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In recent years, the field of Gravitational Wave Astronomy has flourished. With the advent of more
sophisticated ground-based detectors and space-based observatories, it is anticipated that Gravitational
Wave events will be detected at a much higher rate in the near future. One of the future data analysis
challenges is performing robust statistical inference in the presence of detector noise transients or
nonstationarities, as well as in the presence of stochastic Gravitational Wave signals of possible
astrophysical and/or cosmological origin. The incomplete knowledge of the total noise of the observatory
can introduce challenges in parameter estimation of detected sources. In this work, we propose a heavy-
tailed, Hyperbolic likelihood, based on the Generalized Hyperbolic distribution. With the Hyperbolic
likelihood we obtain a robust data analysis framework against data outliers, noise nonstationarities, and
possible inaccurate modeling of the noise power spectral density. We apply this methodology to examples
drawn from gravitational wave astronomy, and in particular to synthetic data sets from the planned LISA
mission.
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I. INTRODUCTION

In recent years and since the first detection of a
Gravitational Wave (GW) signal [1], more than 90 GW
signals from the inspiral and merger of compact astro-
physical objects have been included in published cata-
logues of GW detections achieved by the LIGO [2]
and Virgo [3] ground-based detectors [4–10]. In the near
future, the existing detectors (including KAGRA [11]) will
operate at improved sensitivity, while the construction of
LIGOIndia [12,13] is expected to start. In the meantime, a
new generation of detectors (Einstein Telescope (ET) [14],
Cosmic Explorer (CE) [15] and NEMO [16]) is in the
planning phase, and the space-borne Laser Interferometer
Space Antenna (LISA) [17] and TianQin and Taiji [18] are
expected to operate after the mid-2030s. Each one of these
observatories is based on different designs, which translates
to different sensitivity curves aiming at different frequency
ranges for the detected GW signals. One of their similar-
ities, however, is that all 3rd-generation detectors will be
characterized by higher rates of GW signals, with a signi-
ficant fraction overlapping in time and frequency [19]. At
the same time, instrumental noise knowledge is crucial to
successfully detect and characterize GW signals [20–24].
Detector noise nonstationarities, such as slow noise Power
Spectral Density (PSD) variations [25], instrumental tran-
sients (glitches) [26,27], data gaps [28,29], or noise bursts
[30], may lead to biased results or even to wrong false alarm

rates. Ultimately, we expect noise nonstationarities to play
a more important role in analyzing future science-rich
data sets.
In this work, we focus on the case of the LISA mission

and the mHz range of the GW spectrum. We have made this
choice because it is certain that resolving the LISA noise
budget will be a challenging task (e.g., see [20,31] and
references therein). In addition, for the case of ground-
based detectors, dedicated experiments can be performed
on-site to calibrate the relevant noise models with high
accuracy [32]. This practice is inaccessible in space.
LISA is currently in development and is expected to start

collecting data after the mid-2020s. This means we
currently do not have sufficient prior information about
the possible outliers of the LISA noise. However, we
can extrapolate from the LISA Pathfinder (LPF) mission
data [33–35]. During the LPF mission, the differential
acceleration noise level between 1 and 100 mHz was
measured to be constantly reducing with time due to the
constantly varying vacuum conditions inside the test-
masses caging, throughout the duration of the mission
[33,36]. Such an effect is also expected in the LISA noise
data. Another example of a nonstationary stochastic GW
signal in the LISA band will be generated by the ensemble
signal of the Ultra Compact Binaries (UCBs) in the vicinity
of our Galaxy [17,20,31,37,38]. This confusion signal will
have cyclostationary properties due to the orbit of the LISA
constellation facing in and out of the Galactic center, where
most of these objects are located. More details for this type
of signal are mentioned in Sec. III. Besides the UCBs, we*asasli@auth.gr
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also expect to detect stochastic signals originating from
other types of astrophysical sources [39,40].
Another noise source that appears as a nonstationary

feature in the overall PSD of the noise is the so-called tilt-
to-length coupling effect (TTL). The TTL was first mea-
sured during the LPF operations, and it corresponds to the
effect of space-craft jitter motion picked up by the sensitive
interferometer measurement [34], generating a “bump”-like
noise between 10–100 mHz [34,36] in the differential
acceleration spectrum. This effect depends on the geo-
metrical layouts of the optical components of the instru-
ments [41,42], and can vary with time depending on
environmental factors [34]. A TTL noise contribution is
predicted for the LISA mission as well. Currently, the
characterization plan is based on partially subtracting the
effect of TTL in the postprocessing of the data [43–45].
Finally, the experience with LPF data also provided us with
some insight into noisy glitches [26,27].
So far, several techniques have been developed to address

each of the issues caused by noise nonstationarities. For
example, one way to tackle the problems induced by rapid
noisy transients is to model them and fit them simulta-
neously with the waveform model from the data [46].
This type of analysis is based on transdimensional methods,
such as the Reversible-Jump Markov Chain Monte Carlo
(MCMC) [47,48]. Following this methodology, a signal
waveform is being searched in the data together with the
unknown number of models representing the glitches. Then,
the parameter space becomes dynamic since the number of
such events is unknown. In the context of LISA data
analysis, there have been quite a few applications of this
technique [49–52]. Another approach was introduced
in [53], which focused on the idea of testing the stationarity
of the time series. Based on a surrogate data approach, this
framework begins with detecting the data segments with
different statistical noise properties. Then, a flexible PSD
model is used to fit the different sections of the data [54].
Finally, there is the approach of tackling this kind of

problem at the level of the adopted likelihood function,
where models with wider tail properties than the usual
Gaussian distribution can be used. Such a solution was
proposed with Student’s t-distribution [55–57], which has
been applied to GW data by the LVK Collaboration.
In [55], one begins by adopting the Inv − χ2 prior dis-
tribution for each of the PSD coefficients of the noise,
which is conjugate with respect to the Gaussian likelihood.
Then, the resulting joint conditional density takes the form
of Student’s t-distribution with ν > 0 degrees of freedom,
which, depending on the tuning parameter ν, has the
desired heavier tails compared to the Gaussian distribution.
This feature can accommodate any deviations of the data
with respect to our modeled PSD of the noise, whether
these originate from fast noisy transients or other types of
noise nonstationarities. In addition, in [57], it was found
that the uncertainties in the phase evolution of the binary

neutron star signal could be accommodated in addition to
the uncertainty in the noise. However, following this
approach, one should take into account that the choice
of prior can have a non-negligible impact on the final
posterior.
Besides the above examples, one can also follow the

recipe of [58], where the non-Gaussianity of the data is
modeled using a higher-order Edgeworth expansion for the
unknown signal distribution. Other works [59–61], have
adopted a linear combination of the Gaussian and the Log-
Normal likelihoods. This was mostly done in order to
accommodate the systematic bias due to data averaging.
Older works also proposed using different linear combi-
nations of distributions for the likelihood function [62,63].
Here, we introduce the Hyperbolic likelihood ΛH, which

is based on a special case of the Generalized Hyperbolic
(GH) distribution, for the analysis of GW data. The GH
distribution has been used in the statistical description of
relatively short time series in the field of Finance and
Econometrics [64–69]. The GH distribution has the ad-
vantage of being able to arrive to many known distributions
from the exponential family [68], by simply tuning its
overall shape to adjust to the given statistical properties of
the input data. Thus, for example, while recovering the
parameters of a transient signal, we can simultaneously
recover the statistical properties of the underlying noise.
In practice, we increase the dimensionality of the

problem by two or three parameters [see Eq. (21)], which
control the shape of the distribution. Those are estimated
from the residual data and are then used to infer their actual
distribution, simply because the Hyperbolic distribution has
a greater flexibility and can adjust to different distributions
with perfect or acceptable accuracy, as we demonstrate. For
example, if the residual data have a Gaussian distribution,
then the parameters of the Hyperbolic distribution will
converge to values that agree with a Gaussian distribution
asymptotically (see Sec. II B for details).
Consequently, the main and most important advantage of

this framework is that it comprises a robust approach for
both parameter estimation for the transient signals and the
characterization of the underlying noise. This feature is
crucial in cases where the detector noise is “polluted” with
noise transients, or even when the noise model is not
completely known. As already mentioned, such will be the
case of the signal-dominated LISA data, where the total
noise will be the sum of the instrumental noise plus the
given unresolvable stochastic GW signal [17,31,70].
In Sec. II we introduce the basic theory behind the GH

distribution and propose the Hyperbolic likelihood, placing
it in the context of detecting signals in noisy data. Some
basic test cases are discussed and we apply this framework
to real data from the LISA Pathfinder mission [33,34]. In
Sec. III we apply this formulation to examples in GW
astronomy, using synthetic data. We use different scenarios
on our assumptions on the noise knowledge of the LISA
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data channels and then apply this formulation to the case of
a single Verification Binary taken from the LISA Data
Challenge [71] catalogues. This application assumes cases
where the PSD of the noise is considered either unknown or
intentionally mischaracterized. In the case of unknown
noise, adopting the Hyperbolic likelihood allows us to
recover both the waveform and noise parameters. When the
noise is assumed to be at the wrong level, the performance
analysis based on the Hyperbolic likelihood is identical to
the analysis based on the Whittle likelihood, which we use
as a benchmark for our analyses. Finally, in Sec. IV we
present our conclusions and discuss our findings.

II. THEORETICAL BACKGROUND

A. The Gaussian distribution case

We begin by assuming that a measurement yðtÞ is the
sum of a signal h that might depend on a parameter set θ
and a noise component as

y ¼ hðθÞ þ n; ð1Þ
where we have omitted the dependence on time t for the
sake of clarity. Then, assuming Gaussian properties of the
noise, the likelihood of the measurement y given a
parameter set θ, takes the form of

pðyjθÞ ¼ C × e−
1
2
hy−hðθÞjy−hðθÞi; ð2Þ

where h·j·i denotes the noise-weighted inner product
between two real time series. In the general multidimen-
sional case of m data channels

aðtÞ ¼

0
BBBBB@

a1ðtÞ
a2ðtÞ
..
.

amðtÞ

1
CCCCCA
; and bðtÞ ¼

0
BBBBB@

b1ðtÞ
b2ðtÞ
..
.

bmðtÞ

1
CCCCCA
; ð3Þ

we write the h·j·i in matrix form as

hajbi ¼ 4Re
Z∞

0

df
h
ã†ðfÞS−1

n ðfÞb̃ðfÞ
i
; ð4Þ

where Sn becomes the one-sided cross-spectral matrix of
the noise for the given arrays of time series measurements.
The tilde ð̃ Þ denotes the Fourier transform, and the ð †Þ
represents the conjugate transpose operation. In the end, we
conveniently write the log-likelihood as

ΛN ðθÞ ∝ −
1

2
hy − hðθÞjy − hðθÞi: ð5Þ

In Eq. (2), one assumes that the noise is Gaussian and
thus one can calculate its PSD accurately, but this will not

be always the case. In case of strong glitches or other non-
Gaussian features, the PSD calculation will be inaccurate,
as it is based on the hypothesis of a Gaussian distribution.
Also, in the case of future signal-dominated detectors, the
instrumental noise and hence its PSD will be unknown for
large parts of the spectrum.
Thus, a model of the spectrum of the noise can be adopted

and fitted together with the parameters of the signal. Then,
the logarithm of the likelihood can be written as

ΛWðθÞ ∝ −
1

2

�X
f

½ln ðSnðθnÞÞ�

þ hy − hðθhÞjy − hðθhÞi
�
; ð6Þ

where θ ¼ θn ⊔ θh, and therefore θn ⊆ θ the parameters of
the model of the noise. The above expression constitutes the
Whittle likelihood and is approximate for Gaussian and
stationary time series [56,72,73]. In [74], the authors extend
the posterior consistency result of [75] to non-Gaussian time
series, providing a theoretical justification of posterior
consistency under mild assumptions on the time series
without having to assume Gaussianity. They suggest that
this approach can be applied to non-Gaussian time series and
may provide accurate spectral density estimates even if the
data do not come from a normal distribution, provided that a
large sample size is available. One can also go a step further
and assume the uninformative and improper Jeffreys prior
for the noise variance, and marginalize the noise spectrum
out of the expression of Eq. (6) [55,76].
Shortcomings of the Whittle model have been exten-

sively studied in the literature (e.g., see [56,73,77] and
references therein), but one very relevant situation in GW
astronomy is the measurement of time series with high
autocorrelation, which could potentially reduce the effi-
ciency of the likelihood model of Eq. (6).
As already mentioned in the introduction, a proposed

solution to counterbalance those shortcomings would be to
follow the strategy of [55,56], where a filter was introduced
based on Student’s t-distribution, which can be proven to
be robust against data nonstationarities. One can start from
Eq. (2) and adopt a prior for the variance of the noise that
follows the Inv − χ2 distribution. Then, following [55], we
can compute the marginal posterior by integrating out the
noise variance, and arrive at the desired probability density
function of Student’s t-distribution that is more heavy-
tailed than the Gaussian case. Student’s t-distribution can
be tuned with the degrees-of-freedom parameter ν, which
can either be chosen a priori or estimated directly from the
data. A similar strategy was followed in other works, where
the problem of data outliers was tackled by adopting a
composite model for the total likelihood. For example,
in [62] a Gaussian distribution was used for the noise and a
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uniform model for the data bursts, while in [63], the total
likelihood was a Gaussian mixture.
In the following subsection, we will discuss the gener-

alized hyperbolic model, which, at the cost of adding
extra dimensionality to the problem, offers a more generic
framework to handle a variety of data-irregularity situations.

B. The Generalized Hyperbolic distribution

We can now attempt to negate the possible shortcomings
of the Whittle approximation by using the family of GH
distributions [64–68]. One of the advantages of this
practice, is that we can arrive at virtually any distribution
of the exponential family, simply by tuning the parameters
of the GH function. In fact, the Student’s t-distribution
mentioned above is a special case of the GH function,
which, apart from the Student’s t-distribution, leads to a
large number of limiting distributions. The GH family of
distributions for a variable x can be expressed as

GHðxjλ; α; β; δ; μÞ ¼ aðλ; α; β; δ; μÞðδ2 þ ðx − μÞ2Þðλ−1
2
Þ=2

× Kλ−1=2

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ðx − μÞ2

q �

× exp ½βðx − μÞ�; ð7Þ

where

aðλ;α; β; δ; μÞ ¼ ðα2 − β2Þλ=2ffiffiffiffiffiffi
2π

p
αλ−1=2δλKλ

�
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

p � ; ð8Þ

and Kλ is the modified Bessel function of the third kind.
The domain of variation of the parameters ðλ; α; β; δ; μÞ is
μ∈R and

δ ≥ 0; jβj < α; if λ > 0;

δ > 0; jβj < α; if λ ¼ 0;

δ > 0; jβj ≤ α; if λ < 0: ð9Þ

Equation (7) describes a skewed distribution when β ≠ 0
and a symmetric distribution when β ¼ 0. The parameter μ
tunes the position of the distribution along the x-axis. The
analytic expression for the variance is [68]

σ2 ¼ δKλþ1ðδγÞ
γKλðδγÞ

þ β2δ2

γ2

	
Kλþ2ðδγÞ
KλðδγÞ

−
K2

λþ1ðδγÞ
K2

λðδγÞ


; ð10Þ

with γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

p
. The general expression for the mean of

the GH distribution is [68]

meanðGHÞ ¼ μþ βδ

γ

Kλþ1ðδγÞ
KλðδγÞ

: ð11Þ

The GH distributions have semiheavy tails. In particular,
for μ ¼ 0, the asymptotic behavior for x → �∞ is

GHðxjλ; α; β; δÞ ∼ jxjλ−1 expðð∓αþ βÞxÞ; ð12Þ
up to a multiplicative constant [78].
We can now define, as in [68], the multivariate,

d-dimensional GH distribution for x∈ IRd, with d being
the given dimensionality. In the case of a GW detector
network, the dimensionality corresponds to the number of
detectors. Then,

GHdðxjλ;α;β;δ;μÞ¼A
Kλ−d=2ðα

ffiffiffiffiffiffiffiffiffiffiffi
δ2þr

p
Þ

ðα−1
ffiffiffiffiffiffiffiffiffiffiffi
δ2þr

p
Þd=2−λ exp

�
βTðx−μÞ�;

ð13Þ
with μ; β∈ IRd,

A≡ Aðλ; α; β; δ; μÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − B

p
=δÞd

ð2πÞd=2Kλðδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − B

p
Þ
; ð14Þ

where we set

r ¼ ðx − μÞTΔ−1ðx − μÞ; ð15Þ

and B ¼ βTΔ−1β. In (15), Δ is a positive definite matrix
∈ IRd×d with jΔj ¼ 1.
The GH distribution can be quite flexible in the descrip-

tion of data, albeit at the cost of a larger number of
parameters. For a given problem with d dimensions, the
number of parameters is 2dþ 3.

C. Limiting cases and subclasses of the Generalized
Hyperbolic distribution

Several well-known distributions are limiting cases
or subclasses of the GH distribution. Below, we list
some cases that we are going to use to set up test cases
in Sec. II E 1..

(i) The Normal Gaussian distribution N ðμ; σ2Þ is a
limiting case of the GH distribution, since

N ← GHðλ ¼ 1; β ¼ 0; α → ∞; δ → ∞; μÞ; ð16Þ
provided that α → ∞ and δ → ∞ in such a way
that δ=α → σ2.

(ii) The Normal Inverse Gaussian distribution
NIGðα; β; δ; μÞ has the explicit form [79]

NIGðxjα; β; δ; μÞ ¼ αδK1ðα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ðx − μÞ2

p
Þ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ðx − μÞ2

p
× exp

�
δγ þ βðx − μÞ�; ð17Þ

which is a subclass of the GH distribution for
λ ¼ −1=2

NIGðα; β; δ; μÞ ¼ GHðλ ¼ −1=2; α; β; δ; μÞ: ð18Þ
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(iii) The Hyperbolic distribution H is a subclass of the
GH distribution for λ ¼ 1

Hðα; β; δ; μÞ ¼ GHðλ ¼ 1; α; β; δ; μÞ; ð19Þ

with δ ≥ 0 and jβj < α. For β ¼ 0 it becomes the
Symmetric Hyperbolic distribution (SH). More
generally, in the multivariate, d-dimensional case,
the multivariate Hyperbolic (Hd) distribution is as
subclass of the GHd distribution for λ ¼ ðdþ 1Þ=2

Hdðα; β; δ; μÞ ¼ GHd

�
λ ¼ dþ 1

2
; α; β; δ; μ

�
: ð20Þ

(iv) The Student’s t-distribution with ν degrees of free-
dom is a limiting case of the GH distribution when
λ ¼ −ν=2; α ¼ 0; β ¼ 0; δ ¼ ffiffiffi

ν
p

and μ ¼ 0.
In the Appendix, we demonstrate that one can recover

the theoretical distributions of the above subclasses and
limiting cases for test data, using Bayesian inference with
appropriate likelihood functions.
We refer the reader to [64–68,80] and references therein

for a more extensive list of limiting distributions and
subclasses of the GH distribution.

D. The Hyperbolic likelihood function

Our main aim is to use a likelihood distribution that is
sufficiently flexible, as to be able to reconstruct a large
variety of distributions of data. As we demonstrate in the
different examples in the next sections, we find that a
likelihood based on the multivariate Hyperbolic (Hd)
distribution (i.e., the subclass of the GHd distribution when
λ ¼ ðdþ 1Þ=2) serves our purpose well.
For a distribution of data xi ∈Rd; 1 ≤ i ≤ n, we derive

the corresponding Hyperbolic likelihood function for
inferring the parameters ðα; δ; βÞ of their distribution as1

ΛHðα; δ; βÞ ¼ n

	
dþ 1

2
ln

�
γ

δ

�
þ 1 − d

2
lnð2πÞ

− lnð2αÞ − ln
�
Kðdþ1Þ=2ðδγÞ

�


− α
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ri

q
þ βT

Xn
i¼1

xi; ð21Þ

where

ri ¼ xTi Δ̂
−1xi: ð22Þ

We are going to use this form of the likelihood in test cases
in Sec. II E, where, for d ¼ 1, ri reduces to ri ¼ x2i .

For more realistic applications, we will adopt the above
Eq. (21) in the frequency domain. In particular, in Sec. III
we adopt the symmetric Hyperbolic likelihood (i.e., β ¼ 0).
For multiple data channels—see Eq. (4)—and assuming
that ðα; δÞ are the same for all frequencies, we then write

ΛHðθ; α; δÞ ¼ n

	
dþ 1

2
ln

�
α

δ

�
þ 1 − d

2
lnð2πÞ

− lnð2αÞ − ln
�
Kðdþ1Þ=2ðδαÞ

�


− α
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ RefriðθÞg

q
; ð23Þ

where

riðθÞ ¼ χ̃ †iS
−1
n χ̃ i: ð24Þ

In the above relation, we have used

χ̃ i ¼
ffiffiffiffiffiffiffiffi
2df

p �
ỹi − h̃iðθÞ

�
; ð25Þ

where df is the given frequency resolution. The summation
in Eq. (23) is over elements that correspond to a chosen
frequency range (fmin, fmax).
Equation (24) implies that we have chosen a given

estimate (or model) for the PSD of the noise, through Sn.
One of the great advantages of this likelihood formulation,
as demonstrated in the following sections, is that a mis-
modeling of the noise PSD could be compensated by the
joint estimation of the ðα; δÞ parameters. These two
parameters will also indicate possible departures from a
Gaussian distribution, as described in Sec. II C. In the
rather exceptional case where one does not want to assume
any PSD model, but instead prefers to infer the noise
properties by using the ðα; δÞ parameters of the Hyperbolic
likelihood, then one can use

riðθÞ ¼ χ̃ †i Δ̂
−1χ̃ i; ð26Þ

where now, since we operate in the frequency domain, and
in order to arrive at a dimensionless ri, the Δ̂ has units of
1=Hz (alternatively, one could make χ̃ i dimensionless, by
scaling it with an appropriate reference value with units
of 1=

ffiffiffiffiffiffi
Hz

p
).

After defining the likelihood function, and since we
operate within a Bayesian framework, we can write the
posterior of the parameters as

pðθjyÞ ∝ pðyjθÞpðθÞ; ð27Þ

with pðθÞ being the prior of the parameters. The marginal
likelihood pðyÞ usually acts as a normalization constant and
for that reason it is omitted from Eq. (27).

1Our result reduces to the hyperbolic distribution Λhyp in
[66,68] for β ¼ 0.
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E. Test cases

Before applying the hyperbolic likelihood ΛH to exam-
ples in GW astronomy, we first demonstrate its ability to
reconstruct non-Gaussian test distributions (several analytic
distributions, as well as real data from the LISA Pathfinder
[33,34] mission).

1. Reconstruction of one-dimensional test distributions

In the following, we will reconstruct different one-
dimensional test distributions (corresponding to the liming
cases and subclasses of the GH distributions discussed in
Sec. II C), assuming that the H distribution can approx-
imately describe the difference cases (even those with
λ ≠ 1). For each case, we infer the ðα; β; δ; μÞ parameters
of H using a Metropolis-Hastings MCMC algorithm and
ΛH (with d ¼ 1) as the likelihood function. The purpose of
this first simple investigation is to demonstrate the flexi-
bility of the ΛH likelihood.
For the sake of simplicity, we generate2 all data (5 × 105

samples for each test distribution) with zero-mean (μ ¼ 0).
The detailed description of each test distribution is as
follows:
(1) Normal Gaussian distribution N ðμ ¼ 0; σ2 ¼ 1Þ.
(2) Normal Inverse Gaussian distribution NIGðα ¼ 1;

β ¼ 0; δ ¼ 0.8; μ ¼ 0Þ.
(3) Hyperbolic distribution, Hðα ¼ 1.5; β ¼ 0.75;

δ ¼ 2; μ ¼ 0Þ.
(4) Student’s t-distribution with ν ¼ 4.
The generated test distributions described above are

shown in Fig. 1. The solid lines represent the theoretical
distribution in each case. The dashed lines represent our
reconstruction using the ΛH likelihood for all cases. We see
that the two cases for which λ ¼ 1 (N and H) are
reconstructed with high accuracy (the Jensen-Shannon
divergence3 is smaller than 10−5), but, also, the two cases
with λ ≠ 1 (NIG and Student’s t) are still reconstructed
fairly accurately (the Jensen-Shannon divergence is 2.5 ×
10−4 and 5.1 × 10−4, respectively) when using the sameΛH
likelihood. This demonstrates the flexibility of the ΛH
likelihood to reconstruct different distributions of data and
to compensate for different underlying values of λ through
its other parameters.
Finally, one can use the fα; β; δg parameters to probe the

statistical properties of the residuals. For example, in many
cases, it is necessary to test for any departures from
Gaussianity for a given data set. A very useful graphical
tool for such applications is the so-called shape triangle,
where, based on the recovered fα; β; δg coefficients, we can

qualitatively characterize the yielding distribution of the
residuals [68,69]. We present more details about this
methodology in the Appendix.

2. Application to real data from the
LISA Pathfinder mission

LISA Pathfinder (LPF) was an European Space Agency
mission launched in late 2015 and remained in operation
until 2017 [33,34]. The primary goal of LPF was to test
technologies for future GW observatories in space, such as
the LISAmission. LPFwas essentially a laboratory in space,
which contained two cubic testmassesmaintained in free-fall
conditions. The differential acceleration ΔgðtÞ between the
two test masses was being monitored by means of laser
interferometry. During the mission, the differential accel-
eration noise budget was studied and modeled, with the aim
of building solid grounds for the development of the LISA
mission.One of themost importantmeasurements of theLPF
mission was the pure acceleration noise measurements,
where no experiments (excitations of the three-body system)
were performed. During those measurements, a great variety
of spurious transient signals (glitches) were recorded. While
the physical origin of those glitches is not entirely known
[26], their statistical properties were studied in detail [27].
Formore studies on the LPF acceleration noise data, we refer
the reader to [35,36,84–86].
For our example here, we take the ΔgðtÞ segment that

was recorded between 2017-02-13 14:30:00.000 and 2017-
03-02 21∶50∶19.000 UTC. This particular segment con-
tained a series of glitches, with the loudest of them (shown
in the top panel of Fig. 2) distorting the numerical
estimations of the PSD of the data. In fact, such strong
spurious signals were straightforwardly detected and

FIG. 1. Randomly generated data with Gaussian N (yellow),
hyperbolic H (purple), NIG (red), and Student’s t (light blue)
distributions. The reconstructed distributions, using Bayesian
inference with ΛH as the likelihood function (solid lines), agree
very well with the theoretical distributions (dashed lines).

2The random values are generated with the SCIPY.STATS
package [81].

3The Jensen-Shannon divergence [82,83] is a special case of
the Kullback-Leibler divergence, which can be used as a metric
for the similarity of two distributions. It is symmetric, and takes
values close to zero if two distributions are similar.

SASLI, KARNESIS, and STERGIOULAS PHYS. REV. D 108, 103005 (2023)

103005-6



subtracted from the data. However, this situation of data
outliers is ideal for testing the heavy-tailed likelihood
framework we introduced in Sec. II D.
We first crop4 the ΔgðtÞ time series and determine the

time of occurrence of the loudest glitch signals. We also
mark theΔgðtÞ segments when no glitches are present, with
the aim of using them as benchmarks for the PSD of ΔgðtÞ.
Then, we proceed and apply the Hyperbolic likelihood
function Eq. (21) for the distribution of the Δ̃gðfÞ data in
the frequency domain and infer the free parameters α, β,
and δ. In order to avoid getting trapped in local maxima on
the posterior surface, we have used MCMC methods [48].
We plot the results in the bottom panel of Fig. 2, where

the histograms of the distribution of the noise data points
are plotted. The distribution of the Δg noise for the
particular segment that contains the loud glitch is repre-
sented in red color. For the sake of comparison, we have
also chosen a neighboring-in-time segment, where no data
outliers are present (blue data). The hyperbolic density
which is computed at the estimated α, β, and δ is shown

with the dotted line, while the theoretical Gaussian dis-
tribution is represented with the dashed line. The heavy-
tailed hyperbolic distribution, Eq. (21), indeed manages to
correctly capture the tails of the distribution in the case
where a loud glitch exists in the data, whereas the Gaussian
distribution is suitable only for the segment where no large
glitch was detected. We note that, due to the nearly
symmetric distribution of the data, the parameter β was
inferred to be very close to zero and a symmetric hyperbolic
likelihood would still be a good choice.
These first results are very encouraging, thus we can now

proceed and apply this framework to more complicated
investigations. Such cases, as already discussed, are sit-
uations of having to search for signals in noisy data, where
it is crucial to be able to correctly model the statistical
properties of the residuals and the underlying noise. In the
following sections, we will apply the hyperbolic likelihood
function in more realistic applications drawn from chal-
lenges in Gravitational Wave data analysis.
In this first study, we are going to focus on symmetric

hyperbolic distributions (i.e., with β ¼ 0) for two main
reasons. Firstly, we have found that in the simple appli-
cations presented in this work, the symmetric Hyperbolic
distribution is more than sufficient, and, secondly, because
it is lighter in terms of computational requirements. Indeed,
for a measurement of n data points, the number of Bessel
function calculations is reduced to one, instead of nþ 1 for
the case of asymmetry, where β ≠ 0.

III. APPLICATIONS TO THE ANALYSIS OF
GRAVITATIONAL WAVE DATA

The detection and characterization of any given signal
requires a good level of knowledge of the instrumental
noise. Concerning the GW measurements from ground-
based detectors, there has been extensive work on the
statistical properties of the instrumental noise (e.g., [87–89]
and references therein). This, together with monitoring the
status of the instruments through a large number of
auxiliary channels, contributes to the accurate representa-
tion of the instrument capabilities, virtually at all times.
However, future detectors, such as LISA, are going to be

signal-dominated, and the noise of the observatory will not
be completely known. In particular, LISA is going to
measure the complete population of Ultra Compact
Binaries emitting from within the Milky Way [17]. These
objects are mostly Double White Dwarfs, and their total
number is estimated to be of order Oð106Þ, emitting nearly
monochromatic GW radiation. Depending on the given
population model, current estimates place the total number
of sources resolvable by LISA atOð104Þ, while the rest will
generate a nonstationary confusion signal between about
0.01 and 0.2 mHz [31,37,38]. At the same time, the number
of calibration instruments available on board a space-borne
observatory (thermometers, magnetometers, etc.) will be
fairly restricted, due to space and power supply limitations.

FIG. 2. Top panel: A loud glitch in the ΔgðtÞ time series data
from the LPF mission (see text for details). The data presented
here are detrended by subtracting their mean and low-passed for
visualization purposes. Bottom panel: Histograms of the distri-
butions Δ̃g in the frequency domain, normalized with the PSD
SΔg of a nearby-in-time, outlier-free segment. Blue: segment that
contains the loud glitch. Red: reference data set. The dashed and
dotted lines represent Gaussian and Hyperbolic distributions,
respectively.

4We remove the first and last few data points to avoid
distortions due to the application of filters.
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The above, in combination with the limited data trans-
mission rate, might contribute to having less information
about the instrumental noise, when compared to ground-
based observatories. We will utilize examples drawn from
LISA data scenarios, focusing mostly on analyzing signals
from UCBs. In the following section, we will compare the
performance of the different likelihood formulations
described in Sec. II, under different noise assumptions.

A. Methodology

In order to test the performance of the Hyperbolic
likelihood, we designed a series of experiments with
synthetic data. We chose to work only with the signals
from UCBs, mostly due to their monochromatic nature, and
also for practical reasons, such as the very small computa-
tional time. However, it should be mentioned here, that our
formulation applies straightforwardly to the chirping sig-
nals of supermassive black hole binaries. For those signals,
and the simplest noise case of a varying PSD level across
the complete frequency band (same spectral shape, differ-
ent overall amplitude), we obtain very similar results as
with the UCBs investigations presented in this section. The
situation becomes more complicated, however, when the
noise PSD level assumed in the likelihood function has a
different spectral shape than the true noise PSD. We leave
this kind of investigation to future work.
For our first experiment, we simulate data given a

particular instrument sensitivity and then perform the
analysis assuming fixed PSD of the noise. We use three
likelihood formulations. The first type refers to the standard
Gaussian likelihood of Eq. (5), but with an assumed noise
PSD which is chosen to be different than the one that was
used to generate the synthetic data, simulating situations of
instrumental noise mismodeling. The second type refers to
the Whittle likelihood of Eq. (6), where the model for the
noise PSD is being fitted simultaneously with the GW
waveform parameters. Finally, the third refers to the
hyperbolic likelihood of Eq. (23), with fixed PSD for
the noise as in the case of the Gaussian likelihood above,
but with the added flexibility of extra parameters.
It is worth noting here, that for our first experiments, we

have assumed ideal synthetic data. This means that we
simulate perfectly Gaussian and uninterrupted data, directly
from the LISA sensitivity curves [90]. At the same time, we
assume a rigid LISA constellation, while the test-masses
acceleration noise and spacecraft interferometric noises are
assumed to be equal for all three spacecraft [91]. For this
special case, we can confidently utilize the noise-orthogo-
nal5 Time Delay Interferometry (TDI) A, E, and T channels
[90,92], which are retrieved from the detector outputs
X, Y, Z as

A ¼ 1ffiffiffi
2

p ðZ − XÞ; E ¼ 1ffiffiffi
6

p ðX − 2Y þ ZÞ;

T ¼ 1ffiffiffi
3

p ðX þ Y þ ZÞ: ð28Þ

The T channel is the so-called null channel, which greatly
suppresses the GW signal. Although the T TDI channel
seems useful when considering the complete frequency
band, it is neglected in our analysis because, as described
below, we will focus on a narrow frequency band.
Under our assumptions, the A and E channels used in
the analysis will have the same spectral shape, which
under given assumptions about the future instrument, is
given by [90,93]

SAEn ðfÞ¼8sin2ðf�Þ�2Saccδν=νðA;fÞð3þ2cosðf�Þþcosð2f�ÞÞ
þSOMS

δν=ν ðP;fÞð2þcosðf�ÞÞ�; ð29Þ

where f� ¼ 2πLf=c, L is the LISA arm-length, while
the noise components Saccδν=νðA; fÞ and SOMS

δν=ν ðP; fÞ can be
found in [90], expressed in relative frequency units (thus
the index δν=ν). These functions depend on parameters A
and P, respectively, for which a conservative estimate
consistent with current requirement levels for the instru-
ment is [61,90,93]

ffiffiffiffi
A

p
¼ 3 fm=sec2=Hz; andffiffiffiffi

P
p

¼ 15 pm=Hz: ð30Þ

Considering the above, the likelihood computation of
Eqs. (5), (6), and (23) reduces to just the sum of the
likelihoods for the two uncorrelated A and E channels.
Finally, in order to perform our analysis, we sample the

posterior of the parameters with Markov Chain Monte
Carlo algorithms, enhanced with parallel tempering [48].
For the applications in the sections below, we have set up
our sampler with an adjusting temperature ladder of 30
temperatures, each running with 50 independent walkers.
We nominally allow for 5 × 104 samples for the burn-in
phase, and 105 samples per walker for the parameter
estimation phase.

B. Ultra compact galactic binaries

As already discussed, the UCBs emitting from the
vicinity of our Galaxy are mostly Double White Dwarfs
(DWDs) [38,94,95]. Those will be the most numerous
types of sources in the LISA band, with millions of them
emitting in the mHz range. For our study here, we will
perform parameter estimation on a single binary embedded
in Gaussian noise, with a PSD given by Eq. (29). For the
actual waveforms, we utilize the fast frequency-domain
implementation that was first presented in [96]. The two
polarizations are then written as

5Under the assumptions of [90,92], the A and E channels are
uncorrelated and only the diagonal components of their covari-
ance matrix survive.
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hþðtÞ ¼
2M
DL

ðπf0ðtÞÞ2=3ð1þ cos2ιÞ cosψðtÞ;

h×ðtÞ ¼ −
4M
DL

ðπf0ðtÞÞ2=3 cos ι sinψðtÞ; ð31Þ

with M being the chirp mass, f0 the instantaneous
gravitational wave frequency, DL the luminosity distance,
ι the inclination of the binary orbit and ψ the gravitational
wave phase over time. For more details about the waveform
model, we refer the reader to [96–98]. The final inferred
parameters are θ ¼ flog10A; f0 log10 ḟgw;ϕ0; cos ι;ψ ; λE;
sin βEg, whereA is the overall amplitude, which, in relation
to Eqs. (31), can be expressed as

A ¼ D−1
L ð2M5=3π2=3f2=30 Þ: ð32Þ

Above, λE and βE are the given ecliptic latitude and
longitude, respectively. The graphics processing unit-accel-
erated software we have used can be found in [99], which is
essentially an adaptation of the waveform implemented for
the LISA Data Challenges (LDC) software [100] and in
earlier works. The injected parameters for the single binary
are presented in Table I.

1. Unknown noise spectrum

We first investigate the case, where the true PSD of the
noise is completely unknown. A partial solution for this
problem would be to assume a parametrized model of the
noise PSD and infer its parameters simultaneously with the
signal, using the Whittle likelihood of Eq. (6). Here,
instead, we will use the Hyperbolic likelihood ΛH of
Eq. (23), with riðθÞ given by Eq. (26), without making
an explicit assumption about the noise PSD.
By adopting the noise-orthogonal A and E channels,

Eq. (26) reduces to

riðθÞ ¼ 2df
XfA;Eg
c

jỹc − h̃cðθÞj2: ð33Þ

Essentially, this corresponds to using a unitary diagonal Δ̂
matrix.
Given the simulated data, we should recover a set of α

and δ parameters that would reflect the characteristics of the
noise. Since, in our example, we generated Gaussian noise,
the posterior distribution of α and δ should reflect the
characteristics of the Gaussian normal distribution that we
have adopted for the simulations.
For this investigation, we can treat the instrumental noise

as white around the injection frequency, simply because
this type of signal is almost monochromatic and, thus, the
variation of the noise PSD in a narrow frequency band
around the signal is negligible [see Fig. 3(a)]. This further
simplifies our analysis because it allows us to use the
common α and δ parameters for all frequencies considered
in the analysis. In other cases, such as when one simulates
multiple injections at different frequencies, different α, δ
parameters will need to describe different parts of the
spectrum as demonstrated in an example using Student’s t-
distribution in [56]. Another simplification is that we use
the same α and δ coefficients for both the A and E TDI
variables, assuming that the two data channels have the
same noise levels.6

Considering the above, we should expect to recover
parameters that while α → ∞ and δ → ∞, their ratio
remains constant and converges to the variance of the
noise around the source initial emission frequency f0.
Concerning the signal, we draw a relatively “loud” source
from the list of Verification Binaries [71,100], which we
further tune to get a slightly higher SNR. The injected
waveform parameters are listed in Table I, while our
synthetic data set has a duration of Tobs ¼ 1 year, which
gives a frequency resolution of ∼10−8 Hz.
We then perform parameter estimation simultaneously

for the waveform parameters listed in Table I and the
parameters α, δ of the ΛH likelihood. Figure 3(b) displays
the 2D posterior distribution of the parameters α, δ. For a
symmetric distribution, Eq. (10) reduces to σ2 → δ=α in the
limit of a Gaussian distribution,7 i.e., when α → ∞ and
δ → ∞. The dashed red line in Fig. 3(b) represents
log10 δ − log10 α ¼ log10 σ2, where σ2 here corresponds
to the “correct” value of the power spectral density
SAEn ðf0Þ in the same dimensionless units we chose for
the data. From the alignment of the 2D posterior distribu-
tion with this line, it follows that the inferred parameters
α, δ adjust the Hyperbolic distribution to the true Gaussian
distribution of the data residuals.

TABLE I. The parameter values of the injected UCB signal in
the data. This injection was used for the investigations in both
Secs. III B 2 and III B 3.

Parameters Value

Amplitude, log10ðA½Strain�Þ −21.37729133
Initial frequency, f0 ½mHz� 2.61301
Frequency derivative, log10 ḟ0 −16.53675992
Inclination, cosðι ½rad�Þ 0.05407993
Ecliptic Latitude, sinðβE ½rad�Þ 0.1012303
Ecliptic Longitude, λE ½rad� 4.052962883
Polarization, ψ ½rad� 0.80372815
Phase, ϕ0 ½rad� 3.12184095

6For future applications, it would be interesting to generalize
the GH distribution to α; δ ∈ Rd.

7Notice that, as evident from Fig. 3(a), SAEn ðf0Þ ∼ 10−42 Hz−1,
which explains the particular numerical values of α, δ in the
chosen system of units, where Δ̂ is assumed to have dimensions
of 1=Hz without any further scaling of the χ̃ i data. With
appropriate rescaling, one can bring both α, δ in the regime
of → ∞.
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Finally, the waveform parameters are also recovered with
identical posteriors as the baseline Gaussian likelihood
case, where the noise in Eq. (5) is set to the true PSD value.
This first result demonstrates the capabilities and robust-
ness of the Hyperbolic likelihood in recovering both the
correct parameters of the noise and the statistical properties
of the residuals.

2. Noise spectral model mismodeling

Our next step is to test this framework in a different
setting, which focuses on mismodeling the PSD of the
noise. This situation is a bit closer to reality, where we start
making some assumptions about the underlying PSD of the
noise. This will be the case for LISA around the mHz level,
due to the unknown contribution of the stochastic signal
generated by astrophysical populations [31,38–40,70].
In practice, we simulate a mismodeling situation by

plugging a wrong PSD model of the noise to the likelihood
function of Eqs. (5), (6), and (23). Since our signal is almost
monochromatic, this translates to an overall PSD level
difference between the true and adopted models for the
noise. We use the same source signal as before (see Table I),
and simulate data for an observation duration of
Tobs ¼ 1 year. Using a PSD based on Eq. (29) and
assuming that the values of Eq. (30) correspond to the
“correct” noise levels, we obtain a signal-to-noise ratio
(SNR) of ρ ¼ ffiffiffiffiffiffiffiffiffiffiffihhjhip ¼ 122.7.
Next, we assume that we do not know the “correct” noise

levels and are forced to guess, adopting a different,

“wrong” PSD, using Eq. (29), but with the “wrong”
values,

ffiffiffiffi
A

p
¼ 2.5 fm=sec2=Hz andffiffiffiffi

P
p

¼ 11 pm=Hz; ð34Þ

which means that by adopting the above model, we greatly
underestimate the level of the noise by a factor of ∼1.57 at
the particular emission frequency of the binary. We then
sample the parameter space with parallel tempering MCMC
[48] and investigate three different cases.
(1) The first parameter estimation analysis was per-

formed by adopting the standard Gaussian like-
lihood (ΛN ) of Eq. (5), and assuming the
“wrong” PSD levels of Eq. (34) for the noise.

(2) The second investigation was analyzed using the
Whittle likelihood (ΛW) of Eq. (6), with a model of
the PSD that represents a flat PSD spectrum around
the frequencies of interest (fmin ¼ f0 − 1 ½mHz�;
fmax ¼ f0 þ 1 ½mHz�) multiplied by a single param-
eter nlevel. For nlevel ¼ 1, we take the PSD to be the
value given by Eq. (29) at f ¼ f0, but in which the
“wrong” parameters of Eq. (34) were used. By
fitting for the free parameter nlevel, we essentially
search for a correction to the adopted “wrong” PSD.

(3) Finally, a third case that we consider, is to use the
Hyperbolic likelihood formulation (ΛH) of Eqs. (23)
and (24), again assuming the “wrong” PSD param-
eters of Eq. (34) for the noise. Here, we allow the

(a) (b)

FIG. 3. (a) The different sets of data used in the investigations of Sec. III. In the given frequency range, the PSD of the instrumental
noise is shown with the solid black line [see Eqs. (29) and (30)]. This model, with added Gaussian noise was used in order to generate the
data shown in gray color. For the investigation in Sec. III B 3, we additionally injected a series of Gaussian bursts, which resulted in the
noise data shown in blue color. The injected UCB signal is shown in dark red (see Table I). (b) The 2D posterior slice between the
parameters α and δ of the Hyperbolic likelihood defined in Eqs. (23) and (33), for the first investigation of Sec. III B 2. The contours
represent the sampled posterior surface at 67% and 90% C.I., while the dashed red line corresponds to the logarithm of the true injected
PSD levels of the instrumental noise (see text for details).
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free parameters α, δ of (ΛH) to offset the wrong
assumption of the PSD. This application highlights
one of the advantages of the Hyperbolic likelihood,
which is the detection of any deviations from a given
assumed noise model, or any kind of departures
from the assumed Gaussianity of the residuals.

To validate the performance of each parameter estima-
tion run, we compare them to the baseline case, which is the

Gaussian likelihood with the correct noise model described
by Eq. (29) and the parameters of Eqs. (30).
The results of this application are summarized in Fig. 4

and in Table II. It is quite evident from the corner plot of the
2D posterior distributions in Fig. 4, that the naive approach
of using the Gaussian likelihood ΛN with a PSD based on
the “wrong” noise parameters of Eq. (34), yields under-
estimated posterior widths. On the other hand, when

FIG. 4. Corner plot showing the 2D posterior slices for all the parameters that characterize the injected waveform and the properties of
the noise, for the case of noise mismodeling of Sec. III B 2. The optimal signal-to-noise ratio is 122.7. In particular, with dark red we plot
the posteriors for the case of the Gaussian likelihood ΛN with PSD at a wrong level, whereas with yellow we plot the posteriors of the
Whittle likelihood (ΛW), which allows for fitting of the noise level. Finally, with light blue, we plot the posteriors retrieved with the
Hyperbolic likelihood, with the wrong PSD levels in the whitening. The true injected values for all parameters (with the exception of α
and δ for the Hyperbolic likelihood case) are shown with white dashed lines. The red dashed curve represents the log10 δ − log10 α ¼
log10 n

ðcorrectÞ
level line.

HEAVY-TAILED LIKELIHOODS FOR ROBUSTNESS AGAINST … PHYS. REV. D 108, 103005 (2023)

103005-11



correcting the PSD, through the free nlevel parameter ofΛW ,
we obtain results that agree with the baseline case. The
nlevel parameter is recovered as 1.5� 0.12 (90% CI), which

includes the correct value of nðcorrectÞlevel ∼ 1.57. Very similar
2D posterior distributions are also obtained with the
Hyperbolic likelihood ΛH, but without assuming any
parametrized model for the PSD. Instead, the correction
of the wrong PSD levels is achieved through the free

parameters α, δ of ΛH. In Fig. 4 we also plot the log10 δ −
log10 α ¼ log10 n

ðcorrectÞ
level line,8 which aligns with the 2D

posterior distributions of α, δ as α → ∞ and δ → ∞,
confirming that using ΛH even with a wrong PSD in the
inner product, one obtains posteriors equivalent to the
baseline with the correct PSD.
In Table II we present the Jensen Shannon divergence of

the marginal posterior probability density functions of all
parameters, between the three different likelihood choices
with wrong PSD levels and the baseline model of a Gaussian
distribution with the correct PSD. It is quite evident, that the
Hyperbolic distribution agrees really well with the baseline
case and corrects the wrong PSD assumption with compa-
rable accuracy as the Whittle likelihood.
This result demonstrates the robustness of the

Hyperbolic likelihood formulation in situations where
the noise spectral shape is not entirely known, or when
has features that are not modeled properly. As already
discussed, such is the case of the future LISA data, where
the confusion noise of the ensemble signal of all the UCBs
in our Galaxy will generate a confusion stochastic fore-
ground. Thus, a possible application would be to adopt a
heavy-tailed likelihood, such as the one presented here, in
order to perform parameter estimation and search under a
robust statistical framework.

As a final note, we should mention that we retrieved very
similar results when inverting the noise assumptions for this
exercise, i.e., the true noise being lower than the one
assumed in the likelihood functions. In this case, the
posterior spread was overestimated with the ΛN likelihood
and correctly estimated with the other two choices.

3. Gaussian bursts

For our third application, we focus on a somewhat more
realistic scenario. In particular, we inject the data generated
in Sec. III B 2 with bursts of Gaussian noise, placed
randomly in the time series of the A and E TDI channels.
The noisy bursts are generated by the same model of
Eq. (29) and with parameters drawn uniformly from
log10 A ∼ U½−32;−28�, and log10 P ∼ U½−23.6;−19.6� [in
the units of Eq. (30)]. Their duration dburst is also sampled
uniformly, as dburst ∼ U½0.01; 10� days. The resulting time
series thus consists of the waveform model injected in
Gaussian noise with the addition of the Gaussian bursts and
is shown in Fig. 5. Naturally, the presence of such noise
nonstationarities is expected to distort the spectral shape of
the overall noise PSD. However, in our application, we
focus on a single UCB, which is very well localized in
frequency. Thus the effect of the bursts is similar to the
mismodeling of the PSD in Sec. III B 2 above. This is
illustrated in Fig. 3(a), where the individual components of
the signal, the simulated Gaussian instrumental noise, and
the Gaussian noise bursts are shown in the frequency
domain.
Hence, we can adopt the same analysis methodology,

which uses the same list of likelihood formulations that we
used in previous sections. We first sample the posterior of
the parameters given the data with a Gaussian likelihood,
which assumes the artifacts-free noise model (ΛN ). This
assumption about the data is expected to yield a biased
estimate of the waveform parameters posterior widths. We
then repeat the analysis using the Whittle likelihood ΛW
and fitting for the noise level nlevel. Finally, we use the
Hyperbolic distribution (ΛH), where we fit for the α and δ
parameters of Eq. (23). Notice that in this application, we
do not have a baseline run, because we do not have access
to the “true” noise PSD due to the randomly injected
Gaussian bursts.
The results can be summarized in Fig. 6, where we plot

the 2D posterior slices of the sampled parameters for each
case. It is fairly obvious that the Hyperbolic and the noise-
fitting Gaussian likelihoods present almost identical per-
formance, with the corresponding marginal posterior
distributions agreeing very well with each other. This is
verified when we compute the Jensen-Shannon divergence,
which yields figures of order ∼10−4 for all parameters. In
addition, as expected, the nlevel noise parameter estimated
with the Whittle likelihood (the maximum posterior value
for nlevel is represented by the black dashed line in Fig. 6),
agrees with the δ=α ratio recovered by the analysis using

TABLE II. Jensen-Shannon (JS) divergence of the marginal
posterior probability density functions of all parameters, between
the three different likelihood choices with wrong PSD levels in
Sec. III B 2 and the baseline model of a Gaussian distribution
with the correct PSD (see text for details).

Jensen-Shannon divergence ð×10−3Þ
θ ΛN ΛW ΛH

log10 A 11 0.4 0.3
f0 12 0.7 0.4
log10ðḟ0Þ 1 0.4 0.9
cos ι 11 0.4 0.4
sin βE 11 0.4 0.5
λE 7 1.1 1.7
ψ 12 0.4 0.6
ϕ0 5 0.9 2.3

8This equation is expected to hold, because the data are
whitened with the PSD of the noise, see Eq. (24).
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FIG. 5. The time series of the A (light blue) and E (dark red) TDI channels include the injection binary signal, the nominal instrumental
noise, and the noise bursts. The noise bursts are randomly placed in the synthetic time series, while their duration and spectral shapes are
also generated by sampling from predefined distributions (see text for details).

FIG. 6. Same as Fig. 4, but for the case of noise nonstationarities of Sec. III B 3. The dashed black here represents the nlevel noise
parameter as estimated with the Whittle likelihood analysis (see text for details).
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the hyperbolic likelihood. This result confirms, once again,
the versatility and robustness of the Hyperbolic likelihood
ΛH in parameter estimation situations, where the instru-
mental noise properties are not completely known.

IV. CONCLUSIONS AND DISCUSSION

We have introduced a heavy-tailed likelihood framework
for robust inference and demonstrated its applications in
Gravitational Wave data analysis. In particular, we have
adopted the Generalized Hyperbolic (GH) distribution,
which has a number of widely used distributions of the
exponential family as limiting distributions. This built-in
flexibility allows us to model the residual noise with more
accuracy, which is very useful when dealing with real data.
Such cases are commonly encountered in GWAstronomy,
where the GW signals need to be searched for in the noise
of a given detector or of a network of detectors. This task
can be challenging due to the limited knowledge of the
statistical properties of the detector noise, which might
depart from the ideal Gaussian properties. This usually
happens due to noise transients and bursts, data gaps,
spectral lines, or even the presence of foreground stochastic
GW signals.
Based on a subclass of the (GH) distribution (the

Hyperbolic distribution, H), we derived the Hyperbolic
likelihood function ΛH of Eq. (21), which depends on
parameters α, δ and β and demonstrated its performance
and flexibility in simple test cases. We simulated random
variables from distributions that are known to be limiting
cases of GH. Those are the Gaussian (N ), NIG, and
Student’s t-distributions. In each case, the inferred param-
eters α, δ and β of ΛH were demonstrated (as evidenced by
the Jensen-Shannon divergence) to lead to a close match
between the target and posterior distributions, even for
cases where one of the GH parameters (λ) of the target
distribution was different than the λ ¼ 1 value assumed in
the Hyperbolic distribution. This is a nice demonstration
that the Hyperbolic distribution has sufficient degrees of
freedom to adjust (with acceptable accuracy) to different
distributions.
As as next step, we applied this methodology to more

realistic applications, drawn from problems encountered in
GWAstronomy. For the case of the current ground-based
detectors, the spectral shape of the noise can be understood
fairly well to allow inference with relative confidence, due
to the accessibility of the instrument and the numerous
auxiliary channels available. Even in that case, there is
always the risk of transient events, such as noisy glitches,
which can happen randomly in time. The situation is quite
different for future space-based observatories, such as
LISA, where the spectral shape of the noise will not be
completely known. This is due to the limited number
of available auxiliary channels, as well as due to the
“confusion noise” generated by the ensemble of the vast
number of signals detectable with LISA.

For demonstration purposes, we limited our analyses to a
single signal from a DoubleWhite Dwarf binary, injected in
colored Gaussian noise representative of the LISA detector
with relatively high SNR (ρ ¼ 122.7, see Table I for its
waveform parameters) and investigated three different
applications. In the first investigation, we performed
parameter estimation using the Hyperbolic likelihood ΛH
we propose in Eqs. (23) and (26), where the level of the
noise was assumed completely unknown (no PSD was
assumed and no whitening was performed in the frequency
domain). From the inferred parameters fα; δg of the
symmetric Hyperbolic distribution, we were able to char-
acterize the noise. In particular, as theory predicts, we
found that the distribution of the residuals asymptotically
(as α; δ → ∞) tends to the assumed Gaussian distribution,
with log δ − logα ¼ logSAEn ðf0Þ, where SAEn ðf0Þ is the
spectral noise density at the emission frequency f0 of
the binary.
Then, we investigated a case of mismodeling the PSD

levels of the noise. Essentially, we assume a wrong noise
level for the parameter estimation process, which is then
plugged into the Gaussian likelihood of Eq. (5). For this
investigation, we assumed that the noise PSD was lower
than the true value that was used to simulate the data. As
before, we also performed the parameter estimation analy-
sis of a single Galactic Binary using the Hyperbolic
likelihood ΛH, with the expectation that the fα; δg coef-
ficients would “tune” the likelihood to mitigate for this
mismodeling of the noise PSD. This was verified with the
results presented in Fig. 3 and Table II. The estimated
waveform posteriors for the parameters, when using ΛH,
are almost identical to those obtained with the baseline
Gaussian likelihood using the correct noise levels. In
addition, the ratio δ=α obtained from posteriors of
the parameters of the hyperbolic likelihood converged to

the ratio nðtrueÞlevel between the true noise PSD level and the
mismodeled case. The true PSD was thus fully charac-
terized using the ΛH likelihood.
Finally, we tested this framework in a somewhat more

realistic scenario, where the instrumental noise was “pol-
luted” with Gaussian bursts, randomly placed in time for
both TDI channels considered in the analysis. Using the
same approach as before, we obtained results that verify the
functionality of the heavy-tailed framework introduced in
this work. In particular, we demonstrated that with the
hyperbolic likelihood, we were able to recover the correct
posterior widths for the waveform parameters, which were
larger than predicted by the simple Gaussian likelihood,
due to the additional uncertainty induced by the noisy
bursts (see Sec. III B 3 for details).
We expect that the new framework we introduced in this

work will be very useful for data from future observatories,
where the noise model will not be completely accessible.
The Hyperbolic likelihood is quite versatile, as the shape of
the Hyperbolic distribution can adjust to fit the residual

SASLI, KARNESIS, and STERGIOULAS PHYS. REV. D 108, 103005 (2023)

103005-14



data. In that sense, an advantage to the Whittle approxi-
mation of the likelihood, is that the Hyperbolic likelihood
can converge to a different distribution than the Gaussian.
Thus, there are many applications where this framework
can be utilized, a primary example being the modeling of
noise artifacts, such as bursts, data gaps, glitches, or other
types of nonstationarities. At the same time, even in the
absence of noise nonstationarities, the Hyperbolic like-
lihood can be employed in order to probe any mismodeling
of our noise models. Finally, another application would be
to construct Gaussianity tests on different segments of data,
based on the values of the parameters of the Hyperbolic
likelihood and tools such as the shape triangle.
In our computations, we used Parallel TemperingMCMC

methods [48], and graphics processing unit accelerated
waveforms [99] and we make our codes available as open
source software [101].
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APPENDIX: THE SHAPE TRIANGLE

The shape triangle is a very useful graphical tool for
visualizing the degree to which a distribution belonging to
the exponential family is heavy-tailed or skewed. One can
begin by using the Generalized Hyperbolic distribution to
characterize a new distribution. Then, based on the recov-
ered fα; β; δg coefficients, one can qualitatively categorize
the distribution of interest by placing it into a shape triangle
[68,69]. To do that, we use a different parametrization from
the usual fα; β; δg set. Following [68,69], we can compute

ζ ¼ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

q
; ϱ ¼ β=α;

ξ ¼ ð1þ ζÞ−1=2; χ ¼ ξϱ; ðA1Þ

and then use the scale and location-invariant parameters χ
and ξ, which form a triangle in the χ − ξ plane,
since 0 ≤ jχj < ξ < 1. The position inside the shape
triangle gives us visual information about the distribution
of heavy-tailedness and skewness. This visual tool can be
helpful in practical applications, such as monitoring data
quality in real time or classifying different data segments,
depending on their statistical properties [102].

Here, we investigate the same test distributions as in
Sec. II E, but for the two cases, for which the parameter λ is
negative, we adopt the GH distribution for λ < 0 as in [68]

ΛGHd
ðα; δÞ ¼ n

	
−λ logðδÞ þ d

2
logð2πÞ − log ðKλðδαÞÞ




−
1

2

�
λ −

d
2

�Xn
j¼1

ðδ2 þ x2jÞ

þ
Xn
j¼1

Kλ−d
2

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ x2j

q �
: ðA2Þ

The reason that we assume two different likelihoods, one of
the positive values of λ [ΛH of Eq. (21)] and another one for
the negative values [ΛGHd

of Eq. (A2)], arises from the
definition of the domain in Eq. (9). Thus, the difference
here compared to Sec. II E is that the posteriors for the
fα; β; δg are estimated using the ΛGHd

Eq. (A2) when the
test-case distribution is either the Student’s t-distribution
or NIG.
After we obtain the posteriors, we calculate the fχ; ξg

parameters from Eqs. (A1) and place them onto the shape
triangle, which is shown in Fig. 7. The shape triangle, gives
us a graphical representation (on the χ − ξ plane) of the
characteristics of the resulting distribution. We have
marked the injected values with crosses, while the recov-
ered parameters are marked with colored dot markers (N
with yellow, H with purple, NIG with red and, and finally
the Student’s t-distribution case with light blue). From the
results displayed in Fig. 7, it is evident that we were able to
recover the underlying distributions as special or limiting
cases of the GH distribution.

FIG. 7. Triangle shape for the injected values of χ, ξ (crosses)
and the recovered values (filled circles) for the data generated
assuming Gaussian N (yellow), Hyperbolic H (purple), Normal
Inverse Gaussian NIG (red) and Student’s t-distributions
(light blue).
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