithm
for given data danalyze to analyze on a given frequency
segment fsegment ∈ fsearch, which outputs a list θ̃in ¼
fθMLE;1; θMLE;2;…g of GB parameters within the unpadded

fsegment. Furthermore, nsignals is the maximum number of
signals per segment.

To save computational time, we limit the integral of the
scalar product (3) to the padded frequency segment. To
obtain the MLE we use the differential evolution (DE) [32]

FIG. 2. Displayed are the data, injected signals, and recovered signals of the Radler data challenge with Tobs ¼ 2 yr. The red lines are
the boundaries of four adjacent frequency segments. The first plot illustrates the absolute value of the A TDI channel, while the second
plot depicts the amplitude A across the frequency spectrum. The red lines mark the boundaries of the frequency segments. The plot is
extended to the left and right by the padding of the segments at the borders.

Algorithm 2. The GB search algorithm within a frequency
segment fsegment.

Function local GB searchðfsegment; nsignals; danalyzeÞ
θ̃found ← f g
θ̃in ← f g
θ̃out ← f g
dresidual ← danalyze
for i in f1; 2;…; nsignalsg do

θ̃0MLEs ← f g
for j in f1; 2;…; nsearchesg do

θ0init randomly drawn from prior
θ0MLE ← argmaxθ0ρðθ0; dresidualÞ using DE with θ0init
if ρðθ0MLE; danalyzeÞ ≤ ρthreshold − 2 and j ¼ 1 do

return θ̃in
θ̃0MLEs ← θ̃0MLEs ∪ fθ0MLEg

end for
θ0MLE ← argmaxθ0 ∈ θ̃0MLEs

ρðθ0; dresidualÞ
if ρðθ0MLE; danalyzeÞ ≤ ρthreshold do

return θ̃in
Compute Amax according to (7) with θ0MLE
θMLE ← θ0MLE ∪ fAmaxg
if θfMLE in unpadded fsegment do

θ̃in ← θ̃in ∪ fθMLEg
else do

θ̃out ← θ̃out ∪ fθMLEg
dresidual ← danalyze −

P
θ∈ θ̃out

sðθÞ
θ̃in ← argmaxθ̃ρðθ̃; rÞ using SLSP with θ̃in as start
θ̃found ← θ̃in ∪ θ̃out
dresidual ← danalyze −

P
θ∈ θ̃found

sðθÞ
end for
return θ̃in
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algorithm and for the global optimization of all found
signals within the unpadded region θ̃in we use the sequen-
tial least squares programming (SLSP) method [33]. Both
methods are part of the SciPy library [34]. The pipeline is set
to search nsearches ¼ 3 times for the same signal with
varying initial parameters θ0init in case the search algorithm
gets stuck at a local optimum.
Global optimization within a segment occasionally

encounters a situation where two signals exhibit a negative
correlation, leading to destructive interference. The corre-
lation between these signals is quantified by the following
equation:

Oðsðθ1Þ; sðθ2ÞÞ ¼
hsðθ1Þ; sðθ2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsðθ1Þ; sðθ1Þihsðθ2Þ; sðθ2Þi

p : ð11Þ

When such interfering signals arise, they may appear to
fit the data, but they are unlikely to represent the correct
solution. If the correlation between two recovered signals
falls below −0.7, the segment is subjected to reanalysis
using a different seed.
Furthermore, we generalize the S=N to multiple signals

θ̃ ¼ fθ1; θ2;…g:

ρ ¼ hdjPθ∈ θ̃ sðθÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihPθ∈ θ̃ sðθÞj
P

θ∈ θ̃ sðθÞi
p : ð12Þ

E. Global GB search pipeline

Segments that are not direct neighbors to each other can
be analyzed in parallel as presented in Algorithm 3.
Therefore we enumerate all segments Bsearch ordered by
frequency and divide them into two groups of even and odd
segments:

Beven ≔ fBsearch;i∶i∈ f1; 2;…; Nsegmentsg and i is eveng;
Bodd ≔ fBsearch;i∶i∈ f1; 2;…; Nsegmentsg and i is oddg;

where Nsegments is the number of segments in the list B. In
Table II we list the parameters: the list of frequency segments
fsearch, max number of signals per segment nsignals and the
data to analyze danalyze. The analysis is conducted in three
sequential runs, starting from the top line of the table, in order

to cover all frequency segmentswithinBsearch. In the first run,
we analyze all even segmentsBeven, allowing for amaximum
of nsignals ¼ 3 signals per segment. We assume that there are
not more than three strong signals spilling into the padded
regions for each segment.

Next, we proceed to analyze the odd segments in a
similar manner. The found signals in the odd segments,
denoted as θ̃odd, are subtracted from the original data d.
Finally, we repeat the analysis of the even segments, now
free from the influence of neighboring signals located in the
neighboring odd segments. By subtracting the signals
found in the odd segments and reanalyzing the even
segments, we ensure that each segment of Bsearch is
analyzed independently without being affected by signals
of neighboring signals.
The even segments where no signals in neighboring

segments were detected and less than three signals were
found are not analyzed a second time, because the
subtraction of the signals in odd windows did not influ-
ence these even segments and there is no need to repeat
the search. For these segments, the found signals of the
first even segments analysis are directly used for the
catalog.
The LISA data will be a time-evolving dataset with new

data being constantly added. Therefore the found signals of
previous runs can be used to speed up the analysis where
θ̃initial if j ¼ 1 in Algorithm 2 is set to a signal within that
frequency segments found in the previous run. Especially
for signals f > 10 mHz and Tobs > 1 yr the success rate of
local_GB_search becomes small if θ̃initial is randomly
drawn from the prior. It is advantageous to use the found
signals of a previous shorter dataset analysis, for example,
Tobs ¼ 6 months, as the initial value of the search
algorithm.
The global solution is then θ̃recovered ¼ θ̃even ∪ θ̃odd,

where θ̃even is the solution of the third run. In Fig. 2
we show the solution θ̃recovered for four neighboring
segments at a region with multiple detectable and over-
lapping signals. We demonstrate with the pipeline a
successful recovery rate of 25 out of 30 injected GBs.
Among the 25 recovered signals, 24 of them correspond to
individual injected signals, indicating a high level of
accuracy in the recovery process. In addition, it is worth
noting that the recovered signals at f ¼ 4.22 mHz is a
composite of two injected signals. However, the

TABLE II. Inputs and outputs of the search pipeline global_
GB_search across all frequency segments B for given data d.

Run fsearch nsignals danalyze Output

1 Beven 3 d θ̃even
2 Bodd 10 d −

P
θ∈ θ̃even

sðθÞ θ̃odd
3 Beven 10 d −

P
θ∈ θ̃odd

sðθÞ θ̃even

Algorithm 3. The search algorithm for multiple frequency
segments fsearch.

Function global GB searchðfsearch; nsignals; danalyzeÞ
θ̃ ← f g
for all fsegment in fsearch do in parallel

θ̃ ← θ̃ ∪ local GB searchðfsegment; nsignals; danalyzeÞ
end for
return θ̃
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remaining unrecovered signal is characterized by low
amplitudes A.

F. Global noise estimate

For the global noise estimate, we subtract each recovered
signal θ̃recovered from the data:

dresidual ¼ d −
X

θ∈ θ̃recovered

sðθÞ; ð13Þ

where sðθÞ represents the signal corresponding to
each MLE θ. Furthermore, we proceed to estimate a
smooth noise curve, denoted as SA;welchðfÞ, across the
entire frequency domain. This estimation is performed
by applying Welch’s method, utilizing 500 windows
and a Hann window function [35]. Next, we address
the remaining outlier peaks, mainly of unresolved
signals, by implementing a smoothing procedure. We
define a frequency window of 30 bins and adjust any
values above the window’s median to be twice the median
value. This process is repeated by shifting the window
by 15 frequency bins until the entire power spectral
density (PSD) is smoothed. The result is denoted as
SA;medianðfÞ.
To further enhance the smoothing effect, we utilize the

Savitzky-Golay filter [36]. The filter is configured with an
order of 1, and we apply two different window lengths
depending on the frequency range. For observations with
Tobs equal to either 1 or 2 yr, frequencies below 0.8 mHz
are smoothed using a window length of 10, while frequen-
cies above 0.8 mHz are smoothed using a window length of
70. In the case of Tobs ¼ 0.5 yr, frequencies below

0.8 mHz employ a window length of 10, and frequencies
above 0.8 mHz are smoothed using a window length of 50.
Finally, to obtain a PSD estimate for each desired

frequency bin, we spline interpolate the smoothed PSD,
resulting in our estimate of the residual noise curve denoted
as SA;residualðfÞ.
The noise estimates, depicted in Fig. 3, exhibit a strong

agreement with the instrument noise SA;instrumentðfÞ,
except for the frequency range between 0.2 and 5 mHz.
In this range, the unresolved background signals (GBs)
merge into the galactic foreground noise, leading to
deviations in the noise estimate. The noise of the other
TDI channels E and T are computed the same way. For
determining the posterior distribution we additionally
compute SA;partialðfÞ which is described in the next
subsection.

G. GPU-accelerated posterior
distribution derivation

In order to derive the posterior distribution, we employ
the Metropolis-Hastings Monte Carlo algorithm [37,38].
This algorithm suggests new parameters θp based on a
proposal distribution gðθpjθcÞ, which generally depends on
the current state of the chain θc. The proposed parameters
are then accepted with probability

Pðθp; θcÞ ¼ min

�
1;

�
pðdjθpÞ
pðdjθcÞ

gðθcjθpÞ
gðθpjθcÞ

�1
T
�
; ð14Þ

where T is the temperature for simulated annealing.
Previously, [16] demonstrated that the MLE can be

effectively utilized to accelerate the computation of the
posterior distribution. The posterior distribution tends to be
concentrated within a relatively compact region of the
parameter space. As a result, it becomes unnecessary to
sample beyond specific parameter space boundaries when
employing MCMC methods to estimate the posterior. By
identifying the reduced parameter space Θreduced where the
posterior is concentrated, we can skip the burn-in phase
typically required in MCMC sampling. Moreover, this
approach allows for a proposal distribution gðθpÞ ¼
gðθpjθcÞ that is independent of the current state of the
chain θc. This is achieved by randomly drawing samples
within Θreduced. The independence from the chain’s state
enables the parallel computation of the log-likelihood for
all samples in the first step, followed by the construction of
the chain during the second step, where if the proposed
sample θp is rejected the chain stays at the current sample θc
as described in Algorithm 4. This approach leverages
the computational power of a GPU to rapidly compute
the log-likelihood of 10 000 samples in parallel, facilitating
a more efficient and rapid estimation of the posterior
distribution.

FIG. 3. Noise estimates and PSD of the TDI A channel of the
1 yr Sangria dataset. SA;instrument is the noise PSD used for creating
the data. The difference between SA;residual and the true PSD
between 0.2 and 5 mHz is due to the unresolved GBs which can
be seen as red crosses in Fig. 7. It is expected that most GBs in
that frequency range are unresolvable and therefore merge into
the galactic foreground noise.
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To establish the reduced parameter space Σreduced we use
the inverse of the Fisher information matrix (FIM)

Fij ¼ h∂ipðdjθMLEÞj∂jpðdjθMLEÞi; ð15Þ

where ∂i denotes the partial derivative with respect to the
ith component of the parameter vector θ. To compute the
derivatives of the FIM, the second-order forward finite
difference method is employed with a step size of 10−9

times the search space determined by the prior distribution
Θ. The estimated uncertainty vector is σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðF−1Þ

p
.

In our investigation, we set the volume of the parameter
space to Θreduced ¼ ½θMLE − 4σ; θMLE þ 4σ�. It is sufficient
to set the boundary for the frequency parameter to
Θf

reduced ¼ ½θfMLE − σf; θ
f
MLE þ σf�, where σf denotes the

estimated uncertainty of the frequency. The frequency
derivative parameter space is not reduced and spans the

full prior Θḟ
reduced ¼ Θḟ. Given the degeneracy of the

polarization and initial phase, the posterior distribution is
not concentrated in a single mode but instead spreads
across multiple modes of substantial extent. Consequently,
we simplify the treatment of the polarization and initial
phase distributions by narrowing their search spaces.
Hence, we set Θψ ¼ ½θψMLE − π

1000
; θψMLE þ π

1000
� and Θϕ0 ¼

½θϕ0

MLE − 2π
1000

; θϕ0

MLE þ 2π
1000

�.
Simulated annealing is useful to further speed up the

computation of the posterior. As a start, we use uniform
sampling in the reduced parameter space Θreduced as the
proposal distribution with a high temperature. Next, we

utilize the obtained posterior distribution as the new
proposal distribution by employing multivariate kernel
density estimation (KDE) techniques [39,40]. To address
the challenge of high-dimensional KDE computations, we
group parameters into two-dimensional parameter pairs.
Specifically, we groupA − ι, λ − β, and f − ḟ together and
perform KDE on each pair. This allows us to overcome the
computational limitations associated with kernel density
estimation involving four or more parameters. By gradually
lowering the temperature T during the simulated annealing
process, we can achieve more refined and accurate esti-
mations of the posterior distribution while maintaining
computational efficiency.
The results presented in the next Sec. IVare created with

six different temperatures T ¼ f15; 10; 5; 3; 2; 1g and con-
stant nsamples ¼ 10 000. The number of samples nsamples

could be changed for each temperature.
The algorithm to compute the posterior distribution for a

single signal θMLE ∈ θ̃recovered is presented in Algorithm 4.
The computation of the likelihood pðdposteriorjθÞ on the
GPU [41–43] and can be found at [44]. The data for the
input is

dposterior ¼ d −
X

θ∈ θ̃recovered

sðθÞ þ sðθMLEÞ: ð16Þ

The reduced parameter space Θreduced is determined with
θMLE and dposterior as described above.
The resulting posterior distribution is the posterior given

the overlapping MLEs θ̃overlap ⊂ θ̃global:

pðθMLEjdposteriorÞ ¼ pðθjd; θ̃overlapÞ; ð17Þ

which has a narrower posterior distribution than the
marginalized posterior

pðθMLEjdÞ ¼
Z

pðθ; θ̃overlapjdÞpðθ̃overlapÞdθ̃overlap: ð18Þ

Overlapping signals lead to a joint posterior distribution.
To approximate the marginalized posterior for such cases,
one approach is to increase the estimated noise by comput-
ing the noise of the partial residual SA;partialðfÞ. This is
achieved by subtracting the found signals only partially
from the original data, leaving some residual signal
components in the data:

dpartial ¼ d − spartial
X

θ∈ θ̃recovered

sðθÞ: ð19Þ

where spartial ∈ ½0; 1� is a scaling factor which we set to
spartial ¼ 0.7. By analyzing this partial residual, one can
obtain an approximation of the marginalized posterior
distribution that takes into account the presence of over-
lapping signals. In Fig. 3 the difference betweenSA;residualðfÞ

Algorithm 4. The GPU-accelerated posterior distribution
algorithm.

Function posteriorðθMLE; dposterior;Θreduced; T̃ ; nsamplesÞ
Θsample ← Θreduced

for T in T̃ do
θ̃posterior ← f g
L̃ ← f g
θ̃samples ← nsamples randomly drawn from Θsample
for all θ in θ̃samples do in parallel on GPU

L̃ ← L̃ ∪ fpðdposteriorjθÞg
end for
θc ← θ̃1
Lcurrent ← L̃1

for i in f2; 3;…; nsamplesg do

α ← min ð1; ½ Li
Lcurrent

gðθcÞ
gðθiÞ�

1
T Þ

with probability α do
θc ¼ θ̃i
Lcurrent ¼ L̃i

θ̃posterior ← θ̃posterior ∪ fθcg
end for
Θsample ← KDEðθ̃posteriorÞ

end for
return θ̃posterior
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and SA;partialðfÞ is clearly visible for f∈ ½2 mHz; 10 mHz�
where most signals are found.

H. Pipeline

To conclude we present in Algorithm 5 the full pipeline
to extract GBs within a given frequency range of fmin and
fmax. The output is the list of MLEs θ̃recovered and the list of
MCMC chains θ̃posteriors which provide the posterior
distribution.

IV. RESULTS

The analysis of Radler’s, LDC1–4, started with the first
0.5 yr and continued with 1 and 2 yr, where the found
signals from the previous analysis are used as initial guesses
for the DE algorithm. The Sangria dataset, LDC2a, with the
massive black hole binaries subtracted, is analyzed once for
the full 1 yr of data. To prioritize high-quality extractions
we set ρthreshold ¼ 9, which sets the acceptance threshold
for found signals in Algorithm 2. The global frequency
band is set to fmin ¼ 0.3 mHz and fmax ¼ fNyquist, where
fNyquist ¼ 33:3̄mHz for the Radler challenge and fNyquist ¼
100 mHz for the Sangria challenge.

A. Computation times

Each segment of fsearch in global_GB_search can be
analyzed in parallel as noted with “do in parallel” in
Algorithm 3. Therefore the shortest time to analyze the
dataset Tparallel is determined by the sum of the three
frequency segments which take the longest for each
sequential analysis of Beven, Bodd and Beven segments as
listed in Table II. The duration to analyze a segment varies a
lot, where segments with no detectable signal are analyzed
within 2 min and the longest computation time of a segment
containing multiple detectable signals took 126 min.

The data analysis to obtain the MLEs was run on a high-
performance computer. In Table III we present the search
times for finding the MLE solutions of the Radler dataset.
The pipeline demonstrates its efficiency by analyzing the
longest observation time of Tobs ¼ 2 yr in only 6 h. In
terms of computational cost, the analysis necessitates
approximately 3300 h of CPU core hours. If commercial
high-performance computing services such as those pro-
vided by Google are utilized, the estimated cost would
amount to approximately 100 USD [45].
Furthermore, the computation of posterior distributions

according to Sec. III G takes 1.8 s per signal on a Quadro
RTX4000Mobile GPU. Therefore, for example for the 8385
recovered signals of the Sangria challenge it took 4.2 h on a
single laptop to compute all posterior distributions.

B. Matching recovered signals with injected signals

To evaluate the accuracy of the recovered signals
θrec ∈ θ̃recovered, we are matching them with the injected
signals θinj ∈ θ̃injected with similar frequencies. In order to
determine matches quantitatively, we use the scaled error

δðsðθrecÞ; sðθinjÞÞ ¼
hsðθrecÞ − sðθinjÞ; sðθrecÞ − sðθinjÞi

hsðθinjÞ; sðθinjÞi
;

ð20Þ
which is dependent on the amplitude of the signals.

TABLE III. Computational times of the Radler LDC1–4 data
with different Tobs. The CPU time is the sum of the computational
time of all analyzed frequency segments. Tparallel is the shortest
computation time if the segments are analyzed in parallel on
multiple CPU threads.

Challenge Tobs (yr) CPU core time (h) Tparallel (h)

Radler 0.5 1607 3.2
Radler 1 2106 4.3
Radler 2 3269 5.5

FIG. 4. Scatter plot of the scaled error δ across the ecliptic
longitude and ecliptic latitude of the 2 yr Radler dataset. The
range of the error bar is clipped at 10−3 to 100.

Algorithm 5. The pipeline to obtain the MLE and posterior
distribution of GBs within a large frequency range.

Function extracting GBsðfmin; fmaxÞ
Bsearch ← segmentingðfmin; fmaxÞ
split Bsearch into Beven, Bodd

θ̃even ← global GB searchðBeven; 3; dÞ
θ̃odd ← global GB searchðBodd; 10; d −

P
θ∈ θ̃even

sðθÞÞ
θ̃even ← global GB searchðBeven; 10; d −

P
θ∈ θ̃odd

sðθÞÞ
θ̃recovered ← θ̃even ∪ θ̃odd
θ̃posteriors ← f g
dresidual ¼ d −

P
θ∈ θ̃recovered

sðθÞ
for all θMLE in θ̃recovered do in parallel

dposterior ¼ dresidual þ sðθMLEÞ
get Θreduced as described in Sec. III G
θ̃posteriors append posteriorðθMLE; dposterior;ΘreducedÞ

end for
return θ̃recovered, θ̃posteriors
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In other works the scaled correlation, also called overlap,

OðsðθrecÞ; sðθinjÞÞ ¼
hsðθrecÞ; sðθinjÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsðθrecÞ; sðθrecÞihsðθinjÞ; sðθinjÞi

p
ð21Þ

of two signals sðθrecÞ and sðθinjÞ is used [46].
Figure 4 shows the sky locations of all recovered signals

in ecliptic coordinates. The recovered signals follow the
geometry of the Galaxy, with high δ (yellow dots), slightly
off the center of the Galaxy. In Table IV we present the
number of recovered and matched signals for each analysis
where we also include the overlap O as a match metric for
comparison with other evaluations which used the overlap
[9,10,14,15]. The consistently high match rate of all
analyses speaks of good quality recoveries. In Fig. 5 we
see only small changes in the cumulative distribution
function across the analyses. Only the cumulative distri-
bution function of O for the Sangria dataset has a higher
count for smaller O.
Given the potentially high correlation between a low-

amplitude signal and a loud signal, even when the scaled
error suggests a poor match, we classify the recovered
signalswith δ < 0.3 as “matched” signals. For eachmatched
signal, we calculate the error using Δβ ¼ jβrec − βinjj. In

Fig. 6, we present the error histograms for all parameters.
Notably, there is a clear trend of decreasing errors with
longer observation times, as expected. The error histograms
for the 1 yr analyses of the Radler and Sangria experiments
exhibit similar patterns, consistent with our expectations.
For the frequency and amplitude parameters, we display the
relative errors. The relatively higher errors observed for ϕ0

and ψ can be attributed to the inherent degeneracy between
these two parameters. However, it is evident that the
degeneracy diminishes with increasing Tobs.
There are several instances of recovered signals not

aligning with the injected signal. One scenario arises when
a recovered signal exhibits a poor match with an injected
signal due to excessive noise in the data, which is similar to
the second situation where a recovered signal adapts to the
combined contributions of multiple injections. A third
scenario occurs when multiple recovered signals closely
resemble a single injected signal. This third scenario does
not yield a robust data analysis and indicates an issue within
the pipeline.
In Table V, we provide a quantitative assessment of the

third scenario by enumerating the occurrences of multiple
recovered signals displaying a significant correlation O
with the same injected signal. In all observed occurrences,
two recovered signals demonstrate a high correlation with

TABLE IV. The variables of interest include the count of detectable injected GB sources, the count of recovered sources, the count of
matches with injected sources, and the match rate. The match rate is determined by dividing the number of matched signals by the total
number of recovered signals. The overlap is included to get an evaluation comparable to other analyses [9,10,15].

Challenge Tobs [yr] Injected (ρ > 10) Recovered δ < 0.3 Match rate δ < 0.3 O > 0.9 Match rate O > 0.9

Radler 0.5 6813 3937 3418 87% 3407 87%
Radler 1 11 814 7112 6270 88% 6251 88%
Sangria 1 11 814 8375 7176 86% 7184 86%
Radler 2 18 332 11 953 10 372 87% 10 365 87%

FIG. 5. Cumulative distribution function of δ and O in the top plots and the survival function in the bottom plots. The plots of the
overlap O, on the right, are comparable with other analyses such as [14,15].
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one injected signal. The table illustrates various thresholds
for defining a high correlation, and it is noteworthy that the
occurrence of this problematic scenario is exceedingly rare,
even when employing a correlation threshold of O > 0.5
only around 0.2% of the recovered signals are problematic.

C. Galaxy

The recovered signals that meet the matching criteria are
visualized as green dots in Fig. 7. Additionally, it is evident
from the plot that the recovered signals without a satis-
factory match predominantly have lower amplitudes A.
The ability of LISA to recover signals is contingent upon
the sensitivity curve, which exhibits lower sensitivity at
lower frequencies. Consequently, only signals with higher
amplitudes are recoverable at low frequencies. The major-
ity of the recovered signals are concentrated in the central
region of the Milky Way, which is also the location of a
significant portion of the sources.
For eachmatched signalwith ḟ > 0, wherewe assume that

the evolution of the GB is purely driven by the emission of
GWs, we can estimate the luminosity distance [14]:

DL ¼ 5ḟ

48Aπ6=3f5=30

; ð22Þ

which is a good estimate of the distance in Euclidean space
for objects in the Milky Way. Therefore we are able to
convert their GBs to the galactocentric coordinate system
and present them in Fig. 8. The upper plot illustrates the

distribution of all injected signals with f > 0.3 mHz and
ḟ > 0, while the lower plot depicts the recovered GBs.
It should be noted that the number of recovered GBs is
lower than the injected ones due to the majority of injected

FIG. 6. Error histogram of all matched signals with δ < 0.3.

TABLE V. The number of occurrences where two recovered
signals exhibit a strong correlation with the same injected signal.

Challenge Tobs [yr] Recovered O > 0.5 O > 0.7 O > 0.85

Radler 0.5 3937 3 0 0
Radler 1 7112 2 0 0
Sangria 1 8375 11 3 0
Radler 2 11 953 10 2 0

FIG. 7. Scatter plot of recovered GBs and injected GBs of the
2 yr Radler dataset. The upper plot is across the GB amplitude A
and frequency f and the lower plot is across the ecliptic sky
locations. The green dots are the recovered GBs with δ < 0.3
which are categorized as matched signals. The blue circles on the
plot represented the recovered signals that did not have a close
match with any of the injected signals. The red crosses represent
the injected signals that did not have a good match with any of the
recovered signals. These signals were not effectively captured or
identified during the recovery process.
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GBs having a low S=N, rendering them unrecoverable.
Notably, a significant number of recovered GBs are located
in close proximity to the Sun, which aligns with expect-
ations as closer sources exhibit higher S=N. This trend is
also evident in the galactocentric 3D plot shown in Fig. 9.

D. Posterior

Assessing the posterior distribution of 10 000 signals
presents challenges, particularly in the absence of ground
truth for comparison. However, leveraging statistical tech-
niques allows us to evaluate the quality of the uncertainty
estimates. Additionally, we can quantify the enhanced
precision of the posterior distribution as Tobs increases.
In Fig. 10, we observe the evolution of accuracy and
precision for one signal’s sky location as a function
of Tobs. Notably, for Tobs ¼ 0.5 yr, the accuracy and

precision are comparatively lower than those achieved
with longer Tobs.
Since the posterior distribution for the sky locations is

approximate of Gaussian shape, we can estimate the
uncertainty by computing the standard deviation σβ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P
N
i¼1ðβi − μβÞ2

q
with mean μβ ¼ 1

N

P
N
i¼1 xi, where

N ¼ nsamples is the length of the MCMC chain and βi is
the ith sample of the chain. The uncertainty for the other
parameters is computed analogously. In the next step, we
can estimate the angular confidence area

σarea ¼
Z

μβþσβ

μβ−σβ

Z
μλþσλ

μλ−σλ
sin βdλdβ ð23Þ

of the sky location for each signal. Figure 11 displays the
histogram of all analyses, revealing a notable trend. As Tobs
increases, the number of posteriors with small confidence
areas also increases. This observation aligns with the
findings depicted in Fig. 10, showing how the posterior
of a signal becomes narrower with longer Tobs. However, it
is important to note that the total number of extracted
signals from the data also rises as the S=N of signals
improves with longer observation times. Consequently, the
number of signals with wider confidence areas also
increases.
To assess the quality of the posterior estimate, we can

examine whether the true parameters lie within the con-
fidence interval as expected. If the accuracy and precision
of the posterior are correct, we would expect to find the true
parameters approximately 68% of the time within the
interval of 1σ standard deviation.

FIG. 8. The GB distribution of the Milky Way galaxy seen
perpendicular to the Galactic plane according to the simulated
Radler dataset. The red dot marks the Sun. The top plot shows
the distribution of the injected GBs and the bottom plot the
distribution of the recovered GBs.

FIG. 9. Recovered GBs plotted as blue dots in the galactocen-
tric coordinate system. The red dot marks the Sun. The density of
GBs is represented by 2D contour lines on the planes.
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If the number of parameters within the confidence
interval is higher than expected, it suggests that the
precision is worse, meaning the posterior distribution is
too wide. On the other hand, if the number of parameters
within the confidence interval is lower than expected, it
indicates potential inaccuracies in the posterior estimate.
This could mean that the posterior distribution is not
located at the true parameters, and/or it is excessively
precise, where the posterior distribution is too narrow.
The results for individual parameters are presented in

Table VI, where we compute the standard deviation and
check if the true parameter falls within the 68% confidence
interval. Due to degeneracy, the evaluation of ϕ0 and ψ is

omitted as it would not yield proper assessment. We
observe that the uncertainty estimate for the sky locations,
with observation times of 1 yr or more, is close to the
expected rate. However, the other parameters exhibit a
lower rate than expected. This can be attributed to multiple
reasons. Firstly, it could be due to inaccurate estimation,
where the true value does not align with the posterior
distribution. Secondly, the posterior distribution might be
too narrow. Lastly, the assumption of a Gaussian distribu-
tion for the other parameters, as used in computing the
standard deviation, may not hold true. For multimessenger
astronomy, the good agreement between estimated and true
uncertainty in sky location is of highest relevance.

V. CONCLUSION

The extension of the previous pipeline, outlined by [16],
allows now to obtain the MLE of GBs in the full frequency
range where most of the GBs are overlapping with each
other. As detailed in Sec. IVA, the extraction of 18 000
signals from a dataset with Tobs ¼ 2 yr can be accom-
plished in a mere 6 h. This acceleration also reduces the
computational costs significantly to only 100 USD with
today’s hardware [45], which brings extracting GBs from
the full frequency band toward diminishing costs.
Additionally, we have leveraged the power of parallel

computation, utilizing GPUs, to compute the posterior
distribution for identified MLEs within a remarkable time
frame of 2 s per signal. The computation of all posterior
distributions can be completed in approximately 9 h on a
single laptop-grade GPU of the year 2018. These advance-
ments not only enable efficient analysis of a large number
of signals, but also allow for rapid estimation of the
posterior distributions.
The next crucial step involves integrating the presented

pipeline into a comprehensive global analysis of data
encompassing various astrophysical sources and phenom-
ena, such as GBs, MBHBs, extreme mass ratio inspirals,
glitches, and data gaps. The incorporation of this pipeline
into the development of a global analysis framework offers
substantial acceleration in the GB analysis process. This
acceleration leads to a notable reduction in the associated
costs for future pipeline developments.
The full pipeline and evaluation tools are available

at [47].

FIG. 10. Posterior distribution of the sky location for
the three analyses of the Radler dataset of the signal with
θfinj ¼ 4.169906 mHz. The dashed black lines mark the true
values of the matched injected signal θinj.

FIG. 11. Angular confidence area histogram of all analyses.

TABLE VI. Ratio of true values within 1σ standard deviation.

Parameter Radler 0.5 yr Radler 1 yr Sangria 1 yr Radler 2 yr

A 23% 29% 34% 33%
sin β 52% 61% 67% 69%
λ 24% 54% 60% 72%
f 20% 28% 32% 39%
ḟ 53% 45% 45% 57%
ι 30% 36% 42% 40%
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