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We study rotating compact stars that are mixtures of the ordinary nuclear matter in a neutron star and
fermionic dark matter. After deriving equations describing a slowly rotating system made up of an arbitrary
number of perfect fluids, we specialize to the two-fluid case, where the first fluid describes ordinary matter
and the second fluid describes dark matter. Electromagnetic observations of the moment of inertia and
angular momentum directly probe ordinary matter and not dark matter. Upon taking this into account, we
show that the I-Love-Q relations for dark matter admixed neutrons stars can deviate significantly from the
standard single-fluid relationships.
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I. INTRODUCTION

Dark matter admixed neutron stars are mixtures of the
ordinary nuclear matter in a neutron star and dark matter
modeled as either a bosonic or fermionic particle. If a
sufficient amount of dark matter is present in the star,
observable properties such as the mass and radius can be
affected. Models exist in which dark matter is enveloped by
ordinary matter and forms a dark matter core or dark matter
envelopes ordinary matter and forms a dark matter cloud.
Neutron star observations therefore offer the intriguing
possibility of indirectly probing the properties of darkmatter.
Static spherically symmetric dark matter admixed neutron

stars have been studied extensively. For a sampling of work
in which dark matter is assumed to be a bosonic particle
see [1–8] and for dark matter assumed to be a fermionic
particle see [9–22]. If one moves away from static and
spherically symmetric spacetimes, then there are fewer
studies. Spherically symmetric dynamical studies have
simulated dark matter admixed neutron stars with bosonic
dark matter [23–31] and fermionic dark matter [32].
Axisymmetric spacetimes allow for rotating dark matter
admixed neutron stars. Reference [33] studied the gravita-
tional waves produced by a rotating star with bosonic
dark matter, Ref. [34] studied a rotating neutron star with
fermionic dark matter using a single-fluid model, and
Refs. [35,36] studied rotating white dwarfs using a New-
tonian formalism. A full three dimensional simulation of a
binary inspiral where the stars contained bosonic darkmatter
was performed in [26]. Possible formation mechanisms
leading to systems with sufficient amounts of dark matter
have been considered in [24,27,32,36–40].
In this work, we study rotating dark matter admixed

neutron stars with fermionic dark matter. As far as we are
aware, this has not previously been considered in detail
using a multifluid model. We use Hartle’s slowly rotating
approximation in which the stationary axisymmetric metric

is written as a perturbation about the static spherically
symmetric metric with perturbations kept through second
order [41,42]. Hartle’s formalism requires ordinary matter
and dark matter to be rotating uniformly, though it allows
them to rotate at different speeds. By slow, we mean that

Ωx ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�=R3�

q
; ð1Þ

whereΩx is the angular velocity of either ordinary matter or
dark matter, G is the gravitational constant, andM� and R�
are the mass and radius of the nonrotating star.
There are a couple important reasonswhyusing the slowly

rotating approximation can be more advantageous than
numerically solving the full Einstein equations. First, in
the slowly rotating formalism, the angular dependence is
described analytically with Legendre polynomials. This
results in a set of linear ordinary differential equations
(ODEs) that are significantly easier to solve than the set
of nonlinear partial differential equations which follow from
the full Einstein equations. As a consequence, when appli-
cable, the slowly rotating solutions are the most accurate
available. Second, the vastmajority of observed neutron stars
have rotation speeds consistent with Eq. (1) [43]. The slowly
rotating approximation therefore has significant practical
value, in addition to being easier to solve.
Dark matter direct detection experiments have placed

strong bounds on the interaction strength between nuclear
matter and dark matter. With respect to bulk properties of
the star, such as the mass and radius, these bounds indicate
that the interaction strength is negligibly small and can be
ignored [16,37]. We model both ordinary matter and
fermionic dark matter as perfect fluids. Our system is then
a two-fluid system where the fluids have only gravitational
interfluid interactions.
A two-fluid system using Hartle’s slowly rotating

approximation was developed by Andersson and Comer
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in [44] (see also [45]) for the study of superfluid neutron
stars, in which neutrons act as a separate fluid from the
remaining charged particles. Their construction allows for
nongravitational interfluid interactions and relies heavily
on notation that is largely unfamiliar in the study of dark
matter admixed neutron stars. In this work, we neglect
nongravitational interfluid interactions for the reasons
explained above and use more familiar notation. As a
generalization to [44], we derive the system of equations
for an arbitrary number of perfect fluids. We then specialize
to the two-fluid case, where the first fluid describes
ordinary matter and the second fluid describes dark matter.
The use of a perfect fluid to describe matter requires

specification of an equation of state, which describes the
particle content and interactions between the particles.
Unfortunately, properties of nuclear matter at the extreme
pressures found in the core of a neutron star are largely
unknown. As a consequence, the correct equation of state
for the ordinary matter in a neutron star is also unknown
and many equations of state have been proposed. The
situation is worse for dark matter, since even less is known
about the properties of dark matter. Nonetheless, a choice
for the equation of state for dark matter must be made.
The I-Love-Q relations for neutron stars are relation-

ships between the moment of inertia I, the Love number,
and the quadruple moment Q that are universal in that they
are approximately independent of the equation of state [46–
49]. These relationships were originally discovered using
the slowly rotating approximation, but have since been
confirmed for rapidly rotating [50,51] and magnetized [52]
neutron stars. The I-Love-Q relations allow one to make
nontrivial statements about neutron stars without having to
rely on a choice for the equation of state.
In this work, we study the I-Love-Q relations for dark

matter admixed neutron stars. Two-fluid studies of I-Love-Q
were recently made for superfluid neutron stars in [49,53]
using the formalism of [44,45].We present a complementary
two-fluid study of I-Love-Q before focusing on dark matter
admixed neutron stars. An important difference between an
arbitrary two-fluid system and a dark matter admixed system
is that dark matter cannot be probed electromagnetically. We
study how properties of I-Love-Q that rely on electromag-
netic measurements would then depend on ordinary matter
alone, while properties of I-Love-Q that depend on gravi-
tational measurements would depend on the full mixed star.
After taking this into account, we find significant deviation
from the standard single-fluid I-Love-Q relations. Further,
the I-Love-Q relations can no longer be parametrized byone-
parameter curves.
This paper is organized as follows. In Sec. II, we present

a detailed derivation of the system of equations for a slowly
rotating star with an arbitrary number of perfect fluids that
have only gravitational interfluid interactions. In Sec. III,
we explain our numerical methods and present example
configurations. In Sec. IV, we describe the I-Love-Q

relationships and present results for a straightforward
generalization of I-Love-Q for two fluids and results for
I-Love-Q for dark matter admixed neutron stars. We
conclude in Sec. V. In writing equations, we use units
such that c ¼ ℏ ¼ 1 and retain the gravitational constantG.

II. SLOWLY ROTATING MULTIPLE-FLUID
SYSTEM

In this section, we derive the equations describing
an arbitrary number of slowly rotating perfect fluids.
We assume the fluids rotate uniformly about a common
rotation axis. As described in the Introduction, we further
assume that the fluids have only gravitational interfluid
interactions.
Following Hartle [41], we write the stationary axisym-

metric metric as a perturbation about a static spherically
symmetric metric,

ds2 ¼−eνðr̄Þ½1þ 2hðr̄;θÞ�dt2

þ r̄
r̄− 2GMðr̄Þ

�
1þ 2mðr̄;θÞ

r̄− 2GMðr̄Þ
�
dr̄2

þ r̄2½1þ 2kðr̄;θÞ�fdθ2þ sin2θ½dϕ−ωðr̄Þdt�2g; ð2Þ

where

hðr̄; θÞ ¼ h0ðr̄Þ þ h2ðr̄ÞP2ðcos θÞ þOðΩ4Þ
mðr̄; θÞ ¼ m0ðr̄Þ þm2ðr̄ÞP2ðcos θÞ þOðΩ4Þ
kðr̄; θÞ ¼ k2ðr̄ÞP2ðcos θÞ þOðΩÞ4

¼ ½v2ðr̄Þ − h2ðr̄Þ�P2ðcos θÞ þOðΩÞ4: ð3Þ

In this metric, ν and M are equilibrium fields which
parametrize the static spherically symmetric metric; ω is
a perturbation that is first order in the angular velocity Ω;
and h, h0, h2, m, m0, m2, k, k2, and v2 are second order
perturbations. P2ðcos θÞ ¼ ð3 cos2θ − 1Þ=2 is the second
order Legendre polynomial. Subscripts on perturbations
indicate whether they are spherical (l ¼ 0) or quadrupole
(l ¼ 2) perturbations. The bar on r̄ indicates that this is the
original radial coordinate. Soon, we will transform to a new
radial coordinate.
The total energy-momentum tensor, Tμν

tot, which is used
on the right-hand side of the Einstein field equations,

Gμν ¼ 8πGTμν
tot; ð4Þ

where Gμν is the Einstein tensor, has contributions from
each fluid. With only gravitational interfluid interac-
tions, the total energy-momentum tensor separates and is
given by

Tμν
tot ¼

X
x

Tμν
x ; ð5Þ

JOHN CRONIN, XINYANG ZHANG, and BEN KAIN PHYS. REV. D 108, 103016 (2023)

103016-2



where x labels the fluid, and

Tμν
x ¼ ðEx þ PxÞuμxuνx þ Pxgμν ð6Þ

is the energy-momentum tensor for an individual perfect
fluid. In (6), Ex is the energy density, Px is the pressure, and
uμx is the four-velocity for fluid x. Each of these quantities
depends on r̄ and θ and accounts for effects having to do
with rotation. The four-velocities are given by

uμx ¼ utxð1; 0; 0;ΩxÞ; ð7Þ
where Ωx is the angular velocity of the fluid. Since we are
assuming each fluid rotates uniformly, Ωx is a constant.
From gμνu

μ
xuνx ¼ −1, we have

utx ¼ ½−ðgtt þ 2gtϕΩx þ gϕϕΩ2
xÞ�−1=2: ð8Þ

As mentioned, the energy density Ex and the pressure Px
take into account the effects of rotation. We can therefore
write these as

Exðr̄; θÞ ¼ ϵxðr̄Þ þ δExðr̄; θÞ
Pxðr̄; θÞ ¼ pxðr̄Þ þ δPxðr̄; θÞ; ð9Þ

where ϵx and px are the equilibrium fields and δEx and δPx
are perturbations.
With only gravitational interfluid interactions, the equa-

tions of state for each fluid also separate,

Px ¼ PxðExÞ; ð10Þ
in that Px only depends on its respective energy density Ex
and not on properties of other fluids, and the individual
energy-momentum tensors are independently conserved,

∇μT
μν
x ¼ 0: ð11Þ

A. Equations of motion

Conservation of the individual energy-momentum ten-
sors in (11) lead to the equations of motion

∂μPx ¼ ðEx þ PxÞ∂μðln utxÞ: ð12Þ
This equation can be solved analytically. Defining

Γx ≡ lnðEx þ PxÞ −
Z

Ex

0

dE0
x

E0
x þ PxðE0

xÞ
; ð13Þ

where a prime labels the integration variable, the equations
of motion can be written

∂μðΓx − ln utxÞ ¼ 0; ð14Þ
with solution

Γx − ln utx ¼ ln μx; ð15Þ
where the μx are constants.

Following [41,54], we expand Γx analogously to the
metric fields,

Γxðr̄; θÞ ¼ Γeq
x ðr̄Þ þ δpx0ðr̄Þ þ δpx2ðr̄ÞP2ðcos θÞ; ð16Þ

where Γeq
x is the equilibrium value and δpx0 and δpx2 are

second order perturbations. The use of the symbol p in δpx0
and δpx2 is standard, but we note that these are not
perturbations to the pressure. Indeed, the pressure and
energy density perturbations are defined in (9). Using that
dΓx ¼ dPx=ðEx þ PxÞ, one can show that the pressure and
energy density perturbations are given by

δPxðr̄; θÞ ¼ ½ϵxðr̄Þ þ pxðr̄Þ�½δpx0ðr̄Þ þ δpx2ðr̄ÞP2ðcos θÞ�

δExðr̄; θÞ ¼
∂ϵxðr̄Þ
∂pxðr̄Þ

δPxðr̄; θÞ: ð17Þ

B. Coordinate transformation

A subtlety in defining the rotational perturbations arises
even at the nonrelativistic level [41]. In the absence of
rotation, the star is a sphere. Rotation causes the star to
deform and become oblate, pushing matter into regions that
previously did not have matter. The matter in the previously
empty regions is described entirely by perturbations, since
the equilibrium values vanish. As a consequence, in these
previously empty regions, the perturbations are not small
with respect to the equilibrium values.
This can be handled by transforming the radial coor-

dinate [41],

r̄ ¼ rþ ξðr; θÞ; ξðr; θÞ ¼ ξ0ðrÞ þ ξ2ðrÞP2ðcos θÞ; ð18Þ

where r is the new radial coordinate and ξ, ξ0, and ξ2 are
second order perturbations.1 The edge of the star in both the
rotating and nonrotating cases is defined by the smallest
radial coordinate such that the total pressure vanishes [45].
Since we are assuming equations of state that take the
barotropic form in (10), this is equivalent to the smallest
radial coordinate such that the total energy density van-
ishes. We define the new radial coordinate r such that [45]

X
x

Pxðr̄ðr; θÞ; θÞ ¼
X
x

pxðrÞ: ð19Þ

This equation can be understood as follows [41]: An
arbitrary point inside the rotating star resides on a surface
of constant total pressure. The new coordinate r is defined
to be the radius of the surface in the nonrotating configu-
ration with the same constant total pressure.

1Hartle writes the original radial coordinate as r and the
transformed radial coordinate as R in [41]. Our definitions for r̄
and r agree with those in [44].
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In terms of the new radial coordinate, the energy density
and pressure perturbations are well defined. In transforming
these, let δEx and δPx be the perturbations in the original
coordinate system and letΔEx andΔPx be the perturbations
in the new coordinate system. The transformations are then

ΔExðr; θÞ ¼ δExðr; θÞ þ ξðr; θÞ dϵxðrÞ
dr

ΔPxðr; θÞ ¼ δPxðr; θÞ þ ξðr; θÞ dpxðrÞ
dr

: ð20Þ

These may be derived by inserting (18) into (9) and then
expanding through second order in perturbations. This same
calculation in (19) leads to

X
x

ΔPxðr; θÞ ¼ 0: ð21Þ

Once solutions are found, we can return to the original
radial coordinate. To do so, we will need expressions for ξ0
and ξ2 in (18). We can obtain such expressions from the
transformations for the pressure perturbations. Using (21)
in (20) gives

X
x

δPxðr; θÞ ¼ −ξðr; θÞ d
dr

X
x

pxðrÞ: ð22Þ

Combining Eqs. (17), (18), and (22), we find the desired
formulas for the radial coordinate perturbations,

ξ0ðrÞ ¼ −
P

x½ϵxðrÞ þ pxðrÞ�δpx0ðrÞP
ydpyðrÞ=dr

ξ2ðrÞ ¼ −
P

x½ϵxðrÞ þ pxðrÞ�δpx2ðrÞP
ydpyðrÞ=dr

: ð23Þ

We must write all equations in terms of the new radial
coordinate, since it is the new radial coordinate that leads
to well-defined energy density and pressure perturbations.
This requires transforming the Einstein tensor and the
energy-momentum tensor. Let δGμν and δTμν

x be the pertur-
bations in the original coordinate system and let ΔGμν and
ΔTμν

x be the perturbations in the new coordinate system. The
coordinate transformations are then

ΔGμνðr; θÞ ¼ δGμνðr; θÞ þ ξðr; θÞ dG
μνðrÞ
dr

ΔTμν
x ðr; θÞ ¼ δTμν

x ðr; θÞ þ ξðr; θÞ dT
μν
x ðrÞ
dr

; ð24Þ

where GμνðrÞ and Tμν
x ðrÞ in the derivatives are equilibrium

values.
The equilibrium energy-momentum tensor for an indi-

vidual fluid is

½TxðrÞ�μν ¼ diag½−ϵxðrÞ; pxðrÞ; pxðrÞ; pxðrÞ�: ð25Þ

Using this and the equilibrium Einstein field equations, the
components of the Einstein tensor perturbations we will
need are

ΔGt
tðr; θÞ ¼ δGt

tðr; θÞ − 8πGξðr; θÞ d
dr

X
x

ϵxðrÞ

ΔGr
rðr; θÞ ¼ δGr

rðr; θÞ þ 8πGξðr; θÞ d
dr

X
x

pxðrÞ

ΔGθ
θðr; θÞ ¼ δGθ

θðr; θÞ þ 8πGξðr; θÞ d
dr

X
x

pxðrÞ

ΔGϕ
ϕðr; θÞ ¼ δGϕ

ϕðr; θÞ þ 8πGξðr; θÞ d
dr

X
x

pxðrÞ

ΔGr
θðr; θÞ ¼ δGr

θðr; θÞ
ΔGt

ϕðr; θÞ ¼ δGt
ϕðr; θÞ: ð26Þ

For the components of the energy-momentum tensor
perturbations, we plug the energy density and pressure
perturbations in (9) into (6) and use (8). Expanding the
results through second order in perturbations and canceling
terms using (21), we find

½ΔT totðr;θÞ�tt ¼−
r2sin2θ

eνðrÞ
X
x

½ϵxðrÞþpxðrÞ�ϖxðrÞΩx

−
X
x

ΔExðr;θÞ

½ΔT totðr;θÞ�ϕϕ ¼þr2sin2θ

eνðrÞ
X
x

½ϵxðrÞþpxðrÞ�ϖxðrÞΩx

½ΔT totðr;θÞ�tϕ ¼þr2sin2θ

eνðrÞ
X
x

½ϵxðrÞþpxðrÞ�ϖxðrÞ; ð27Þ

where

ϖxðrÞ≡Ωx − ωðrÞ; ð28Þ

with all other components vanishing. In particular,

ðΔT totÞrr ¼ 0; ðΔT totÞθθ ¼ 0; ðΔT totÞrϕ ¼ 0; ð29Þ
which we shall use. In (27), sin2 θ can be written as

sin2θ ¼ 2

3
−
2

3
P2ðcos θÞ: ð30Þ

C. Integrals of motion

The equations of motion in (15) are written in terms of
the constants μx. Following Hartle [41], we can write these
constants as

μx ¼ μeqx ½1þ γx þOðΩ4Þ�; ð31Þ
where μeqx are the equilibrium values and the γx are
constants that are second order in Ω. To derive the integrals
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of motion, we insert the expansion for Γx in (16), utx in (8),
and μx in (31) into the equations of motion and then expand
through second order in the perturbations. We then trans-
form to the new radial coordinate and use (30). We find for
the integrals of motion

γx ¼ δpx0ðrÞ þ h0ðrÞ −
1

3
r2e−νðrÞϖ2

xðrÞ

0 ¼ δpx2ðrÞ þ h2ðrÞ þ
1

3
r2e−νðrÞϖ2

xðrÞ; ð32Þ

where ϖx is defined in (28).

D. Einstein field equations

In this subsection, we present the Einstein field equa-
tions, which are the principle equations we solve in our
study of rotating dark matter admixed neutron stars. The
Einstein tensor for stationary axisymmetric spacetimes can
be found, for example, in [41,55]. In the exterior of the star,
all fluids have vanishing energy density and pressure. As a
consequence, the solutions to the Einstein field equations
take the same form in the exterior as they do in the single-
fluid case and we can use the analytical exterior solutions
presented in [41].

1. Equilibrium: ν and M

For the equilibrium equations, we drop all perturbations.
The Einstein field equations and the equations of motion
reduce to the multifluid Tolman-Oppenheimer-Volkoff
(TOV) equations,

dν
dr

¼ 8πGr3
P

xpx þ 2GM
rðr − 2GMÞ

dM
dr

¼ 4πr2
X
x

ϵx

dpx

dr
¼ −

1

2
ðϵx þ pxÞ

dν
dr

: ð33Þ

These equations may be integrated outward from r ¼ 0
using the inner boundary conditions

νðrÞ ¼ νð0Þþ r2
4πG
3

X
x

½ϵxð0Þþ 3pxð0Þ�þOðr4Þ

MðrÞ ¼ r3
4π

3

X
x

ϵxð0ÞþOðr5Þ

pxðrÞ ¼ pxð0Þ− r2
2πG
3

½ϵxð0Þþpxð0Þ�
X
y

½ϵyð0Þþ 3pyð0Þ�

þOðr4Þ: ð34Þ
The edge of each fluid occurs at the smallest value of
r ¼ Rx, such that

pxðRxÞ ¼ 0: ð35Þ

We label the edge of the outermost fluid as r ¼ R�, which
marks the edge of the star. The total nonrotating mass of the
star is given by

M� ¼ MðR�Þ: ð36Þ

In the exterior of the star, the equilibrium solution is the
Schwarzschild solution. The interior and exterior solutions
must match at r ¼ R�, which means

eνðR�Þ ¼ 1 −
2GM�
R�

ð37Þ

and that M� gives the Arnowitt-Deser-Misner mass.

2. First order: ω

The first order equation follows from the tϕ component.
The tϕ component of the Einstein tensor is

Gt
ϕ ¼ −

sin2θ
2r̄2

j
d
dr̄

�
r̄4j

dω
dr̄

�
; ð38Þ

where

j≡ e−ν=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM=r̄

p
: ð39Þ

Using (26) and (27) we find for the Einstein field equation

X
x

ðϵx þ pxÞ
�
−

1

r4
d
dr

�
r4j

dω
dr

�
þ 4

r
dj
dr

ϖx

�
¼ 0: ð40Þ

Equation (40) is a second order ODE. To facilitate
solving it numerically, we write it as a system of first
order ODEs. Defining

uðrÞ≡ −r4jðrÞ dωðrÞ
dr

; ηxðrÞ≡ jðrÞϖxðrÞ; ð41Þ

Eq. (40) is equivalent to

du
dr

¼ 16πGr5

r − 2GM

X
x

ðϵx þ pxÞηx:

dηx
dr

¼ u
r4

−
4πGr2ηx
r − 2GM

X
y

ðϵy þ pyÞ: ð42Þ

Notice that each term on the right-hand side of the du=dr
equation is for an individual fluid. It will prove useful to
decompose u as

uðrÞ≡X
x

uxðrÞ; ð43Þ

where the ux satisfy
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dux
dr

¼ 16πGr5

r − 2GM
ðϵx þ pxÞηx: ð44Þ

These equations may be integrated outward from r ¼ 0
using the inner boundary conditions

uxðrÞ ¼ r5
16πG
5

½ϵxð0Þ þ pxð0Þ�ηxð0Þ þOðr7Þ

ηxðrÞ ¼ ηxð0Þ þ r2
�
8πG
5

X
y

½ϵyð0Þ þ pyð0Þ�ηyð0Þ

− 2πGηxð0Þ
X
y

½ϵyð0Þ þ pyð0Þ�
�
þOðr4Þ; ð45Þ

where

ηxð0Þ ¼ e−νð0Þ=2ϖxð0Þ: ð46Þ
The interior and exterior solutions must match at r ¼ R�,

which leads to [41]

uðR�Þ ¼ 6J; ηxðR�Þ ¼ Ωx −
2J
R3�

; ð47Þ

where J is the total angular momentum of the system. We
expect the total angular momentum to be equal to the sum
of the angular momentum for each fluid. Using the
decomposition of u in (43), we can see that [12]

uxðR�Þ ¼ 6Jx; ð48Þ
where

J ¼
X
x

Jx: ð49Þ

With these equations we can find the angular momentum
and angular velocity of each fluid. We can then compute the
moment of inertia for each fluid,

Ix ¼
Jx
Ωx

; ð50Þ

and the total moment of inertia of the system,

I ¼
X
x

Ix: ð51Þ

3. Second order: m0 and δpx0
The relevant Einstein tensor perturbations are

ðδGt
tÞl¼0 ¼

jω
3r̄2

d
dr̄

�
r̄4j

dω
dr̄

�
þ 1

6
r̄2j2

�
dω
dr̄

�
2

−
2

r̄2
dm0

dr̄

ðδGr
rÞl¼0 ¼

1

6
r̄2j2

�
dω
dr̄

�
2

−
�
dν
dr̄

þ 1

r̄

�
2m0

r̄2

þ
�
1 −

2GM
r̄

�
2

r̄
dh0
dr̄

: ð52Þ

To derive the desired equations, we use (26), (27), and (29).
We also use (20), (23), (40), the derivative of the first
integral of motion in (32), and the dν=dr TOV equation in
(33). We find

dm0

dr
¼ u2

12r4
þ 8πGr5

3ðr − 2GMÞ
X
x

ðϵx þ pxÞη2x

þ 4πGr2
X
x

∂ϵx
∂px

δpx0ðϵx þ pxÞ

dδpx0

dr
¼ u2

12r4ðr − 2GMÞ −
m0ð1þ 8πGr2

P
ypyÞ

ðr − 2GMÞ2

−
4πGr2

r − 2GM

X
y

ðϵy þ pyÞδpy0 þ
2r2ηx

3ðr − 2GMÞ
�
u
r3

þ ηxðr − 3GM − 4πGr3
P

ypyÞ
r − 2GM

�
: ð53Þ

These equations may be integrated outward from r ¼ 0
using the inner boundary conditions

m0ðrÞ ¼ r5
4πG
15

X
x

�
dϵx
dpx

				
r¼0

þ 2

�

× ½ϵxð0Þ þ pxð0Þ�η2xð0Þ þOðr7Þ

δpx0ðrÞ ¼ r2
η2xð0Þ
3

þOðr4Þ: ð54Þ

The interior and exterior solutions must match at r ¼ R�,
which leads to [41]

m0ðR�Þ ¼ δM −
J2

R3�
; ð55Þ

where δM is the correction to the mass of the star due to
rotation. The total mass of the star is given by

M ¼ M� þ δM: ð56Þ

4. Second order: m2

The relevant Einstein tensor perturbations are

δGθ
θ − δGϕ

ϕ ¼ sin2θ

�
−

3

r̄2

�
h2 þ

m2

r̄ − 2GM

�

þ 1

2
j2r̄2

�
dω
dr̄

�
2

þ jω
2r̄2

d
dr̄

�
r̄4j

dω
dr̄

��
:

ð57Þ

Using (26), (27), and (29), we find the algebraic equation

m2

r − 2GM
¼ −h2 þ

u2

6
þ 8πG

3
r4e−ν

X
x

ϖ2
xðϵx þ pxÞ: ð58Þ
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5. Second order: v2 and h2
The relevant Einstein tensors are

ðδGr
rÞl¼2 ¼

1

6
r̄2j2

�
dω
dr̄

�
2

−
�
dν
dr̄

þ 1

r̄

�
2m2

r̄2
þ
�
1 −

2GM
r̄

��
2

r̄
dh2
dr̄

þ dk2
dr̄

�
dν
dr̄

þ 2

r̄

��
−

1

r̄2
ð6h2 þ 4k2Þ

ðδGr
θÞl¼2 ¼ −

dh2
dr̄

þ h2

�
1

r̄
−
1

2

dν
dr̄

�
−
dk2
dr̄

þ m2

r̄ − 2GM

�
1

r̄
þ 1

2

dν
dr̄

�
: ð59Þ

To derive the desired equations, we use (26), (27), and (29). We also use (23), the second integral of motion in (32), (58),
and write k2 ¼ v2 − h2 from (3). We find

dv2
dr

¼ −ν0h2 þ
�
1

r
þ ν0

2

��
u2

6r4
þ 8πGr5

3ðr − 2GMÞ
X
x

η2xðϵx þ pxÞ
�

h2
dr

¼ h2

�
−ν0 þ r

r − 2GM
1

ν0

�
8πG

X
x

ðϵx þ pxÞ −
4GM
r3

��
−

4v2
rðr − 2GMÞ

1

ν0

þ u2

6r5

�
rν0

2
−

1

r − 2GM
1

ν0

�
þ 8πGr4

3ðr − 2MGÞ
�
rν0

2
þ 1

r − 2GM
1

ν0

�X
x

η2xðϵx þ pxÞ; ð60Þ

where ν0 ≡ dν=dr is given by the TOV equation in (33).
The inner boundary conditions for these equations are

h2ðrÞ ¼ Ar2 þOðr4Þ; v2ðrÞ ¼ Br4 þOðr6Þ; ð61Þ

where

B ¼ 2πG
3

X
x

½ϵxð0Þ þ pxð0Þ�η2xð0Þ

− A
2πG
3

X
x

½ϵxð0Þ þ 3pxð0Þ�: ð62Þ

The value for A is determined by an outer boundary
condition [41].
Following [41] we can construct the general solution by

writing it as the sum of particular and complementary
solutions,

v2ðrÞ ¼ vP2 ðrÞ þ CvC2 ðrÞ; h2ðrÞ ¼ hP2 ðrÞ þ ChC2 ðrÞ;
ð63Þ

where C is a constant. The particular solution is any
solution to (60), which means we may choose the value
of A arbitrarily (in practice, we use A ¼ 1) and then choose
B according to (62). The complementary solution is the
solution to the complementary equations, which are the
homogenous versions of (60) and are obtained by setting
u ¼ ηx ¼ 0 in (60),

dvC2
dr

¼−ν0hC2

hC2
dr

¼ hC2

�
−ν0 þ r

r− 2GM
1

ν0

�
8πG

X
x

ðϵxþpxÞ−
4GM
r3

��

−
4vC2

rðr− 2GMÞ
1

ν0
: ð64Þ

The inner boundary conditions for the complementary
equations are

hC2 ðrÞ ¼ ar2 þOðr4Þ; vC2 ðrÞ ¼ br4 þOðr6Þ; ð65Þ

where

b ¼ −a
2πG
3

X
x

½ϵxð0Þ þ 3pxð0Þ�: ð66Þ

amay be chosen arbitrarily (in practice, we use a ¼ 1) with
b chosen according to (66), since the integration constant is
accounted for by C in (63). Equation (63) gives the general
solution when C is arbitrary.
The interior solution in (63) must match the exterior

solution at r ¼ R�. This leads to [41]

vP2 ðR�Þ þ CvC2 ðR�Þ ¼ −
J2

R4�
þ K

2M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�ðR� − 2M�Þ

p Q2
1ðζÞ

hP2 ðR�Þ þ ChC2 ðR�Þ ¼ J2
�

1

M�R3�
þ 1

R4�

�
þ KQ2

2ðζÞ; ð67Þ

where K is a constant,
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Q2
1ðζÞ ¼ ðζ2 − 1Þ1=2

�
3ζ2 − 2

ζ2 − 1
−
3

2
ζ ln

�
ζ þ 1

ζ − 1

��

Q2
2ðζÞ ¼

3

2
ðζ2 − 1Þ ln

�
ζ þ 1

ζ − 1

�
−
3ζ3 − 5ζ

ζ2 − 1
ð68Þ

are associated Legendre functions of the second kind, and
ζ ¼ R�=M� − 1. From (67), we can solve for C and K.
Using C in (63), we have the interior solution. With K, we
can compute the quadrupole moment [42],

Q ¼ J2

M�
þ 8

5
KM3�: ð69Þ

6. Second order: δpx2
δpx2 is found algebraically using the second integral of

motion in (32).Having found δpx0 and δpx2, we can compute
the radial coordinate perturbations ξ0 and ξ2 in (23).
To find the shape of the star, we can replace dpy=dr in ξ0

and ξ2 with the TOVequation in (33) and then take the limit
r → R�. This gives

ξ0ðR�Þ ¼
R�ðR� − 2GM�Þ

GM�
δp�0ðR�Þ

ξ2ðR�Þ ¼
R�ðR� − 2GM�Þ

GM�
δp�2ðR�Þ; ð70Þ

where δp�0 and δp�2 are perturbations for the outermost
fluid. The shape of the star in the original coordinate system
is then given by

R̄� ¼ R� þ ξ0ðR�Þ þ ξ2ðR�ÞP2ðcos θÞ; ð71Þ
which follows from (18).

III. NUMERICAL METHODS AND EXAMPLE
CONFIGURATIONS

We solve the equations presented in the previous section
numerically. Solutions are identified by the central pres-
sures pxð0Þ and the central values ϖxð0Þ ¼ Ωx − ωð0Þ,
which are used in (46). Ideally, we would be able to specify
the angular velocities Ωx, but the angular velocities are
determined for each solution from (47). Once the pxð0Þ and
ϖxð0Þ are specified, the system of ODEs can be integrated
outward from r ¼ 0. We describe our numerical procedure
for solving the equations in the Appendix.
Once we have a solution, the shape of the star can be

computed using (70) and (71). The energy density and
pressure curves are given by

Exðr; θÞ ¼ ϵxðrÞ þ ΔExðr; θÞ
Pxðr; θÞ ¼ pxðrÞ þ ΔPxðr; θÞ; ð72Þ

which can be computed using (17), (20), and (23). The
energy density and pressure can then be plotted in terms of
the original radial coordinate r̄ using (18).

We now focus on the two-fluid system, where the first
fluid describes the ordinary nuclear matter inside a neutron
star and the second fluid describes dark matter. We must
choose an equation of state for each fluid. For ordinary
matter, we use SLy [56,57], which is a realistic equation of
state. Since precise properties of dark matter are largely
unknown, we err on the side of simplicity and use a
polytropic equation of state,

Pdm ¼ KEγ
dm; ð73Þ

with K ¼ 100 GeV−4 and γ ¼ 2. We do not have reasons
for choosing these equations of state beyond those men-
tioned and we consider these equations of state to be
illustrative.
The slowly rotating approximation allows for different

fluids to rotate at different angular velocities. Since non-
gravitational interfluid interactions are negligible between
ordinary matter and dark matter, we do not have have
entrainment between the fluids [58]. In the case of rapidly
rotating ordinary matter initially residing in a cloud of
nonrotating bosonic dark matter, it was found in [33] that
dark matter accretes onto the star and continues to be
nonrotating. It is therefore unclear what the relative angular
velocities should be and, in this section and the next, we
consider different possibilities.
Figure 1 displays two example configurations. In each

plot, solid lines display the rotating solution, dashed lines
display the nonrotating solution, blue/yellow is for
ordinary matter with the SLy equation of state, and
green/black is for dark matter with the polytropic
equation of state. The top row displays a configuration
with a dark matter core and the bottom row displays a
configuration with a dark matter cloud. Figures 1(a)
and 1(d) display a cross section in cylindrical coordi-
nates, Figs. 1(b) and 1(e) display the pressure in the
equatorial plane (with θ ¼ π=2), and Figs. 1(c) and 1(f)
display the pressure along the rotation axis (with θ ¼ 0).
We can see the oblateness of the rotating solutions, with
the fluids expanding in the equatorial plane and con-
tracting along the rotation axis. Properties of these
solutions are listed in Table I.
The complete system of equations has scaling sym-

metries. Specifically, given a solution, a new solution can
be found by multiplying the first order perturbations by an
arbitrary constant and the second order perturbations by the
square of the same constant [41]. For example, consider a
single-fluid solution with angular velocity Ω, angular
momentum J, and quadruple moment Q. We can quickly
find a new solution such that the perturbations equal
ũ ¼ αu, η̃ ¼ αη, ṽ2 ¼ α2v2, h̃2 ¼ α2h2, etc., where α is
a constant. From (47) and (69), the angular velocity,
angular momentum, and quadruple moment for the new
solution equal
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Ω̃ ¼ αΩ; J̃ ¼ αJ; Q̃ ¼ α2Q: ð74Þ

By choosing α ¼ Ωnew=Ω, the new solution has angular
velocity Ωnew.

Our main focus is with the two-fluid case. In the two-fluid
case, we have two angular velocities and we can form a new
solution with

Ω̃1 ¼ αΩ1; Ω̃2 ¼ αΩ2; J̃ ¼ αJ; Q̃ ¼ α2Q: ð75Þ
The scaling symmetry allows us to quickly form solutions
that preserve the ratio Ω1=Ω2.

IV. I-LOVE-Q

Neutron stars rotate, which deforms the shape of the star.
The rotation can be characterized by the moment of inertia I
and the deformation can be characterized by the quadruple
moment Q. When a neutron star is in a binary orbit, the
shape of the star is deformed by the gravitational field of
the companion star. This deformation can be characterized
by the second Love number or equivalently by the tidal
deformability λ.
The physics of neutron star interiors is contained within

the equation of state. Since we do not know what matter
does at the extreme pressures found in the core of neutron
stars, we do not know which equation of state we should
be using. This has led to a large number of proposed
equations of state, each one based on different assumptions.

TABLE I. Various properties are listed for the two example
configurations shown in Fig. 1. τom and τdm are rotational periods.
The other quantities are defined in the main text. The bottom
three quantities are dimensionless.

Figs. 1(a)–1(c) Figs. 1(d)–1(e)

pomð0Þ [MeV=fm3] 100 100
pdmð0Þ [MeV=fm3] 10 100
ϖomð0Þ [kHz] 0.198 0.099
ϖdmð0Þ [kHz] 0.077 0.149
τom [ms] 2.76 3.55
τdm [ms] 4.13 3.01

R̄ðθ¼π=2Þ
om [km] 11.1 8.62

R̄ðθ¼π=2Þ
dm [km] 8.24 17.6

M� [M⊙] 1.36 1.93
δM [M⊙] 0.017 0.031
Iom=M3� 10.7 0.918
Idm=M3� 0.238 8.17
QðM�=J2Þ 4.82 4.57
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FIG. 1. Two example configurations are shown. Properties for these configurations are listed in Table I. In all plots, solid lines display
the rotating solution, dashed lines display the nonrotating solution, blue/yellow is for ordinary matter with the SLy equation of state, and
green/black is for dark matter with the polytropic equation of state. (a)–(c) display a solution with a dark matter core, since ordinary
matter extends beyond dark matter. (d)–(f) display a different solution with a dark matter cloud, since dark matter extends beyond
ordinary matter. (a),(d) plot a cross section in cylindrical coordinates. (b),(e) plot the pressure in the equatorial plane (θ ¼ π=2). (c),(f)
plot the pressure along the rotation axis (θ ¼ 0).
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The celebrated I-Love-Q relations [46–48] are relationships
between the moment of inertia I, the tidal deformability λ,
and the quadrupole moment Q which are universal in that
they are approximately independent of the equation of state.
Specifically, one computes the dimensionless quantities

Ī ≡ I
M3�

; λ̄≡ λ

M5�
; Q̄≡QM�

J2
: ð76Þ

Using the scaling symmetries described in Sec. III, we
can see that for the single-fluid case, Ī and Q̄ are
independent of the angular velocity Ω. As a consequence,
Ī and Q̄ only depend on the central pressure pð0Þ. This is
also true for λ̄ in the single-fluid case, which will be clear
after we review the derivation of λ below. Plots of Ī–λ̄,
Ī–Q̄, and λ̄–Q̄ are then one-parameter curves. I-Love-Q
is the observation that these curves are approximately
independent of the choice of equation of state and hence
are universal [46–48].
The study of dark matter admixed neutron stars has

primarily focused on spherically symmetric properties,
such as the mass and radius of the star. Recently, Love
numbers have been computed [40,59,60]. With fermionic
dark matter, the only study of the moment of inertia that we
are aware of, which requires only a first order analysis, is
given in [12]. As far as we are aware, the quadrupole
moment has not previously been computed, which requires
an analysis through second order.
The parameter space of nonrotating spherically sym-

metric dark matter admixed neutron stars can be described
by the central pressures of the two fluids, pomð0Þ for
ordinary matter and pdmð0Þ for dark matter. If one of these
central pressures is sufficiently large, the system is effec-
tively a single-fluid system because the nondominant fluid
has a negligible effect on bulk properties of the star [19].
The particular values of the central pressures at which this
happens depend on the specific choices for the equations of
state for each fluid. If neither fluid dominates the system,
the system is a truly mixed star and both fluids can affect
bulk properties of the star.
We have found that this phenomenon continues to occur

for slowly rotating dark matter admixed neutron stars. This
implies that if one of the central pressures is sufficiently
large and the system is effectively a single-fluid system, the
I-Love-Q relations will be independent of the equations of
state and angular velocities. A question that we ask in this
section is what happens to the I-Love-Q relations when
neither fluid dominates and we have a mixed star?
For dark matter admixed neutron stars, we continue to

define the dimensionless Ī, λ̄, and Q̄ as in (76), but we have
a choice for I and J: I and J could be for a particular fluid or
they could be the total moment of inertia and the total
angular momentum. Regardless of this choice, Ī, λ̄, and Q̄
depend on the central pressures pomð0Þ and pdmð0Þ and Ī
and Q̄ depend on the ratio Ωom=Ωdm.

A. Tidal deformability

If a neutron star is in a binary orbit, the star will be tidally
deformed by the gravitational field of the companion star.
This deformation is characterized by the second Love
number or equivalently by the tidal deformability. The
tidal deformability can be measured through the gravita-
tional wave signal of a binary inspiral [61,62]. The tidal
deformability for dark matter admixed neutron stars is
computed in [37,38,40,63,64] for bosonic dark matter and
in [40,59,60] for fermionic dark matter.
The tidal deformability for a system with an arbitrary

number of perfect fluids where the only interfluid inter-
actions are gravitational is given by [37,65]

λ ¼ 2

3
κ2R5�; ð77Þ

where [66,67]

κ2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞg−1

ð78Þ
is the second Love number and

yR ≡ yðR�Þ; C ¼ M�=R�: ð79Þ
yðrÞ is found by solving

r
dyðrÞ
dr

þ y2ðrÞ þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð80Þ

where

F ¼ r − 4πGr3
P

xðϵx − pxÞ
r − 2GM

Q ¼ 4πGr
r − 2GM

�X
x

�
5ϵx þ 9px þ

∂ϵx
∂px

ðϵx þ pxÞ
�

−
6

4πGr2

�
−
�
8πGr3

P
xpx þ 2GM

rðr − 2GMrÞ
�
2

: ð81Þ

Note that yðrÞ depends only on nonrotating equilibrium
quantities. In practice, we solve Eq. (80) simultaneously
with the system of equations presented in Sec. II using the
inner boundary condition

yðrÞ ¼ 2 − r2
4πG
21

X
x

�
33pxð0Þ þ ϵxð0Þ

þ 3½ϵxð0Þ þ pxð0Þ�
dϵx
dpx

				
r¼0

�
þOðr4Þ: ð82Þ
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B. Results

We begin by straightforwardly generalizing the standard
single-fluid I-Love-Q plots to two fluids. Specifically, we
generalize the dimensionless quantities in (76) to

Ī ≡ Iom þ Idm
M3�

; λ̄≡ λ

M5�
; Q̄≡ QM�

ðJom þ JdmÞ2
: ð83Þ

These quantities depend on pomð0Þ, pdmð0Þ, and Ωom=Ωdm.
We show results in Fig. 2 for 1 < pomð0Þ, pdmð0Þ <
103 MeV=fm3 and a few representative values of
Ωom=Ωdm. To construct these plots, for each value of
pomð0Þ and pdmð0Þ, we fix ϖomð0Þ to an arbitrary value
and search through values for ϖdmð0Þ until the resulting
solution has the required ratio Ωom=Ωdm.
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FIG. 2. I-Love-Q plots using the definitions in (83). The blue dots are our computed data values for 1 < pomð0Þ, pdmð0Þ <
103 MeV=fm3 and Ωom=Ωdm as indicated in the figures. The black curves are the single-fluid fitting curves given in (84). The bottom
panel in each figure gives the relative error defined by (85). For a (single-fluid) neutron star, the relative error is less than 1% [46–48].
This figure indicates that dark matter admixed neutron stars can have a relative error greater than 1%.
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In each plot, the blue dots are our computed data values and
the black curves are the single-fluid fitting curves given by

ln yi ¼ ai þ bi ln xi þ ciðln xiÞ2 þ diðln xiÞ3 þ eiðln xiÞ4;
ð84Þ

where the xi, yi are the Ī; λ̄; Q̄ plotted on the horizontal and
vertical axes and the values of the fitting coefficients ai, bi, ci,

di, ei can be found in [47]. In the bottompanel of each plot, the
relative error is defined by

error ¼ ydatai − yi
yi

: ð85Þ

In the single-fluid case, the relative error is less than 1%
[46–48]. An immediate feature of Fig. 2 is that the relative
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FIG. 3. This figure is analogous to Fig. 2, except it uses the dimensionless variables defined in (86). The dimensionless variables in
(86) assume electromagnetic measurements for the moment of inertia and angular momentum which probe ordinary matter alone and not
dark matter. This figure shows large deviations from the single-fluid fitting curves.
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error can be greater than 1% for dark matter admixed
neutron stars. This occurs when the star is truly mixed and
neither fluid is dominating. This is the case for all three
types of plots and for all three angular velocity ratios. We
note that our results are consistent with those in [49].
TheNeutron Star Interior Composition Explorer (NICER)

has recently made precise measurements of the mass and
radius of millisecond pulsars [68–71]. NICER measures
x-ray emissions from the surface of the star. These electro-
magnetic observations can be used to determine the moment
of inertia and angular momentum [72,73]. Since these
observations are electromagnetic, they directly probe ordi-
nary matter and not dark matter. The two-fluid generalization
wemade inEq. (83) and inFig. 2 does not adequately take this
into account. Assuming measurements for Iom and Jom, we
should define the dimensionless quantities as

Īom ≡ Iom
M3�

; λ̄≡ λ

M5�
; Q̄om ≡QM�

J2om
: ð86Þ

We show results in Fig. 3 using the definitions in (86)
and for when dark matter does not dominate the star.
Comparing with Fig. 2, we can immediately see large
deviations from the single-fluid fitting curves. Indeed, the
deviations are so large that we do not include panels for
the relative error. Note also that the results in Fig. 3 cannot
be parametrized by a one-parameter curve. An important
takeaway from Fig. 3 is that if measurements of Ī, λ̄, Q̄
deviate significantly from the single-fluid I-Love-Q curves
and if such measurements for multiple stars do not lie along
a curve, then we have strong evidence for the existence of
dark matter admixed neutron stars.

V. CONCLUSION

Using Hartle’s slowly rotating approximation, we
derived equations describing a rotating system with an
arbitrary number of perfect fluids with only gravitational
interfluid interactions. We then specialized to the two-fluid
case for describing rotating dark matter admixed neutron
stars with fermionic dark matter. The two-fluid case is
equivalent to the formalism developed by Andersson and
Comer [44] in the limit that interfluid interactions are
neglected.
Using our two-fluid model, we studied I-Love-Q rela-

tions. For a standard two-fluid system, we found deviations
from the single-fluid results that are consistent with
previous results [49,53]. However, our expectation is that
measurements of the moment of inertia and the angular
momentum will be in terms of ordinary matter alone and
will not directly probe dark matter. When we parametrize
the I-Love-Q dimensionless variables in terms of the
moment of inertia and the angular momentum for ordinary
matter, we found significant deviation from the single-
fluid relations and that I-Love-Q cannot be described by
one-parameter fitting curves. Our results immediately

suggest a method for determining if neutron stars contain
sufficient quantities of dark matter such that dark matter can
affect bulk properties of the star.
We note that our analysis has only made use of one

choice for the equation of state for ordinary matter and one
choice for the equation of state for dark matter. Further, we
have only considered a few choices for the ratio of angular
velocities. Our aim with this paper is to show that dark
matter admixed neutron stars can deviate significantly from
the standard result and not to make a broad study of
different equations of state, as has been done for single-
fluid I-Love-Q. However, we have considered other equa-
tions of state and found results qualitatively similar to those
presented in this paper. Nevertheless, a systematic analysis
using various equations of state would be interesting.
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APPENDIX: NUMERICAL PROCEDURE

In this appendix, we outline our numerical procedure for
solving the various equations presented in Sec. II. Solutions
are identified by the central pressures pxð0Þ and the central
values ϖxð0Þ. Once these values are specified, the system
of ODEs can be integrated outward from r ¼ 0.
The first step is to integrate the TOV equations in (33)

using an arbitrary value for νð0Þ [in practice, we use
νð0Þ ¼ 0] to find the equilibrium solution. R� is defined as
the radial position where the pressure of the outermost fluid
drops to zero. From (36),M� ¼ MðR�Þ. A look at the TOV
equations shows that νðrÞ can be shifted by a constant with
the result still being a solution. We can therefore shift νðrÞ
such that the boundary condition in (37) is satisfied. Upon
making the shift, the updated inner boundary value is

νð0Þ → νð0Þ −
�
νðR�Þ − ln

�
1 −

2GM�
R�

��
: ðA1Þ

From this point forward, we exclusively use this updated
value for νð0Þ. If we were to integrate the TOV equations
again, but nowusing (A1) as the inner boundary condition for
νð0Þ, we would obtain the complete equilibrium solution.
The next step is to integrate the full system of equations

outward from r ¼ 0 to r ¼ R�. This system includes the
TOV equations in (33), along with the bottom equation in
(42) for ηx, (44) for ux, (53) form0 and δpx0, (60) for v2 and
h2, and (80) for y. At the end of the integration, we use the
results to solve Eq. (67) for the constants C and K and
Eqs. (32) and (58) to solve for δpx2 and m2. We now have
the complete interior solution and can straightforwardly
compute properties of the star, such as the angular
velocities Ωx using (47), the total moment of inertia I
using (50), the mass correction δM using (55), and the
quadrupole moment Q using (69).
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