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The stochastic gravitational-wave background is imprinted on the times of arrival of radio pulses from
millisecond pulsars. Traditional pulsar timing analyses fit a timing model to each pulsar and search the
residuals of the fit for a stationary time correlation. This method breaks down at gravitational-wave
frequencies below the inverse observation time of the array; therefore, existing analyses restrict their
searches to frequencies above 1 nHz. An effective method to overcome this challenge is to study the
correlation of secular drifts of parameters in the pulsar timing model itself. In this paper, we show that
timing model correlations are sensitive to sub-nHz stochastic gravitational waves and perform a search
using existing measurements of pulsar spin decelerations and pulsar binary orbital decay rates. We do not
observe a signal at our present sensitivity, constraining the stochastic gravitational-wave relic energy
density to ΩGWðfÞ < 3.8 × 10−9 at 450 pHz with sensitivity that scales as the frequency squared until
approximately 10 pHz. We place additional limits on the amplitude of a power-law spectrum of A⋆ ≲
1.8 × 10−14 for a reference frequency of f� ¼ 1 yr−1 and the spectral index expected from supermassive
black hole binaries, γ ¼ 13=3. If detection of a supermassive black hole binary signal above 1 nHz is
confirmed, this search method will serve as a critical complementary probe of the dynamics of galaxy
evolution.
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I. INTRODUCTION

The detection of gravitational waves (GWs) across the
frequency spectrum is one of the most pressing goals for
fundamental physics in the 21st century. Using a
combination of cosmic microwave background [1], pulsar
timing [2–6], and laser interferometry [7] data, existing
searches cover a huge range of frequencies from as
low as 10−18 Hz to as high as a kilohertz, with
proposals to explore even higher frequencies [8–10].
Nevertheless, our frequency coverage has two prominent
gaps: one at 10−16 Hz–nHz and one at 100 nHz–10 Hz.
While there has been a significant effort to cover the
latter gap using a combination of ground- and space-
based techniques [11–22], the sub-nHz gap is still
largely unexplored. Below 1 nHz, the frequency of
gravitational waves is below the current inverse observa-
tion times of experiments (∼30 yr), which we refer
to as the “ultralow”-frequency regime. Such GWs do
not appear as periodic variations in data but rather as
secular drifts in experimental observables. As we
demonstrated in Ref. [23], these drifts are detectable in
the fit parameters of pulsar timing models, providing a

new means to probe the frequency spectrum in the sub-
nHz gap.1

Gravitational waves in the ultralow-frequency regime
are strongly motivated by the existence of supermassive
black hole (SMBH) binaries [37], which are expected to
give rise to a signal within reach of current pulsar timing
array (PTA) analyses. Recent measurements of a signal at
frequencies above 1 nHz by NANOGrav [2], EPTA [4],
and PPTA [3] hint at this source, and if the spatial
correlations of this signal are confirmed, it will mark
the first detection of gravitational waves in the nanohertz
regime. If the discovery is confirmed, it implies a likely
signal waiting to be found below 1 nHz. Various possible
cosmic sources can also give rise to ultralow-frequency
gravitational waves, such as cosmic strings [38,39],
bubble collisions [40], and a turbulent QCD phase

1Note that other proposals to use pulsar timing models to probe
this regime appear in the literature [24–33], however, they were
substantially less sensitive than the methodology presented in
Ref. [23]. See also Refs. [15,34–36] for discussions of using
astrometric lensing as a complementary probe of this frequency
range.
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transition [41,42] (see also Ref. [43] and references
therein), providing further motivation to probe this fre-
quency range.
In Ref. [23], we studied GW detection using measure-

ments of the pulsar timing model, focusing on two key
parameters: the second time derivative of the pulsar period
(P̈) and the first derivative of the binary period (Ṗb). By
searching for correlations in the parameter values for
different pulsars in the sky, we demonstrated the method
could detect GWs with comparable amplitude to traditional
techniques at 1 nHz and is robust against astrophysical
uncertainties. We then applied this method to search for
localized, continuous gravitational-wave sources. This
paper extends this analysis to search for a stochastic
gravitational-wave background (SGWB), the signal
induced by a sum of incoherent GW sources.
Detecting an SGWB in the ultralow-frequency regime

requires revisiting how stochastic GWs are imprinted on the
timing of pulsars. To this end, we derive expressions for the
correlation between timing model parameters. We exploit
this result to search for the SGWB in existing datasets of
pulsar timing parameters. While we do not detect a signal
in the data used for our analyses, we find sensitivity
comparable to that of existing PTA analyses near 1 nHz
and comment on future detection prospects.
The paper is organized as follows. In Sec. II, we review

the results of Ref. [23], presenting two observables within
the pulsar timing model that are particularly sensitive to
ultralow-frequency gravitational waves. In Sec. III, we
calculate the impact of a stochastic background on these
observables and discuss the behavior of the signal. In
Sec. IV, we present the datasets and statistical methodology
we employ to search for a signal. In Sec. V, we apply the
search to three possible gravitational-wave spectra and
discuss the results in Sec. VI.

II. GRAVITATIONAL-WAVE DETECTION USING
PARAMETER DRIFTS

Pulsar timing arrays measure the pulse arrival times on
the order of 100 stable millisecond pulsars over decades-
long timescales. The times of arrival (TOA) are measured
with high accuracy and are sensitive to small deviations
induced by gravitational waves. In a conventional PTA
analysis, a timing model is first fit to the arrival times to
model deterministic trends in the TOA, due to, e.g.,
quadratic spin-down of the pulsar. Once the timing model
parameters are fit, the model prediction for the TOA is
subtracted from the data to produce the “timing residuals.”
GWs with frequencies above the inverse observation time
of the array induce correlations in these residuals that serve
as the target of conventional analyses. In contrast, GWs
with frequencies below the inverse observation time of the
array appear as deterministic trends in the data. As a result,
if the timing model is sufficiently extensive, the fitting
procedure removes ultralow-frequency GWs from the

residuals. Nevertheless, the best-fit values of the fit para-
meters themselves remain sensitive to GWs.
The set of timing model parameters used to describe a

particular pulsar varies but always includes the pulsar
period (P), its first time derivative (Ṗ), and potentially
its second time derivative (P̈). The parameters for pulsars in
a binary system include the binary period (Pb) and its time
derivative (Ṗb). In Ref. [23], we advocated for studying two
timing model parameters sensitive to the presence of GWs
to search for ultralow-frequency GWs: Ṗb and P̈. For these
parameters, the best-fit values (denoted by subscript “obs”
for “observed”) comprise a sum of distinct, independent
physical effects.
The change in the binary period is given by

Ṗb;obs

Pb
¼ Ṗb;int

Pb
−
v2⊥
d

− aMW − aGW; ð1Þ

where the left-hand side is the observed value. The first term
on the right-hand side is the intrinsic decrease in the binary
period from gravitational-wave emission,2 which can be
calculated with independent measurements of the companion
mass and orbital parameters. The second is a kinematic effect
due to proper motion on the sky (v⊥) of a pulsar a distance d
away. These can be measured independently using timing
data at higher frequencies or very longbaseline interferometry
techniques. The third term is due to acceleration induced
by the Milky Way potential. While typically negligible, this
contribution can be estimated from models of the Galactic
mass distribution. The final term is the target of our analysis,
the acceleration induced by ultralow-frequency GWs.
Subtracting the first three contributions from the observed
value gives a measurement of aGW.
The case of P̈ is considerably simpler; all non-GW

contributions can be estimated to be far below current
experimental error bounds (see Appendix B of Ref. [23]).
Therefore, the only term contributing to a nonzero P̈obs=P
is due to the jerk induced by GWs,

P̈obs

P
¼ jGW: ð2Þ

Gravitational waves induce a strain, which we denote as
hTTij ðx; tÞ in the traceless-transverse gauge, which is observ-
able as an apparent line-of-sight velocity between the Solar
System barycenter (SSB) and a pulsar.3 This velocity is
given as an integral over the line of sight (see, e.g.,
Appendix A of Ref. [23]),

2Note that these are not the ultralow-frequency GWs of interest,
but rather the gravitational radiation generated by binary motion.

3WhilevGW acts like a velocitywhen considering a single line of
sight, the quadrupolar structure of gravitational waves induces
correlations between different lines of sight that are not the dipolar
correlations that would be induced by simplemotion along an axis.
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vðaÞGWðtÞ ¼
1

2
n̂i
an̂

j
a

Z
t

t−da
dt0

�
∂

∂t0
hTTij ðt0;xÞ

�
x¼xðaÞ

0
ðt0Þ
; ð3Þ

where n̂a denotes the direction vector pointing from the
SSB to the pulsar, da is the SSB-pulsar distance,
x0

ðaÞðt0Þ≡ ðt − t0Þn̂a, and we introduce an index a to
specify values for pulsar a. Note that the derivative acts

only on the first argument of hTTij . One can calculate aðaÞGW

and jðaÞGW by taking temporal derivatives of Eq. (3).

III. STOCHASTIC SIGNALS AT ULTRALOW
FREQUENCIES

The stochastic gravitational-wave background has been
studied extensively at higher frequencies (see, e.g.,
Ref. [44] for a review). However, the signal changes
dramatically in regimes at which the frequency falls below
the inverse observation time. We carry out the analysis
assuming the timing model fit incorporates P̈ and Ṗb as fit
parameters. If this is the case, ultralow-frequency signals
have been removed from the residuals by the fitting
procedure and now reside in the fit parameters themselves.4

The timing model parameters in Eqs. (1) and (2) are
sensitive to the secular motion of the SSB-pulsar system.
The corresponding acceleration and jerk induced by ultra-
low-frequency GWs are given by derivatives of Eq. (3) if the
GW is well approximated by its Taylor expansion around
t ¼ 0. We take this requirement to correspond to restricting
the frequency to be less than fT ≡ 1=4Tmax, where Tmax is
the maximum observation time of a pulsar in a dataset.
To carry out a search for an SGWB, we must understand

how aðaÞGW and jðaÞGW are distributed. Since they arise as time

derivatives of vðaÞGW, they are functionals of the gravitational
field; since the SGWB hij behaves as a Gaussian random
field, they obey a Gaussian distribution of mean zero with
correlations entirely specified by their covariance matrix.

For an SGWB, aðaÞGW and jðaÞGW are intrinsically random
variables. For gravitational waves with frequencies well
above fT , their values (along with higher derivatives) are
sampled repeatedly within the TOA, and their variance is
approximately given by its ergodic average (even in the case
of data from a single pulsar). In contrast, in the ultralow-
frequency regime, they take on approximately constant
values for the observation time of the experiment; as such,

their values exhibit significant cosmic variance. Owing to
this, instead of using temporal correlations to estimate their
variance, one must study pulsar-pulsar correlations.
To study the acceleration and jerk distribution, we begin

with the Fourier transform of the gravitational-wave field
split into the þ and × polarization,

hTTij ¼
X

A¼þ;×

Z
∞

−∞
df

Z
d2n̂h̃Aðf;n̂ÞeAijðn̂Þe−2πifðt−n̂·xÞ; ð4Þ

where eAijðn̂Þ is the þ or × polarization tensor. Inserting
Eq. (4) into Eq. (3) gives an expression for the apparent
relative velocity between the SSB and the pulsar,

vðaÞGW ¼
X

A¼þ;×

Z
∞

−∞
df

Z
d2n̂h̃Aðf; n̂ÞFA

aðn̂Þe−2πift

×
h
1 − e2πifdað1þn̂·n̂aÞ

i
; ð5Þ

where the Faðn̂Þ are the “pattern functions” associated with
a gravitational plane wave,

FAðn̂Þ≡ n̂i
an̂

j
aêAijðn̂Þ

2ð1þ n̂ · n̂aÞ
: ð6Þ

The power spectrum of the gravitational field is defined via
its correlator,

hh̃�Aðf;n̂Þh̃A0 ðf0;n̂0Þi¼δðf−f0Þδ
2ðn̂;n̂0Þ
4π

δAA0
1

2
ShðfÞ; ð7Þ

and upon substitution into Eq. (5), this yields the velocity
two-point function,

hvðaÞGWv
ðbÞ
GWi ¼

1

2

Z
∞

−∞
ShðfÞCðθab; fÞdf; ð8Þ

where θab is the angle between the two pulsars,

Cðθab; fÞ≡
Z

d2n̂
4π

Kabðf; n̂Þ
X
A

FA
aðn̂ÞFA

bðn̂Þ; ð9Þ

and

Kabðf;n̂Þ≡
h
1−e−2πifdað1þn̂·n̂aÞ

ih
1−e2πifdbð1þn̂·n̂bÞ

i
: ð10Þ

The result in Eq. (8), is well known in the literature (see,
e.g., Refs. [46–48]). This correlator can be extended to
acceleration and jerk by taking time derivatives of Eq. (5)
prior to averaging. Carrying out the calculation and
introducing a high-frequency cutoff at fT results in

haðaÞGWa
ðbÞ
GWi ¼

Z
fT

0

ShðfÞð2πfÞ2ReCðθab; fÞdf ð11Þ

4If P̈ or Ṗb is not included in the fit, the residuals can, in
principle, still be used to search for ultralow-frequency GWs. In
this case, the residual two-point correlator is not stationary and
looks quite different from its traditional form. We derive the
residual correlator and show how it reduces to the stationary form
for frequencies above 1=T in Appendix A. We note that it has
been suggested in the literature that one could sample the
stationary correlator at frequencies below 1=T (see, e.g.,
Ref. [45]). This will not capture the full influence of the
gravitational-wave signal.
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and

hjðaÞGWj
ðbÞ
GWi ¼

Z
fT

0

ShðfÞð2πfÞ4ReCðθab; fÞdf; ð12Þ

where we have used Shð−fÞ ¼ ShðfÞ to restrict the
integrals to positive frequencies and use ReCðθab; fÞ to
denote the real part of Cðθab; fÞ.
The function Kab also appears in traditional pulsar

searches, but its effects are typically neglected, setting this
factor to unity. This is a good approximation for fda ≫ 1
sinceKab is a highly oscillatory function, and contributions
from the oscillating components are negligible. In this
limit, the spatial correlations are frequency independent,
and the final result is the well-known Hellings-Downs
correlation matrix [46],

Cðθab;fÞ→CðθabÞ¼xab logxab−
1

6
xabþ

1

3
þ1

3
δab; ð13Þ

where xab ≡ 1
2
ð1 − cos θabÞ. In this limit, the acceleration

and jerk correlations assume simplified forms,

haðaÞGWa
ðbÞ
GWi → CðθabÞ

Z
fT

0

ShðfÞð2πfÞ2df and ð14Þ

hjðaÞGWj
ðbÞ
GWi → CðθabÞ

Z
fT

0

ShðfÞð2πfÞ4df: ð15Þ

We exploit this simplification in Sec. V B.
In the ultralow-frequency regime, Kab cannot always be

set to unity. The exponential terms in Kab cease oscillating
for frequencies below either of the SSB-pulsar distances,
resulting in a frequency-dependent correlator distinct from
the Hellings-Downs average (see, e.g., Ref. [49] for further
discussion on this point). This effect is important for
frequencies below the inverse distance to the nearest
millisecond pulsar, which we denote fd. For the datasets
we use, fd ≃ 100 pHz.

IV. METHODS

We now use the results of the previous section to search
for a stochastic gravitational-wave background. To this end,
we carry out a log-likelihood ratio test using the accel-
eration and jerk correlators [Eqs. (11) and (12)] to calculate
the expected signal and compare it to the data. In this way,
we are able to place strong constraints on the SGWB at sub-
nHz frequencies, as described below.

A. Ṗb and P̈ datasets

To search for signals in Ṗb and P̈, we use the same
datasets as in Ref. [23]. We briefly summarize the salient
features of these datasets. Details of the pulsars used can be
found in Appendix B.
The binary pulsar catalog used for the Ṗb data was

initially compiled by Ref. [50] to search for the Milky Way

potential [51–59] (see also Ref. [60] for a similar analysis).
Each of the 14 binary pulsars in the dataset has estimates of
the intrinsic and kinematic contribution to its observed Ṗb
[first two terms on the right-hand side of Eq. (1)]. We
estimate the contribution due to the Milky Way potential
[third term of Eq. (1)] using the MWPotential2014 model
implemented in the GALPY PYTHON package [61]. We
assume a 20% uncertainty on the value of aMW, in line
with typical uncertainties of the Galactic fit parameters in
MWPotential2014. To estimate aGW for each pulsar, we
subtract away the intrinsic, kinematic, and Galactic con-
tributions to Ṗb;obs. The dominant source of uncertainty
changes from pulsar to pulsar, with the most sensitive
pulsar (J1713þ 0747) reaching an estimated acceleration
of aGW ¼ ð0.7� 3.0Þ × 10−20 sec−1.
The dataset used for the P̈ analysis consists of 46 pulsars,

whose observed P̈ were calculated in Ref. [62] using data
from the EPTA [52] and PPTA [51] Collaborations. The
authors of Ref. [62] included the effect of dispersion-
measure (DM) variations and (high-frequency) red noise in
their analysis; hence, uncertainties deriving from them are
already incorporated into the quoted uncertainty on the P̈
measurements. The DM spectrum was assumed to take the
Kolmogorov turbulence form, with an amplitude as mea-
sured in Ref. [63]. The red noise (RN) redshift spectrum
SRNðfÞ was taken as a power law, described by amplitude
(ARN), high-frequency spectral index (γ), and breaking
frequency (fc),

SRNðfÞ ¼
A2
RN

3f⋆

�
f
f⋆

�
2�
1þ ðf=fcÞ2

�−γ=2; ð16Þ

where we define f⋆ ¼ 1 yr−1 as the reference frequency
throughout. These parameters were marginalized over
during the fitting procedure with prior estimates taken
from EPTA and PPTA fits.
The red noise was added by sampling the power

spectrum at frequencies n=T, where n is an integer starting
at 1 [64]. This procedure does not account for the likely
possibility that the red noise spectrum extends to frequen-
cies below 1=T.5 Such ultralow-frequency red noise is
imprinted on the timing model, similar to the SGWB. To
estimate the influence of such red noise, it is straightfor-
ward to use the formalism introduced in Sec. III. Assuming
a redshift power spectrum SRNðfÞ, we find the red noise
below 1=T contributes a variance to P̈,

σ2RN ≡
��

ΔP̈
P

�	
¼

Z
fT

0

df ð2πfÞ4SRNðfÞ: ð17Þ

This serves as an additional source of Gaussian noise.
We calculate the integral using the best-fit values from
the EPTA [52] and PPTA [51] datasets and add σRN in

5We thank the anonymous referee for alerting us to this subtlety.
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quadrature with the uncertainty on P̈obs=P.
6 For pulsars fit

by both collaborations, we use the estimate in Eq. (17),
which yields a larger value. Since σRN depends on fT , it
contains a significant degree of uncertainty. To account for
this, we also present results that inflate σRN by an order of
magnitude. We note that, in principle, a similar expression
applies in Ṗb, however, in that case, the analogous estimate
to that in Eq. (17) is negligible. We display the values of
σRN for each pulsar in Table II.
Three pulsars in the set (J1024-0719, B1821-24A, and

B1937þ 21) are poorly suited for a search for gravita-
tional-wave signals due to a wide binary companion,
location within a dense cluster, or significant ultralow-
frequency red noise. We omit these three from our analysis.
The most sensitive pulsar in this search is J0613-0200 and
provides an estimate of jGW ¼ ð0.6� 0.6Þ × 10−30 sec−2.

B. Statistical analysis

To carry out the analysis, we construct a likelihood
individually for each dataset, assuming uncertainties
between the measurements are uncorrelated. We denote
the data by fsGWg ¼ faGWg or fjGWg, the signal model for
all the pulsars with a bar (fs̄GWg ¼ fāðaÞGWg or fj̄ðaÞGWg), and
the uncertainty in themeasurement as σa.7 The likelihood is8

Lðs̄GWjfsGWgÞ ¼
Y
a

1ffiffiffiffiffiffiffiffiffiffi
2πσ2a

p exp

�
−

1

2σ2a
ðsðaÞGW − s̄ðaÞGWÞ2

�
:

ð18Þ

The model prediction fs̄GWg is a random vector of length
14 (46) for the Ṗb (P̈) analysis, respectively. For each
analysis, we average the likelihood over 10,000 realizations
of the vector, each drawn from a multivariate Gaussian
distribution with a correlator given by Eqs. (11) or (12).
The averaging procedure yields a marginalized likelihood
that, due to the presence of ShðfÞ in the correlators from
which the mock data were sampled, is implicitly a function
of the GW spectrum. We denote this marginalized like-
lihood LM. We compute the log-likelihood ratio using LM
between a signal model specified by the dimensionless

normalization of ShðfÞ (denoted S0) and the null hypothesis
of zero GW signal (S0 ¼ 0),

q̂ðS0Þ ¼ −2 log
�

LMðS0jfsGWgÞ
LMðS0 ¼ 0jfsGWgÞ

�
: ð19Þ

We assume this statistic obeys the Wilks theorem for a
parameter bounded on one side by zero [65] to set the
95% confidence limit on S0 at q̂ðS0Þ ¼ 2.71. This
assumption has been confirmed in the case of a continuous
wave source in Ref. [23].

V. APPLICATIONS AND RESULTS

As with any gravitational-wave analysis, a bound on the
stochastic background can only be set once one specifies a
power spectrumShðfÞ. In this section,weconsider three types
of gravitational-wave distributions and set limits on each. The
first is a monochromatic distribution, which is particularly
useful for elucidating spectral dependence of the sensitivity.
The second is a bounded distribution with support only at
frequencies exceeding fd. Finally, we consider power-law
distributions, such as that expected from supermassive black
hole binaries, and compare our limits on these distributions to
the tentative signal currently observed at higher frequencies.

A. Monochromatic analysis

In this subsection, we place bounds on the relic
energy density of a monochromatic spectrum at a given
frequency f,

Shðf0Þ ¼ S0δðf0 − fÞ: ð20Þ

The monochromatic spectrum illuminates the frequency
dependence of our methodology and hence is useful for
comparison to the expected spectra of various signals. The
total energy density corresponding to Eq. (20) is given by
the integral,

ΩGW ¼
Z

∞

0

df0

f0
4π2f03

3H2
0

Shðf0Þ ¼
4π2f2S0
3H2

0

: ð21Þ

For each f, we set a bound on S0, which we translate into a
bound on the total energy density that could be contributed
by a monochromatic distribution of GWs at f using
Eq. (21). We use the bound on the total energy density
ΩGW as a proxy for the bound on the differential energy
density per unit log frequency ΩGWðfÞ.
At frequencies above 1 nHz, pulsar timing collaborations

perform a similar estimation via “free-spectrum analysis,”
where the spectral power is taken as a sum over N mono-
chromatic contributions with frequencies fn ¼ n=T; n ¼
1; 2;…; N [66–68]. Here T is the longest observation
time for a pulsar in the dataset. For each fn, they study the
bound on the corresponding amplitude, allowing all other

6Alternatively, an additional contribution, jRN, can be added to
the right-hand side Eq. (2) with hj2RNi given by Eq. (17). One can
show that including a Gaussian prior on jRN with a variance σ2RN
is equivalent to adding σRN in quadrature with the observed
standard deviation.

7The uncertainty on the measurement includes the red noise
contribution σRN mentioned above.

8In our analysis, the influence of gravitational waves is in the
offsets, s̄ðaÞGW. One could alternatively introduce a Gaussian prior
on the model prediction with a covariance determined by the two-
point correlator derived in the main text and integrate over s̄ðaÞGW.
This would result in a Gaussian likelihood for sðaÞGW with mean 0,
but a nondiagonal covariance matrix.
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amplitudes to vary simultaneously and marginalize over their
posteriors.Abound on the amplitude is used as a proxy for the
boundon the characteristic strain,which can be translated into
a boundonΩGWðfÞ. Note thatwhile both ourmonochromatic
methodology and the free-spectrum analysis used by PTA
collaborations are effective proxies for the spectral energy
density, they are not formally equivalent to one another. We
have chosen to plot the PTA curves on our Fig. 1 to provide a
qualitative comparison to our results.
As discussed in Sec. III, for our methodology to apply,

the signal must resemble a slow secular drift. We ensure
this by restricting our analysis to frequencies below fT. For
the Ṗb (P̈) dataset, Tmax ¼ 22 (17.7) yr, corresponding to
fT ¼ 360 pHz (466 pHz). At frequencies above fT , oscil-
latory features of the GW signal are important, and
instantaneous derivatives of vGW no longer determine the
impact to the timing model.
The limits on ΩGWðfÞ set by the P̈ and Ṗb analyses are

shown in Fig. 1 (red) alongside free-spectrum analyses
performed by the pulsar timing collaborations [66–68]
(blue).9 The theoretical expectation from SMBH binaries
is a broken power-law spectrum with a known index at high
frequencies and a spectral index at low frequencies sensi-
tive to an undetermined energy loss mechanism around

separations of 1 pc.10 Following Ref. [69], we parametrize
the spectrum as

ShðfÞ ¼
A2
⋆

2f⋆

ðf=f⋆Þ2−γ
1þ ðfb=fÞκ

; ð22Þ

where fb is an unknown “bending” frequency expected
to be well below 1 nHz, κ ¼ 10=3 if stellar scattering
dominates the energy losses at large binary separations,11

and γ ¼ 13=3 if gravitational-wave emission dominates
the energy loss at small separations. Recent results
from NANOGrav find a best fit of the amplitude of A⋆ ¼
2.4þ0.7

−0.6 × 10−15 for γ ¼ 13=3 [70]. We show the spectrum
for κ ¼ 10=3, γ ¼ 13=3, A⋆ given by the NANOGrav
best-fit value, and different bending frequencies in Fig. 1
(orange). We also show the best fit results of NANOGrav’s
free-spectrum analysis in gray [70].
The P̈ sensitivity scales with the square of the frequency

for frequencies well above the inverse SSB-pulsar distances,
while the Ṗb sensitivity is approximately constant. This can
be understood from the scaling of the apparent velocity in the

FIG. 1. The sensitivity of pulsar timing parameters to the ultralow-frequency SGWB (red) as a function of frequency. We show
analysis results using existing measurements of the second derivative of the pulsar period (P̈) and the binary orbital period derivative
(Ṗb). For the P̈measurement, ultralow-frequency red noise can be important, and we use the width of the line to encompass the possible
influence of this noise (see text for details). We also show results of free-spectrum analyses from NANOGrav (dark blue) [66], EPTA
(blue) [67], and PPTA (light blue) [68], which while not formally equivalent to the quantity we limit, provide a qualitative comparison.
We also present the expected signal from supermassive black hole mergers, assuming the tentative signal above 1 nHz persists (yellow).
The lower frequency part of the SMBH spectrum is taken to be driven by stellar scattering, and we show a few possible bending
frequencies [69]. Finally, we show the best-fit region of the gravitational-wave amplitude of the recent detection by the NANOGrav
Collaboration in gray [70]. For further discussion of this figure, see Sec. VA.

9These limits are from 2015–2018 and hence predate the recent
evidence of a signal. The more recent analyses are no longer
setting limits and hence are not directly relevant for limit setting
in Fig. 1. We will compare our results with the signal observation
in Sec. V C.

10See Ref. [71] for a discussion of possible modifications to
this spectrum due to physics beyond the Standard Model.

11The dominant energy loss mechanism during this stage has
been a topic of active discussion in the literature and is often referred
to as the “final parsec problem” [72] (see, e.g., Refs. [73–79] for
discussions on possible resolutions and Refs. [80,81] for dis-
cussion of how it may be probed by PTA analyses at frequencies
above 1 nHz).
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monochromatic regime. From Eq. (11), ha2GWi ∝ S0f20 and
hj2GWi ∝ S0f40. Since S0 is proportional to energy density
over frequency squared [see Eq. (21)], holding aGW or jGW
fixed yields ΩGW ∝ f0 (f−2) for an aGW (jGW) search.
Below frequencies ofOð10 pHzÞ, thewavelength is longer

than the typical SSB-pulsar distance of 1 kpc. As a result, the
SSB and pulsar experience correlated motion that partially
cancels the signal. In the P̈ analysis, this results in the bend at
approximately 10 pHz. In the P̈b analysis, the sensitivity is
largely driven by two pulsars, both with distances of around
1 kpc.12 This results in a noticeable bump in the sensitivity at
the corresponding frequency due to the nontrivial functional
form of Kabðf; n̂Þ [Eq. (10)] and a subsequent bend in the
sensitivity at even lower frequencies.
While the P̈ analysis is significantlymore sensitive than the

Ṗb analysis above a few picohertz, the two serve as comple-
mentary probes of a signal. If a signal is observed with both
parameters, a joint search will provide significant insight into
the spectral shape of the ultralow-frequency SGWB.

B. Distributions with f ≳ f d
If a GW spectrum has support dominantly at frequencies

greater than the inverse SSB-pulsar distance (f ≫ fd≃
100 pHz), the aGW and jGW correlators [Eqs. (11) and (12)]
are separable into frequency- and angular-dependent com-
ponents. In this limit, the frequency integral sets the overall
amplitude of the correlator and scales with the normaliza-
tion. Consequently, the entire integral can be constrained by
following the procedure in Sec. IV B.
Performing this analysis, we find
Z

fT

0

dfð2πfÞ2ShðfÞ < 1.0 × 10−38 sec−2 and ð23Þ
Z

fT

0

dfð2πfÞ4ShðfÞ < 1.6 × 10−61 sec−4: ð24Þ

The powers of frequency within the integrals in Eqs. (23)
and (24) show a general feature that the sensitivity of the P̈
and Ṗb analysis will be most sensitive to the highest
frequencies unless the spectrum falls rapidly with increas-
ing frequency. While these results are only applicable to
distributions with support in a narrow range of frequencies,
100≲ f ≲ 450 pHz (the upper bounds coming from fT ,
see previous subsection), the expressions apply for any
such distribution, ShðfÞ.

C. Power-law distributions

The expected stochastic signal from supermassive black
hole mergers or cosmological sources is often well

approximated by a power law in the most sensitive
experimental frequency range,

ShðfÞ ¼
A2
⋆

2f⋆

�
f
f⋆

�
2−γ

: ð25Þ

For the SMBH spectrum discussed in Sec. VA, this is a
reasonable approximation when contributions from f ≲ fb
are negligible. For the Ṗb (P̈) analysis, this tends to be the
case when γ < 5 (< 7), both of which are satisfied by the
theoretical expectation of γ ¼ 13=3. By substituting ShðfÞ
from Eq. (25) into the correlators in Eqs. (11) and (12), we
can carry out the analysis described in Sec. IV B to produce
limits on A⋆ and γ.
The resulting limits from a P̈ analysis are shown in Fig. 2

as a red curve. Limits from Ṗb are inferior to those from P̈
except for very large values of γ. For γ < 7, the sensitivity
of the P̈ analysis is driven by frequencies near fT. In this
case, by inserting the spectrum in Eq. (25) into Eq. (24) one
can see the approximately linear scaling of logA⋆ with γ.
The blue regions denote the 2σ best-fit confidence
intervals of the signal from NANOGrav [70], EPTA [82],
and PPTA [83]. For comparison, we also show the expected
range of predictions of fA; γg from simulations of super-
massive black hole mergers performed with Holodeck
simulations [84]. We conclude that doing a global analysis
using both ultralow and higher frequencies would disfavor
large values of γ.
For supermassive black hole binaries, the stochastic

gravitational-wave signal is expected to be within reach
of existing PTA analyses. Importantly, it may be the source

FIG. 2. Comparison of the tentative signal found at frequencies
above 1 nHz as fit by NANOGrav [70], EPTA [82], and PPTA
[83] to the limits from the P̈ analysis (red) performed in Sec. V C.
The width of the line in the P̈ limit corresponds to taking the
ultralow-frequency red noise σRN from its estimated value to 10
times the estimated value (see text for details). For comparison,
we also show the range of fA; γg values found from a population
study of supermassive black holes [84].

12A few pulsars in the analysis are substantially closer with
SSB-pulsar distance leading to the features observable at
100 pHz. Since these do not drive the sensitivity, passing through
this threshold does not substantially change our limits.
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of the common-process signal that the PTA collaborations
are currently detecting at an amplitude A⋆ ≃ 2.8þ1.2

−0.8 ×
10−15 [5]. Our results place constraints near this best-fit
value, limiting A⋆ < 1.8 × 10−14 at γ ¼ 13=3.

VI. DISCUSSION

A stochastic background of gravitational waves below
1 nHz is well motivated by the expected signal from
supermassive black hole mergers and potential cosmic
sources. In this paper, we have shown that the secular drift
of parameters in pulsar timing models can detect such an
SGWB. We do not find significant evidence of a signal in
existing data, and hence we place strong constraints on the
SGWB spectrum. Our key results are as follows:
(1) We limit the relic energy density for amonochromatic

spectrum at 450 pHz to ΩGWðfÞ < 3.8 × 10−9,
with sensitivity that scales as the frequency squared
until approximately 10 pHz.

(2) For spectra with dominant support between
100≲ f ≲ 450 pHz, we put a generic constraint
on integrals over the power spectral density, ShðfÞ.

(3) We limit the amplitude of power-law spectra as a
function of a spectral index. For γ ¼ 13=3 (expected
by SMBH mergers), we find A⋆ ≲ 1.8 × 10−14 for a
reference frequency of f� ¼ yr−1.

While our study already significantly influences the pros-
pects for searching for an SGWB, the data used in the P̈
analysis are not from the most recent EPTA and PPTA
datasets, nor do they include any NANOGrav observations.
An updated analysis with the new data releases might detect
the SGWB at frequencies below 1 nHz. This regime is an
important complementary GW probe to conventional PTA
analyses. Furthermore, it would provide key insights into the
spectral shape of the SGWB that are only possible in the
ultralow-frequency regime. In the case of SMBH mergers,
the ultralow-frequency signal is sensitive to the bending
frequency fb of the spectrum [Eq. (22)]. This would provide
insight into the undetermined physics driving the merger at
these scales.
Whether or not a sub-nHz detection is made by studying

thepulsar timingmodel parameters using themost recent PTA
data, we know that the SGWB is out there and is very likely
observable in the near future. As such, the methodology
described in this paper provides a guaranteed detection in the
years to come, opening an entirely new frequency range of the
gravitational-wave spectrum to explore.
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APPENDIX A: NONSTATIONARY RESIDUALS

In the main body of the text, we assumed the timing
model is sufficiently extensive to capture all secular
variation in the time of arrival data. If this is not the case,
e.g., the model does not fit P̈ in the presence of ultralow-
frequency signals, then a secular trend persists in the
residuals. In this section, we compute the correlator of
the residuals in this case.
The residuals, which we denote as RnðλÞ, are given as the

difference between the arrival time of the nth pulse and the
expected time of arrival given the timing model t̄nðλÞ,
where λ denotes the model parameters. There are two
contributions to this difference. The first is from the
mismatch of the timing model with the true parameters.
The second is from a GW signal and is equal to an integral

over the induced redshift zaðtÞ (denoted by vðaÞGW in the main
text). Normally, it is assumed that the pulsar parameters
have already been measured with sufficient accuracy that
we can expand about small deviations from these known
values. In this limit,

RnðλÞ ≃Mnαðλα − λ̂αÞ þ
Z

tn

0

dt0zðt0Þ; ðA1Þ

where λ̂α denotes the true value of the αth parameter, and
Mnα is commonly known as the design matrix. Now
suppose that the timing model is chosen to incorporate
P and Ṗ, but does not fit P̈. In this case, the signal is
embedded in the integral over redshift. We now compute its
corresponding covariance matrix.
Using Eq. (3) and a Fourier decomposition of the

gravitational field h̃, the redshift can be written as

zaðtÞ ¼
X

A¼þ;×

Z
∞

−∞
df

Z
d2n̂h̃Aðf; n̂ÞFA

ae−2πift

×
h
1 − e2πifdað1þn̂·n̂aÞ

i
: ðA2Þ

From here we can compute the ensemble average of a
product of redshifts at two different times,
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hzaðtÞzbðt0Þi ¼
1

2

Z
∞

−∞
dfShðfÞCðθab; fÞe−2πifðt−t0Þ; ðA3Þ

where Cðθab; fÞ is the overlap function introduced previ-
ously, which reduces down the frequency-independent form
at frequencies much greater than d−1a and d−1b . As usual, this
correlator should be interpreted as an ensemble average.
The correlator of the residuals is then given by

hRaðtÞRbðt0Þi ¼
1

2

Z
∞

−∞
df

ShðfÞ
ð2πfÞ2 ð1 − e2πiftÞ

× ð1 − e−2πift
0 ÞCðθab; fÞ: ðA4Þ

This equation is the general form of the correlator that must
be used if one wants to study ultralow-frequency GWs.
Clearly, it is not stationary; the residual two-point function
depends on t and t0 explicitly. To search for gravitational
waves both above and below 1=T, one must include the full
expression in Eq. (A4).13

APPENDIX B: ANALYSIS DATASETS

In this work we carried out two analyses with the pulsar
timing model parameters, one using Ṗb and another using
P̈. In this appendix, we provide tables of the parameter
values used in each analysis. An extensive discussion of the
selection criteria and validation of these datasets can be
found in Appendix S-IB of Ref. [23].
The Ṗb analysis was carried out using the data for the 14

pulsars with binary companions shown in Table I. The data
were initially compiled by Ref. [50]. We chose this set since
each pulsar’s intrinsic and kinematic contributions were
already estimated via independent measurements.14 The
contributions from acceleration in the Milky Way potential
were estimated via MWPotential2014, as described in the
main body of the text.
In Table II, we show the data for the 46 pulsars used

in the P̈ analysis. The P̈ values for each pulsar were
calculated by Ref. [62]. In addition to the pulsars we list
in this table, Ref. [62] studied P̈ for three other pulsars:
J1024-0719, B1821-24A, and B1937þ 21. J1024-0719 is
believed to be in a wide binary orbit with a period between
2000 and 20000 years that induces a large anomalous P̈ [88],
while B1821-24A is situated in a dense cluster in which
gravitational effects due to nearby stars are non-negligible
[89]. The residuals of B1937þ 21 are subject to significant
ultralow-frequency red noise relative to its timing precision
[90]. We, therefore, exclude these pulsars from our dataset.

13Note that in an analysis that targets frequencies such that
2πft ≫ 1, Cðθab; fÞ becomes real and the correlator takes a
simplified form. In this limit,

hRaðtÞRbðt0Þi ≃ CðθabÞ
Z

∞

0

df
ShðfÞ
ð2πfÞ2

�
1þ cosð2πfðt − t0ÞÞ�;

where we have dropped contributions from terms in the integrand
proportional to cosð2πftÞ or cosð2πft0Þ as they are highly
oscillatory and subdominant for high frequencies. The time-
independent piece represents overall shifts in the residuals and is
assumed to be difficult to measure. Dropping this piece gives the
form typically found in the PTA literature (see, e.g., Ref. [85]).

14This reference did not estimate the intrinsic contribution to
pulsars J0613-0200, J1614-2230, and J1713þ 0747; we used the
quadrupole radiation formula to estimate the intrinsic value.

TABLE I. Pulsars used for Ṗb analysis. ðl; bÞ is the Galactic longitude and latitude, da is the distance between Earth and the pulsar (a),
T is the observation time, Ṗb;obs=Pb is the observed value of the line-of-sight acceleration, Ṗb;int=Pb is the intrinsic relative change in the
binary period induced by gravitational emission, v2⊥=dL is the estimated contribution from Earth-pulsar proper motion, aMW is the
estimated contribution from Galactic accelerations,Δa is the leftover contribution to the orbital pulsar derivative when the prior three are
subtracted from aobs, and “Ref.” is the reference from which we extracted the parameters. All contributions to Ṗb=Pb listed below are in
units of 10−18 s−1. Pulsars for which the intrinsic contribution has been estimated using the quadrupole approximation to binary
radiation are demarcated with a † (*) with inputs taken from Ref. [86] ([87]).

Pulsar l (deg) b (deg) da (kpc) T (yr) Ṗb;obs=Pb Ṗb;int=Pb v2⊥=dL aMW Δa Reference

J0437-4715 253.39 −41.96 0.1570(22) 4.76 7.533(12) −0.00552ð10Þ 7.59(11) −0.055ð11Þ 0.0(1) [51]
J0613-0200 210.41 −4.10 0.80(8) 16.10 0.46(11) −0.02ð5Þ† 0.215(22) 0.046(9) 0.2(1) [52]
J0737-3039AB 245.24 −4.50 1.15(18) 2.67 −142.0ð1.9Þ −141.565ð15Þ 0.053(16) −0.056ð11Þ −0.5ð19Þ [53]
J0751þ 1807 202.73 21.09 1.22(25) 17.60 −1.54ð11Þ −1.91ð17Þ 0.56(12) 0.048(10) −0.24ð23Þ [52]
J1012þ 5307 160.35 50.86 1.41(34) 16.80 1.17(8) −0.1955ð33Þ 2.3(5) −0.070ð14Þ −0.8ð5Þ [52]
J1022þ 1001 231.79 51.50 0.719(21) 5.89 0.82(34) −0.0021ð19Þ 0.512(15) −0.130ð26Þ 0.4(3) [51]
J1537þ 1155 19.85 48.34 1.16(24) 22.00 −3.766ð8Þ −5.3060ð8Þ 1.8(4) −0.19ð4Þ −0.09ð38Þ [54]
J1603-7202 316.63 −14.50 0.9(7) 6.00 0.57(28) 0.0(0) 0.13(10) −0.039ð8Þ 0.5(3) [51]
J1614-2230 352.64 2.19 0.65(4) 8.80 2.10(17) −0.000558ð5Þ� 1.66(12) 0.079(16) 0.4(2) [55]
J1713þ 0747 28.75 25.22 1.15(5) 21.00 0.058(26) −1.03ð6Þe − 06† 0.111(5) −0.060ð12Þ 0.007(28) [56]
J1738þ 0333 27.72 17.74 1.47(11) 10.00 −0.56ð10Þ −0.91ð6Þ 0.270(20) −0.0049ð10Þ 0.09(12) [57]
J1909-3744 359.73 −19.60 1.161(18) 15.00 3.8645(10) −0.02111ð23Þ 3.88(6) 0.034(7) −0.02ð6Þ [58]
J2129-5721 338.01 −43.57 0.53(25) 5.87 1.4(6) 0.0(0) 0.19(9) −0.121ð24Þ 1.3(6) [51]
J2222-0137 62.02 −46.08 0.2672(11) 4.00 0.9(4) −0.0365ð19Þ 1.324(5) −0.098ð20Þ −0.2ð4Þ [59]
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TABLE II. Pulsars used for P̈ analysis. l is Galactic longitude, b is Galactic latitude, d is the distance between Earth and the pulsar, T is
the observation time, P̈obs=P is the observed line-of-sight jerk, σRN is the additional uncertainty due to ultralow-frequency red noise (see
Sec. IV), and Ref. is the reference with we extracted the pulsar parameters.

Pulsar l (deg) b (deg) d (kpc) T (yr) P̈obs=P (10−30 s−2) σRN (10−30 s−2) Reference

0030þ 0451 113.141 −57.611 0.324 15.1 −4ð4Þ 0.54 [52]
J0034-0534 111.492 −68.069 1.348 13.5 0(20) 0 [52]
J0218þ 4232 139.508 −17.527 3.150 17.6 −2ð5Þ 0.14 [52]
J0437-4715 253.394 −41.963 0.157 14.9 −1ð1Þ 0 [51]
J0610-2100 227.747 −18.184 3.260 6.9 0(50) 0 [52]
J0613-0200 210.413 −9.305 0.780 16.1 0.6(6) 0.13 [52]
J0621þ 1002 200.570 −2.013 0.425 11.8 −70ð30Þ 1.28 [52]
J0711-6830 279.531 −23.280 0.106 17.1 1(1) 0 [51]
J0751þ 1807 202.730 21.086 1.110 17.6 0(2) 0 [52]
J0900-3144 256.162 9.486 0.890 6.9 −10ð20Þ 0 [52]
J1012þ 5307 160.347 50.858 0.700 16.8 0.4(7) 0.01 [52]
J1022þ 1001 231.795 51.101 0.645 17.5 −2ð1Þ 0.01 [52]
J1045-4509 280.851 12.254 0.340 17.0 −2ð7Þ 0.05 [51]
J1455-3330 330.722 22.562 0.684 9.2 6(20) 0.17 [52]
J1600-3053 344.090 16.451 1.887 9.1 4(5) 0.06 [51]
J1603-7202 316.630 −14.496 0.530 15.3 1(4) 0.02 [51]
J1640þ 2224 41.051 38.271 1.515 17.3 −0.9ð9Þ 0 [52]
J1643-1224 5.669 21.218 0.740 17.3 −2ð2Þ 0.01 [52]
J1713þ 0747 28.751 25.223 1.311 17.7 −0.5ð5Þ 0.38 [52]
J1721-2457 0.387 6.751 1.393 12.7 −30ð70Þ 0.01 [52]
J1730-2304 3.137 6.023 0.620 16.9 0(2) 0 [51]
J1732-5049 340.029 −9.454 1.873 8.0 20(20) 0.03 [51]
J1738þ 0333 27.721 17.742 1.471 7.3 −30ð90Þ 0 [52]
J1744-1134 14.794 9.180 0.395 17.3 0.8(8) 0.02 [52]
J1751-2857 0.646 −1.124 1.087 8.3 −10ð50Þ 0 [52]
J1801-1417 14.546 4.162 1.105 7.1 −30ð100Þ 0.02 [52]
J1802-2124 8.382 0.611 0.760 7.2 10(60) 0.01 [52]
J1804-2717 3.505 −2.736 0.805 8.1 −40ð40Þ 0 [52]
J1843-1113 22.055 −3.397 1.260 10.1 −7ð20Þ 0.05 [52]
J1853þ 1303 44.875 5.367 2.083 8.4 −30ð20Þ 0 [52]
B1855þ 09 42.290 3.060 1.200 17.3 1(2) 0.03 [52]
J1909-3744 359.731 −19.596 1.140 9.4 0.6(9) 0.02 [52]
J1910þ 1256 46.564 1.795 1.496 8.5 30(20) 0 [52]
J1911þ 1347 25.137 −9.579 1.069 7.5 14(8) 0 [52]
J1911-1114 47.518 1.809 1.365 8.8 20(50) 0 [52]
J1918-0642 30.027 −9.123 1.111 12.8 0(8) 2.46 [52]
B1953þ 29 65.839 0.443 6.304 8.1 −20ð50Þ 0 [52]
J2010-1323 29.446 −23.540 2.439 7.4 20(20) 0 [52]
J2019þ 2425 64.746 −6.624 1.163 9.1 −500ð900Þ 0 [52]
J2033þ 1734 60.857 −13.154 1.740 7.9 40(100) 0 [52]
J2124-3358 10.925 −45.438 0.410 16.8 0(3) 0.02 [51]
J2129-5721 338.005 −43.570 3.200 15.4 −1ð2Þ 0 [51]
J2145-0750 47.777 −42.084 0.714 17.5 −2ð1Þ 0.28 [52]
J2229þ 2643 87.693 −26.284 1.800 8.2 −20ð20Þ 0 [52]
J2317þ 1439 91.361 −42.360 1.667 17.3 −1ð3Þ 0 [52]
J2322þ 2057 96.515 −37.310 1.011 7.9 30(70) 0 [52]
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