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In this paper, we explore the chaotic signatures of the geodesic dynamics for particles moving in the
slowly rotating Hartle-Thorne spacetime; an approximate solution of vacuum Einstein field equations
describing the exterior of a massive, deformed, and slowly rotating compact object. We employ a numerical
study to examine the geodesics of prolate and oblate deformations for generic orbits and find the plateaus of
the rotation curve, which are associated with the existence of Birkhoff islands in the Poincaré surface of the
section, where the ratio of the radial and polar frequency of geodesics remains constant throughout the
island. We investigate various phase-space structures, including hyperbolic points and chaotic regions in
the neighborhood of resonant islands. Moreover, chaotic behavior is observed to be governed by the
stickiness phenomenon, where chaotic orbits remain attached to stable ones for an extended duration before
eventually diverging and are attracted toward the surface of the neutron star. The precision of the numerical
integration used to simulate the particle’s trajectories plays a crucial role in the structure of the Poincaré
surface of the section. We present a comparison of several efficient structure-preserving numerical schemes
of order four applied to the considered nonintegrable dynamical system and we investigate which schemes
possess the canonical property of the Hamiltonian flow. In particular, we compare the performance of the
symplectic Runge-Kutta integrator with the G-symplectic general linear method. Among the class of
nonsymplectic integrators, we employ the explicit Runge-Kutta method and an explicit general linear
method with a standard projection technique to project the numerical solution onto the desired manifold.
The projection scheme admits the integration without any drift from the desired manifold and is
computationally cost effective. We are concerned with two crucial aspects; long-term behavior and
CPU time consumption.
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I. INTRODUCTION

Compact objects such as neutron stars and black holes
(BHs) are ideal astrophysical laboratories to test the strong
gravitational-field regime predicted by general relativity.
There are two classes of spacetime that may represent the
exterior of compact objects; those that model spherical
objects such as Schwarzschild and Kerr metrics, and
those that depict the deformed compact objects, like the
Hartle-Thorne (HT) metric. The Schwarzschild spacetime
represents either a nonrotating BH or the exterior of the

nonrotating star. In contrast, the Kerr metric describes a
rotating star, but only to linear order in the star’s angular
velocity Ω. At higher orders, the multipole moments of the
gravitational field created by a rapidly rotating compact star
differ from those of a BH. This difference in the multipolar
structure has important consequences for the observation of
the gravitational and electromagnetic radiations from these
objects. In principle, the gravitational waves emitted by
particles around compact stars or BHs can be used to map
the multipolar structure of the corresponding spacetime and
check the validity of the no-hair theorem [1,2].
The HT spacetime, introduced by Hartle and Thorne in

1968 [3], describes the structure of vacuum spacetime in
the vicinity of slowly rotating neutron stars, constructed as
a perturbation of a corresponding spherically symmetric
nonrotating solution, with the perturbation being taken up
to second order in the star’s angular velocity Ω. In this
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approximation, the spacetime describing the exterior of a
slowly rotating neutron star is fully described by three
parameters (mass, spin, and quadrupole), with the inner
boundary of the exterior region being given by the stellar
radius R. An invariant comparison of three different models
of neutron stars (the HT slow-rotation approximation, the
exact analytic vacuum solution of Manko, and the numeri-
cal solution of the Einstein equations) shows that the
HT approximation is very reliable for most astrophysical
applications [4]. BHs are considered to be perfect spheres,
while other compact objects like neutron stars may be
slightly deformed by their rotation, hence the HT metric
can be used to model neutron star exteriors where the Kerr
metric may no longer be valid.
The HT spacetime incorporates the Lense-Thirring

effect [5], demonstrates frame dragging, and gives rise
to significant precession effects [6] and thus it has been
particularly employed to deduce several astrophysical
phenomena. Many authors have extensively investigated
the HT spacetime in the literature, exploring various
phenomena such as epicyclic oscillations [7], quasinormal
modes [8], photon orbits and shadow [9]. Additionally,
a ray-tracing algorithm to compute the apparent surface
areas of moderately spinning neutron stars making use of
the HT spacetime has been developed [10]. The non-
integrability of HT spacetime with prolate deformations
for photon orbits [9] and massive particle orbits [11] has
been discussed very recently.
The theoretical study of test particle nonlinear dynamics

in HT spacetime and the existence of strong 2∶3 resonance
[11], opens an interesting application as an explanation of
quasiperiodic oscillation (QPO) observed in x-ray signals
coming form various compact sources. The origin of QPOs
is not yet fully understood, and there are several theoretical
models proposed to explain them, but some connection to
test-particle orbital motion is eminent since the frequencies
of the epicyclic motion around the central compact object are
comparable to observed QPOs frequencies. In the low-mass
x-ray binary systems containing neutron stars the frequen-
cies of observed QPOs range from ∼10−2 Hz up to
∼103 Hz. The high-frequency QPOs, with frequencies in
the range 200–1300 Hz are comparable to the frequencies of
the orbital motion in strong gravity near neutron stars [12].
High-frequency QPOs for the neutron star sources are
usually observed as simultaneous peaks in the X-ray flux
and when two frequencies are detected, they occur with a
fixed small-number ratio, typically 3∶2 (2∶3) [13]. The
observed twin HF QPOs span a large frequency range
following an approximately linear relation between both
QPOs peeks [14]. The frequency ratio in twin HF QPOs
changes in the range of 3∶2 to 5∶4 but a mostly resonant
ratio 3∶2 is observed. Test-particle nonlinear dynamics in
HT metric could play a crucial role for resonance emergence
in the accretion discs oscillation modes around neutron stars,
especially for 3∶2 and other small ratio resonances.

Numerical integration schemes are powerful tools to
explore the behavior of various nonlinear dynamical systems
in theoretical astrophysics; for example in the motion of
relativistic test particles with the presence or absence of
external electromagnetic fields [15–19], as well as general
relativistic systems involving compact binaries consisting of
BHs or neutron stars [3]. These schemes can be classified
into two main types; explicit and implicit methods [20].
Explicit methods compute the solution at a given time
step based solely on the previous time step, while implicit
methods involve solving an equation that depends on both
the previous and current time steps. Numerical methods for
ordinary differential equations (ODEs) can further be cat-
egorized as one-step methods, multistep methods, and
general linear methods (GLMs) [21–23].
The class of problem we are dealing with in this paper

falls in the Hamiltonian systems, which possess various
conserved quantities, including symplecticity of the flow,
energy, and angular momenta, usually known as the first
integrals since they remain constant throughout the system
evolution. Symplectic numerical methods play a crucial
role in accurately simulating the dynamics of Hamiltonian
systems, preserving their inherent properties such as
symplecticity and first integrals [20,24–27]. These meth-
ods, including symplectic Runge-Kutta (RK) and GLMs,
aim to maintain the symplectic structure of the system,
ensuring that the numerical solutions accurately capture the
conservative nature of Hamiltonian dynamics, preserving
energy and phase-space properties [22,28]. The projection
technique [29] can also be applied to enhance the numerical
solution of ODEs with known invariants to stay on a
manifold described by the invariants. The advantage of
this approach is the ability to use explicit methods with
projection techniques, which can conserve the invariants
while having lower computational costs.
In recent times, there has been a growing interest among

researchers in the development of symplectic integrators
for Hamiltonian systems. These integrators are then tested
using BH solutions immersed in a uniform magnetic
field [30–33]. The numerical integrators have also been
introduced and tested for massive particles in nonstandard
spacetimes and post-Newtonian systems in [34–38].
A comparison of explicit methods with the implicit
solution of the discretized equations of motion for charged
particles in electromagnetic fields is presented in [39]. The
performance of the implicit midpoint scheme against the
standard fourth-order RK explicit integrators has been
tested on a number of standard and nonstandard space-
times, using simulations of both photons and massive
particle trajectories [40–42].
The intention of this work is to explore the chaotic

dynamics in the background of a slowly rotating neutron
star based on the HT formalism. We explore several
structures in phase space such as Birkhof chains of islands,
chaotic regions, hyperbolic points, and higher-ordered
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islands by analyzing the Poincaré surface of sections (PSs)
and rotation curves. We show that most of the chaotic orbits
are sticky chaotic orbits that remain attached to the stable
orbits for a long period of time. To check the accuracy of
numerical integration used for simulating the time evolu-
tion of equations of motion, we present several efficient
numerical integration techniques, including symplectic
and nonsymplectic schemes. In particular, we compare
the performance of the symplectic RK integrator with the
G-symplectic GLM. Within the class of nonsymplectic
integrators, we use explicit RK integrators and explicit
GLMs, employing a standard projection technique to
project the numerical solution onto the desired manifold.
We compare the performance of numerical integrators in
preserving the qualitative features of the system.
We use the spacelike signature ð−;þ;þ;þÞ, geometric

units G ¼ c ¼ 1, and Greek indices are defined to range
from 0 to 3.

II. CHAOTIC DYNAMICS IN HT SPACETIME

In this section, we explore the dynamical features of the
system consisting of HT spacetime.

A. The HT spacetime

The HT metric is an approximate vacuum solution of
Einstein field equations that describes the exterior of a
slowly rotating deformed compact object and constructed
perturbative in terms of the rotation rate. It is fully
characterized by the source mass M, angular momentum
J ¼ a=M (up to the second order), and quadrupole moment
q (up to the first order), and given by [3,43]

ds2 ¼ −f1
�
f1þ 2f2P2ðθÞg −

2a2

r4
ð2cos2θ − 1Þf−11

�
dt2

þ f−11

�
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2a2

r4
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þ r2½1 − 2f3P2ðθÞ�½dθ2 þ sin2θdϕ2�

−
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where P2ðθÞ ¼ ð3 cos2 θ − 1Þ=2 is the Legendre polyno-
mial and a denotes the spin parameter. The unknown
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The associated Legendre functions Q1
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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where x ¼ ð rM − 1Þ. The quadrupole mass moment q mea-
sures the deviation from a spherical gravitational source. The
HT spacetime (1) corresponds to an oblate object when the
quadrupole moment is positive (q > 0), and to a prolate
object when it is negative (q < 0). For q ¼ 0 ¼ a, the HT
spacetime (1) leads to the Schwarzschild one. The Kerr
spacetime with angular momentum up to the second order,
using the Boyer-Lindquist coordinates, can be obtained from
HT spacetime (1) by taking q ¼ J2 and using the coordinate
transformations

rBL ¼ r −
a2

2r3
½ðrþ 2MÞðr −MÞ

þ ðr − 2MÞðrþ 3MÞcos2θ�; ð7Þ

θBL ¼ θ −
a2

2r3
ðrþ 2MÞ cos θ sin θ: ð8Þ

The HT metric (1) can also be reduced to the Erez-Rosen
metric by appropriate coordinate transformation [44]. There
are two different ways to proceed when working with HT
spacetime. The first approach is to use the metric (1) “as it is”
(truncated at a given Ω-order), without making any further
approximations in the geodesic equations. The second way is
to expand all equations to the same perturbative order as
the metric [45]. We will use the first approach in order to
integrate the equations of motion. Furthermore, we will
assume that the HT spacetime ends at the surface of the
compact object.
Another metric closely related to the HT metric is the

Kerr-like metric with mass quadrupole moment, which is
an approximate solution of Einstein field equations [46].
This metric describes the geometry of the spacetime
surrounding a spinning compact object, where the mass
quadrupole moment represents the deformation from a
spherical object. Similar to the HT metric, the Kerr-like
metric also has three parameters to characterize the space-
time (mass, spin parameter, and mass quadrupole moment).
The transformation between these two metrics using Taylor
expansion is developed by Frutos [47]. The study of chaotic
behavior in the context of this non-Kerr metric has been
explored in [48].
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1. Geodesic motion in HT spacetime

The motion of a neutral test particle with mass m can be
described by the Hamiltonian given by

H ¼ 1

2m
gαβpαpβ; ð9Þ

where pα ¼ muα denotes the four-momentum, uα ¼ dxα
dτ is

the four-velocity, and τ is the proper time of the particle.
Equations of motion of particles can be found using
Hamiltonian formalism written in the form

dxα

dζ
≡muα ¼ ∂H

∂pα
;

dpα

dζ
¼ −

∂H
∂xα

; ð10Þ

where ζ ¼ τ=m is the affine parameter. Due to stationary
and axisymmetric properties of the spacetime (1), the
Hamiltonian (9) is independent of the coordinates t
and ϕ. Therefore, the momenta pt and pϕ corresponding
to these coordinates remain constant during the motion.
This indicates that both pt and pϕ are integrals of motion,
which ensures that the specific energy E ¼ E=m and
specific angular momentum L ¼ L=m stay conserved
throughout the motion and can be expressed as

pt

m
¼ gttut þ gtϕuϕ ¼ −E; ð11Þ

pϕ

m
¼ gϕϕuϕ þ gtϕut ¼ L: ð12Þ

Since the Hamiltonian system (9) is an autonomous system
(dH=dτ ¼ ∂H=∂τ ¼ 0), thus H itself is a third integral of
motion, given by H ¼ −m=2, because gαβpαpβ ¼ −m2.
The first two integrals of motion [(11) and (12)] can be used
to reduce the number of degrees of freedom from four to
two. Thus, the motion can be restricted to the meridian
plane, i.e., the r − θ plane.
The phase space of test particle dynamics in the Kerr

spacetime contains only the main island of stability as a
consequence of its integrability, with no other structures
present. In contrast to the Kerr metric, the HT metric does
not possess the Carter constant, and such symmetry is
perturbed by the presence of quadrupole parameter q. The
HT metric is a non-Kerr rotating spacetime with higher-
order moments (quadrupole) deviating from a Kerr space-
time, HT geodesics are nonintegrable and dynamics of test
particles can exhibit chaotic behavior.

B. Nonlinear dynamics

When dynamical systems are subject to nonintegrable
perturbations, they display special characteristics in con-
trast to their unperturbed counterparts. One significant
effect is the emergence of chaotic motions in specific areas
of the phase space, triggered by the perturbation.
Deterministic chaos may completely dominate the

dynamics, depending on the strength of the perturbation.
However, even in the slightly perturbed systems with
negligible chaos, one can still observe significant non-
integrable effects in the vicinity of resonances.
The transition from integrability to nonintegrability

is governed by two fundamental theorems, namely
Kolmogorov-Arnold-Moser (KAM) theorem [49] and
Poincaré-Birkhoff theorem [50]. Both theorems play an
important role in Hamiltonian systems perturbed by small
parameters. In a Hamiltonian system consisting of N
oscillators, there exists a 2N-dimensional phase space
where an N-dimensional torus is embedded, restricting
the movement of a test particle to this torus.
According to the KAM theorem, if the bounded motion

of an integrable Hamiltonian system H0 is perturbed by a
smallΔH0 such that the total HamiltonianH ¼ H0 þ ΔH0

becomes nonintegrable, for small perturbations, most of the
nonresonant invariant tori that are far enough from reso-
nances are deformed, but they are not destroyed. The newly
deformed tori are called KAM tori, and the corresponding
PSs closely resemble that of the corresponding integrable
system. However, the dynamics of the system in the vicinity
of resonances can vary significantly, which may affect the
measurable properties of the system.
The Poincaré-Birkhoff theorem states that when a system

undergoes a small deviation from an integrable system, the
resonant invariant curve breaks apart, and only a finite even
number (2 km, where k∈N) of the periodic points of the
period m survive. This means that only 2k periodic orbits
remain from the resonant torus, half of which are stable and
the other half are unstable. By visualizing a closed curve
that passes through all surviving points of the disintegrated
resonant curve, the stable and unstable periodic points
alternate along the curve, creating the Birkhoff chain. Each
stable periodic point is surrounded by a set of nested KAM
curves, forming an island of stability. In a resonant case, the
phase orbit visits all m islands of the n=m-resonance by
moving sequentially to the next nth island along the
aforementioned closed curve. At every step, it winds and
eventually creates the KAM curves inside each island.

1. Signatures of chaos

In order to gain better insight into orbital phenomena and
chaotic imprints, well-established tools can be utilized to
analyze the phase space structure of orbits. A widely used
technique is the PS, which is a lower-dimensional subspace
of phase space in a dynamical system, constructed by
successive intersections of geodesics with a chosen two-
dimensional slice of the torus. Whenever the orbit intersects
the slice, it generates a single point on that slice. The
complete PS is produced by a sufficient number of
successive intersections, with strictly positive or negative
directions of the intersection, as shown in Fig. 1. The
presence of chaos can be instantly revealed by analyzing
the structure of the PS.
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The regular dynamics is characterized by periodic and
quasiperiodic orbits located on invariant tori, while the
chaotic orbits fill the available domain in phase space
densely. If the perturbation parameter of a two-dimensional
nonintegrable system is small enough, the Birkhoff islands
of stability are extremely thin and their detection on the
surface of the section is very difficult. Thus, one needs to
find suitable initial conditions of orbits that will eventually
result in a chain of islands on the surface of the section.
However, a more advanced method can be used to detect
these islands. The islands of stability lie around a resonant
periodic orbit which is defined by a commensurate ratio
of frequencies νϑ ¼ ωr=ωθ ¼ n=m, where ωr and ωθ are
radial and vertical frequencies, and n, m are integers. This
frequency ratio identifies not only the resonant periodic
orbit of the island, which is a collection of m stable points
on a surface of the section but also all the KAM orbits
belonging to the particular chain of islands around them.
Although each distinct KAM orbit on an island is distin-
guished by a different pair of frequencies ωr and ωθ, all of
them share the same commensurate ratio νϑ with the central
periodic orbit [51,52].
The existence of KAM invariant tori within regular

islands in two-dimensional area-preserving maps results
in the division of phase space into separate regions.
Within these regions, orbits in the chaotic sea will never
enter any island, and periodic and quasiperiodic orbits

residing within an island will never transition to the chaotic
sea [53,54]. The presence of embedded islands within the
chaotic sea constitutes a fractal structure, and it is chal-
lenging to determine exactly the island’s boundary [55].
The islands are surrounded by smaller islands, which are in
turn surrounded by higher-order islands that eventually
form a chaotic layer. The hierarchical islands-around-
islands structure continues infinitely and repeats itself at
any arbitrarily small scale [56].
In a nonintegrable dynamical system, both regular and

chaotic trajectories may coexist in the phase space. The
standard method for qualitatively investigating nonlinear
dynamics involves constructing PS which allows us to
visually discriminate between the chaotic and regular
regime of motion. In certain weakly chaotic dynamical
systems, the PS seems to be quite regular, with no
prominent indication of chaos. However, a detailed exami-
nation of the structures of PSs is crucial for uncovering
signs of chaos. Despite the fact that the PSs display all the
dynamical features, such as Birkhoff chains of islands
or deformed tori, these regions can be extremely small in
phase space and difficult to observe. Thus, detecting these
structures directly in the PS would be challenging since the
readability of the PS decreases rapidly with the increasing
density of depicted trajectories. However, there is a power-
ful tool, the rotation number, that enables us to quantita-
tively analyze the properties of chaos. The rotation number
corresponds to the PS and computes the ratio of funda-
mental frequencies. The classification of orbits can be
determined using the rotation number. Rational rotation
numbers indicate periodic orbits, which form closed curves
on the torus and are known as resonant orbits. In contrast,
irrational rotation numbers suggest quasiperiodic orbits
that densely cover the torus. Most importantly, the rotation
numbers can also identify the signatures of chaos, even if
the chaotic behaviors are very weak [51]. In order to
calculate the rotation number, first we identify the central
invariant point u0 of the PS. This is the fixed point
corresponding to the periodic orbit which crosses the
equatorial plane at only one point with pr=m ¼ 0 moving
towards the positive part of the z-axis, see the green circle
in Fig. 1. Then, we define the position vector ri of the
ith crossing point ui of a phase orbit on a PS as

ri ¼ ui − u0; ð13Þ

indicating its position relative to u0. Using these vectors,
we compute the so-called rotation angle that is subtended
clockwise by them, given by

ϑi ¼ ∠ðriþ1; riÞ; ð14Þ

as shown in Fig. 1 for four points ui that belong to the same
PS. This angle (14) is computed for each consecutive pair
of piercings. Summing up all the angles ϑi and divided

FIG. 1. PSs for θ ¼ π=2, pr=m ¼ 0, pθ > 0, and parameters
q=M3 ¼ 1.5, E ¼ 0.95, L=M ¼ 3, and J=M2 ¼ 0.5. The central
part of the figure represents the procedure to compute the rotation
number. The green circle u0 indicates the position of the invariant
point, while the black arrows point towards the position of the
crossing in the PS, denoted with black circles. The PS in red color
corresponds to the 2=5-resonance.

STRUCTURE-PRESERVING NUMERICAL SIMULATIONS OF … PHYS. REV. D 108, 103006 (2023)

103006-5



by 2πn, where n represents the number of piercings that
occurred in the corresponding PS, we obtain a so-called
rotation number, given by

νϑ ¼ lim
n→∞

1

2πn

Xn
i¼1

ϑi; ð15Þ

which measures the average fraction of the orbit [57]. The
rotation number usually appears to grow monotonically as
long as we cross KAM curves that encircle the central fixed
point u0. On a resonant island, the rotation number remains
fixed at a constant rational value, which is characteristic of
the corresponding island of stability. For the chaotic regions
of the nonintegrable system, the rotation number exhibits
irregular fluctuations from one point to another. Therefore,
its behavior appears to be smooth only in the area occupied
by regular orbits. In a slightly perturbed integrable system,
the chaotic layers surrounding the Birkhoff chains of
islands are extremely thin, making the fluctuating behavior
of the rotation number difficult to observe [48,51,58].
The usefulness of the rotation number goes beyond its

ability to identify the dynamics of a system. It serves as an
indicator of various phenomena. For instance, a plateau in
the rotation number signals the presence of a constant ratio
of the orbital frequencies, which then translates into a
constant pattern of frequencies in the emitted gravitational
waves. An observation of such a constant pattern would
constitute a clear signal of the presence of chaos, and
therefore a novel test of general relativity and Kerr
hypothesis [51,59,60].
By plotting the rotation number as a function of the

distance of initial conditions from the central periodic
orbit u0 of the main island of stability in a specific
direction, we obtain the so-called rotation curve. In
integrable systems such as the Schwarzschild or Kerr
metric, this curve is a smooth and strictly monotonic
function. When the system is perturbed, the smoothness
of the rotation curve is disrupted, and it exhibits an
approximate monotonic behavior. Indeed, the rotation
curve reveals clear indications of chaos.
The details of the PS of a nonintegrable Hamiltonian

system close to resonances are quite different from those of
integrable systems. Resonant chains are in principle detect-
able in terms of spectral analysis of the observed electro-
magnetic and gravitational wave signals coming from
systems like extreme-mass ratio inspirals [51]. The pres-
ence of Birkhoff chains enables us to differentiate between
a perturbed system and a regular one. Moreover, the
position and the width of the chains also reflect other
properties of the system.
The PSs presented in Fig. 1 seem to be quite regular,

filled densely with KAM curves, and display only one thin
island of stability. There is no prominent indication of
chaos. However, the existence of the Birkhoff chain, with
multiplicity 5 (labeled as 2=5), implies that the system is

indeed nonintegrable and therefore chaos may be present.
In fact, the PSs should be densely filled with other Birkhoff
chains of islands as well, but their detection demands a
very detailed scan of the PS. A detailed structure of the PS
at the left tip of the main island of stability is presented in
the upper panel of Fig. 2, where chaotic behavior can
be observed. An island of stability associated with the
2=7-resonant orbits, where νϑ ¼ 2=7, is embedded in a sea
of scattered points. The scattered points define the chaotic
region, while the continuous curves define the limit of the
regular domain. Moving along the pr=m ¼ 0 axis to the
right, small islands of stability and hyperbolic points
separating regions are identified. It can be seen clearly
that the broken tori form the small chains of Birkhoff
islands, the hyperbolic point B separates the chaotic and
regular regions, and the hyperbolic point A is in the highly
chaotic zone. The islands with lower multiplicity are more
prominent than the islands with higher multiplicity. The
multiplicity corresponds to the denominator of the prime
number ratio associated with the rotation number. The large
white spaces above and below the hyperbolic points in the
PSs are embedded islands orbiting the main one.
The stickiness phenomenon, first reported by

Contopoulos [57], is a fundamental feature of the quasi-
integrable Hamiltonian system that emerges from the
coexistence of regular and chaotic regions. This coexist-
ence results in the formation of regions that act like fractal
scattering zones, situated near the boundaries of islands
where chaotic trajectories are compelled to exhibit regular
behavior. Chaotic trajectories spend a long time in the
vicinity of the island after crossing the barrier of a non-
hyperbolic region, see upper panel of Fig. 2. In order to
better analyze the chaotic features, the rotation curve along
the line pr=m ¼ 0 of the upper panel of Fig. 2 is shown in
the lower panel of the same figure. The regions dominated
by regular motion are depicted as relatively smooth seg-
ments along the curve, whereas the chaotic regions are
identifiable by the presence of distinct portions where the
rotation curve exhibits fluctuations. In specific smooth
segments of the rotation curve, the rotation number remains
constant. These segments resemble “plateaus” within the
rotation curve. Distinct plateaus in the lower panel corre-
spond to the islands of stability associated with distinct
resonances in the upper panel. The most prominent plateaus
are labeled and identified by their corresponding rotation
number values. The rotation curve exhibits a relatively
prominent jump at r=M ∼ 4.795 indicating that the empty
spaces above and below the hyperbolic point B correspond
to the 1=3 resonances.
Another example for q=M3 > 0 showing the structure of

the phase space is presented in Fig. 3 and the corresponding
rotation curve is depicted in the bottom panel. The large
island of stability corresponding to 2=7-resonance is
embedded in a chaotic layer. After the scattered points
on the right of 2=7-resonance, there is a region of regular
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orbits with small islands of stability and unstable periodic
points, see black arrows in the upper panel. The irregular
variations observed in the rotation number show the
chaoticity of the orbits that surround the main island.
The rotation curve shows a plateau belonging to a 2=7
resonant island between irregular variations and changes
abruptly when crossing the unstable periodic points, see
black arrows. After the fluctuations on the right of the 2=7
resonant island, the rotation curve grows like a strictly
monotonic function. The rotation curve has a relatively

prominent jump at r=M ∼ 5.04 which indicates that the
empty spaces above and below the corresponding hyper-
bolic point correspond to the 1=3 resonances.
The sizes and positions of islands depend on both the

physical parameters of the metric (1) and the specific
parameters of the orbit itself. Our analysis reveals that
the most prominent resonant islands, characterized by
their significant width, correspond to 1=3 resonances,
which can be clearly seen from Figs. 2 and 3, represented
by the empty white spaces above and below the hyperbolic
points. However, we can also observe it along the

FIG. 3. Upper panel: a detail of the PS for J=M2 ¼ 0.4,
q=M3 ¼ 1.5, L=M ¼ 3, and E ¼ 0.95. An island of stability
embedded within a chaotic region, corresponding to the 2=7
resonance is shown. The arrows represent the position of the
unstable periodic points associated with other Birkhoff chains.
Lower panel: rotation curve corresponding to the upper panel.

FIG. 2. Upper panel: a magnification of the left tip of the main
island of stability presented in Fig. 1. Various islands of stability
forming Birkhoff chains are shown. Prominent islands of stability
are labeled by the corresponding rotation numbers. The black
arrows point toward the positions of islands of stability, while the
red arrows (A and B) indicate the positions of the hyperbolic
points along the line pr=m ¼ 0. Lower panel: rotation curve
corresponding to the upper panel.
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pr=m ¼ 0 axis at extended distances, such as r=M > 10,
as illustrated in Fig. 4.
The projection of three significant resonances, namely

2=5, 2=7, and 1=3 as depicted in Figs. 1, 2, and 4,
respectively, onto the r − cos θ plane is presented in
Fig. 5. When the particles in resonances are projected into
the r − cos θ plane, they form closed curves that are related
to the oscillations taking place in both the r and θ
coordinates. The resonant orbits no longer sample the
available phase space, in contrast with generic orbits that
cover it densely.
When the quadrupole moment is negative (q=M3 < 0),

the HT spacetime (1) corresponds to the prolate central
object. However, for the prolate case, the structures of
phase space do not change dramatically. There is a main
island of stability, and surrounding it a chaotic sea of
plunging orbits. In particular, a detail of the surface of
section (θ ¼ π=2; pθ > 0) for q=M3 ¼ −2 is shown in

Fig. 6. A large island corresponding to the 2=7-resonance is
surrounded by several higher-ordered islands and chaotic
regions. Most of the chaotic orbits presented in Fig. 6 are
plunging orbits that remain attached to the stable orbits for
a long period of time, before separating from the stable
ones and plunging, due to the growing nonlinearities. The
chaotic orbits stick around the higher-ordered islands
before they plunge. In particular, islands of stability are
either embedded in a prominent chaotic layer or enveloped
between KAM curves. The islands of higher multiplicity,
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FIG. 4. PSs for θ ¼ π=2, pθ > 0, and parameters E ¼ 0.955,
L=M ¼ 0.85, q=M3 ¼ 1, J=M2 ¼ 0.5 along the axis pr=m ¼ 0.
The PSs in red color correspond to 1=3 resonances crossing
pr=m ¼ 0.
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FIG. 5. Projection of the resonant orbits into the r − cos θ
plane, corresponding to the orbits with resonances 2=5, 2=7, and
1=3 presented in Figs. 1, 2, and 4, respectively.

FIG. 6. Upper panel: sticky chaotic orbits surrounding the region
of regular orbits for J=M2 ¼ 0.4, q=M3 ¼ −2, L=M ¼ 1.15, and
E ¼ 0.954. There are islands of stability of resonances 9=26 and
6=17 in the regular region. Several higher-ordered islands of
stability are embedded within the sticky chaotic region. Lower
panel: rotation curve corresponding to the upper panel.
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e.g., the islands of stability 9=26 and 6=17 are embedded in
the regular zone.
The rotation curve corresponding to the PSs shown in

the upper panel of Fig. 6 is presented in the lower panel.
The prominent plateaus in the rotation curve belong to the
2=7 (embedded in the chaotic zone) and 6=17 (immersed
in the regular region) resonant islands. However, there
are several narrow plateaus surrounded by rapidly fluc-
tuating intervals of rotation numbers. The rotation curve

experiences an abrupt change at the hyperbolic point
r=M ≈ 4.948, after which it increases monotonically until
reaching the 6=17-resonance. Subsequently, beyond the
6=17-resonance, the rotation curve continues to grow as a
strictly monotonic function.
If we change the value of the quadrupole moment

parameter to q=M3 ¼ −1, we do not see a dramatic change
in the structure of the phase space. There exist chaotic
sticky orbits near the outer boundary of the main island, and
Birkhoff chains appear inside the main island of stability,
see upper panel of Fig. 7. However, the separation between
the regular and chaotic regions is not so clear. Several thin

FIG. 7. Upper panel: a detail of the PS for parameters
L=M ¼ 0.999, E ¼ 0.95, J=M2 ¼ 0.4, and q=M3 ¼ −1. Several
islands of stability immersed in the chaotic zone are shown. The
arrows represent the positions of the islands of stability, while
the numbers show the corresponding resonances along the line
pr=m ¼ 0. Lower panel: rotation curve corresponding to the
upper panel.

FIG. 8. Upper panel: a detail of the PS for parameters
L=M ¼ 0.999, E ¼ 0.95, J=M2 ¼ 0.4, and q=M3 ¼ −1.7. An
island of stability corresponding to resonance 2=7 is shown.
Lower panel: rotation curve corresponding to the upper panel.
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islands of higher multiplicity, labeled with the correspond-
ing resonances, immersed in the chaotic region can be
observed along the line pr=m ¼ 0. The corresponding
rotation curve indicates significant fluctuations when it
crosses the initial conditions associated with chaotic orbits,
see lower panel of Fig. 7. The rotation curve takes the form
of a plateau when crossing resonant islands of stability, and
it changes abruptly when crossing the unstable periodic
points of relatively small resonances. The island corre-
sponding to 6=23-resonance is embedded in the highly
chaotic zone. Figure 7 is a good example to note again that
the islands of stability with lower multiplicity are more
prominent than the higher multiplicity ones. Similar
behavior has also been observed for Zipoy-Voorhees
metric [52]. Lower multiplicity islands of stability are very
important since they are good candidates for detecting non-
Kerr objects by the analysis of the gravitational waves
coming from extreme mass ratio inspirals, even if the
inspiraling smaller compact object might cross infinite
resonances in a bumpy spacetime background during its
inspiral [61].
HT metric quadrupole moment, responsible for deviation

from regular dynamics, is stronger close to the neutron
star’s surface. Consequently, a higher density of PS

structures is expected in the strong gravity region close
to the neutron star’s surface. Another example of the
evolution of the structures in the PSs for q=M3 < 0 is
shown in Fig. 8. The main island of stability is surrounded
by a chaotic layer, where many high-multiplicity islands of
stability are present. The boundary between this chaotic
layer and the region occupied by regular orbits is densely
populated by chaotic orbits. Some chaotic orbits within the
chaotic sea surrounding the main island of stability will
plunge to the neutron star’s surface, while some chaotic
orbits emerging between the islands of stability within the
main island will remain nonplunging. These orbits that
remain close to the boundary of the main island exhibit
stickiness, see the upper panel of Fig. 8. On the left side of
the lower panel of Fig. 8, the irregular variations of the
rotation number confirm the chaoticity of the orbits that
surround the main island of stability. The hyperbolic point
at r=M ≈ 5.115 separates the regular and chaotic regions.
There are several thin plateaus surrounded by rapidly
oscillating intervals of the rotation number. On the right
of these irregular variations, the rotation curve seems to be
strictly monotonic until we reach the 2=7 resonant island.
On the right of the 2=7 resonant island, the rotation number
seems to grow like a strictly monotonic function again.

FIG. 9. PSs for two regular trajectories for θ ¼ π=2, pr=m ¼ 0, pθ > 0, and parameters L=M ¼ 0.6795, E ¼ 0.92579, J=M2 ¼ 0.4,
and q=M3 ¼ −1, plotted using various numerical integrators of order four with integration time τ ¼ 5 × 105, and time step Δτ ¼ 0.1.
The text with each plot indicates the specific numerical integrator employed to plot the depicted trajectories. We demonstrate how the
accuracy of the numerical integration significantly affects the appearance of the PS.

MISBAH SHAHZADI et al. PHYS. REV. D 108, 103006 (2023)

103006-10



The chaotic orbits belonging to the chaotic thin layers,
such as the ones described above, tend to stick near regular
orbits and have significant effects on their frequency
spectrum. As long as the orbits stick close to the regular
orbits, they tend to acquire two main fundamental frequen-
cies similar to those frequencies corresponding to the
regular orbits. When the chaotic orbits move away from
the regular orbits, they lose these two main fundamental
frequencies, and their frequency spectrum becomes domi-
nated by chaotic noise. However, these orbits can once
again approach a regular trajectory, even the one they
initially diverged from, stick around it for a specific period
of time, and once more display two frequencies. If these
regular orbits are associated with resonances, the ratio of
their two fundamental frequencies remains a rational
number for a certain period; otherwise, it becomes irra-
tional. The appearance and disappearance of the two main
frequencies characterize the existence of sticky chaotic
orbits, thus indicating the existence of non-Kerr space-
time. However, detecting this phenomenon is challenging
due to the interference of instrumental noise in gravita-
tional wave signals. Therefore, the observational approach
primarily emphasizes studying regular orbits correspond-
ing to resonances [51].

III. NUMERICAL INTEGRATORS
AND THEIR PERFORMANCE

Numerical methods approximate the exact solutions
and hence introduce numerical errors. The error at each
time step is usually known as discretization error or local
truncation error, which accumulates over the course of the
numerical integration and results in the global error [20].
Numerical methods that produce small global errors have
always been a preferred choice, but they do not always
respect the qualitative features (consistency, stability, con-
vergence) of the problem. The qualitative features of
numerical methods, i.e., consistency, stability, and con-
vergence, have always been the desired and often required
goal of these numerical integrators. A numerical method is
of no use if the numerical solution does not converge to the
exact solution during the course of time. All these criteria
focus on obtaining the quantitatively correct numerical
solutions of the ODEs. However, there exist, classes of
ODEs, where the qualitative behavior of the solution is also
important along with accuracy.
Geometric numerical integration is a specific class of

numerical methods that take into account the geometric
properties of the ODEs being solved. These methods are
designed to preserve certain geometric properties of the

FIG. 10. Logarithmic plots showing the relative error in Hamiltonian for several numerical integrators employed to generate the
regular trajectory (blue) presented in Fig. 9. We demonstrate the growth of numerical errors in the Hamiltonian when employing
different numerical integrators over extended time intervals.
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exact solution, such as energy or momentum, which can be
lost in traditional numerical methods. These methods are
typically based on the idea of symplectic integration, which
is a numerical technique that conserves the symplectic
structure of Hamiltonian systems. Hamiltonian systems
are a special class of ODEs that are used to describe the

behavior of many physical systems, such as planetary
motion or the motion of particles around BHs and neutron
stars. By preserving the symplectic structure of these
systems, geometric numerical methods can provide highly
accurate and stable solutions that are free from spurious
oscillations or other numerical artifacts [25,27]. A more
comprehensive discussion of the numerical integrators
employed in this article is provided in the Appendix.
The performance of numerical integrators plays a

crucial role in accurately solving mathematical problems
and simulating dynamical systems. In this section, we will
evaluate and analyze the performance of various numerical
integrators to assess their efficiency, accuracy, and stability
in simulating the motion of test particles around slowly
rotating neutron stars.
We present the simulations with several numerical

integrators, namely, explicit RK, implicit Rk, explicit
RK with standard projection, explicit GLM, G-symplectic
GLM, and explicit GLM with standard projection, given
by neutral test particle motion around a slowly rotating
neutron star, shown in Fig. 9 for two regular trajectories.
We use all integrators of order four and let the simulation
run up to τ ¼ 5 × 105 with a time step Δτ ¼ 0.1. The PSs
exhibit variations in appearance with different numerical

TABLE I. Information on the performance of the numerical
schemes used for the simulation of the regular trajectory (blue)
around the slowly rotating neutron star, presented in Fig. 9. All
numerical integrators of order four, simulations time τ ¼ 5 × 105

and time step Δτ ¼ 0.1 has been used. The number of function
evaluations NFE, and l2-norm of the Hamiltonian error, are
reported.

Integrators NFE kΔHk2 Symplectic

Explicit RK 5 × 107 0.018 No
Implicit RK 2.6 × 108 7.4 × 10−7 Yes
Explicit RK with
standard projection

7.5 × 107 1.7 × 10−11 No

Explicit GLM 5 × 107 0.014 No
G-symplectic GLM 1.3 × 108 7.7 × 10−8 Yes
Explicit GLM with
standard projection

7.5 × 107 1.6 × 10−11 No

FIG. 11. PSs for two chaotic trajectories with parameters θ ¼ π=2, pr=m ¼ 0, pθ > 0, L=M ¼ 0.6795, E ¼ 0.92579, J=M2 ¼ 0.4,
and q=M3 ¼ −1, plotted using various numerical integrators of order four with integration time τ ¼ 5 × 105, and time step Δτ ¼ 0.1.
The text with each plot indicates the specific numerical integrator employed to plot the depicted trajectories. We demonstrate how the
accuracy of the numerical integration significantly affects the appearance of the PS.
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integrators. The implicit methods (both RK and G-
symplectic GLM) are symplectic and preserve the regular
structure of PSs. On the other hand, explicit methods (both
RK and GLM), and explicit methods with standard pro-
jection which are nonsymplectic and regular structures
in PSs are corrupted, which could lead to the incorrect
interpretation of trajectories as chaotic ones. Explicit
methods with standard projection do not generally preserve
the structure of PSs. However, by using a small time step,
the structure of PSs can be preserved approximately.
The accuracy of numerical integrators can be measured

by the relative error in Hamiltonian (9), given by

ΔHðτÞ ¼
����1 − HðτÞ

Hð0Þ
����; ð16Þ

and presented in Fig. 10, corresponding to the regular
trajectories (blue) shown in Fig. 9. We observe that the
explicit methods with standard projection give much more
precise results from the point of Hamiltonian error. The
numerical errors in the Hamiltonian oscillate around zero,
and the amplitude of the oscillations is bounded during the
integration. Similar behavior can be observed for implicit
methods as well. Although we observe a minor variation in

the Hamiltonian error plots, the Hamiltonian error demon-
strates bounded behavior over extended time intervals,
which is a typical behavior of the symplectic numerical
integrators. However, for the case of explicit integrators, the
Hamiltonian is not preserved and errors in Hamiltonian
increase monotonically with the integration time τ, which
will lead to the gradual corruption of structures in PSs.
It is interesting to note that explicit RK (and GLMs)

with standard projection maintain the preservation of the
Hamiltonian but retain the structure of the PSs only
partially. We have employed these explicit methods with
a standard projection technique, specifically designed to
ensure the preservation of the Hamiltonian. These methods
only preserve the total energy of the system but do not
preserve the symplectic structure or other invariants of the
system. If we use these explicit integrators with symplectic
projection, then the resulting integrator would have sym-
plectic behavior, successfully preserving both the
Hamiltonian and the PSs [62].
The comparison of the performance of several non-

symplectic and symplectic numerical integrators is also
shown in Table I. We use all integrators of order four,
integration time τ ¼ 5 × 105, time step Δτ ¼ 0.1, and
report the number of function evaluations NFE and

FIG. 12. Logarithmic plots showing the relative error in Hamiltonian for several numerical integrators employed to generate the
chaotic trajectory (blue) presented in Fig. 11. We demonstrate the growth of numerical errors in the Hamiltonian when employing
different numerical integrators over extended time intervals.
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l2-norms of the Hamiltonian error. Implicit methods require
a higher number of function evaluations NFE compared to
explicit methods, as presented in Table I. Specifically, the
number of function evaluations NFE for implicit methods is
twenty times more than that of explicit methods. Thus, the
implicit methods are computationally expensive, whereas
the explicit methods are cost effective. The l2-norms of the
Hamiltonian error for implicit methods, as well as explicit
methods with standard projection, are quite small, thus
these methods preserve the Hamiltonian, whereas explicit
methods do not preserve the underlying structure including
the Hamiltonian.
The simulation for chaotic trajectories employed with

several integrators is depicted in Fig. 11 and the corre-
sponding relative errors in Hamiltonian are presented in
Fig. 12. Since the dynamical system we are considering in
our study exhibits weak chaos, we do not observe signifi-
cant differences in the numerical errors of the Hamiltonian
corresponding to the regular and chaotic trajectories. The
numerical errors for both regular and chaotic trajectories in
a dynamical system consisting of a Kerr BH immersed in
the uniform magnetic field have been examined in [40],
where the strong chaotic behavior is observed, and different
numerical errors corresponding to regular and chaotic
trajectories are reported.

IV. DISCUSSION AND CONCLUSIONS

We explore the chaotic dynamics of test particles in HT
spacetime which characterizes the geometry around slowly
rotating and deformed objects within strong gravitational
fields. This spacetime provides a framework for studying
real astrophysical compact objects ranging from celestial
bodies like planets to neutron stars. It is characterized by
three multipole moments, namely the total mass, the spin
angular momentum, and the quadrupole moment. The
quadrupole moment describes the deviation from the
corresponding Kerr object.
We have shown by several numerical examples that the

particle dynamics in HT spacetime for both prolate and
oblate deformations exhibit characteristics of a nonintegr-
able system. This observation has also been found for
photon orbits [9] and massive particle orbits [11] in HT
spacetime with prolate deformations. In our work, the PSs
and rotation numbers have been employed to detect the
indications of HT nonintegrability, which are the ideal
tools to determine the nonlinear evolution of the system.
Furthermore, the rotation curve serves as a reliable indi-
cator of chaos as well. Therefore, even without employing a
surface of section or any other method to identify chaos, the
rotation curves themselves are sufficient to demonstrate the
existence of chaos. This is interesting from an observational
perspective as well because the rotation number represents
the ratio between two fundamental frequencies of a non-
plunging orbit. Consequently, the rotation number acts as a

suitable tool for detecting chaotic phenomena in gravita-
tional wave signals.
Strong nonlinear character of equations of motion in a

region close to the neutron star’s surface leads to the
emergence of many structures in phase space such as chains
of islands, chaotic points, hyperbolic points, and higher-
ordered islands. These structures have been observed
clearly at the tip of the main island of stability. The islands
of stability with lower multiplicity are more prominent than
the higher multiplicity ones. Similar behavior has also been
observed for Zipoy-Voorhees metric [52]. Lower multi-
plicity islands of stability are very important since they
are good candidates for detecting non-Kerr objects by the
analysis of the gravitational waves [61].
The stickiness phenomenon plays a crucial role in

describing the behavior of chaotic geodesics, as they
remain attached to stable geodesics for a long period of
time before eventually diverging. We have found that most
of the chaotic orbits exist near the outer boundary of the
main island of stability, and Birkhoff chains appear inside
the main island of stability. Some orbits remain attached
to higher-ordered islands while others follow a trajectory
leading them toward the neutron star’s surface, due to the
growing nonlinearities. Similar results can also be found for
non-Kerr spacetime [48].
We have found that the most prominent islands,

characterized by their significant width, correspond to
1=3-resonances. The widths of resonant islands are pro-
portional to the spacetime parameters, however, the width
of the resonances increases with the particle’s energy E
and decreases with the orbital angular momentum
L=M [11]. For Manko-Novikov spacetime, the most
prominent islands are of the smallest multiplicities,
namely the 2=3-resonance [51].
We have investigated the structures of PSs in both prolate

and oblate deformations. In our limited study, we do not
observe significant differences in these structures between
the two cases. Chaos is present in both scenarios, regardless
of whether the HT spacetime corresponds to a prolate or
oblate central compact object. Specifically, all orbits within
the chaotic sea that surrounds the main island are sticky
chaotic orbits. There are several thin islands of stability,
hyperbolic points, and higher-ordered islands immersed in
the chaotic region. The islands of stability with lower
multiplicity are more prominent than the higher multiplic-
ity ones.
We presented a generalized framework for the numerical

integration of test particle motion in the context of general
relativity. We performed a detailed comparison between
several fourth-order numerical integrators, namely the
standard explicit RK method, explicit GLM, implicit
Gauss RK method, implicit G-symplectic GLM, explicit
RK method with standard projection technique, explicit
GLM with standard projection technique, which are suit-
able for simulations of test particles.
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We have compared the accuracy and performance of
numerical schemes using numerical errors in the conserved
Hamiltonian system consisting of HT spacetime. The
precision of the numerical integration plays a crucial
role in the appearance of structures in the PS which could
be used for chaos detection. The implicit RK and G-
symplectic GLM preserve the structural integrity of the
PSs due to their symplectic nature. On the other hand,
explicit integrators (RK and GLM) and explicit methods
with standard projection, being nonsymplectic, result in an
inaccurate interpretation. In the case of implicit schemes
and explicit integrators with standard projection, the
numerical errors in the Hamiltonian oscillate around zero
and the amplitude of these oscillations remains bounded.
The errors exhibit a bounded pattern over extended time
intervals, which is a distinctive characteristic observed
in symplectic numerical integrators. In contrast, the
numerical errors for explicit integrators (RK and GLM)
increase steadily as the integration time τ is extended.
Consequently, the explicit methods fail to maintain the
integrity of the Hamiltonian structure.
We propose that our findings are not limited to a specific

problem of test particle dynamics in HT spacetime, and can
be extended to a wide range of systems within the same
class. Our work can serve as a short survey from which one
can choose a numerical integrator with the desired qualities.
In particular, implicit methods (RK and GLM) maintain the
preservation of both the Hamiltonian and PSs, whereas
explicit methods do not preserve either. In contrast, explicit
methods with standard projection ensure the preservation
of the Hamiltonian while failing to maintain the integrity
of the PSs, however, by using a small time step, we can
approximately preserve the structure of PSs.
Within the context of the presented numerical integra-

tors, there exist several intriguing possibilities for future
exploration, which include variational integrators, discrete
gradient methods, and explicit schemes with alternative
projection techniques. These extensions hold promise and
could offer interesting directions for further investigation.1

ACKNOWLEDGMENTS

This work is supported by the Research Centre for
Theoretical Physics and Astrophysics, Institute of Physics,
Silesian University in Opava, and Czech Science
Foundation Grant No. 23-07043S.

APPENDIX: NUMERICAL INTEGRATORS

Numerical integration is a widely used technique for
approximating the solution of ODEs when an exact
solution is either impossible or very difficult to obtain

analytically. Numerical methods can be categorized as one-
step methods, multistep methods, and GLMs. One-step
methods approximate the solution of a differential equation
using only one previous value. This means that the solution
yðxÞ at a particular point xn depends only on the previous
value yðxn−1Þ of the solution. However, multistep methods
require several previous values (yðxn−1Þ; yðxn−2Þ; � � �) of the
solution yðxÞ to approximate the value at a particular
point xn, thus the solution at a particular point depends
on several previous values of the solution. Similarly, the
GLM also requires several input values to start the
procedure. These methods are implemented in a recursive
way, and a starting method is generally employed in order
to start the procedure. Usually, one-step methods such as
RK methods are used as starting methods. When the data is
available to start the procedure, a multistep method is then
employed. Multistep methods tend to be more accurate
and more stable than one-step methods, but they are also
more complex to implement. One-step methods are easy to
implement, but multistep methods can be more computa-
tionally expensive than one-step methods [21–23].
Numerical integrators can be classified into explicit and

implicit ones. Explicit methods calculate the solution at the
next time step solely based on the solution at the current
time step (without using any information from the next time
step), while implicit methods use information from both
the current and next time steps to calculate the solution.
Both schemes have their own advantages and limitations.
Explicit methods are generally easier to implement and
computationally efficient, but they may become unstable if
the time step is too large or if the differential equation is
stiff or highly nonlinear. These methods are commonly
used for solving simple or moderately complex problems
where accuracy is not critical. However, implicit methods
are generally more accurate and stable than explicit
methods for stiff or highly nonlinear problems, but they
require more computational resources and are more diffi-
cult to implement. Implicit methods are commonly used
for solving complex problems that require high accuracy
and stability [25,27].
Explicit schemes have a major limitation when it

comes to Hamiltonian systems. They do not preserve the
Hamiltonian exactly, and the errors in energy conservation
can accumulate over time. On the other hand, implicit
schemes are more accurate and capable of preserving the
Hamiltonian exactly. In the following, we discuss various
numerical integrators based on their ability to preserve the
qualitative features of numerical integrators.

1. Implicit structure-preserving schemes

Implicit structure-preserving schemes are numerical
integration methods that are designed to accurately simu-
late the behavior of physical systems by preserving their
underlying structure. These schemes are particularly useful
for systems with complex or nonlinear dynamics and can be

1Our codes are publicly available and can be used for further
development and application in other nonlinear dynamical
systems https://github.com/Scheherazaade/Chaotic_dynamics.
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applied to both Hamiltonian and non-Hamiltonian systems.
By preserving the underlying structure, implicit schemes
ensure that important physical properties like energy
conservation, symplecticity, and momentum conservation
are maintained throughout the simulation. One of the key
advantages of these schemes is their ability to accurately
simulate long-term behavior, particularly in systems that
exhibit chaotic or oscillatory behavior. These methods are
well-suited for systems with stiff differential equations,
which can be difficult to solve using explicit methods.
Implicit methods can be applied to stiff systems because
they do not require small time steps to ensure numerical
stability, unlike explicit methods [20,63].
Symplectic algorithms are numerical integrators of

Hamiltonian systems that preserve the symplectic structure
in phase space. In long-term integration, these algorithms
tend to perform better than their nonsymplectic counter-
parts. An additional benefit of such methods is their ability
to preserve the underlying quadratic invariants effectively.
However, most of the numerical methods in practice are not
symplectic. Multistep methods require more than one initial
condition to start with, thus they can not define a map on
phase space and hence cannot be symplectic in general.
The one-step methods for the numerical integration of
Hamiltonian systems are said to be canonical or symplectic
if when applied to any Hamiltonian systems with any step
length they give rise to a symplectic transformation in
phase space. It is well known that implicit schemes can
only be considered as truly symplectic, whereas explicit
schemes do not preserve the flow of the Hamiltonian
systems [25].

a. Symplectic RK methods

RK methods are a family of one-step numerical algo-
rithms commonly used to approximate the solutions of
initial value problems (IVPs)

y0ðxÞ ¼ fðyðxÞÞ; yðx0Þ ¼ y0; yðxÞ∈Rm: ðA1Þ

Here, yðxÞ is the exact solution and RK methods provide an
approximation at time xn ¼ nh, where h is the step-size and
n ¼ 0; 1;…. The general form of RK methods is given by

Ki ¼ yn−1 þ
Xs

j¼1

aijhfðKjÞ; i ¼ 1; 2;…; s; ðA2Þ

yn ¼ yn−1 þ
Xs
i¼1

bihfðKiÞ; ðA3Þ

where Ki are s stage values and yn is the output value,
which is an approximation of the actual solution yðxnÞ. RK
methods are generally represented by a Butcher tableau

c1 a11 a12 � � � a1s
c2 a21 a22 � � � a2s

..

. ..
. ..

. . .
. ..

.

cs as1 as2 � � � ass

b1 b2 � � � bs

; ðA4Þ

where bi are the quadrature weights and the consistency
conditions

ci ¼
Xs
j¼1

aij; i ¼ 1;…; s; ðA5Þ

are the abscissas of the method at which the stages Ki are
evaluated. The RK methods can be divided into two types,
explicit and implicit. For explicit RK methods, we have
aij ¼ 0, whenever i ≤ j. This means that the stages Ki can
be computed sequentially which requires less computa-
tional time and hence are favourite for solving ODEs.
However, explicit methods are less preferable due to their
limitations in stability for solving stiff differential systems
and the inability to preserve quadratic invariants of
conservative differential equations.
RK methods are implicit if aij ≠ 0 whenever i ≤ j. In

order to solve an m-dimensional system of ODEs, for an s
stage implicit RK method, sm nonlinear equations repre-
senting the stages need to be solved. This is usually
achieved by modified Newton iterations, which are expen-
sive. Hence, the general implicit RK methods are at a
disadvantage compared to their explicit counterpart when
considering the cost of implementation. However, the
advantages of implicit RK methods are in the use for
solving stiff differential equations as well as Hamiltonian
and structure-preserving ODEs [26]. The most famous
implicit RK methods are the Gauss-Legendre RK methods
which are based on shifted Legendre polynomials such that
the abscissa ci of the RK methods are the zeros of the
shifted Legendre polynomials P�

s on the interval [0, 1],
given by

P�
sðxÞ ¼

s!
2s

Xs

k¼0

ð−1Þs−k
�
s

k

��
sþ k

k

�
xk: ðA6Þ

An example of one stage, implicit RK method of order two
is the implicit midpoint rule

1
2

1
2

1
: ðA7Þ

For s ¼ 2, we have two stages, and the Gauss RK method
of order four is given by
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1
2
−

ffiffi
3

p
6

1
4

1
4
−

ffiffi
3

p
6

1
2
þ

ffiffi
3

p
6

1
4
þ

ffiffi
3

p
6

1
4

1
2

1
2

: ðA8Þ

The values of the coefficients bi and aij are calculated from
the abscissa ci in a way to ensure that the order of the
method is 2s.
Symplectincess is a characterization of the Hamiltonian

systems in terms of their solutions, rather than in terms of
the actual form of differential equations. The RK methods
which preserve various quantities including the symplectic
structure of the solutions of Hamiltonian systems are
usually known as symplectic RK integrators and satisfy
the symplectic condition [26,64–66]

biaij þ bjaji − bibj ¼ 0; i; j ¼ 1;…; s: ðA9Þ

All implicit Gauss type RK methods including (A8) satisfy
the symplectic condition (A9) and are well-suited for long-
time integration of Hamiltonian systems. However, explicit
RK methods do not satisfy the symplectic condition (A9),
thus they are not symplectic methods. Moreover, they are
not suitable for long time integration of Hamiltonian
systems because they introduce non-Hamiltonian pertur-
bations which throw the solution out of the Hamiltonian
regime.
The advantage of using the symplectic RK method for

solving the Hamiltonian systems is that the symplectic
methods preserve the quadratic first integrals including
the Hamiltonian numerically, while nonsymplectic methods
do not. One can also use partitioned RK methods which act
as a symplectic explicit integrator, but only for separable
Hamiltonian differential equations. However, in this paper,
we are considering nonseparable Hamiltonian differential
equations, thus we will not be discussing symplectic explicit
partitioned RK methods. For further details, see [26].

b. G-symplectic GLMs

The GLMs are the multistage and multivalue numerical
algorithms, generalization of RK as well as multistep
methods, used to approximate the numerical solution of a
system of ODEs. The general form of GLMs is given by [22]

Y ¼ hðA ⊗ IÞfðYÞ þ ðU ⊗ IÞy½n−1�; ðA10Þ

y½n� ¼ hðB ⊗ IÞfðYÞ þ ðV ⊗ IÞy½n−1�; ðA11Þ

where fðYÞ are the stage derivatives corresponding to
s-stages Y ∈ ðRNÞs, A ⊗ I denotes the Kronecker product
of matrix A and identity matrix I. At the beginning of a step,
the initial values are provided to the vector y½n−1� having r
components, resulting in an output vector y½n�, can be written
in the form

Y ¼

2
666664

Y1

Y2

..

.

Ys

3
777775; fðYÞ ¼

2
666664

fðY1Þ
fðY2Þ

..

.

fðYsÞ

3
777775; ðA12Þ

y½n−1� ¼

2
666664

y1½n−1�

y2½n−1�

..

.

yr½n−1�

3
777775; y½n� ¼

2
666664

y1½n�

y2½n�

..

.

yr½n�

3
777775: ðA13Þ

The GLMs can also be written in the form

Y ¼ hAfðYÞ þ Uy½n−1�; ðA14Þ

y½n� ¼ hBfðYÞ þ Vy½n−1�; ðA15Þ

where the matrices A, B, U, and V usually given as

M ¼
"
A U

B V

#
: ðA16Þ

For example, one-step RK method ½A; bt; c� with one input
value (r ¼ 1) can be written as a GLM in the form

�
Y
y½n�

�
¼

"
A 1

bt 1

#�
hfðYÞ
y½n−1�

�
: ðA17Þ

A GLM is preconsistent if there exists a preconsistency
vector q0 ∈Rr such that Uq0 ¼ 1; Vq0 ¼ q0, where 1 is the
s-dimensional unit vector. However, GLM is consistent if it
is preconsistent with q0 and there exists a consistency vector
q1 ∈Rr such that B1þ Vq1 ¼ q0 þ q1. A GLM is zero
stable if the matrix V is power bounded. The consistency and
zero stability are necessary and sufficient conditions for the
convergence of a GLM [67].
The GLMs are not symplectic due to multivalue in

nature, therefore can not preserve true quadratic behavior,

hy; yi ¼ yTSy; ðA18Þ

where S represents the symmetric matrix. However, the
extended canonical behavior

hy½n�; y½n�iG ¼ hy½n−1�; y½n−1�iG; ðA19Þ

could be possible to nearly preserve. Here, G∈Rr×r is a
symmetric matrix and
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hy; ziG ¼
Xr

i;j¼1

kijhyi; zji: ðA20Þ

The methods satisfying Eq. (A19) are named G-symplectic
GLMs and fulfil the given algebraic conditions [22]

G ¼ VTGV; ðA21Þ

DU ¼ BTGV; ðA22Þ

DN þ NTD ¼ BTGB; ðA23Þ

where D∈Rs×s is a diagonal matrix. The G-symplectic
GLMs of order four with two stages were proposed by
Butcher [22], and they suffer from parasitic corruption [63].
Parasitic solutions are the numerical solutions that can be
obtained in addition to the numerical approximation of the
exact solution. The multivalue methods generally suffer
from parasitic solutions, and GLMs are no exception.
However, the G-symplectic GLMs face hazards from their
parasitic components similar to those encountered by
standard linear multistep methods, due to the fact that
perturbation in nonprinciple components of the numerical
solution is extended by the integration process. The back-
ward error analysis becomes usable to show that linear
growth in parasitic components could be bounded by
establishing BU ¼ 0. The parasitic-free GLMs have been
developed in [68,69].
An example of parasitic free G-symplectic GLM of order

four with three input values was constructed in [70] and
given as follows:

A ¼

2
666664

0 0 0 0

− 11
127

1
4

0 0

− 2647
72240

1009
1680

1
4

0

− 169
1680

113821
283920

473
676

0

3
777775; ðA24Þ

U ¼

2
666664
1 1

4

ffiffi
3

p
4

1 u22 u23
1 −u22 −u23
1 − 1

4
−

ffiffi
3

p
4

3
777775; ðA25Þ

B ¼

2
6664
− 169

3360
1849
3360

1849
3360

− 169
3360

− 169
1680

− 84839
283920

84839
283920

169
1680

0 − 43
ffiffiffiffiffiffiffiffiffi
14595

p
35490

43
ffiffiffiffiffiffiffiffiffi
14595

p
35490

0

3
7775; ðA26Þ

V ¼

2
664
1 0 0

0 − 1
2

−
ffiffi
3

p
2

0
ffiffi
3

p
2

− 1
2

3
775; ðA27Þ

where

u22 ¼ −
1973

29068
þ 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
14595

p

7267
; ðA28Þ

u23 ¼ −
1973

ffiffiffi
3

p

29068
−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
14595

p

7267
: ðA29Þ

The G and D matrices take the form

G ¼

2
664
1 0 0

0 − 1
4

0

0 0 − 1
4

3
775; ðA30Þ

D ¼

2
666664

− 169
3360

0 0 0

0 1849
3360

0 0

0 0 1849
3360

0

0 0 0 − 169
3360

3
777775: ðA31Þ

In order to exploit the low computational cost of explicit
integrators, we use projection techniques together with
explicit schemes for the conservation of quadratic invari-
ants of the underlying differential equations, and this is
explored in the following sections.

2. Explicit schemes with projection

Projection schemes are a standard approach for numeri-
cal integration of ODEs on manifolds [71]. Constructing
numerical integrators on manifolds with complex structures
is complicated and, therefore, often avoided by embedding
the manifold into a larger space with a simple, usually
Euclidean structure, where standard integrators can be
applied. Projection methods are used to ensure that the
solution stays on the correct subspace of the extended
solution space, as that is usually not guaranteed by the
numerical integrator itself. The idea is to solve the ODE
with any numerical integrator and then project the numeri-
cal solution onto the desired manifold where the actual
solution lies. There are different projection techniques,
i.e., standard, symmetric, symplectic, and midpoint pro-
jections [62]. Here, we use a standard projection technique,
where projection is applied after each step of the numerical
algorithm. In this technique, it is assumed that the solution
at the initial conditions lies on the manifold, thus the
solution of the projected integrator will also stay on the
manifold. This leads to very good long-time stability and
improved energy behavior [20,72,73]. Consider an IVP
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y0ðxÞ ¼ fðyðxÞÞ; yðx0Þ ¼ y0; ðA32Þ

on a manifold M, and suppose that yn ∈M. One-step for
standard projection technique yn ↦ ynþ1 proceeds as
follows:

(i) Compute ỹnþ1 ¼ ψðynÞ, where ψ represents an
arbitrary one-step numerical integrator applied to
y0 ¼ fðyÞ.

(ii) Project the value ỹnþ1 onto the manifold M to
obtain ynþ1 ∈M.

In the following, we describe the classical RK method of
order four with a standard projection technique to preserve
the invariants numerically by projecting the solution onto
the desired manifold.

a. Explicit RK methods with standard projection

The classical explicit RK method of order four with four
stages is given by a Butcher table

0
1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

: ðA33Þ

We suppose that the actual solution y of an IVP remains on
an invariant manifold My0 , determined by a known con-
served quantity kðyÞ, given by

My0 ≔ fy∶kðyÞ − kðy0Þ ¼ 0g: ðA34Þ

In order to solve the system (A32) using explicit RK
method (A33) with (A34), the numerical solution is desired
to stay on the manifold (A34) that can be achieved with the
help of the projection technique whose algorithm for a
single step of explicit RK method (A33) is as follows:

(i) For an input vector yn, the explicit RK method gives
an output vector ỹnþ1 that does not remain on the
manifold (A34).

(ii) Project ỹnþ1 on the manifold (A34) as follows,

ynþ1 ¼ ỹnþ1 þ λ∇kðỹnþ1Þ; ðA35Þ

λ ¼ kðy0Þ − kðỹnþ1Þ
h∇kðỹnþ1Þ;∇kðỹnþ1Þi

; ðA36Þ

where ∇kðyÞ denotes the gradient of kðyÞ. For
multiple invariants of an ODE, kðyÞ is a column
vector, and ∇kðyÞ represents the corresponding

Jacobin matrix. It is interesting to note that ∇kðyÞ
is calculated at ỹnþ1 rather than ynþ1 to save the
computational cost.

The above-mentioned procedure is identical to solving the
minimization problem

min kynþ1 − ỹnþ1k subject to y∈My0 ; ðA37Þ

with the standard projection technique to get (A35), where
λ behaves as a Lagrange multiplier [20,73].

b. Explicit GLMs with standard projection

We can also apply the explicit GLM with the standard
projection technique to solve the ODE (A32) subject to the
constraint (A34). For this purpose, we consider an explicit
GLM of order four, whose matrices A, B, U, and V are
given by

"
A U

B V

#
¼

2
66666666666664

0 0 0 0 1 1
3

1 0 0 0 1 − 1
3

−1 1 0 0 1 1

3
8

3
8

1
8

0 1 1
8

3
8

3
8

1
8

0 1
1
8

0 0 0 1 0 0

3
77777777777775
: ðA38Þ

The projection technique will take the form as follows:
(i) For an input vector y½m�, the GLM yields an

output vector ỹ½mþ1� which does not reside on the
manifold (A34).

(ii) Pick the first component of the output vector ỹ½mþ1�
1

and project it onto the invariant manifold (A34) to

obtain y½mþ1�
1 ∈My0 , such that

y½mþ1�
1 ¼ ỹ½mþ1�

1 þ λ∇g
�
ỹ½mþ1�
1

	
; ðA39Þ

λ ¼
kðy0Þ − k

�
ỹ½mþ1�
1

	
D
∇k

�
ỹ½mþ1�
1

	
;∇k

�
ỹ½mþ1�
1

	E ; ðA40Þ

where ∇kðyÞ is the gradient of kðyÞ. For the case of
multiple invariants of an ODE, kðyÞ becomes a
column vector, and ∇kðyÞ is the corresponding
Jacobin matrix. It is worth mentioning that ∇kðyÞ
is evaluated at ỹ½mþ1�

1 instead of y½mþ1�
1 to save

computational cost.
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