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Angular power spectra are central to the study of our Universe. In this paper, I develop a new method for
the numeric evaluation and analytic estimation of the angular cross-power spectrum of two random fields
using complex analysis and Picard-Lefschetz theory. The proposed continuous deformation of the integration
domain resums the highly oscillatory integral into a convex integral whose integrand decays exponentially.
This deformed integral can be quickly evaluated with conventional integration techniques. These methods can
be used to quickly evaluate and estimate the angular power spectrum from the three-dimensional power
spectrum for all angles (or multipole moments). This method is especially useful for narrow redshift bins, or
samples with small redshift overlap, for which the Limber approximation has a large error.
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I. INTRODUCTION

In cosmology, we often observe realizations of random
fields. The quantum fluctuations of the early Universe
lead to a specific realization of radiation and matter in the
cosmic microwave radiation field and the present-day
cosmic web. Consequently, cosmological surveys often
focus on the correlations of these random fields and the
cross-correlation functions between them. Consider for
example the cosmic microwave background anisotropies,
the fluctuations in the density and galaxy distribution, the
weak lensing shear and convergence fields, and 21 cm
emission line fluctuations. In cosmology, these random
fields are often characterized by N-point correlation func-
tions or by their Fourier transforms known as the power
spectra. These fluctuation spectra are important as they are
used to test the physics of the early Universe, its contents,
and the nature of gravity. However, many of these obser-
vations are measured in terms of an angular correlation
function wABðn̂ · m̂Þ of fields A and B and the points on
the celestial sphere n̂; m̂, as it is often easier to measure
angular positions than proper distances. Instead of working
with the angular two-point correlation function directly, we
often consider the spherical harmonic transform CABðlÞ,
defined as

wABðn̂ · m̂Þ ¼
X∞
l¼0

2lþ 1

4π
CABðlÞPlðn̂ · m̂Þ; ð1Þ

with the Legendre polynomial Pl. Predictions of the
angular power spectra often involve the projection of
three-dimensional power spectra onto the celestial sphere,
requiring the numerical evaluation of multidimensional
oscillatory integrals, in particular involving the spherical
Bessel transformation of radial selection kernels. These
transformations are unfortunately generally expensive to
evaluate using standard numerical methods.
The Limber approximation [1] and its generalization to

Fourier space [2,3] are common methods to approximate
the spherical Bessel transform and estimate the projection.
More recently, the Limber approximation was extended
to higher orders [4]. These approximations assume small
angular separations (or large multipole moments l) and
that the functions being integrated are slowly varying. The
Limber approximation and its extensions are powerful
methods, that accurately estimate the magnitude, lead to
an analytic understanding of how the projected power
spectra depend on the projection procedure and greatly
simplify its evaluation. For an analysis of the Limber
approximation and proposed alternative approximations for
the real space correlation function see [5–7].
However, these approximations do not always suffice, in

particular when considering large angular separations (low
multipole moments l) and quickly varying radial selection
kernels. Given the present and next generation of cosmo-
logical surveys, it is becoming increasingly important to
quickly project three-dimensional power spectra to angular
power spectra and go beyond the Limber approximation.
There indeed exists a rich literature on numerical methods,
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approximating the spherical Bessel transform [8–13] and the
corresponding projection to angular power spectra [14–18].
Recently, some of these methods were compared in prepa-
ration for the Legacy Survey of Space and Time (LSST) [19].
In this paper, I use Picard-Lefschetz theory, an applica-

tion of Cauchy’s integral theorem in complex analysis, to
propose a new and efficient method to rephrase the
spherical Bessel transform of the Gaussian kernel into a
convex integral with no oscillations. This method is
subsequently extended to the spherical Bessel transform
of the linear combinations of Gaussian kernels spanning
a large class of functions. The proposed method is sim-
pler than the previously proposed numerical schemes.
Moreover, it leads to a saddle point approximation of
the spherical Bessel transform that is accurate in a large
range of parameter space, complementing the traditional
Limber approximation and its extensions. Note in particular
that the saddle point scheme becomes increasingly accurate
for narrow selection kernels, where the Limber approxi-
mation and its extensions fail.
In Sec. II, I derive the projection equation and define the

notation used in this paper. In Sec. III, I briefly summarize
the Limber approximation and its extension. Section IV
contains the central results of this paper. I summarize the
key points of Picard-Lefschetz theory and illustrate how the
technique can be used to reformulate the spherical Bessel
transform into an integral without oscillations. Moreover,
I present a saddle point approximation that can be used to
estimate both the spherical Bessel transformation and the
angular power spectrum. Section V compares the proposed
integration method with the results obtained with a brute
force evaluation. I subsequently demonstrate the use of the
saddle point approximation and compare it with the Limber
approximation and its extension. Concluding remarks are
given in Sec. VI.

II. PROJECTION ONTO THE SKY

Let us consider two random fields AðxÞ and BðxÞ with
their Fourier transforms

ÂðkÞ ¼
Z
R3

AðxÞe−ik·xdx; B̂ðkÞ ¼
Z
R3

BðxÞe−ik·xdx: ð2Þ

The random fields can represent the density fluctuations
δρðxÞ, the temperature fluctuations δT, or the Newtonian
gravitational potential ΦðxÞ. The cross-correlation power
spectrum PABðkÞ of statically homogeneous and isotropic
fields A and B is defined as

hÂðk1ÞB̂�ðk2Þi ¼ ð2πÞ3δð3Þðk1 − k2ÞPABðk1Þ; ð3Þ
with the norm k1 ¼ kk1k and the three-dimensional Dirac
delta function δð3Þ. To evaluate the angular power spectrum,
I project these random fields onto the sky with the pro-
jection kernels FAðrÞ and FBðrÞ representing the sensitivity
of the survey in the radial direction

Ãðn̂Þ ¼
Z

∞

0

FAðrÞAðrn̂Þdr; B̃ðn̂Þ ¼
Z

∞

0

FBðrÞBðrn̂Þdr:

ð4Þ

Expand Ã and B̃,

Ãðn̂Þ ¼
X∞
l¼0

Xl

m¼−l
AlmYlmðn̂Þ; B̃ðn̂Þ ¼

X∞
l¼0

Xl

m¼−l
BlmYlmðn̂Þ;

ð5Þ
in terms of spherical harmonics Ylmðn̂Þ with the harmonic
coefficients

Alm ¼
Z
S2

Ãðn̂ÞY�
lmðn̂Þdn̂; Blm ¼

Z
S2

B̃ðn̂ÞY�
lmðn̂Þdn̂:

ð6Þ
Using the Rayleigh plane-wave expansion

eik·x ¼ 4π
X∞
l¼0

Xl

m¼−l
iljlðkrÞY�

lmðk̂ÞYlmðn̂Þ; ð7Þ

these harmonic coefficients can be expressed in terms of the
Fourier transform of the random fields

Alm ¼ il

2π2

Z
R3

AðkÞY�
lmðk̂Þ

�Z
∞

0

FAðrÞjlðkrÞdr
�
dk; ð8Þ

Blm ¼ il

2π2

Z
R3

BðkÞY�
lmðk̂Þ

�Z
∞

0

FBðrÞjlðkrÞdr
�
dk; ð9Þ

where k ¼ kk̂ with the norm k ¼ kkk and the angular
position k̂ with kk̂k ¼ 1.
The angular power spectrum, projecting the three-

dimensional power spectrum onto the celestial sphere, is
defined as the three-dimensional oscillatory integral

CABðlÞ ¼ hAlmB�
lmi ð10Þ

¼ 1

4π4

ZZ
R3×R3

hÂðkÞB̂�ðk0ÞiY�
lmðk̂ÞYlmðk̂0Þ

×
�Z

∞

0

FAðr1Þjlðkr1Þdr1
��Z

∞

0

FBðr2Þjlðkr2Þdr2
�

×dkdk0 ð11Þ

¼
Z

∞

0

2k2PABðkÞ
π

�Z
∞

0

FAðr1Þjlðkr1Þdr1
�

×
�Z

∞

0

FBðr2Þjlðkr2Þdr2
�
dk ð12Þ

¼
Z

∞

0

2k2PABðkÞ
π

FA
l ðkÞFB

l ðkÞdk: ð13Þ
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The integral over the Fourier mode k is well-behaved as the
power spectrum PAB generally decays for small and large
Fourier modes. On the other hand, the (modified) spherical
Bessel transform of the radial kernels FA and FB,

FX
l ðkÞ ¼

Z
∞

0

FXðrÞjlðkrÞdr; ð14Þ

converges due to the cancelation of many oscillations (see
Fig. 1 for the first few spherical Bessel functions of the
first kind). This integral is generally expensive to evaluate
for large multipole moments l along the real line.1 Hereon,
I drop the labels A and B.

III. LIMBER APPROXIMATION AND BEYOND

The Limber approximation is built on the intuition that
the first peak of the spherical Bessel function, at approx-
imately kr ¼ lþ 1=2, dominates in the spherical Bessel
transform [1]. The subsequent oscillations cancel leading to
an insignificant contribution. Formally, for large multipole
moments l, the spherical Bessel function is replaced by a
Dirac delta function δð1Þ centered at the first peak,

jlðxÞ ↦
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ 1

r
δð1Þðlþ 1=2 − xÞ; ð15Þ

yielding the simple result

F lðkÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ 1

r
1

k
F

�
2lþ 1

2k

�
: ð16Þ

The angular power spectrum reduces to a one-dimensional
integral over the Fourier mode,

CABðlÞ ≈
Z

∞

0

2PABðkÞ
2lþ 1

FA

�
2lþ 1

2k

�
FB

�
2lþ 1

2k

�
dk; ð17Þ

which is evaluated with standard numerical methods, such
as the Gaussian quadrature scheme.
Recently, the Limber approximation was extended [4] to

include higher-order derivatives of the selection kernel
using the expansion

F lðkÞ ≈
ffiffiffiffiffi
π

2k

r �
k−1f

�
2lþ 1

2k

�
þ k−3

2
f00
�
2lþ 1

2k

�

−
k−4ð2lþ 1Þ

12
f000

�
2lþ 1

2k

�
þ…

�
; ð18Þ

where the kernel f is defined as fðrÞ ¼ FðrÞ= ffiffiffi
r

p
.

After some manipulation, this yields the second-order
approximation

CABðlÞ ≈
Z

∞

0

PABðkÞfA
�
2lþ1
2k

�
fB

�
2lþ1
2k

�
k

×

�
1þ 2

ð2lþ 1Þ2
�
d ln fA
d ln r

d ln fB
d ln r

sðkÞ − pðkÞ
�

þOððlþ 1=2Þ−4Þ
�
dk; ð19Þ

with the auxiliary functions

sðkÞ ¼ d lnPABðkÞ
d ln k

; pðkÞ ¼ k2ð3P00
ABðkÞ þ kPAB

000ðkÞÞ
3PABðkÞ

:

ð20Þ

This approximation is accurate to second-order in
ðlþ 1=2Þ−1. Note that these approximations work
well for large multipole l and slowly varying kernels FA
and FB.
More recently, new numerical methods were developed

to evaluate the projection integral (13). These methods
range from smart applications of fast Fourier transforms
to Levin integration, using ordinary and linear differen-
tial equations. For an overview of these methods, I refer
to [14–19] and references therein.

IV. PICARD-LEFSCHETZ THEORY

Picard-Lefschetz theory is a general method to improve
the convergence properties of analytic integrals (first intro-
duced into physics in [20]) that makes use of Cauchy’s
integral theorem. In particular, it formalizes the optimal
deformation of oscillatory integrals with analytic integrands

FIG. 1. The spherical Bessel function jlðxÞ for l ¼ 1;…; 5
respectively in blue, yellow, green, red, and purple.

1Traditionally, the spherical Bessel transform is defined with
an additional r2 term, i.e.,

R∞
0 FðrÞjlðkrÞr2dr. We can always

transform between the two definitions with a redefinition of the
kernel F ↦ r2F.
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yielding the sum of absolutely convergent integrals along a
set of integration contours in the complex plane,Z

D
eigðxÞdx ¼

X
j

Z
J j

eigðxÞdx; ð21Þ

with a sum over the relevant saddle points xj of g and the
steepest descent contours of these saddle points J j with
respect to the real part of the exponent hðxÞ ¼ Re½igðxÞ�.

A saddle point and its associated descent thimble are relevant
to the integral if and only if its steepest ascent thimble
intersects the original deformation domainD (assuming they
span a region between two singularities of h). The integrand
expðigðxÞÞ does not oscillate along J j, making the defor-
mation optimal. The deformed integral is easy to evaluate
numerically and estimate analytically with the saddle point
approximation. For a brief introduction to Picard-Lefschetz
theory, see for example [21,22].

FIG. 2. Picard-Lefschetz theory applied to the integral
R
exp x2dx (top) and

R
cos x2dx (bottom) in the complex x plane. The left

figures show the saddle points (red points), and the corresponding steepest ascent/descent contours (blue curves) plotted on the complex
exponent. The right figures show the same saddle points and the steepest ascent/descent contours plotted on the real part of the exponent,
the h-function.
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We briefly sketch the Picard-Lefschetz procedure for the
Fresnel integral

I ¼
Z

∞

−∞
eix

2

dx: ð22Þ

The integrand has a single relevant saddle point x1 ¼ 0

with the steepest descent thimble J 1 ¼ eiπ=4R and ascent
thimble K1 ¼ e−iπ=4R (see the top panels of Fig. 2). As the
saddle point is located on the real line, the ascent thimble
intersects the real line. Along the thimble, the integral
simplifies to the Gaussian integral

I ¼ eiπ=4
Z

∞

−∞
e−u

2

du ¼ ð1þ iÞ
ffiffiffiffiffiffiffiffi
π=2

p
: ð23Þ

Note that when applying Picard-Lefschetz theory to the
real part of the integrand,

Re½I� ¼
Z

∞

−∞
cosðx2Þdx ¼

ffiffiffiffiffiffiffiffi
π=2

p
; ð24Þ

we find that the real line is already the optimal integration
domain. The real line is written as an infinite set of steepest
descent contours corresponding to the saddle points on the
real line xn ¼ � ffiffiffiffiffiffi

nπ
p

(see the bottom panels of Fig. 2), each
corresponding to the maxima and minima of the integrand,
running between the zero crossings of cos x2. At the zero
crossings, the real part of the exponent h diverges to −∞.
The infinite set of real relevant saddle points resums to a
single complex saddle point yielding the desired resultffiffiffiffiffiffiffiffi
π=2

p
after taking the real part.

As we see from this example, the Picard-Lefschetz
analysis of a real integral can be dramatically improved
by introducing an imaginary part to the integrand, i.e.,

Z
fðxÞdx ¼ Re

�Z
ðfðxÞ þ igðxÞÞdx

�

¼ Re

�X
j

Z
J j

ðfðxÞ þ igðxÞÞdx
�
: ð25Þ

We have the freedom to select a suitable imaginary part g.
It is generally desirable to formalize the problem with a
minimal number of roots of the integrand on the original
integration domain, as these generally lead to singularities
in the h-function and additional saddle points.

A. Gaussian selection kernel

Now, let us apply these insights to the spherical Bessel
transform of the Gaussian selection kernel,

FðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ðr−μÞ2
2σ2 ; ð26Þ

centered at μ with the standard deviation σ. In this paper,
I will generally assume the kernel to have only significant
support for positive proper distances, i.e., μ ≫ σ. For the
spherical Bessel transform

F lðkÞ ¼
Z

∞

0

FðrÞjlðkrÞdr; ð27Þ

we can distinguish two regimes related to the qualitative
behavior of the spherical Bessel function. As we saw in the
previous section, the Bessel function jlðxÞ vanishes for
x ¼ 0, and slowly rises to reach its first peak at roughly
x ¼ lþ 1=2, after which the Bessel function starts to
oscillate (see Fig. 1 for the first few spherical Bessel
functions). Consequently, when μk < aðlþ 1=2Þ (Regime
I) for an order unity constant a, the selection kernel
overlaps with the first regime. In this case, the integrand
FðrÞjlðkrÞ is a bell-shaped curve that I evaluate with
conventional integration schemes. For μk > aðlþ 1=2Þ
(Regime II), the selection kernel overlaps with the oscil-
latory part of the Bessel function. In this paper, I improve
the behavior of this integral with the Picard-Lefschetz
method. See Fig. 3 for a sketch of the two regimes. In this
paper, I use the constant a ¼ 1.
Just like the cos x2 example discussed in the previous

section, the integral over the spherical Bessel function is
unaffected by a Picard-Lefschetz deformation. The original
integration domain ð0;∞Þ is already optimal in the Picard-
Lefschetz sense. The spherical Bessel function has an
infinite number of critical points and zero crossings. I
can simplify the complex structure of the integrand by
replacing the spherical Bessel function with the real part of
the spherical Hankel function,

F lðkÞ ¼ Re
�Z

∞

0

FðrÞhð1Þl ðkrÞdr
�
; ð28Þ

where hð1Þl ðxÞ ¼ jlðxÞ þ iylðxÞ is the spherical Hankel
function of the first kind and yl denotes the spherical
Bessel function of the second kind. As we can see in Fig. 4,
the spherical Bessel function has many critical points on the

FIG. 3. A sketch of the bell-shaped (Regime I) and the
oscillatory regime (Regime II) in the k − l plane.
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real line. These are absent in the spherical Hankel functions
of the first kind. In the limit of large jxj, the spherical
Hankel function approaches the asymptotic

hð1Þl ðxÞ ∼ eiðx−πð1þlÞ=2Þ

x
; ð29Þ

which indeed does not vanish for finite x in the com-
plex plane.
Writing the integrand FðrÞhð1Þl ðkrÞ as an exponent

ehðrÞþiHðrÞ with the real h and imaginary part H, we find
that for large kr, the h-function assumes the asymptotic
form

hðuþ ivÞ ∼ ðv − kσ2Þ2 − ðu − μÞ2
2σ2

−
lnðu2 þ v2Þ

2

−
k2σ2

2
−
1

2
ln 2πσ2k2; ð30Þ

with r ¼ uþ iv, which is independent of the multipole
moment l. When ignoring the logarithmic contribution,2

the h-function has a unique saddle point

rs ∼ μþ ikσ2: ð31Þ

See Fig. 5 for an illustration of the structure of the integrand
FðkÞjlðkrÞ in the complex r-plane. At the saddle point, the
integrand assumes the form

N ¼ FðrsÞhð1Þl ðkrsÞ ∼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
k2σ2
2
þiðkμ−π

2
lÞ

ikμ − k2σ2
: ð32Þ

The first- and second-order derivatives of the exponent
approach

α ¼ ∂ lnFðrÞhð1Þl ðkrÞ
∂r

				
r¼rs

∼ −
1

μþ ikσ2
; ð33Þ

β ¼ ∂
2 lnFðrÞhð1Þl ðkrÞ

∂r2

				
r¼rs

∼
1

ðμþ ikσ2Þ2 −
1

σ2
: ð34Þ

The higher-order derivatives decay as

∂
n lnFðrÞhð1Þl ðkrÞ

∂rn

				
r¼rs

∼
ð−1Þnþ1n!
ðμþ ikσ2Þn : ð35Þ

Note that the second-order derivative jβj dominates over
first- and higher-order derivatives in rs, as rs is very close to
the true saddle point of the exponent.

FIG. 4. The analytic continuation of the spherical Bessel function jlðkrÞ (top) and the spherical Hankel function of the first kind

hð1Þl ðkrÞ (bottom) in the complex r plane, with their saddle points (red points) for k ¼ 5 and l ¼ 8. The left panels plot the analytic
continuation. The right panels plot the real part of the exponent, the h-function.

2Note that the logarithm in h does not appear when considering
the selection kernel FðrÞ ↦ rFðrÞ. This notwithstanding, I prefer
to use the Gaussian selection kernel as it leads to an easier
generalization to more general selection kernels using radial
bases function interpolation theory.
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Picard-Lefschetz theory provides the optimal deformation
of the oscillatory integral in terms of a set of steepest descent
contours. By Cauchy’s theorem, the deformation will not
alter the integral. However, in practice, the implementation of
an integral along the steepest descent contours can be delicate
(for a numerical implementation see https://p-lpi.github.io/
and [22]). In this paper I will instead, inspired by Picard-
Lefschetz theory, propose an approximation of the descent
contour that is easy to implement numerically. Explicitly, I
propose to shift the original integration domain ð0;∞Þ to the
contour ðikσ2; ikσ2 þ∞Þ,

F lðkÞ ¼ Re

�Z
∞þikσ2

ikσ2
FðrÞhð1Þl ðkrÞdr

�
; ð36Þ

removing most of the oscillations and making the integrand
decay exponentially away from the saddle point. See Fig. 6

for an illustration of the integrand evaluated along the real
line and the shifted integration domain. This shift is easier to
implement than the exact deformation onto the descent
contours. Note that we might as well extend the integration
domain to −∞þ ikσ2 as the integrand is insignificant for
negative r,

F lðkÞ ¼ Re

�Z
∞þikσ2

−∞þikσ2
FðrÞhð1Þl ðkrÞdr

�
: ð37Þ

This equation is exact, assuming the selection kernel is
insignificant for negative proper distances, regardless of the
asymptotic expansion, as the spherical Hankel function

hð1Þl ðxÞ has only a single pole at the origin (corresponding
to the divergence of the spherical Bessel function of the
second kind ylðxÞ in the limit x → 0). This deformed integral

FIG. 5. The analytic continuation of the combination FðkÞjlðkrÞ for the Gaussian selection kernel with μ ¼ 10 and σ ¼ 1 for k ¼ 5
and l ¼ 8with the saddle point (red point) and the asymptotic steepest descent and ascent contours (blue curves). The left-panel plots the
analytic continuation. The right-panel plots the real part of the exponent, the h-function.

FIG. 6. The real part of the integrand along the original (left) and deformed integration domain (right) for l ¼ 8, k ¼ 5, μ ¼ 10
and σ ¼ 1.
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can be used to speed up the evaluation of the angular power
spectrum CABðlÞ. In particular, for numerical purposes, the
integration domain in r can be restricted to a small interval
centered at the approximate saddle point.
It is tempting to claim that Eq. (36) is not only correct

when the integrand is oscillatory (Regime II) but also when
the integrand follows a bell-shaped curve (Regime I).
Although this is formally true, the singularity at the origin
and the rapid divergence at the peak of the Gaussian kernel
in the complex plane lead to numerical instabilities in
Regime I. For this reason, it is preferable to evaluate the
spherical Bessel transform directly in Regime I using
Eq. (14) and apply the Picard-Lefschetz definition using
Eq. (36) in Regime II.
The Picard-Lefschetz method can generally be applied to

the spherical Bessel transformations of analytic selection
kernels. I prefer to restrict the present analysis to the
Gaussian kernel, as it leads to a particularly simple defor-
mation of the integration domain. In particular, the same
method applies to integrals of the form

R
rnFðrÞjlðkrÞdr, as

the introduction of a polynomial does not significantly alter
the structure of the analytic continuation of the integrand
in the complex plane. More general selection kernels can
be constructed as a linear combination of these Gaussian
features (see the next section and the Appendix). When the
selection kernel is the result of numerical computation, the
analytic continuation is not available and we will need to
resort to interpolation functions anyway.
The Picard-Lefschetz method is easily extended to

integrals involving the nth order derivative of the spherical
Bessel function, using the recursion relation

∂jlðxÞ
∂x

¼ −
jlðxÞ
2x

þ 1

2
ðjl−1ðxÞ − jlþ1ðxÞÞ; ð38Þ

and the observation that the proposed complex deforma-
tion is independent of l. This makes the method equally
applicable to numerically more challenging cases including
the contributions from redshift-space distortions and
Doppler effects.

B. General selection kernel

In the previous section, I studied the spherical Bessel
transform of the Gaussian selection kernel. We here extend
our study to the linear combination

FðrÞ ¼
XN
j¼1

ωjφðr − μjÞ ð39Þ

of the Gaussian basis function

φðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
x2

2σ2 ð40Þ

centered at μj, with the weights ωj. These curves cover a
large space of functions on the real line while keeping tight

control of their analytic continuations. In fact, using radial
basis function interpolation theory, we can efficiently
interpolate a general set of data points FðμjÞ ¼ vj, with
a matrix equation

ω ¼ M−1v: ð41Þ

with theweightsω¼ðω1;…;ωNÞ, thevalues v¼ðv1;…;vNÞ,
and the interpolation matrix Mi;j ¼ φðjμi − μjjÞ. The inter-
polation matrix M is invertible when the basis function is
strictly positive definite. This condition is satisfied by the
Gaussian basis function. See theAppendix for a brief sketch of
radial basis function interpolation theory.
Using the Gaussian representation of the selection

kernel, we can evaluate the spherical Bessel transform
using the same deformation of the integration contour,

F lðkÞ ¼ Re

"Z
∞þikσ2

−∞þikσ2

XN
j¼1

ωjφðr − μjÞhð1Þl ðkrÞdr
#
; ð42Þ

in Regime II. Along the deformed integration domain, the
integrand decays exponentially, leading to a quick evalu-
ation with standard numerical methods. In f Regime I, the
integrand does not oscillate. Here, I evaluate the integral
using conventional integration techniques such as the
Gaussian quadrature method.

C. Saddle point approximation

In both Regime I and Regime II, the spherical Bessel
transform of the Gaussian selection kernel is expressed in
terms of an integral over a bell-shaped integrand. This
enables the estimation of the integral with a saddle point
approximation. In order to make the approximation more
accurate, I refine Regime II into parts:

(i) Regime I (μk < ðlþ 1=2Þ): I expand the spherical
Bessel function jlðxÞ around the point x ¼ lþ 1=2
to obtain the Gaussian approximation

jlðkrÞ ∼Meγðkr−l−1=2Þþ1
2
δðkr−l−1=2Þ2 ; ð43Þ

with M ¼ jlðlþ 1=2Þ, γ ¼ ∂ ln jlðxÞ=∂xjx¼lþ1=2

and δ ¼ ∂
2 ln jlðxÞ=∂x2jx¼lþ1=2. This Gaussian ap-

proximates the spherical Bessel function up to the
first peak (see Fig. 7). The spherical Bessel trans-
form of the Gaussian assumes the form

F l ∼M
Z

∞

−∞
FðrÞeγðkr−l−1=2Þþ1

2
δðkr−l−1=2Þ2dr: ð44Þ

Alternatively, we can perform a saddle point
approximation (like in Regime II) at the approximate
saddle point rs ¼ μ. This saddle point approxima-
tion becomes increasingly accurate for small σ.
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(ii) Regime IIa (ðlþ 1=2Þ ≤ μk < 2ðlþ 1=2Þ): I appro-
ximate the spherical Bessel transform with the
saddle point approximation

F lðkÞ ≈ Re

�
N

Z
∞

−∞
eαxþ1

2
βx2dx

�
ð45Þ

¼ Re

"
N

ffiffiffiffiffiffi
2π

−β

s
e−

α2

2β

#
: ð46Þ

where N is defined as the integrand FðrÞjlðkrÞ and
where α and β denote the first- and second-
order derivatives of the logarithm of the integrand
lnFðrÞjlðkrÞ at the approximate saddle point
rs ¼ μ. This is a good approximation for small σ.
Higher-order corrections can be included by ex-
panding the exponent lnFðrÞjlðkrÞ further around
the point rs. Note that this approximation will fail for
large l, as the integral will be dominated by an interval
around r ¼ ðlþ 1=2Þ=k (the Limber approximation).

(iii) Regime IIb (2ðlþ 1=2Þ ≤ μk): I approximate the
spherical Bessel transform again with the saddle
point approximation (45) and (46), where now N is

defined as the integrand FðrÞhð1Þl ðkrÞ and α and β
are the first- and second-order derivatives of the

logarithm of the integrand lnFðrÞhð1Þl ðkrÞ at the
approximate saddle point rs ¼ μþ ikσ2. This is a
good approximation for small σ. Higher-order cor-
rections can be included by expanding the exponent

lnFðrÞhð1Þl ðkrÞ further around the saddle point.
Note that this approximation works best for small standard
deviation σ and small multipole moments where the Limber
approximation is not an accurate estimate of the spherical
Bessel transform.
For the general selection kernel, built out of Gaussian

basis functions, I estimate the spherical Bessel transform as
a sum over the approximation of the Gaussian kernels. In
Regimes IIa and IIb, the saddle point approximation yields

F lðkÞ ≈
XN
j¼1

ωjRe

"
N j

ffiffiffiffiffiffiffiffi
2π

−βj

s
e
−

α2
j

2βj

#
; ð47Þ

with N j, αj, and βj the integrand and the first- and
second-order derivatives of the logarithm of the integrand

lnφðr − μjÞhð1Þl ðkrÞ evaluated in the appropriate saddle
point depending on the regime. This expression involves
one saddle point approximation for every Gaussian basis
function.
Just like the Limber approximation, these saddle

point approximations reduce the angular power spectrum
integral from a three-dimensional integral to a one-
dimensional integral over the Fourier mode k. The saddle
point approximation becomes increasingly accurate with
decreasing standard deviation σ. This leads to the curious
proposal of improving the accuracy by decreasing σ.
However, decreasing σ generally requires a larger set of
basis functions for a fixed-selection kernel.

V. COMPARISON

The accuracy of the proposed Picard-Lefschetz method
and the saddle point approximation can be assessed by
evaluating the spherical Bessel transform of various
Gaussian selection kernels with brute force methods and
comparing the result with the Picard-Lefschetz evaluation.
In the following, I also compare the proposed saddle point
approximation with the Limber approximation and its
extension.
In Fig. 8 we can see the spherical Bessel transform as a

function of k for a range of multipole moments l. The
deformed integral agrees exactly with the original integral
in both Regimes I and II. Note that the result peaks near the
boundary of the two regimes. The Limber approximation
and its extension fail for low multipole moments and
approach the true result as the multipole moment increases,
converging to the asymptotic

F lðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4lþ 2

r
1

kσ
e−

ð1þ2l−2kμÞ2
8k2σ2 : ð48Þ

The saddle point approximation does an excellent job of
capturing the behavior of the exact result, both in Regimes I
and II.
As we increase the width of the selection kernel, the

evaluation of the integral along the deformed integration
domain is still accurate, but the saddle point approximation
starts to fail (see Fig. 9). The fall off of the integrand around
the saddle point rs ¼ μþ ikσ2 is less quick and the integral
increasingly receives contributions of the integration
domain away from the saddle point. Note that both the
Limber approximation and the extended Limber approxi-
mation become increasingly accurate in this regime. The
saddle point and Limber approximations seem to nicely
complement each other. We could improve the accuracy of

FIG. 7. The spherical Bessel function (the black curve) and the
Gaussian approximation of the first peak (the red curve) for l ¼ 5.
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the saddle point approximation by representing the broader
Gaussian as a sum of tighter Gaussian curves using radial
basis function interpolation theory.
The various approximations of the spherical Bessel

transform lead to different approximations of the projection
of the three-dimensional power spectrum to the angular
power spectrum. In Fig. 10, I compare the angular power

spectrum corresponding to the Limber approximation, the
extended Limber approximation, and the saddle point
approximation with the brute force and complex evalua-
tion of the angular power spectrum for a flat ΛCDM
universe with the fractional matter and dark energy content
Ωm ¼ 0.27;ΩΛ ¼ 0.73, the current Hubble parameter
H0 ¼ 67.4 km=s=Mpc, the scalar fluctuation amplitude

(a) l = 1 (b) l = 10

(c) l = 20 (d) l = 30

(e) l = 40 (f) l = 50

FIG. 8. The spherical Bessel transform for a Gaussian selection kernel with μ ¼ 40, σ ¼ 2 for several multipole moments l as a
function of the Fourier mode k. The exact result (the blue curve), the Limber approximation (the green curve), the extended Limber
approximation (the orange curve), the Picard-Lefschetz evaluation (the red curve), and the saddle point approximation (the black points).
The blue, white and green regions correspond to Regimes I, IIa, and IIb.
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σ8 ¼ 0.8, and the scalar spectral index ns ¼ 0.965, pushed
forward to the linear matter power spectrum using the
transfer function of [23].
We clearly see that both the traditional and the extended

Limber approximation agree with the brute force evaluation
of the angular power spectrum for high multipole moments.
The traditional Limber approximation underestimates and
the extended Limber approximation overestimates the power
at small multipole moments. The saddle point approxima-
tion, based on the deformed integral, does a good job of
approximating the angular power spectrum for small multi-
pole moments. This approximation fails for high multipole
moments. It is striking that the saddle point approximation
fails at approximately the samemultipole moment where the
Limber approximation becomes an accurate approximation
of the angular power spectrum. This is related to the
observation that the saddle point approximation at the point
rs ¼ μ in Regime IIa becomes inaccurate for large multipole
moments when the largest contribution to the integral comes
from an interval around r ¼ ðlþ 1=2Þ=k instead of rs ¼ μ
(following the Limber approximation). I can improve

upon the saddle point approximation in Regime IIa by either
improving the approximation of the saddle point or by
finding the saddle point numerically. However, at the
moment, this seems unnecessary seeing as the Limber
approximation is very successful in this particular domain.
For smaller μ, the approximate saddle point approximation at
rs ¼ μ is accurate for larger l, bridging the transition to the
Limber approximation.
In the current setup, the saddle pointþ Limber approxi-

mation is least accurate around l ¼ 40, where the relative
error amounts a few percent. The saddle point approximation
will be less accurate for a larger spread σz. The transition
scale will change as a function of the redshift z. We can
improve the accuracy of the saddle point approximation by
writing the selection kernel as a sum of thinner Gaussians.
The angular power spectrum evaluated with the com-

plexly deformed spherical Bessel transform agrees very
well with the brute force evaluation for all multipole
moments. This numerical evaluation is a good alternative
to the brute force evaluation when evaluating the angular
power spectrum with a three-dimensional integral.

(a) σ = 1 (b) σ = 4 (c) σ = 8

FIG. 9. The spherical Bessel transform for multipole moment l ¼ 10, and μ ¼ 40 for several standard deviations σ as a function of the
Fourier mode k. The exact result (the blue curve), the Limber approximation (the green curve), the extended Limber approximation (the
orange curve), the Picard-Lefschetz evaluation (the red curve), and the saddle point approximation (the black points). The blue, white
and green regions correspond to Regime I, IIa, and IIb.

FIG. 10. Angular auto-power spectrum CðlÞ (left) and the fractional residue jðCexactðlÞ − CapproxðlÞÞ=CexactðlÞj (right) for a Gaussian
selection kernel centered at μ ¼ 1000 Mpc with a standard deviation of σ ¼ 50 Mpc corresponding to a an approximate redshift
z ¼ 0.27 and spread in redshift σz ¼ 0.05. I evaluate the angular power spectrum with a brute force evaluation (the black curve), the
Picard-Lefschetz evaluation (the red curve, both solid and dashed), the Limber approximation (the blue curve), the extended Limber
approximation (the orange curve) and the saddle point approximation (the green curve) of the spherical Bessel transformation.
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VI. CONCLUSIONS

The spherical Bessel transform is often evaluated in
cosmology when projecting the three-dimensional power
spectrum onto the angular power spectrum on the celestial
sphere. This transformation is generally the most expensive
step as it relies on the delicate cancelations of many
oscillations. Historically, the Bessel transformwas estimated
with the Limber approximation that is accurate for large
multipole moments [1]. More recently, this approximation
was extended to include the first derivatives of the selection
kernel in the approximation [4]. Besides these analytic
approximations, several numerical schemes for the evalu-
ation of angular power spectra were developed [14–18].
In this paper, I use Picard-Lefschetz theory to develop an

alternative way to evaluate and approximate the spherical
Bessel transformof aGaussian selection kernel in the complex
plane. This deformation of the problem, inspired by Picard-
Lefschetz theory, resums the oscillatory integral over an
infinite set of saddle points into an integral over a single
bell-shaped curve. This method works for any multipole
moment and leads to anefficient evaluationusing conventional
numerical integration methods. Inspired by the success of this
deformation, I propose a saddle point approximation that
works for a large part of the parameter space, complementing
the traditional Limber approximation and its extension. This
method is especially useful for small multipole moments,
narrow redshift bins, or samples with small redshift overlap,
for which the Limber approximation has a large error.
The most efficient implementation of this method will

likely consist of a combination of the saddle point approxi-
mation and the Limber approximation. The optimal imple-
mentation will likely depend on the details of the survey,
the observable, and the required accuracy. For example, the
accuracy and range of applicability can be improved by
interpolating the radial selection kernels with thinner
Gaussians at the expense of the evaluation speed. This
will be investigated further in a future paper.
The proposed integration method has yielded a significant

improvement over the brute force evaluation of the angular
power spectrum. A detailed comparison of the Picard-
Lefschetz scheme and the corresponding saddle point method
with other proposed schemes for the evaluation of angular
power spectra, such as the Log-FFT and Levin integration
scheme, is beyond the scope of the present paper and will be
left for a future investigation. In such a future investigation, I
will compare the efficiency of this complex proposal with the
schemes, including the ones presented in [19], and publish an
optimized numerical implementation of the complex evalu-
ation of the angular power spectrum in the hope that this will
benefit the general cosmological community.
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APPENDIX: RADIAL BASIS INTERPOLATION
FUNCTION THEORY

Radial basis interpolation is an interpolate method where
the interpolation function is a linear combination of basis
functions (first developed by [24]). Given a set of points
frigNi¼1 and an associated set of function values fðriÞ ¼ vi,
we can construct the radial basis interpolation function

fðrÞ ¼
XN
j¼1

ωjφðjr − rjjÞ; ðA1Þ

where the weights ω ¼ ðω1;…;ωNÞ satisfy the matrix
equation

Mω ¼ v; ðA2Þ

with the vector v ¼ ðv1;…; vNÞ and the interpolation
matrix

M ¼

0
BBBBB@

φðjr1 − r1jÞ φðjr2 − r1jÞ … φðjrN − r1jÞ
φðjr1 − r2jÞ φðjr2 − r2jÞ … φðjrN − r2jÞ

..

. ..
. . .

. ..
.

φðjr1 − rN jÞ φðjr2 − rN jÞ … φðjrN − rN jÞ

1
CCCCCA:

ðA3Þ

The interpolation matrix is invertible when the basis
function φðxÞ is a strictly positive definite function3 [25].
Examples of strictly positive definite basis functions are the
Gaussian function

φðrÞ ¼ e−ðϵrÞ2 ; ðA4Þ

the Lorentzian function

φðrÞ ¼ 1

1þ r2
; ðA5Þ

3A function f∶R → C is strictly positive definite when the
matrix with components Aij ¼ fðri − rjÞ is strictly positive
definite for any set or real numbers r1;…; rN . In practice, we
can often use Bochner’s theorem to asses whether a basis is
strictly positive definite using its Fourier transform.
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the multiquadric function

φðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðϵrÞ2

q
; ðA6Þ

and the bump function

φðrÞ ¼
(
exp

h
−1

1−ðϵrÞ2
i

for r < 1=ϵ;

0 otherwise;
ðA7Þ

with compact support. For strictly positive definite basis
functions, the weights can efficiently be evaluated with the
matrix equation

ω ¼ M−1v: ðA8Þ

See Fig. 11 for an illustration, approximating the function
expð−r4Þ, evaluated on a regularly spaced lattice, with a
sum of regularly spaced Gaussian basis functions.
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