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In this work, we investigate the electromagnetic energy released by astrophysical black holes within
the Kerr-Taub-NUT solution, which describes rotating black holes with a nonvanishing gravitomagnetic
charge. In our study, we consider the black holes in the x-ray binary systems GRS 1915þ 105, GRO
J1655-40, XTE J1550-564, A0620-00, H1743-322, and GRS 1124-683. We show that the Kerr-Taub-
NUT spacetime can explain the radiative efficiency of these sources inferred from the continuum fitting
method. We also show that, in the framework of the Blandford-Znajek mechanism, it is possible to
reproduce the observed jet power. We unify the results of the two analyses for the selected objects to
get more stringent constraints on the spacetime parameters. We show that, as in the case of the Kerr
spacetime, the Kerr-Taub-NUT solution cannot simultaneously explain the observed jet power and
radiative efficiency of GRS 1915þ 105.
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I. INTRODUCTION

The vacuum solution of the Einstein field equation
describing a rotating black hole with a nonzero grav-
itomagnetic charge is known as the Kerr-Taub-NUT
spacetime [1]. Being a stationary and axisymmetric
solution of the field equations of general relativity,
the Kerr-Taub-NUT spacetime is a special case of the
Plebanski and Demianski solution [2]. On the other
hand, the Kerr-Taub-NUT solution can be seen as a
generalization of the Kerr spacetime, which describes a
rotating black hole with vanishing gravitomagnetic
charge. It has been pointed out that recent observations
of the x-ray binary GRO J1655-40 may be interpreted
with the presence of a nonvanishing gravitomagnetic
monopole moment in its black hole [3]. From such a
suggestive possibility, here we explore the astrophysical
processes of radiative efficiency of accreting matter onto a
black hole and of relativistic jets with the aim to get some

constraints on the gravitomagnetic charge of specific
objects. We note that the properties of various black-hole
solutions have been extensively studied in our previous
works [4–13]. TheBlandford-Znajekmechanism of energy
extraction in a general axially symmetric black-hole
spacetime has been recently studied in [14].
Newman, Unti, and Tamburino [15] were the first to

propose a stationary and spherically symmetric [16,17]
vacuum solution of the Einstein field equations including
an additional parameter responsible for the gravitomag-
netic monopole charge, also called the NUT parameter.
Demianski and Newman showed that the NUT spacetime
is produced by a so-called “dual mass” [18] and can be
interpreted as a gravitomagnetic charge. In order to
understand the nature of the gravitomagnetic monopole,
one can consider the analogy with Dirac’s magnetic
monopole [19,20]. In particular, the author of Ref. [21]
suggested to interpret the NUT parameter as a linear
source of pure angular momentum [22,23] that can be
understood as a massless rotating rod. The gravitomag-
netic charge should be a conserved quantity in common
astrophysical processes, so it is conserved in the merger
of two black holes or in the accretion process of matter
onto a black hole. Since ordinary matter from nearby stars
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or the interstellar medium has vanishing gravitomagnetic
charge, the accretion process should reduce the
gravitomagnetic charge to mass ratio of a black hole with
an initially nonvanishing gravitomagnetic charge. This
may significantly limit the gravitomagnetic charge of
supermassive black holes in galactic nuclei, as it is
thought that their mass is mainly the result of the accretion
process over billions of years, while the impact of the
accretion process is thought to be negligible for stellar-
mass black holes. The authors of Ref. [17] suggested that
the signature of a gravitomagnetic monopole may be
found in the spectra of supernovae, quasars, and active
galactic nuclei [17,24]. The effects of a gravitomagnetic
monopole momentum on light rays was studied in
Refs. [25,26]. The energy of plasma magnetosphere of
neutron stars would strongly depend on the NUT param-
eter, as shown in [27].
In this paper, we investigate the radiative efficiency

and the power of relativistic jets in the background
spacetime of Kerr-Taub-NUT black holes. Relativistic
jets are commonly observed in active galactic nuclei
and black-hole x-ray binaries (microquasars) and are
thought to start near the black-hole event horizon [28].
In such a case, the spacetime geometry around the black
hole can have a strong impact on the power of relativistic
jets. At the same time, a possible nonvanishing gravito-
magnetic charge can alter the position of the innermost
stable circular orbit (ISCO) and the thermal spectrum of
the possible accretion disk. In this paper, we will use the
Novikov-Thorne model to interpret astrophysical data
[29,30]. It is worth mentioning here that the idea to
combine the results of the two observations to investigate
the spacetime geometry around black-hole candidates is
not novel and has been developed by several authors. For
example, the relation between jet power and spin was
originally found in [31,32]. The combination of this
finding with the continuum fitting method (CFM) spin
measurements to test the spacetime geometry was dis-
cussed in [30,33].
The present paper has the following structure. In Sec. II,

we briefly review the Kerr-Taub-NUT metric and its main
properties. In Sec. III, we give theoretical aspects of
observables that can be used to get constraints on the
spacetime parameters. In Sec. IV, we get constraints on the
spacetime parameters of the Kerr-Taub-NUT metric for
selected black-hole candidates. We summarize our main
results in Sec. V. Throughout the paper, we use natural units
in which G ¼ c ¼ 1.

II. KERR-TAUB-NUT SPACETIME

The line element of the Kerr-Taub-NUT solution
describing a black hole of massM, gravitomagnetic charge
l�, and rotational parameter a� reads [34]

ds2 ¼ −
1

Σ
ðΔ − a2�sin2θÞdt2 þ Σ

�
1

Δ
dr2 þ dθ2

�

þ 1

Σ
½ðΣþ a�χÞ2sin2θ − χ2Δ�dϕ2

þ 2

Σ
ðΔχ − a�ðΣþ a�χÞsin2θÞdϕdt; ð1Þ

where Δ, Σ, and χ are defined as, respectively,

Δ ¼ r2 þ a2� − l2� − 2Mr; ð2Þ

Σ ¼ r2 þ ðl� þ a� cos θÞ2; ð3Þ

χ ¼ a� sin2 θ − 2l� cos θ: ð4Þ

One can determine the radial coordinate of the event
horizon from the condition Δ ¼ 0, which has the exact
analytical solution

rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2� þ l2�

q
: ð5Þ

The outer radius of the ergoregion is given by

re ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2� cos2 θ þ l2�

q
: ð6Þ

As we can see from the equations above, on the poles
(θ ¼ 0 or π) the radius of the ergoregion reaches the event
horizon. However, on the equatorial plane (θ ¼ π=2) the
ergoregion radius depends on the NUT parameter and
the mass, rejθ¼π

2
¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ l2�

p
, while in the Kerr

spacetime it is rejθ¼π
2
¼ 2M. Setting the denominator of

the metric component gtt to zero, one finds

r ¼ 0 and θ ¼ cos−1ð−l�=a�Þ:

This is the location of the singularity in the Kerr-Taub-NUT
spacetime. Note that the spacetime becomes singularity-
free when l� > a�; namely, we have a regular black hole
when l� > a�. The Kerr-Taub-NUT spacetime describes a
black hole when ja�j ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ l2�

p
and a naked singularity

when a� >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ l2�

p
. In what follows, we will often use

the dimensionless spin parameter a ¼ a�=M and the
dimensionless NUT parameter l ¼ l�=M for simplicity
(note that in the literature the notation is normally different,
where a� is dimensionless and a ¼ a�M). In principle, for a
Kerr-Taub-NUT black hole, the values of a and l can be
arbitrarily large (but, of course, they must satisfy the
condition jaj ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
). However, in this work we are

going to take the values of the gravitomagnetic charge to be
l ≤ 1; i.e., we assume that selected black-hole candidates
do not have very big gravitomagnetic charge (later we will
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see that for the source GRO J1655-40 it fails to explain the
jet power of the source for even smaller values of l) which,
in turn, restricts the spin of a black hole to be in the
range jaj ≤ ffiffiffi

2
p

.

III. THEORETICAL ASPECTS

A. Radiative efficiency of the system

In this subsection, we discuss the continuum spectrum
emitted by a black-hole accretion disk and we consider the
Novikov-Thorne model [29]. The model assumes that the
disk is geometrically thin, so particles move on or very
close to the equatorial plane. Such particles have almost
circular trajectories. The tiny radial motion caused by
viscous forces makes particles to move along spiral-like
trajectories, and eventually they fall onto the black hole.
Since the gravitational force is supposed to dominate

the gas motion over the gas pressure, we can assume that
the particles of the disk follow circular geodesic orbits.
As the gas falls onto the gravitational well of the central
massive object, it loses energy and angular momentum. A
part of this energy is converted into electromagnetic
radiation.
The Novikov-Thorne accretion disk is geometrically thin

and optically thick, and there is no trapped heat. The gas is
in local thermal equilibrium, and every point on the disk
has a blackbody spectrum. The whole disk has a multi-
temperature blackbody spectrum, and the emission is
normally peaked in the soft x-ray band for stellar-mass
black holes and in the UV band for supermassive black
holes (see, e.g., [29,35–37]).
The thermal spectrum of the accretion disk is very

sensitive to the location of the inner edge of the disk. If
we assume that the inner edge is at the ISCO radius and we
have independent estimates of the black-hole mass, dis-
tance, and the inclination angle of the disk, we can fit the
data and infer the location of the ISCO radius [38]. Note
that the ISCO radius depends on the specific background
metric. The ISCO radius can be inferred from the effective
potential of a particle orbiting a black hole as follows.
Assuming an axially symmetric and stationary spacetime
with the metric gμν written in the canonical form, from the
normalization of the particle 4-velocity uμuμ ¼ −1we have

grru2r þ gθθu2θ ¼ Veff ; ð7Þ

where the effective potential Veff is [36]

Veff ¼
E2gϕϕ þ 2ELgtϕ þ L2gtt

g2tϕ − gttgϕϕ
− 1 ð8Þ

and where E and L are, respectively, the specific energy and
the specific angular momentum of the orbiting massive
particle. In terms of the metric components, these quantities
take the following form:

E ¼ −gtt −Ωgtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ωgtϕ − Ω2gϕϕ

q ð9Þ

for the energy and

L ¼ Ωgϕϕ þ gtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ωgtϕ − Ω2gϕϕ

q ð10Þ

for the angular momentum. Here,Ω ¼ dϕ=dt is the angular
velocity of the particle [36]:

Ω ¼ dϕ
dt

¼
−gtϕ;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−gtϕ;rg2 − fgϕϕ;rgfgtt;rg

q
gϕϕ;r

ð11Þ

and gμν;ρ ≡ ∂ρgμν. To calculate the ISCO radius, one needs
to solve the following set of equations:

VeffðrÞ ¼ 0; V 0
effðrÞ ¼ 0; V 00

effðrÞ ¼ 0; ð12Þ

where the prime denotes a derivative with respect to r. We
see here that such conditions involve the spacetime metric
components, and this will allow us to constrain the
parameters of the spacetime around the central compact
object by measuring the ISCO from the continuum spec-
trum. For example, if the spacetime metric is described by
the Kerr solution, we can estimate the black-hole spin [38].
This is the so-called CFM, which has been extensively used
in the past two decades to estimate the spin of stellar-mass
black holes [39].
The dependence of the ISCO radius from the parameters

a and l of the Kerr-Taub-NUT spacetime is shown in Fig. 1.
If the spin parameter increases (decreases), the ISCO radius
decreases (increases). The opposite effect is produced by
the gravitomagnetic charge: If the gravitomagnetic charge
increases (decreases), the ISCO radius also increases
(decreases).
The radiative efficiency of a Novikov-Thorne accretion

disk, η, is equal to the binding energy of a particle orbiting
the black hole at the ISCO radius, so

η ¼ 1 − Eisco; ð13Þ

where Eisco is the specific energy of the particle at the ISCO
radius. η thus depends on the spacetime metric. In the Kerr
spacetime, it is a function of the rotational parameter a
only. In the Kerr-Taub-NUT spacetime, η is determined by
the values of a and l. Figure 2 shows how the radiative
efficiency η changes for different values of the black-hole
spin parameter a and of the NUT parameter l. Increasing
the NUT parameter l, we decrease the radiative efficiency η
and the effect is larger for faster rotation of black holes. At
first approximation, black holes with a Novikov-Thorne
accretion disk with the same radiative efficiency have the
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same thermal spectrum [40], and such a result can be used
to estimate the parameters of the spacetime metric (this
point will be clarified later).

B. Relativistic jets

One may distinguish two types of jets from micro-
quasars [41].

(i) Steady, nonrelativistic jets. They are common dur-
ing the hard state [42] and are observed over a large
interval of accretion luminosities.

(ii) Transient or ballistic jets occurring when the
luminosity of the source is around its Eddington
limit during the transition from the hard to soft
state. Usually, this type of jets has a relativistic
nature and is believed to be launched from near the
horizon [28].

Here, we consider the second type of jets in order to
extract information on black-hole spin and gravitomagnetic

charge. Despite the large number of attempts to describe the
mechanism of generation of relativistic transient jets
[43,44], there is still no consistent model to explain
observations. Here, we employ the mechanism of energy
extraction from a black hole proposed by Blandford and
Znajek, which can be used for any axial-symmetric
spacetime metric. This model considers the formation of
relativistic jets powered by the rotational energy of the
black hole through the magnetic field of the current-
carrying accretion disk. The total energy-momentum tensor
contains the electromagnetic field only and other contri-
butions are neglected:

T tot
μν ≃ TEM

μν ¼ FμαFα
ν −

1

4
gμνFαβFαβ: ð14Þ

In such a case, the conservation equation reduces to

∇μTEM
μν ¼ 0; ð15Þ

where Fμν ¼ Aν;μ − Aμ;ν is the electromagnetic field
tensor corresponding to the four potential Aμ. For a
force-free magnetosphere, one can easily write the follow-
ing expression:

At;r

Aϕ; r
¼ At;θ

Aϕ;θ
¼ −ωðr; θÞ; ð16Þ

where ωðr; θÞ can be interpreted as an electromagnetic
angular velocity [45]. Using the condition (16) for the
axisymmetric and time-independent four potential of the
electromagnetic field, one can express Fμν in the follow-
ing form:
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FIG. 1. Effect of the dimensionless spin a and the dimensionless gravitomagnetic charge l in the Kerr-Taub-NUT spacetime on the
ISCO radius of test particles.
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FIG. 2. Radiative efficiency η of Kerr-Taub-NUT black holes as
a function of the spin parameter a for the different values of the
NUT parameter l.
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Fμν ¼
ffiffiffiffiffiffi
−g

p

0
BBB@

0 −ωBθ ωBr 0

ωBθ 0 Bϕ −Bθ

−ωBr −Bϕ 0 Br

0 Bθ −Br 0

1
CCCA: ð17Þ

The power of the relativistic jets within this model has the
following form [45]:

PBZ ¼ 4π

Z
π=2

0

ffiffiffiffiffiffi
−g

p
Tr
tdθ; ð18Þ

where Tr
t is the radial component of the Poynting flux and

is assumed that the jet is launched at the event horizon.
The radial component of the Poynting flux is given by

Tr
t ¼ 2rHM sin2 θðBrÞ2ω½ΩH − ω�jr¼rH ; ð19Þ

with the angular velocity ΩH evaluated at the event
horizon rH and given by the expression

ΩH ¼ −
gtϕ
gϕϕ

����
rH

¼ 2a�ðl2� þMrHÞ
a2�ð3l2� þ rHð2M þ rHÞÞ þ ðl2� þ r2HÞ2

:

It is worth noting here that the original work by Blandford
and Znajek discussed this phenomenon in the slow-
rotation limit, valid for a close to zero, finding that the
jet power had to be proportional to a2 [45]. In Ref. [46],
Tchekhovskoy, Narayan, and McKinney extended the
original result to almost the entire range of spin parameter
of Kerr BH, finding that the jet power in the Blandford-
Znajek model should be proportional to the square of ΩH
at the leading order [46]:

PBZ ¼ kΦ2
totΩ2

H; ð20Þ

where k ¼ 1=6π for a split monopole field profile and k ¼
0.044 for a paraboloidal one [45]. The results in [46] are
obtained in the Kerr metric, and in our work we consider
that they still hold if we change the spacetime background.
In Eq. (20), Φtot is the magnetic flux and is given by

Φtot ¼ 2π

Z
π

0

ffiffiffiffiffiffi
−g

p jBrjdθ: ð21Þ

In Fig. 3, the dependence of the angular velocity ΩH from
the spin a for various values of the gravitomagnetic charge
is presented. The change of angular velocity ΩH due to the
presence of the NUT parameter has an impact on the
power of relativistic jets.

IV. CONSTRAINTS FROM
OBSERVATIONAL DATA

Since the radiative efficiency (13) is sensitive to the
spacetime metric, its measurement can be used to estimate
or constrain the black-hole parameters of the corresponding
theory of gravity. In what follows, we will consider the
following objects that will be interpreted as Kerr-Taub-
NUT black holes: GRS1915þ 105, GROJ1655-40,
XTEJ1550-564, A0620-00, H1743-322, and GRS1124-
683 [31,32,47]. Table I shows the measurements of some
properties of these systems reported in the literature. The
estimates of the black-hole spin a (and the derived estimate
of the Novikov-Thorne radiative efficiency η) are all
obtained assuming the Kerr metric.

l=0

l = 0.3

l = 0.5

l=0.8

–1.0 –0.5 0.0 0.5 1.0

- 0.4

- 0.2

0.0

0.2

0.4

a

ΩH

FIG. 3. Angular velocity at the event horizon as a function of
the spin parameter a for a few different values of the NUT
parameter l.

TABLE I. Parameters of the black-hole binaries analyzed in this work. The radiative efficiency η is obtained from the spin
measurement by using Eq. (13) for the Kerr metric.

BH source M ðM⊙Þ D ðkpcÞ io a η

A0620-00 6.61� 0.25 1.06� 0.12 51.0� 0.9 0.12� 0.19 [48] 0.061þ0.009
−0.007

H1743-322 8.0 8.5� 0.8 75.0� 3.0 0.2� 0.3 [49] 0.065þ0.017
−0.011

XTEJ1550-564 9.10� 0.61 4.38� 0.5 74.7� 3.8 0.34� 0.24 [50] 0.072þ0.017
−0.011

GRS1124-683 11.0þ2.1
−1.4 4.95þ0.69

−0.65 43.2þ2.1
−2.7 0.63þ0.16

−0.19 [51] 0.095þ0.025
−0.017

GROJ1655-40 6.30� 0.27 3.2� 0.5 70.2� 1.9 0.7� 0.1 [52] 0.104þ0.018
−0.013

GRS1915þ 105 12.4þ1.7
−1.9 8.6þ2.0

−1.6 60.0� 5.0 a� > 0.98 [53] η > 0.234
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Here, we use the procedure described in [31,32] to
evaluate the jet power of the six objects of our study. We
can think of a bipolar radio jet as a symmetrical pair of
plasmoids. These plasmoids emit radiation in an isotropic
manner and have a thin optical structure. They expand
outward from the core source at a relativistic bulk velocity
β. The ratio between the observed and emitted flux density
for each individual jet can be written as

Sν=Sν;0 ¼ δ3−α:

In this context, the Doppler factor is denoted as δ, and the
radio spectral index is represented by α. The Doppler factor
for the brighter jet, which is approaching, can be straight-
forwardly written in terms of β, the Lorentz factor Γ, and
the inclination angle i of the jet as follows:

δ ¼ ðΓ½1 − β cos i�Þ−1:

In the case of the main emission source, specifically the
approaching jet, the observed intensity surpasses the
emitted intensity at lower inclinations, while the opposite
is true for higher inclinations. For microquasars with mildly
relativistic jets, the Doppler boost becomes less than one
within the intermediate range of inclinations, approxi-
mately between 35° and 55°. We assume that the entire
power in the transient jet is proportional to the peak at
5 GHz of the radio flux density (see Table II). In natural
units, the luminosity can be written as [31,32]

Pjet ¼
�

ν

5 GHz

��
Stotν;0

Jy

��
D
kpc

�
2
�

M
M⊙

�
−1
; ð22Þ

where Stotν;0 is the beaming corresponding to the approaching
and receding jets [28,32]. The Lorenz factor Γ associated to
the jet can be expected to be in the interval 2 ≤ Γ ≤ 5. The
Doppler-corrected jet powers corresponding to Lorenz
factor Γ ¼ 2 and Γ ¼ 5 for every source are given in
Table II [47,54].
The results of Table II can be compared with the

theoretical predictions, which depend on the spacetime
metric. From Eq. (20), the power of the jet can be
expressed as

logP ¼ logK þ 2 logΩH; ð23Þ

where K ¼ kΦ2
tot. Here, the value of K can be found by

fitting the observed jet power and ΩH [31,54]. The
spacetime metric enters the calculations of the jet power
through the angular velocity of the event horizon Ω2

H. In
Ref. [54], the authors inferred the best-fitting values of the
parameter K. They found logK ¼ 2.94� 0.22 for the
Lorentz factor Γ ¼ 2 and logK ¼ 4.19� 0.22 for Γ ¼ 5
(90% confidence level). It is worth noting that, in general,
K should not be a constant for every source. However, it is
believed that magnetic field strength depends on mass
accretion rate Ṁ [31,55]. Transient jets show up during the
transition from the hard to soft state, and, therefore, the
Eddington scaled mass accretion rate is similar for all
the sources. Even the mass is very similar, of the order of
10 Solar masses. For this reason, one can take this quantity
as constant for the six BH candidates in our list. Since we
take K to be independent of the spacetime geometry,
hereafter we use these values of K to constrain the spin
parameter and the NUT parameter of the Kerr-Taub-NUT
spacetime from the observed jet power of the sources in
Table II. In other words, we use Eq. (23) to get the
constraints between the black-hole spins and their grav-
itomagnetic charges, taking into account that they enter the
calculations through ΩH.

A. Results

Below, we present our results for every source.
(i) Source A0620-00. From the CFM and assuming the

Kerr metric, the spin parameter of the source has
been estimated a ¼ 0.12� 0.19 at 68% confidence
level (CL) [48]. Such a spin measurement can be
rewritten as a measurement of the radiative effi-
ciency η ¼ 0.061þ0.009

−0.007, which is reported in the last
column in Table I. As discussed in Ref. [40], at first
approximation the CFM measures the radiative
efficiency of the Novikov-Thorne disk of the source,
and such a value can be easily translated into a
constraint on the spacetime parameters for a putative
non-Kerr black hole. This is how we constrain the
parameters of the Kerr-Taub-NUT solution here.
Figure 4 shows (blue regions) the constraints on
the spin parameter a and the NUT parameter l
imposing the requirement that the Novikov-Thorne
radiative efficiency is η ¼ 0.061þ0.009

−0.007 . For l ¼ 0, we
recover a ¼ 0.12� 0.19, but much higher values of
the spin parameter are allowed for l > 0. The
radiative efficiency is degenerate with respect to a
and l, and it is impossible to constrain the two
parameters without another measurement. The left
panel in Fig. 4 is for the values of Γ ¼ 2, and right
panel is for Γ ¼ 5. The solid red line in the panels
corresponds to the central value of Pjet, and the

TABLE II. Proxy jet power values in units of kpc2 GHz JyM−1
⊙ .

BH source ðSν;0Þ5GHz
max ðJyÞ PjetjΓ¼2 PjetjΓ¼5

A0620-00 0.203 0.13 1.6
H1743-322 0.0346 7.0 140
XTEJ1550-564 0.265 11 180
GRS1124-683 0.45 3.9 380
GROJ1655-40 2.42 70 1600
GRS1915þ 105 0.912 42 660
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dashed red lines describe the values of spacetime
parameters corresponding to the Pjet with the error of
0.3dex around the central jet power presented in
Table II. The shaded red regions correspond to the
values of spacetime parameters within the error bars.
From Figs. 4(a) and 4(b), one can see that Kerr-
Taub-NUT spacetime is efficient to explain the jet
power of the source. It is shown for the case Γ ¼ 2
that the central value of the jet power explained by
the Kerr spacetime with the spin parameter a ≃ 0.05
can also be well explained by the Kerr-Taub-NUT
spacetime with the values of the parameters corre-
sponding to the points on the red line. In the right
panel, which is for the Lorentz factor of Γ ¼ 5, we
see that the difference compared to the case of Γ ¼ 2
exists but it is not negligible. One can check that the
increase of the gravitomagnetic charge causes to rise
slightly the value of the spin parameter of a black
hole described by the Kerr-Taub-NUT spacetime to
match the values of the observed jet power. In Fig. 4,
we also see that the cases when Γ ¼ 2 and Γ ¼ 5
have very similar behaviors, and from the intersec-
tion of the blue shaded and red shaded regions one
can state that, theoretically, such regions give the
values of the spacetime parameters that can explain
both observations with the Kerr-Taub-NUT space-
time within the error bars. So, from the figure, we
see that the radiative efficiency and the jet power of
the source A0620-00 can be simultaneously well
explained by Kerr-Taub-NUT spacetime with
parameters in the approximate range a ≃ 0.05�
0.02 and 0 < l < 0.5.

(ii) Source H1743-322. The spin of the black hole has
been measured by using the CFM in Ref. [49]: The
value of the spin parameter is 0.2� 0.3 at the 68% of
confidence level and −0.3 < a < 0.7 at the 90% of
confidence level. The radiative efficiency of the
source is, thus, 0.065þ0.017

−0.011 at 68% CL In Fig. 5,
the blue regions represent our constraints on the
Kerr-Taub-NUT spacetime parameters to explain the
observed radiative efficiency of the source H1743-
322. For l ¼ 0 (Kerr black hole), the spin parameter
would be a ≃ 0.2. In the Kerr-Taub-NUT spacetime,
the spin parameter may be up to a ≃ 0.8 for l ¼ 1.
The two dashed blue curves are the boundary of the
region in the parameter space allowed by observa-
tions. With the red regions in Fig. 5, we have shown
results for the jet power of the object H1743-322. It
is shown that with the increase of the NUT param-
eter from l ¼ 0 up to l ¼ 1 the corresponding range
of the spin parameter to explain the observed jet
power within the error bars considerably increased
from a ≃ 0.35� 0.1 to a ≃ 0.55� 0.2, respectively,
for the case Γ ¼ 2 in the left panel. Meanwhile, for
the case of Γ ¼ 5, this change slightly differs from
the case Γ ¼ 2 as can be seen from the right panel. It
is also noticeable that, theoretically, the whole range
of the NUT parameter of the Kerr-Taub-NUT
spacetime is efficient to explain the observed jet
power of the source which is apparently shown in the
figure. Similarly to the source A0620-00, we see that
in both cases (i.e., Γ ¼ 2 and Γ ¼ 5) the results look
almost identical. It is clearly demonstrated that the
source H1743-322 described by the Kerr-Taub-NUT

(a) (b)

FIG. 4. A0620-00. The blue solid curve indicates the values of the spin parameter a and of the NUT parameter l that reproduce
η ¼ 0.061 (best-fit value in Table I). The blue dashed curves are for η ¼ 0.054 and η ¼ 0.070 (lower and upper constraints in Table I).
The observed thermal spectrum of A0620-00 is compatible with all Kerr-Taub-NUT spacetimes in the shaded region. Red colored
regions are for the matching values of the spacetime parameters a and l reproducing the same jet power of the source. The red solid line
is for the central value of the jet power, while the dashed lines correspond to the case of error of 0.3dex. The left panel is for the Lorentz
factor Γ ¼ 2 and the right one for Γ ¼ 5. Intersection of the blue and red regions describes both observational constraints when the
Lorentz factor is Γ ¼ 2 (left panel) and Γ ¼ 5 (right panel). For more detailed information, please read the main text.
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spacetime has a good chance to be selected as a
source with this spacetime geometry. This is because
either in the left or in the right panel one can see the
intersection of the central values of the observed
radiative efficiency and the jet power. This, in turn,
allows taking the corresponding points a ≃ 0.4 and
l ≃ 0.6 to be the favorable parameters of this source
which can simultaneously explain the values of both
observable quantities. One can also notice that the
entire red shaded region with the NUT parameter up
to l ≃ 1 can be well used to explain both observa-
tional constraints within the error bars using the
Kerr-Taub-NUT spacetime.

(iii) Source XTE J1550-564. The spin measurement
obtained in [50] shows the values a ≃ 0.34� 0.24
at 68% CL. Figure 6 shows the constraints on a and l
when the spacetime metric of its black hole is

described by the Kerr-Taub-NUT solution. The spin
parameter measurement a ≃ 0.34� 0.24 for the case
of a Kerr black hole (l ¼ 0) to explain the radiative
efficiency of the source can become a ¼ 1 when
l ≃ 0.85, and we can have already a > 1 for l ¼ 1.
One can also see that the values of the parameters a
and l to describe the observed Pjet (red regions)
within the error bars are almost the same in both
cases, namely, in the cases Γ ¼ 2 and Γ ¼ 5. The
upper dashed red edge corresponding to the upper
value of the jet power with the error of 0.3dex comes
very close to the extreme spin parameter of the pure
Kerr spacetime at l ¼ 1, while the red solid line
providing the central value of Pjet given in Table II
corresponds to the object with an intermediate spin
parameter with a ≃ 0.7 at l ¼ 1. So, the result
indicates that the source XTE J1550-564 believed

(a) (b)

FIG. 5. H1743-322. The blue shaded region marks the values of a and l compatible with the observed spectrum of the source. The gray
shaded region shows the case when there is no black hole. As in the previous case, (a) is for Γ ¼ 2 and (b) when Γ ¼ 5 and with the same
definitions of the lines and regions. From both figures, it comes out that the favorable values of the spin and NUT parameter of the
central source are a ≃ 0.4 and l ≃ 0.6, respectively.

(a) (b)

FIG. 6. XTE J1550-564. The explanation of the graphs is similar to the previous case. Please see the corresponding text for the proper
description.
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to be the Kerr black hole with the spin parameter
a ≃ 0.42� 0.11 can also be explained by the Kerr-
Taub-NUT spacetime with the spin and NUT
parameters corresponding to the shaded regions in
Fig. 6 producing the same observed jet power within
the error bars. We see very similar behavior of the
regions presented in both panels in Fig. 6 as was the
case of the previous source. The result can be
explained in the same way as for the source
H1743-322. Indeed, we see the cross point of the
two central blue and red solid lines at a ≃ 0.5 and
l ≃ 0.45 being the favorable values of these param-
eters to describe the observed η and Pjet. One can
also state from the figure that most part of the red
shaded region in the panels corresponding to the
observed jet power is applicable to explain both
observational constraints in the given error bars.

(iv) Source GRS 1124-683. Using the CFM and assum-
ing the Kerr metric, the measurement of the spin
parameter of the black hole is 0.63þ0.16

−0.19 at 68% CL
[51]. From such a measurement reported in the
literature, we deduce the constraints on a and l
shown with blue regions in Fig. 7. We see that the
blue solid line grows up to the values of the spin and
NUT parameters of Kerr-Taub-NUT metric a ¼ 1
and l ≃ 0.8, respectively. The upper dashed line,
which is for the case η ¼ 0.095þ 0.025, starts from
the point a ≃ 0.79 at l ¼ 0 and increases up to a ¼
1.3 at l ¼ 1. The lower boundary starts from the
point a ≃ 0.44 at l ¼ 0 and goes up to a ≃ 1 at l ¼ 1.
As for the observed jet power of the source given
with red colored regions, we see that the cases for the
Lorentz factor Γ ¼ 2 in the left and Γ ¼ 5 in the
right differ from each other considerably. In the left
panel, we see that starting from the range a ≃
0.26þ0.11

−0.08 corresponding to the Kerr case the spin

parameter increases up to a ≃ 0.45þ0.2
−0.13 for the case

of l ¼ 1. In the right panel, however, one can see that
for Γ ¼ 5 the starting range corresponds to a ≃
0.57þ0.17

−0.15 in the absence of the NUT parameter and
exceeds the extreme rotation of the Kerr BH for the
upper error bar when l ¼ 1. For the central value of
the jet power, it grows up to a ≃ 0.95when the NUT
parameter is taken to be l ¼ 1. Figure 7(b) shows the
obvious difference with respect to the case Γ ¼ 2 in
the left panel. Generally speaking, in the right panel
the upper values of the NUT parameter are spinning
up the compact object until rapidly rotating black-
hole case. When it comes to the unification of the
two observational constraints, one can see the big
difference in the regions presented in the left and
right panels in the figure. For the Lorentz factor
Γ ¼ 2, we see that the observed jet power and the
radiative efficiency of the source presented in
Tables I and II cannot be theoretically explained
at the same time by the Kerr-Taub-NUT spacetime
with the matching values of the parameters a and l,
since there are no intersecting regions in the left
panel in Fig. 7. One can, however, see from the right
panel in the figure that for the value of the Lorentz
factor Γ ¼ 5 there is a region where shaded regions
of the two observational constraints intersect with
each other. This, in turn, allows taking the points
within this region to be the ones that can explain
both the jet power and the radiative efficiency of the
source. Based on the idea that the source is described
by the Kerr-Taub-NUT spacetime, one can assume
that this source corresponds to the object with a
relatively high Lorentz factor that emits radio jets.

(v) Source GRO J1655-40. The spin measured by CFM
shows a ≃ 0.7� 0.1 at 68% CL [52]. The blue
regions in Fig. 8 show the constraints on a and l

(a) (b)

FIG. 7. GRS 1124-683. In the left panel, we see that the Kerr-Taub-NUT spacetime for the Lorentz factor Γ ¼ 2 is unable to explain
the observed jet power and the radiative efficiency of the source at the same time. However, in the right panel, we see the intersection of
the regions when Γ ¼ 5. For more detailed discussion, see the main text.
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for observed radiative efficiency when we assume
that the spacetime around the black hole is described
by the Kerr-Taub-NUT metric. The value of the
NUT parameter that can explain the observed η is
l ≃ 0.8 when the rotation parameter of the compact
object takes the maximum value for a Kerr black
hole. For higher NUT parameter, we have faster spin
of the source. From the left panel in Fig. 8, it is seen
that, theoretically, the Kerr-Taub-NUT spacetime
can describe the observed jet power of the source
GRO J1655-40 for the entire range of 0 < l < 1 for
the Lorentz factor Γ ¼ 2. However, from the right
panel where Γ ¼ 5, one can see that it is not so when
l > 0.8, where the central solid line crosses the
upper error bar. One can state that the Kerr-Taub-
NUT spacetime becomes less effective to explain the
observed jet power of the source GRO J1655-40 for
relatively bigger values of the NUT parameter and
bigger Lorentz factor. Now let us talk about the

unification of the two constraints. Having evaluated
for the cases Γ ¼ 2 and Γ ¼ 5, the regions experi-
ence considerable differences in the left and right
panels, respectively. In the left panel, we see that the
central value of the jet power is above the upper error
bar of the radiative efficiency profile, while the
central value of the latter is inside of the jet power
profile. We see much difference in the right panel,
where the intersection of the shaded regions is even
smaller compared to the case Γ ¼ 2. Theoretically,
from the values of the radiative efficiency presented
in Table I and the jet power in Table II, one can state
that the intersection of the regions can be used to
explain the observational constraints within the error
bars as shown in the figure.

(vi) Source GRS 1915þ 105. In [53], the measurement
for the spin is a > 0.98 at 68% CLThe blue regions
in Fig. 9 show the constraints on a and l for the
observed radiative efficiency when we assume that

)b()a(

FIG. 8. GRO J1655-40. Panels corresponding to Γ ¼ 2 (left) and Γ ¼ 5 (right) show that the Kerr-Taub-NUT spacetime can be used to
explain the observed η and at the same time Pjet. More discussion can be found in the main text.

(a) (b)

FIG. 9. GRS1915þ 105. Results in the left and right panels show that the Kerr-Taub-NUT spacetime faces some difficulties to explain
both observational constraints. For more discussion, see the corresponding text.
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GRS 1915þ 105 hosts a Kerr-Taub-NUT black
hole. We see that for this object the largest value
of the NUT parameter cannot exceed l ≃ 0.8 to
describe a black hole, since we have the intersection
of the blue dashed line with the gray shaded region
that does not correspond to a black hole. The
behavior of the parameters explaining the observed
jet power (red regions) looks similar in both values
of the Lorentz factor. From the left and right panels,
it is apparent that the central value of Pjet reaches the
extreme rotation of the Kerr BH when the NUT
parameter gets closer to l ≃ 0.8 for both the Lorentz
factors Γ ¼ 2 and Γ ¼ 5. It is worth noting here that,
for the pure Kerr spacetime, the expression (20)
works very well for spins up to a ≃ 0.95, and for
even higher spins one needs to take higher-order
terms of ΩH [46]. This is because in the Kerr
spacetime a spin that is close to 1 corresponds to
the extremely rotating case. However, as we dis-
cussed previously, in the Kerr-Taub-NUT spacetime
this is not the case, and, in principle, the spin of a
black hole can take arbitrarily high values depending
on the value of the NUT parameter (jaj ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
).

To ensure we have taken into account even higher
orders of ΩH which is PBZ ¼ kΦ2

totðΩ2
H þ αΩ4

Hþ
βΩ6

HÞ, where α ≃ 1.38 and β ≃ −9.2 according to
[46]. We have found that corrections due to these
additional terms are negligible. From the left and
right panels, it is clearly seen that there is no region
where the shaded regions of the two observational
constraints can intersect with each other. This, in
turn, indicates that the observed radiative efficiency
and the jet power of the source given in Tables I
and II, respectively, cannot be theoretically ex-
plained by using the Kerr-Taub-NUT spacetime
geometry at the same time. We see from the figure
that the region that can explain the radiative effi-
ciency of the source corresponds to the rapid rotation
of the source for small values of gravitomagnetic
charge, while the region to explain the jet power of
the source is considerably below the former in the
same ranges of the NUT parameter.

It is worth noting that the estimates of the NUT
parameter l and of the rotational parameter a are correlated
and, eventually, completely degenerate. A higher value of
the NUT parameter requires a higher value of the spin of the
source to reproduce the radiative efficiency presented in
Table I. Based on the results in this section, one can state
that the gravitational sources A0620-00, H1743-322, and
XTE J1550-564 have good chances to be described by the
Kerr-Taub-NUT spacetime for both values of the Lorentz
factor as was discussed above. For the sources GRS1124-
683 and GRO J1655-40, it is also possible to explain the
two observational constraints at the same time by the Kerr-
Taub-NUT spacetime, but it is favorable to take the

corresponding Lorentz factors to be Γ ¼ 5 for
GRS1124-683 and Γ ¼ 2 for GRO J1655-40. On the other
hand, the results for the source GRS1915þ 105 indicate
that the chosen spacetime metric is not applicable to explain
both observational constraints simultaneously, since as was
demonstrated above there is no intersection of the regions
corresponding to these observational constraints.

V. CONCLUSION

In this work, we have applied the Kerr-Taub-NUT metric
to describe spacetime geometry around the known sources
A0620-00, H1743-322, XTE J1550-564, GRS1124-683,
GRO J1655-40, and GRS1915þ 105. We have briefly
introduced the properties of the spacetime that has two
extra parameters besides the mass such as spin and NUT
parameters. From the idea that if the source is described by
the Kerr-Taub-NUT spacetime, then the observed radiative
efficiency of the black-hole source could be interpreted by
the corresponding values of the extra spacetime parameters,
we have shown the regions within the error bars for these
extra parameters of each source. Results have shown that in
all cases the range of the spin parameter to describe the
observed radiative efficiency shifts upward with the
increase of the NUT parameter.
Next, we have applied a similar idea to the jet power of

the source to see if the Kerr-Taub-NUT spacetime is able to
explain the observed jet power of the selected known
sources in some range of the spacetime parameters a and l.
Our analyses have confirmed that, in principle, the
answer to this question is positive. We have demonstrated
that one can explain the jet power of the black-hole sources
by the entire values of the NUT parameter, and for bigger
values of this parameter we have seen that the correspond-
ing range of the spin parameter goes up similarly to what
happened in the case of radiative efficiency of the sources.
For the black-hole candidates XTE J1550-564, A0620-00,
GRS1915þ 105, and H1743-322, it has been demon-
strated that the regions look quite similar to each other
for the values of the Lorentz factor Γ ¼ 2 and Γ ¼ 5, while
for the source GRS1124-683 and GRO J1655-40 we have
found considerable differences. It has been also shown that
corresponding to the nonrapidly rotating black hole in the
case of the Kerr spacetime (when l ¼ 0) the sources may
become rapidly rotating Kerr-Taub-NUT black holes with
the increase of the NUT parameter to explain the observed
jet power.
Then, we have unified the results obtained in the last two

sections to see if the Kerr-Taub-NUT spacetime is able to
explain at the same time both observational quantities.
Results presented have shown that the Kerr-Taub-NUT
spacetime is well applicable for the sources A0620-00,
H1743-322, and XTE J1550-564 to explain both observa-
tional phenomena at the same time. For the black-hole
candidates GRO J1655-40 and GRS1124-683, however, we
have seen that the situation changes with the change of the
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Lorentz factor. From the unification of the results of
GRS1915þ 105, however, we have found that the Kerr-
Taub-NUT spacetime gives the regions for the two obser-
vational quantities that do not intersect with each other.
This, in turn, indicates that the chosen spacetime is not
applicable to reproduce simultaneously the values of
radiative efficiency and the jet power of the source
presented in Tables I and II. However, one can see that
the Kerr spacetime is also not able to simultaneously
explain the two observations, and this indicates that an
additional analysis is requested to explain observational
properties of this object. One should also mention that our
results assume the conjecture proposed in Refs. [31,32], but
some authors criticize these results (see, e.g., [56]). For the
moment, we cannot say which group is right and which is
wrong, as the number of sources is low. In the future, with

more data and more precise measurements, we can confirm
if the correlation proposed by Narayan and McClintock is
correct or not.
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