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Galactic nuclei, the densest stellar environments in the Universe, exhibit a complex geometrical
structure. The stars orbiting the central supermassive black hole follow a mass segregated distribution both
in the radial distance from the center and in the inclination angle of the orbital planes. The latter distribution
may represent the equilibrium state of vector resonant relaxation. In this paper, we build simple models to
understand the equilibrium distribution found previously in numerical simulations. Using the method of
maximizing the total entropy and the quadrupole mean-field approximation, we determine the equilibrium
distribution of axisymmetric two-component gravitating systems with two distinct masses, semimajor axes,
and eccentricities. We also examine the limiting case when one of the components dominates over the total
energy and angular momentum, approximately acting as a heat bath, which may represent the surrounding
astrophysical environment such as the tidal perturbation from the galaxy, a massive perturber, a gas torus,
or a nearby stellar system. Remarkably, the bodies above a critical mass in the subdominant component
condense into a disk in a ubiquitous way. We identify the system parameters where the transition is smooth
and where it is discontinuous. The latter cases exhibit a phase transition between an ordered disklike state
and a disordered nearly spherical distribution both in the canonical and in the microcanonical ensembles for
these long-range interacting systems.

DOI: 10.1103/PhysRevD.108.103004

I. INTRODUCTION

Supermassive black holes (SMBH) are commonly
observed at the centers of galaxies [1]. The strong gravity
of the SMBH influences the dynamics of the nuclear star
cluster; these are the densest environments of the Universe
[2]. At the center of the Milky Way, the lighter and older
stars are observed to be distributed almost spherically while
the younger and more massive stars form a more compli-
cated anisotropic distribution including a coeval warped
stellar disk, the so-called clockwise disk, and a counter-
rotating structure [3–5]. It is difficult to explain the
observed distribution with in situ star formation because
of the presence of strong tidal forces. Another possibility is
that the anisotropy represents a dynamical equilibrium

where the more massive objects segregate in a counter-
rotating disk where objects orbit in both directions [6–9].
An effective way to study the equilibrium state of self-

gravitating systems is statistical mechanics, which has been
explored for a long time in this context [10,11]. However,
because of the long-range nature of gravity, energy is
nonextensive which makes many results of statistical
mechanics inapplicable [12]. Another complication is that
the uniform distribution on the energy hypersurface
required by the ergodic hypothesis may not hold due to
the unbounded nature of phase space and energy. All these
issues make it challenging to construct the statistical
mechanics of gravitating stellar systems. Fortunately how-
ever, the complications may be circumvented in dense
stellar systems due to the existence of a timescale-
hierarchy, which corresponds to the rate of change of
the different orbital elements of objects in the system. This
leads to an equilibrium distribution in certain bounded
subsets of phase space [7,13–23]. In particular, in the mean
field potential dominated by the SMBH and perturbed by a
spherical star cluster, the orbital motion and apsidal in-
plane precession are much faster than the diffusion of the
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orientation of the orbital planes (i.e. the argument of
node and the z-component of angular momentum, or the
direction of the angular momentum normal vector). The
diffusion of the orientation of the orbital planes is in turn
much faster than the diffusion of the eccentricity and
semimajor axis. The dominant mechanism that drives the
dynamics of orbital orientations is vector resonant relax-
ation (VRR) [13,15], where the torque between stellar
orbits averaged over the orbital period and the apsidal
precession period accumulate coherently in time for
extended periods while the semimajor axis and eccentricity
(hence magnitude of angular momentum and energy) of
each orbit is fixed. The corresponding VRR time scale is
shorter than the age of the stars, and this leads to the
diffusion of angular momentum vectors toward the VRR
equilibrium [24,25], much faster than two-body relaxation
which drives a general gravitating system to thermal
equilibrium. This hierarchy allows one to average the
gravitational interaction over the faster processes and freeze
the slowly changing orbital elements to obtain the corre-
sponding VRR equilibrium of angular momentum.
The equilibrium distribution and phase diagram of

VRR has been mapped out in the mean-field-theory
approximation in the special case of a one-component
system with the same semimajor axis and eccentricity for
all stars [14,19,26], which showed that the system exhibits
a first-order phase transition from a disklike configuration
to a nearly isotropic ordered state in the canonical ensem-
ble.1 The microcanonical ensemble for an isolated multi-
radius and multimass system was obtained in Ref. [15] for
circular orbits and the thin disk limit showing that the disk
oscillates in independent normal modes each being at the
same temperature, but typically not in equipartition if the
cluster is rotating2 (see also [27–30]). Numerical studies
using Monte Carlo Markov Chain, mean field theory, and
N-body simulations also showed that for multimass models
the more massive components generally tend to settle in
more flattened configurations while low mass components
assume a nearly isotropic state [6,8,9,31]. The massive
components assume a disklike state even if the initial
configuration has a very low amount of anisotropy of order
a per cent [8,9]. This suggests that stellar mass black holes,
which are typically more massive than typical main
sequence stars, may efficiently settle into disks in dense
star clusters, which may boost the collision rate between
these objects and contribute to the observed gravitational
wave events [6,32,33].
The goal of this paper is to construct toy mean-field

models to give a qualitative understanding of the orbital
inclination, mass, and semimajor axis dependence of the

VRR equilibrium states in multimass models. We examine
the possible equilibrium distributions which may be
applied to stellar systems or a small population of massive
stars, or intermediate mass black holes (IMBHs) and
determine how the surrounding astrophysical environment
such as the tidal perturbation from the galaxy, a massive
perturber, a gas torus, or a nearby stellar system may affect
the equilibrium distribution.
We examine the interesting limiting case when one

of the components with some given mass and semimajor
axis dominates the energy and angular momentum of the
system, which acts as a heat bath for the cluster. The
equilibria may be found analytically in this case, which we
compare with the exact calculation of a two-component
mean field model. We show that these multicomponent
systems exhibit a phase transition in both the canonical and
the microcanonical ensembles analogous to the nematic-
isotropic phase transition in liquid crystals, which is not
possible in the case of a one-component system [19]. We
determine the critical minimum stellar mass where the
distribution collapses to a disklike state as a function of
semimajor axis and the level of anisotropy of the dominant
component.
The physical origin of this analogy between liquid

crystals comes and stellar systems is explained by the
similarity between the Coulomb and the orbit-averaged
Newtonian interactions, and the similarity in the geometry
of the interacting objects; i.e. the liquid crystal molecules
which are axisymmetric and the stellar orbits which rapidly
cover axisymmetric disks due to the rapid eccentric orbital
motion and in-plane apsidal precession. This correspon-
dence manifests a similarity between the mean field
Hamiltonian of the Maier-Saupe model of liquid crystal
[34,35] and the orbit averaged gravitational Hamiltonian of
VRR [19,24]. The interaction energy is minimized in the
configuration where the orientation of these axisymmetric
objects align. This leads to the alignment or antialignment
of the axisymmetric molecules’ orientation vectors at low
temperatures, called the nematic phase, while there is a
first-order phase transition at a certain temperature to an
isotropic orientation distribution. Similarly, in the nematic
phase, the VRR interactions in stellar systems forms an
ordered disklike state, where the angular momentum
vectors are aligned or anti-aligned.3

This paper is structured as follows. In Sec. II, we derive
the mean field theory equilibrium of VRR by maximizing
the entropy for a two-component system by generalizing
Ref. [19]. We compare the limiting case of a heat bath to the
exact two-component calculation and show analytically

1Similar results hold for the so-called scalar resonant
relaxation equilibria attained on even longer timescales
[7,16–18,20–22].

2Equipartition holds in the center-of-mass corotating frame, as
expected.

3For liquid crystals, alignment or antialignment is equally
probable in the absence of an external magnetic field, and
similarly for gravitating systems with zero net angular momen-
tum. The aligned/antialigned fraction varies as a function of the
external magnetic field for liquid crystals or for the net angular
momentum for VRR [19].
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how the stellar orbital distribution depends on the mass and
orbital radius. In Sec. III, we present the results of the VRR
mean field distribution under the heat bath approximation.
We examine the conditions for the subdominant component
to transit smoothly from an ordered to a disordered phase.
We also determine how the distribution varies systemati-
cally with mass for different sets of total energy and angular
momentum values. In Sec. IV, we explore the existence of
phase tranisition in both the canonical and microcanonical
ensemble. We also explore what conditions affect the
existence of negative temperature equilibria in Sec. V.
We summarize the results in Sec. VI.

II. THE TWO-COMPONENT MEAN FIELD
THEORY OF VRR

We consider toy models of nuclear star clusters with two
types of stellar components denoted by C1 and C2 of N1 and
N2 number of stars, respectively, orbiting around the same
central SMBH. All stars in C1 have the same mass,
semimajor axis, and angular momentum magnitude labeled
ðm1; a1; l1Þ, and similarly for C2 with ðm2; a2; l2Þ. For
simplicity, we assume that the distribution of the angular
momentum vectors is axisymmetric and that the two
components share the same axis of symmetry for their
angular momentum vectors. The Hamiltonian of the
system describing VRR in the leading order quadrupole
approximation has the form of [19],4

HVRR ¼ −
1

2

X
i;j∈ C1

J1P2ðni · njÞ −
1

2

X
i;j∈ C2

J2P2ðni · njÞ

−
X

i∈ C1;j∈ C2

J0P2ðni · njÞ

¼ −
X
i∈ C1

3

4
½J1N1Q1 þ J0N2Q2�qi

−
X
i∈ C2

3

4
½J2N2Q2 þ J0N1Q1�qi; ð1Þ

where ni is the normalized angular momentum vector of
star i, P2ðxÞ ¼ 3

2
x2 − 1

2
is the second Legendre polynomial,

qi ≡ qðniÞ ¼ ðsiÞ2 − 1
3
, si is the z-component of ni for star i

with respect to the symmetry axis of the cluster, J1;2 are the
coupling constants among stars within the same component
C1;2, respectively, J0 is the intercomponent coupling con-
stant between C1 and C2, Q1 ¼ N−1

1

P
i∈ C1 qðniÞ, and

similarly for Q2. In Eq. (1), we have omitted constant
terms which do not depend on ni. Note that Q1;2 are
ensemble averages, which we also write in the mean-field
approximation as

Q1;2 ¼ hqðnÞiC1;2 ¼
Z

1

−1

�
s2 −

1

3

�
f1;2ðsÞds; ð2Þ

where f1;2ðsÞ is the distribution function of s (i.e. the z
Cartesian component of n)5 for stellar component C1;2,
respectively, which are to be determined by maximizing the
Boltzmann entropy. Note that all other parameters (e.g.
m; a; l; N) are constant during VRR. In the mean-field
approximation, the total entropy of the system is a func-
tional of f1;2ðsÞ. For circular orbits, the coupling constants
are given as

J1;2 ¼
3Gm2

1;2

8a1;2
; J0 ¼ 3Gm1m2 minða1; a2Þ2

8maxða1; a2Þ3
: ð3Þ

and we refer to Ref. [24] for the general eccentric case.
Maximizing the entropy subject to the constraints of

fixed total energy and total angular momentum, the dis-
tribution function at equilibrium can be obtained by
generalizing Ref. [19]. For given Q1 and Q2, we get

f1ðsjQ1; Q2Þ ¼
e
3
2
βðJ1N1Q1þJ0N2Q2Þs2þl1γsR

1
−1 e

3
2
βðJ1N1Q1þJ0N2Q2Þs2þl1γsds

; ð4Þ

f2ðsjQ1; Q2Þ ¼
e
3
2
βðJ2N2Q2þJ0N1Q1Þs2þl2γsR

1
−1 e

3
2
βðJNQ2þJ0N1Q1Þs2þl2γsds

: ð5Þ

Here β and γ are Lagrange multipliers corresponding to the
constraints of total energy and total angular momentum,
respectively, arising when maximizing the Boltzmann
entropy; where in terms of the thermodynamic temperature
of the system β ¼ 1=ðkTÞ and γ is related to the net rotation
rate [14,19,23]. Note that Q1;2 are the mean trace-removed
quadruple moment of the angular momentum distribution
for C1 and C2, respectively, as defined in Eq. (2) above.
Here Q1;2 are also the order parameters of the equilibrium
distribution of the axisymmetric systems, where Q ¼ 0
corresponds to an isotropic distribution and its maximum
value Q ¼ 2=3 represents a razor-thin disk in physical
space. Depending on γ, the stars may be orbiting both in the
prograde and retrograde senses with respect to the total
angular momentum. Q1;2 satisfy the self-consistency
Eqs. (4) and (5), i.e.

Q1 ¼
Z

1

−1

�
s2 −

1

3

�
f1ðsjQ1; Q2Þds; ð6Þ

Q2 ¼
Z

1

−1

�
s2 −

1

3

�
f2ðsjQ1; Q2Þds: ð7Þ

4Note that we have dropped the kinetic energy term in the
Hamiltonian following Ref. [24]. Reference [14] confirmed that
the kinetic energy term is indeed negligible if the mass of the
SMBH dominates the potential.

5That is, s ¼ cos θ where θ is the inclination angle or the
angular momentum vector’s polar angle in spherical coordinates.
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Given β and γ, the total angular momentum and total
VRR energy of the whole system can be evaluated as

L¼N1l1

Z
1

−1
sf1ðsjQ1;Q2ÞdsþN2l2

Z
1

−1
sf2ðsjQ1;Q2Þds;

ð8Þ

E ¼ −
3

4
J1N2

1Q
2
1 −

3

4
J2N2

2Q
2
2 −

3

2
J0N1N2Q1Q2: ð9Þ

If the system is isolated, L and E are fixed and the
system samples the microcanonical ensemble. Eqs. (6)–(9)
provide a closed system of equations to obtain the
unknowns ðβ; γ; Q1; Q2Þ, and thereby the distribution
function Eqs. (4) and (5).

A. The heat bath approximation

An important limiting case is when one of the compo-
nents, e.g., C1, dominates the total VRR energy and total
angular momentum of the system. For the nuclear star
cluster in the Milky Way, the dominant component may be
a massive perturber, e.g., the galactic environment, and in
particular the molecular gas torus (also known as the
circumnuclear disk) of total mass 105–106M⊙ at a distance
of 2–7 pc from the center [36–39], and the subdominant
components are the stars around the SMBH in the nuclear
star cluster. Similarly if there are IMBHs at a particular
range of radii, they may represent the dominant component
under which the less massive stellar components relax to
find their statistical equilibrium distribution of orbital
inclinations [40–43], or possibly the large population of
nearly spherically distributed main sequence stars compris-
ing the nuclear star cluster may represent the dominant
component for the clockwise disk of massive stars in the
Galactic Center [3,4] and/or possible IMBHs.6

From Eqs. (8) and (9), this limiting case requires two
conditions to hold:

N1l1hsiC1 ≫ N2l2hsiC2 ; ð10Þ
J1N2

1Q
2
1 ≫ J2N2

2Q
2
2 þ 2J0N1N2Q1Q2: ð11Þ

For circular orbits around an SMBH, this is equivalent to

1 ≫ M̄ā1=2 ¯hsi; ð12Þ

1 ≫
M̄2

ā
Q̄2 þ 2M̄minðā−3; ā2ÞQ̄; ð13Þ

where we define the dimensionless quantities X̄ ¼ X2=X1

for any quantity X for the two components andM ¼ Nm is

the total mass of each component. For instance, M̄ is the
total mass of the subdominant component relative to the
dominant component.
As a result, the dominant component’s distribution f1 is

approximately independent of Q2 in Eq. (4),

f1ðsjQ1Þ ≈
e
3
2
βJ1N1Q1s2þl1γsR

1
−1 e

3
2
βJ1N1Q1s2þl1γsds

; ð14Þ

Q1 ≈
Z

1

−1

�
s2 −

1

3

�
f1ðsjQ1Þds: ð15Þ

Further, L and E are approximately determined solely by
f1 and Q1 independently of Q2 or f2. Component C1 thus
also determines the corresponding values of β and γ
independently of Q2 or f2. Component C2 then settles in
the background potential for a given fixed ðQ1; β; γÞ and
obtains its equilibrium Q2 through Eq. (7). Thus, compo-
nent C1 may be regarded as a heat bath for component C2,
which operates like a canonical ensemble. More generally,
similar conclusions may hold for a multicomponent system
with an arbitrary number of subdominant components in
the background potential of the dominant component.
In the following we label the dominant component with a

‘d’ index for “dominant” and drop the label of the sub-
dominant component. We assume that the angular momen-
tumvector distribution is known andmay be parametrized as

fdðsÞ ∝ eκds
2þcds; ð16Þ

where s ¼ cos θ and cd and κd are constant fitting coef-
ficients. For κd ≪ 1 and cd ≪ 1 this clearly represents a
nearly isotropic distribution both in angular momentum
space and in physical space, and for κd ≫ 1 or cd ≫ 1 this
represents a narrow cone in angular momentum space and a
thin disk in physical space. The case of cd ≫ 1 may
represent the massive gas torus observed around the
Milky Way, irrespective of whether it is in a state of VRR
equilibrium, as long as it is stationary. The values of ðκd; cdÞ
are directly measurable by fitting the observed distribution
Eq. (16). They are related to the systemparameters ðQd; β; γÞ
via Eq. (15) as

κd ¼
3

2
βJdNdQd; and cd ¼ γld: ð17Þ

The value of Q of the subdominant species, henceforth
“stars”, in this background is

Q ¼
R
1
−1ðs2 − 1

3
Þe3

2
βðJNQþJ0NdQdÞs2þlγsdsR

1
−1 e

3
2
βðJNQþJ0NdQdÞs2þlγsds

; ð18Þ

where the quantities without the subscript (i.e. J; N;Q)
describe the stars, and quantities with the ‘d’ subscript are of
the dominant component (i.e. the heat bath).

6As we will see, as long as the interaction among them is
negligible this approximation leads to an analytic result even in
cases where the subdominant components have not a single value
but multiple mass, eccentricity, and semimajor axes.
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A parametric solution to Eq. (18) can be found using the
one-particle partition function [19],7

Z0ðκ; cÞ ¼
Z

1

−1
eκðs2−1

3
Þþcsds ¼ π1=2

2
ffiffiffiffiffiffi
−κ

p exp

�
−
κ

3
−
c2

4κ

�

×

�
erf

�
c − 2κ

2
ffiffiffiffiffiffi
−κ

p
�
þ erf

�
−
cþ 2κ

2
ffiffiffiffiffiffi
−κ

p
��

; ð19Þ

where

κ ¼ 3

2
βðJNQþ J0NdQdÞ ¼

J0

Jd
κd½1þ ðJ=J0ÞN̄ Q̄�; ð20Þ

c ¼ lγ ¼ l̄cd; ð21Þ

where N̄ ¼ N=Nd, Q̄ ¼ Q=Qd. For circular orbits this
becomes

κ ¼ m̄minðā2; ā−3Þ½1þ M̄maxðā2; ā−3ÞQ̄�κd
¼ m̄

�
minðā2; ā−3Þ þ M̄ Q̄

ā

�
κd; ð22Þ

c ¼ m̄ā1=2cd: ð23Þ

Here Q̄ depends implicitly on κ and c. Given Z0ðκ; cÞ, Q is
given by8

Q¼ ∂ lnZ0ðκ;cÞ
∂κ

¼ c2

4κ2
−

1

2κ
−
1

3
þ e

2
3
κ

κZ0ðκ;cÞ
�
coshc−

c
2κ

sinhc

�
: ð25Þ

A similar expression holds forQd ≡Qðκd; cdÞ by replacing
ðκ; cÞ → ðκd; cdÞ in Eq. (25). Note that since li is always
positive for all components Ci, hence ci ¼ γli > 0 must
hold for all i in order for the angular momentum to be in the
positive direction (assumed by construction). Indeed in the
axisymmetric case, two-component VRR, the parallel
aligned configuration has higher entropy and lower free
energy than the antialigned configuration. The numerical
simulations of Refs. [23] and [31] confirm that an initially
anti-aligned disc of young stars will align with the rotating
spherical host star cluster in the Galactic Center.
In these expressions κ and c are proportional to β

and γ which represent dimensionless effective inverse

temperatures conjugate to the VRR energy and total
angular momentum, respectively [cf. Eqs. (4) and (5)].
We obtain a solution for Q for the subdominant component
in two ways:

(i) [(HBp)] without any further approximations beyond
ðJ0=JdÞN̄ Q̄ ≪ 1, i.e. obtain Qd for given ðκd; cdÞ as
mentioned below Eq. (25), then calculate ðκ; c; QÞ
by self-consistently solving Eqs. (22)–(25).

(ii) [(HB)] using the approximation that the self-
interaction between the stars is negligible compared
to the coupling between the stars and the dominant
component, ðJ=J0ÞN̄ Q̄ ≪ 1, such that Eq. (20)
simplifies to

κ ≈
J0

Jd
κd ¼ m̄minðā2; ā−3Þκd: ð26Þ

In the following we refer to these two approaches as
[(HB)] (heat bath) and [(HBp)] (heat bath plus).Q is
obtained by substituting κ and c in Eq. (25).

Note that in the former case (HBp) the self-interaction of
the subdominant component is accounted for exactly on top
of the effects caused by the dominant component, and in the
latter (HB) it is neglected. The equilibrium distribution
function follows from Eq. (5)

fðsÞ
fð1Þ ¼ eκs

2þcs: ð27Þ

The meaning of the parameters ðκ; cÞ are as follows
(see Appendix E in Ref. [19]). Generally −∞ ≤ κ ≤ ∞ and
0 ≤ c ≤ ∞ may be assumed without loss of generality
for equilibria. These parameters specify the order parameter
Q [Eq. (25)] and L [Eq. (24)] such that κ ¼ c ¼ 0 is
the isotropic disordered state with Q ¼ 0. The c parameter
specifies the corotating vs counterrotating angular momen-
tum density at s ¼ 1 and −1 as fð1Þ=fð−1Þ ¼ e2c.
Nonrotating clusters have zero-net angular momentum
for which c ¼ 0. The angular momentum increases mono-
tonically between L̄ ¼ L=ðNlÞ ¼ 0 and 1 for fixed κ as c
changes from 0 to ∞. The order parameter Q increases
monotonically with κ between − 1

3
þ ðL=NlÞ2 and 2

3
, where

a razor-thin disk (maximally ordered state) has κ → ∞
and/or c → ∞, and κ ¼ 0 state has the maximum disorder
withQ ≥ 0 among states with a given L. For small κ and c,

Q ≈
4

45
κ þ 8

945
κ2 þ 2

45
c2 ðjκj ≪ 1; c ≪ 1Þ; ð28Þ

L
Nl

≈
1

3
cþ 4

45
κc ðjκj ≪ 1; c ≪ 1Þ: ð29Þ

Further, Q ¼ 0 is obtained at finite negative κ for c ≠ 0.
The stable equilibrium distribution function has local
maxima at s ¼ 1 and −1 (θ ¼ 0 and π) for κ ≥ 0.
Equilibria also exist with κ < 0, where fðsÞ possibly peaks
at 0 ≤ s ≠ 1. These states with small to intermediate
negative κ and c ≠ 0 may correspond to negative absolute

7Note that we define Z0 ¼ ð2πÞ−1ZRKT
0 , where ZRKT

0 denotes
the formula quoted in Ref. [19].

8Similarly, the angular momentum simplifies analytically,
which we henceforth denote with the dimensionless function
L̄ðκ; cÞ defined as

L
Nl

¼ L̄ðκ; cÞ≡ ∂ lnZ0ðκ; cÞ
∂κ

¼ −c
2κ

þ e
2
3
κ sinh c

κZ0ðκ; cÞ
: ð24Þ
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temperatures for which Q > 0, discussed further in Sec. V.
States with large negative κ haveQ < 0, which are unstable
in the one-component case, but in some cases stable in the
two-component case (see Sec. V and Appendix B).
Reference [23] finds that c ∼ 0.3 for the observed

spherical distribution of old stars in the nuclear star cluster
in the Galactic Center.

B. Region of validity of the heat bath approximation

Figure 1 shows the region of the parameter space of
semimajor axis and mass ðā; m̄Þ where the heat bath
approximation (HBp) is valid for two representative cases
ðM̄; κd; cdÞ ¼ ð10−3; 5; 22Þ and ð10−3; 0.155; 0.144Þ.
Equations (12) and (13) marginally hold using the exact
two-component calculation.
The red boundary curve in Fig. 1 shows the region of

validity for the (HB) approximation which neglects the self-
interaction of the subdominant component. This is derived
by setting ðJ=J0ÞN̄ Q̄ ¼ 1 in the (HBp) calculation. The
region of validity is strongly limited in semimajor axis for
(HB), but it is not limited in the allowed individual stellar
mass. The energy and the angular momentum of the
subdominant component becomes nonnegligible compared
to the interaction energy respectively beyond the lower and
upper red boundaries in ā. The region within the blue
boundaries is where the (HBp) approximation is valid,
where the interaction energy and angular momentum of the
subdominant component is smaller than the self-energy and
angular momentum of the dominant component.

C. Exact calculation

We compare the axisymmeric equilibrium distribution
function of the subdominant component with the (HB) and
(HBp) approximations to the exact calculation for the same
fixed values of ðκd; cdÞ of the dominant component. The
value ofQd is found fromQdðκd; cdÞ by replacing ðκ; cÞ →
ðκd; cdÞ in Eq. (25). When the interaction energy with the
subdominant component is not neglected then Eq. (17) is
replaced by

κd ¼
3

2
βðJdNdQd þ J0NQÞ ¼ 3

2
βJdNdQd

�
1þ J0

Jd
N̄ Q̄

�
:

ð30Þ

Here Eqs. (20) and (22) are modified as

κ ¼ 3

2
βðJNQþ J0NdQdÞ ¼ κd

J0

Jd

�
1þ ðJ=J0ÞN̄ Q̄
1þ ðJ0=JdÞN̄ Q̄

�

¼ m̄minðā2; ā−3Þ ½1þ M̄maxðā2; ā−3ÞQ̄�
½1þ M̄minðā2; ā−3ÞQ̄� κd

¼ m̄
½minðā2; ā−3Þ þ M̄ā−1Q̄�
½1þ M̄minðā2; ā−3ÞQ̄� κd: ð31Þ

For the exact two-component calculation, we solve
Eq. (31) simultaneouslywith Eqs. (23) and (25) as discussed
in Appendix A.

III. EQUILIBRIUM DISKS OF MASSIVE OBJECTS

Here we present the results of the VRR mean field model
and examine the conditions for the component comprised
of heavier objects to form a disk as a function of mass and
semimajor axis.
We present the results of the (HB) and (HBp) approx-

imations and the exact calculation for fixed ratio of total
mass M̄ ¼ 10−3 between the two components, and for two
cases where the dominant component is disklike with

FIG. 1. The region of validity of the heat bath approximation as
a function of stellar mass (m̄ ¼ m=md) and semimajor axis and
(ā ¼ a=ad) relative to the dominant component. In the region
between the blue curves, the self-energy of the dominant
component is larger than the interaction energy [i.e (HBp)
conditions stated in Eqs. (12) and (13)]. In the region between
the red curves, the interaction energy dominates over the self-
energy of the subdominant component [i.e. (HB) approximation].
The upper and lower panels correspond to a disklike and a
spherical dominant component, respectively, Eq. (16) with
ðκd; cdÞ as labeled with relative total mass M̄ ¼ 10−3 for both
panels.
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ðκd; cdÞ ¼ ð5; 22Þ and when it is nearly spherical ðκd; cdÞ ¼
ð0.155; 0.144Þ with order parameter Qd ¼ 0.60 and 0.014,
respectively, and mean angular momentum Ld=Ndld ¼
0.97 and 0.054, respectively [Eqs. (28) and (29)]. Note
for reference that if Nd bodies are drawn from an isotropic
distribution their order parameter and mean angular
momentum satisfy hQdi ¼ 0, hQ2

di1=2 ¼ 1=½ð ffiffiffi
5

p ÞNd�, and
Ld=Ndld ¼ 1=

ffiffiffiffiffiffi
Nd

p
, respectively, implying that Nd ¼ 32

and 340 are required to yield Qd ¼ 0.014 and
Ld=Ndld ¼ 0.014, respectively. Thus, more abundant iso-
tropic shells of stars with higher N may be in principle even
closer to being isotropic than in our spherical example.9

A. Anisotropic mass segregation

Figure 2 shows how the angular momentum vector
distribution of the subdominant component depends on
the dominant component’s parameters ðκd; cdÞ for a system
where all objects have the same semimajor axis and
M̄ ¼ 10−3. The figure shows the value of the order param-
eterQ of the subdominant component determined via (HBp)
for two different values of m̄ ¼ 0.1 and 100, respectively as
labeled. Note that larger κd and cd values correspond to a
dominant component that is more flattened while smaller κd
and cd values correspond to a dominant component that is
more spherical [see Eq. (34) below]. Recalling that Q
changes between 0 and 2

3
between the isotropic (disordered)

and razor thin (ordered) cases. Figure 2 shows that if the
subdominant component has a much larger m, the distribu-
tion is very much flattened for a wide range of parameters
including cases where the dominant component is close to
spherical ðκd; cdÞ ¼ ð0.1; 0.1Þ. If the subdominant compo-
nent has a smaller individual stellarmass it is typically nearly
spherical unless the dominant component is very much
flattened with cd ≫ 1 or κd ⋙ 1. We determine an ana-
lytical criterion for the subdominant component to form a
disk next.

1. The case of a dominant disk

When the dominant component is disklike, for small
angles near the axis of symmetry (here θ is the polar angle
in spherical coordinates of the angular momentum vector
direction), Eq. (16) simplifies to

fdðcos θÞ ∝ eκdþcd−ðκdþ1
2
cdÞθ2 ∝ e−ðκdþ1

2
cdÞθ2 ðθ ≈ 0Þ: ð32Þ

Large κd implies an order parameter of [19]

Qd ¼
2

3
−

1

κd
þ cd tanh cd − 1

2κ2d
þOðκ−3d Þ; ð33Þ

which represents a thin disk with a full-width half maxi-
mum (FWHM) thickness of

Δθd ≈
ðln 2Þ1=2

ðκd þ 1
2
cdÞ1=2

: ð34Þ

Let us examine the critical m=md where the stars
transit from an isotropic state to a disklike configuration.
In the (HB) approximation, Eqs. (23) and (26) can be
used to derive how the thickness of the disk depends on
mass and semimajor axis. The FWHM is analogous to
Eq. (34), we get10

FIG. 2. The order parameter Q of the subdominant component
for different distribution functions of the dominant component
parametrized by κd and cd in Eq. (16). The ratio of total mass is
M̄ ¼ 10−3 for both panels, while top and bottom panels have
different individual stellar mass m as labeled. The distribution
approaches the isotropic distribution (Q ∼ 0) for small cd and
small κd for small mass m=md ¼ 0.1 and it is a thin disk (Q ∼ 2

3
)

for m=md ¼ 100.

9If the stars are drawn independently from an isotropic distri-
bution, hsi2 ¼ hn⃗i · hn⃗i ¼N−2P

i

P
j hni ·nji ¼N−2P

i

P
j δij ¼

N−1. Hence, hsi ¼ 1=
ffiffiffiffi
N

p
.

10Here ðκd; cdÞ may be arbitrary, the dominant component
needs not be disklike.
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Δθ≈
ðln2Þ1=2

ðκþ 1
2
cÞ1=2≈

ðln2Þ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄½minðā2;ā−3Þκdþ 1

2
ā1=2cd�

q : ð35Þ

The FWHM thickness of the subdominant component
reaches Δθ ¼ 10° when m̄ is larger than approximately

m̄10° ≈
23

minðā2; ā−3Þκd þ 1
2
ā1=2cd

: ð36Þ

The solid curves in Fig. 3 shows m̄10° for caseswith a disklike
and spherical dominant components, respectively. Generally
m̄10°≤45.5=ðcdā1=2Þ where equality holds asymptotically
for ā ≪ ½cd=ð2κdÞ�2=3 or ā ≫ ½cd=ð2κdÞ�−2=7. The critical
mass m̄10° is generally much larger if the dominant compo-
nent is nearly spherical, but even so the subdominant
component transitions to a disklike state at large ā.11 Note
however that these results assume (HB) that a dominant
component drives the evolution which is only valid in the
restricted domain of the solid lines in Fig. 3. The dashed
curves shows the numerical values of m̄10° evaluated using
themoregeneral (HBp) calculationwhich is valid throughout
the plotted range. The two calculations clearly agree in the
overlapping region of validity. In fact the extrapolation
of the (HB) curve [Eq. (36)] to larger semimajor axismatches
the (HBp) calculation. However, at very small ā values, the

critical mass m̄10° evaluated with the general (HBp) solution
becomes approximately independent of the perturbing com-
ponent ðκd; cdÞ and the two curves converge.
We first present the equilibria as a function of mass in the

heat bath approximation for a disklike dominant compo-
nent with ðκd; cdÞ ¼ ð5; 22Þ and order parameter Qd ¼ 0.6.
The distribution peaks at θ ¼ π, and the fraction of
counterrotating objects for this choice of κd and cd on
axis is practically zero: fdðθ ¼ πÞ=fdðθ ¼ 0Þ ¼ e−2cd ¼
e−44 ¼ 10−11. The FWHM angular thickness of the disk is
approximately 12° from Eq. (34). The angular momentum
of the dominant component Ld=Ndld ¼ 0.97 is close to the
maximum value.
We investigate the distribution function of the subdomi-

nant component as a function of mass and number ratio
ðm̄; N̄Þ while fixing the total mass ratio M̄ ¼ 10−3 to
ensure that the dominant total energy and total angular
momentum condition are satisfied. We explore the cases
when the subdominant components are radially either
inside (ā ¼ 0.1), outside (ā ¼ 10), or they are radially
overlapping (ā ¼ 1) with the dominant component to
examine how the distribution function transitions from a
more isotropic state to a disklike state [6,8,9].
In all three cases of orbital radii, the stellar distribution

changes smoothly between a sphere for small m=md to a
disk at large m=md, where the transition radius depends on
the orbital radius a=ad and N=Nd (discontinuous transi-
tions are possible for smaller a=ad, see Sec. IV below). The
analytical estimate of the transition point from the isotropic
state to the disklike state, m̄10° [Eq. (36)] shown with a
vertical dashed line is clearly consistent with Figs. 4 and 6.
Figure 5 shows the distribution of the angular momen-

tum vectors of the stars for different mass ratios and a=ad
for the (HBp) model. Given the assumption of axisym-
metry we plot the distribution as a function of s ¼ cos θ,
which is also the z-component of the normalized angular
momentum L̂z. The figure shows the distribution function
ρðL̂zÞ ¼ fðsÞ=fð1Þ, normalized for clarity such that
ρð1Þ ¼ 1. A flatter distribution corresponds to a more
isotropic distribution. Figure 6 shows the values of L̂z at
which the cumulative distribution reaches 25%, 50% and
75% respectively. For an isotropic distribution, these three
angles lie close to L̂z ¼ −0.5, 0 and 0.5.
Figures 4–6 show that in all three radial regions with

different a=ad, the distribution becomes more flattened for
larger stellar masses, as expected for vertical mass segre-
gation. For higher a=ad, the disk-isotropic transition is
shifted towards lower m=md and conversely for smaller
a=ad as explained by Eq. (36). The models demonstrate not
only the mass dependence of a two-component stellar
distribution, but the figures may also be interpreted as
showing the distribution of a multimass stellar cluster under
the influence of a massive component provided that the
coupling between the stellar components is neglected, i.e.
for model (HB).

FIG. 3. The critical semimajor axis and mass ðā; m̄Þ ¼
ða=ad;m=mdÞ at which the objects of the subdominant compo-
nent gradually transit to a disklike phase with angular momentum
vector distribution FWHM thickness of 10°. Two cases are
presented where the heat bath is disklike ðκd; cdÞ ¼ ð5; 22Þ
(red curve) and when it is nearly spherical (0.155,0.144) (blue
curve). The solid curves assume no self-interaction within the
subdominant component [Eq. (36), (HB) approximation] valid
only for the plotted domain (see Fig. 1). The dashed curves are
evaluated by also accounting for the self-interaction with the
(HBp) calculation by solving Eqs. (22)–(25).

11This conclusion is limited by the range of validity of the
(HB) approximation shown in Fig. 1.
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2. The case of a dominant sphere

Consider now a dominant component such that M̄ ¼
10−3 in a nearly isotropic state: κd ¼ 0.155 and cd ¼ 0.144,
such that Qd ≈ 0.015 and Ld=ðNdldÞ ≈ 0.05 from Eqs. (28)
and (29).
Figures 7–9 show the parameter dependence of vertical

mass segregation as in Figs. 4–6. For this choice of ðκd; cdÞ
vertical mass segregation may still take place but only for
m=md values much larger than for a flattened dominant
component. The smooth transition to a disklike phase

occurs at much larger m=md values, consistent with the
predictions of Eq. (36). This result could potentially explain
the lack of vertical mass segregation signature in the direct
N-body simulations by Ref. [31] where the initial condition
is nearly isotropic with ðEnorm; LnormÞ ∼ ð10−4; 10−2Þ and a
relatively narrow mass range (10−2 ≤ m=md ≤ 1).12

FIG. 5. The distribution function of the normalized orbital angular momentum vector direction cos θ for the subdominant component,
i.e. along the axis of symmetry, L̂z in the presence of a flattened dominant component as defined in Fig. 4. The distribution function is
normalized such that ρðL̂z ¼ 1Þ ¼ 1. Individual curves have fixed m=md mass ratios between 10−3 (violet) to 10 (red) as shown in the
color bar, the mass values are selected uniformly on a log scale. The three panels have different semimajor axes a=ad ¼ 0.1 (left),
a=ad ¼ 1 (middle), and a=ad ¼ 10 (right). The distribution shows vertical mass segregation; more massive objects are distributed in a
disk while the distribution of low mass objects is nearly isotropic.

FIG. 4. The order parameter Q of the orbital angular momentum vector direction distribution [Eq. (2)] of the subdominant component
(e.g. stars or BHs) as a function of mass ratio with respect to a flattened dominant component (e.g. a gaseous circumnuclear disk or a
population of IMBHs]. The dominant component is assumed to represent a thin disk [Eq. (16) with κd ¼ 5 and cd ¼ 22], and the total
mass of the subdominant component is M=Md ¼ 10−3. The dashed cyan curve shows the values of Q in the heat bath (HB)
approximation neglecting the self-interaction of the subdominant component [Eq. (26)]. The solid black curve shows the values of Q
obtained from solving the self-consistency equations (22)–(25) in the (HBp) approximation with accounting for the self-interaction of
the subdominant component as a perturbation. The red dotted curve shows the solution of the exact two-component VRR calculation
[Eq. (31)]. The three panels have different semimajor axes a=ad ¼ 0.1 (left), a=ad ¼ 1 (middle), and a=ad ¼ 10 (right). In all cases, the
distribution exhibits vertical mass segregation as the distribution changes from isotropic (Q ¼ 0) for low-mass stars to nearly disklike
(Q ∼ 2

3
) for high-mass stars. The black-vertical dashed line shows the value of m=md at which the stars transit to a disklike state of

FWHM width of 10° as predicted by (36).

12For ðκd;cdÞ¼ ð0.155;0.144Þ, ðEnorm;LnormÞ≈ ð5×10−4;
5×10−2Þ using the definition in Eqs. (37) and (38).
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We emphasize that Figs. 4–9 are expected to be valid for
a general multicomponent model with an arbitrary spec-
trum of masses for the subdominant component for the
given values of ā and M̄ since these systems are in the (HB)
heat bath regime where the self-interaction is negligible.

B. Dependence on orbital radius

We examine the systematic variation of the anisotropy
with orbital radius ā under the influence of a flattened
dominant component comprised of massive bodies
such that ðκd;cd;M̄;m̄;N̄Þ¼ ð5;22;0.001;0.01;0.1Þ. The
assumptions of a dominant total energy and total angular
momentum are satisfied if 0.1 ≤ ā ≤ 10, where the self-
interaction within the subdominant component is negligible
(Fig. 1). These models may be used to explore how a disk
of massive perturbers (e.g. the circumnuclear disk or a

population of IMBHs) at a particular radius affects the
distribution of lower mass objects (e.g. main sequence stars
or black holes) as a function of distance.
Figures 10–12 show the value of the order parameter Q,

the distribution of angular momentum vector directions,
and the cumulative distribution levels for different radius
ratios. Again, the (HB), (HBp) models and the exact
calculation give consistent results in this parameter range.

FIG. 6. The cumulative distribution levels of L̂z as a function of mass for the subdominant component in the presence of a flattened
dominant component as in Figs. 4 and 5 worked from the (HBp) calculation. The plots show the value of L̂z at which the cumulative
distribution function reaches 25%; 50%; 75% for three different semimajor axes in different panels as labeled. The distribution exhibits
vertical mass segregation as the distribution changes from isotropic (m=md ≪ 0.1) to narrowly peaked around the axis of symmetry
L̂z ¼ 1 for m=md ≳ 1. The black-vertical dashed line shows the value of m=md at which the stars transit from an isotropic state to a
disklike state of FWHM width about 10° as predicted by (36).

FIG. 7. Similar to Fig. 4 showing the order parameter Q of the
orbital angular momentum vector direction distribution [Eq. (2)]
of the subdominant component as a function of mass ratio driven
by a spherical dominant component (κd ¼ 0.155, cd ¼ 0.144).
M̄ ¼ 10−3 and a=ad ¼ 1.

FIG. 8. Similar to Fig. 5 showing the distribution function of
the normalized orbital angular momentum vector direction cos θ
for the subdominant component along the axis of symmetry, L̂z in
the presence of a spherical dominant component (κd ¼ 0.155,
cd ¼ 0.144). The distribution function is normalized such that
ρðL̂z ¼ 1Þ ¼ 1. Individual curves have fixed m=md mass ratios
between 10−3 (violet) to 103 (red) as shown in the color bar, the
mass values are selected uniformly on a log scale. M̄ ¼ 10−3

and a=ad ¼ 1.
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The figures show that the spacial distribution is highly
disordered, but the distribution is slightly more flattened at
larger radii and the distribution is more isotropic at
moderately smaller radii. In Sec. IV, we study the behavior
at much smaller ā where the heat bath approximation
breaks and find evidence for a discontinuous change in the
order parameter there to higher values (Fig. 14).

C. Mass segregation without a dominant component:
Exploring the ðEnorm;LnormÞ landscape

Let us now examine mass segregation in a two-
component model without a dominant component. We
relax the heat bath approximations and solve Eqs. (6)
and (7) exactly. An analytical solution exist when a1 ¼ a2,
in other cases we resort to a numerical solution, see
Appendix A. Unlike previously in Sec. II C where we

used ðκd; cdÞ to characterize the system, here, we character-
ise the system with the conserved quantities; the normal-
ized total VRR energy and total angular momentum in
Eqs. (8) and (9) defined as [9]

Enorm ¼ 3E
J1N2

1 þ J2N2
2 þ 2J0N1N2

; ð37Þ

Lnorm ¼ L
N1l1 þ N2l2

: ð38Þ

These quantities are bounded by 0 ≤ Lnorm ≤ 1 and −1 ≤
Enorm ≤ 0 (see Appendix B). We explore four representa-
tive combinations in the parameter space ðLnorm; EnormÞ ¼
ð0.15;−0.66Þ, ð0.82;−0.81Þ, ð0.16;−0.09Þ, ð0.38;−0.09Þ
following Ref. [9]. This investigation aims to map out the

FIG. 12. Similar to Fig. 6 but showing the cumulative distri-
bution levels of L̂z for different orbital radii for the subdominant
component. The plots show the value of L̂z at which the
cumulative distribution function reaches 25%; 50%; 75%, respec-
tively. ðκd; cd;M=Md;m=mdÞ ¼ ð5; 22; 10−3; 0.01Þ.

FIG. 10. Similar to Fig. 4 but showing the order parameter Q
for stars under the influence of a disk of massive perturbers with
parameters ðκd; cd;M=Md;m=mdÞ ¼ ð5; 22; 10−3; 0.01Þ as a
function of stellar orbital radii for the two heat bath models
(HB), (HBp), and the exact two-component calculation, all of
which approximately overlap. The stellar distribution is approx-
imately spherical but slightly more anisotropic at higher a=ad.

FIG. 9. Similar to Fig. 6 but showing the cumulative distribu-
tion levels of L̂z as a function of mass for the subdominant
component in the presence of a spherical dominant component
ðκd; cd;M=Md; a=adÞ ¼ ð0.155; 0.144; 10−3; 1Þ.

FIG. 11. Similar to Fig. 5 but showing the distribution function
of L̂z for the subdominant component for 10 selected radius ratios
a=ad from 0.1 to 1 in log scale under the influence of a disk of
massive perturbers with the same parameters as in Fig. 10
ðκd; cd;M=Md;m=mdÞ ¼ ð5; 22; 10−3; 0.01Þ.
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possible behavior of two-component systems in the quali-
tatively different regions of parameter space. However,
given that the results are qualitatively similar to the
previously stated conclusions, we defer the plots of this
section to Appendix C.
We explore systems with a1 ¼ a2 and N1 ¼ N2, and

vary the mass ratio m2=m1 from 0.02 to 1 with cluster C2
being the lighter component. Figure 18 shows the value of
Q1 and Q2 at different mass ratios. Figure 19 shows the
angular momentum of each component as a fraction of the
total angular momentum. Figure 20 shows the distribution
of angular momentum vectors at different angles of both
components for different mass ratios. Figure 21 shows the
cumulative distribution levels of the lighter component C2
for different mass ratios. Clearly for all four combinations
of total energy and total angular momentum, the less
massive component distribution becomes more anisotropic
as the mass ratio m2=m1 becomes larger, similar to the
multicomponent systems examined in Ref. [9]. Figures 18
and 20 show that the order parameter of the more massive
component is insensitive to the mass ratio.
We also explore the behavior of systems with nearly

isotropic configurations with ðEnorm; LnormÞ ¼ ð5 × 10−4;
0.05Þ, as in the last part of Sec. III A. Here we examine the
case of a dominant component with M2=M1 ¼ 10−3, and
a2=a1 ¼ 1. Similarly to Figs. 18, 20, and 21, Figs. 22–24
show the distribution of the two components using the
general two-component calculation for different orbit mass
ratios m2=m1. Results are consistent with the heat bath
approximation of Figs. 7–9. The heavier component C1
maintains an isotropic distribution for all values of m2=m1

while the lighter component C2 exhibits vertical mass
segregation but in this case transits to a disklike state only
at very large values of m2=m1.

IV. PHASE TRANSITION IN TWO-COMPONENT
SYSTEMS

A. Phase transition of an inner low-mass component
influenced by an outer massive perturber

In the previous section we have examined the equilibria
of the subdominant component under the influence
of the dominant component with given ðκd; cdÞ and
explored cases without a dominant component with given
(Enorm; Lnorm). Let us now study how the equilibria change
with the total energy and angular momentum of the system
and identify possible discontinuities. Since the interaction
with a heat bath generates the canonical ensemble for the
subdominant component, the angular momentum distribu-
tion of the subdominant component may be expected to
undergo a first-order phase transition from an ordered disk
phase to a disordered spherical phase when varying the
parameters of the heat bath as found previously for one-
component systems [14,19]. The phase transition is char-
acterized by a discontinuous change in the order parameter

Q between an ordered Qord and a disordered Qdis state,
where Qord ¼ 0.286014 and Qdis ¼ 0 for a one-component
model with no rotation [19]. Equilibria with Qdis < Q <
Qord are inaccessible to the system as they are either
metastable or unstable.
However, Eqs. (21) and (26) show that a system

strongly driven by a dominant component responds
continuously to changes in the dominant component,
indicating that a discontinuous phase transition is not
possible when the (HB) model applies. Thus, a phase
transition is prohibited in the region bounded by the red
lines in Fig. 1). The lack of a phase transition is due to
the intercomponent coupling, which is strongly non-
negligible here. This is in stark contrast with additive
short-range interacting systems where the intercomponent
coupling is absent/negligible and where a first-order phase
transition is possible, such that the system exhibits phase
separation during the transition. Nevertheless, here we
demonstrate that a phase transition is also possible for
VRR for an isolated two-component systems where the
self-interaction is non-negligible in the energy equation
(i.e. this leads to the Q̄ terms in Eqs. (22) and (31). This
happens when ðJ=J0ÞN̄ Q̄ ≪ 1 is violated, i.e. in the
region below the bottom red line in Fig. 1, corresponding
to a system influenced by an outer massive perturber.
For a proof-of-concept, we present an example of such a

phase transition in a two-component model with an outer
massive perturber such that ðM̄; m̄; āÞ ¼ ð10−3; 0.1; 0.006Þ.
We vary the FWHM of the angular momentum distribution
of the outer massive component between Δθd ¼ 1.3° and
4.7° with a fixed negligible fraction of counterrotating
objects using the distribution function of Eq. (16) with
parameters 100 < κd < 1500 and cd ¼ 5 [see Eq. (34)].13

This is equivalent to varying the temperature [Eq. (17)]
which induces a change in the value of the κ parameter of
the inner low-mass component [i.e. its dimensionless
effective inverse temperature, Eq. (22)] and hence the
order parameter Q of the subdominant component
[Eqs. (22)–(25)]. The top panel of Fig. 13 shows the
equilibrium value of Q of the subdominant component at
different Δθd. Clearly, there are three possible equilibria
for the subdominant component if the FWHM of the
dominant component is between Δθd;C and Δθd;B.
If a subsystem exchanges both energy and angular

momentum with a heat bath, it will search for the global
minimum value of the Gibbs-like free energy [14,19],

G ¼ E − ωL − TS; ð39Þ

where ω is defined by γ ¼ βω. Here the energy E and
angular momentum L denotes that of the subdominant
component. The entropy S is given by

13Qd for these parameters [Eq. (33)] stays close to 2=3,
i.e. 0.66.
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S ¼ −kB
Z

fðnÞ ln fðnÞdΩ: ð40Þ

The bottom panel in Fig. 13 shows the free energy at
different Δθd. While changing the order parameter of the
dominant component the free-energy changes in a non-
monotonic way, the free energy along the intervals A-B,
B-C and C-D is higher than along the equilibria with the
same Δθd outside of states A and D. Consequently, when
the dominant component undergoes an increase inΔθd near
point A in Fig. 13, instead of moving along the A-B-C-D
smooth curve, the system jumps from point A to point D
which are at the same temperature and free energy. The first
derivative of the free energy with temperature is discon-
tinuous at point A, implying that at first order the phase
transition takes place here. Both the Q curve and G curve
have similar features as the canonical ensemble of a one-
component system (Ref. [19]).

For a first-order phase transition to occur, the equilibria
in the Q-T plane must be multivalued in some temperature
range. This can be ensured if T has two extrema with
respect to Q. Since T ≡ Tðκ; Q̄Þ for fixed fJ; Jd; J0; N̄g
[Eqs. (17) and (20)], Qd is approximately constant
[Eq. (33)] while changing κd across the phase transition,
and Q ¼ Qðκ; cÞ [Eq. (25)],

∂T
∂Q

����
κ;Qd

¼ ∂T
∂κ

����
Q;Qd

∂κ

∂Q

����
c
; ð41Þ

and Q is a monotonic function of κ at fixed c, we identify
the extrema with ∂T=∂κjQ̄ ¼ 0 using Eq. (20). We fix
cd ¼ 5, N=Nd ¼ 0.01 and vary the opening angle of the
dominant component from 1.3° to 4.7° as described earlier.
We arbitrarily restrict the range of semimajor axis to
a=ad ≥ 10−3, where the (HBp) conditions are very well-
satisfied (Fig. 1).14 We find that a phase transition takes
place only if a=ad ≪ 1.
The top panel of Fig. 14 shows the phase diagram with

respect to ā and theFWHMangular thickness of the dominant
component, Δθd [Eq. (34)], for 5 fixed values of mass ratios
fromm=md ¼ 0.2 tom=md ¼ 0.05 separated uniformly on a
log scale. The bodies of the subdominant component con-
dense into a disk phase when Δθd or ā are smaller than the
phase curves in Fig. 14 and become spherical above the
curves for each fixed mass ratio. When the system crosses
the phase curves, it undergoes a first-order phase transition
with a discontinuous jump in the order parameter Q. The
critical points in the figure are labeled with star symbols at
which the system undergoes a second-order phase tran-
sition, with a continuous change in the order parameter Q
but a discontinuity in ∂Q=∂Tjc and in the second derivative
of the free energy ∂

2G=∂T2jc. At larger ā than the critical
points of the phase curves, there is no phase transition but a
smooth crossover to a disklike state as seen in Sec. III A.
The critical points for the green, blue and purple curves fall
outside of the studied rangeΔθd ∈ ½1.3°; 4.7°� and ā ≥ 10−3

and do not appear in Fig. 14 for this reason. We leave a
detailed exploration of the parameter space allowing phase
transitions to a followup study.
The bottom panel of Fig. 14 shows the order parameterQ

(see color bar) as a function of ðΔθd; āÞ for a fixed mass
ratio ofm=md ¼ 0.1. Clearly the order parameter exhibits a
discontinuity highlighted by a thick red curve at the same
place as in the phase diagram of the top panel. The order
parameter Q changes smoothly in regions outside of this
line, it is in the ordered phase (Q≳ 0.3) and in the
disordered phase (Q≲ 0.075) below and above the red
line, respectively. When the system crosses the red curve,Q
decreases discontinuously between the ordered and disor-
dered phases. This demonstrates a first-order phase

FIG. 13. The order parameter Q of the inner low-mass
component (top) and the Gibbs free energy (bottom) as a function
of the FWHM thickness of the outer massive component
Δθd in degrees assuming cd ¼ 5 and ðm=md;N=Nd; a=adÞ ¼
ð0.1; 0.01; 0.006Þ. The thickness of the inner component changes
discontinuously when the FWHM of the outer component is
2.37° which corresponds to Qd ¼ 0.664 and κd ¼ 404. A phase
transition takes place from point A to point D, which have the
same Gibbs free energy.

14The blue boundary curves in Fig. 1 for ðκ; cdÞ ¼ ð5; 22Þ lie
close to the boundary curves for the systems considered here.
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transition. Clearly, the phase transition takes place at a
larger thickness hence larger temperature at smaller a=ad or
larger m=md. This is because J increases with decreasing a
or increasing m.
We find that the phase transition occurs at similar values

of the dimensionless temperature

τ ¼ kT
JN

¼ 3

2

āQdðκd; cdÞ
N̄m̄2κd

¼ ā
N̄m̄2κd

�
1 −

3

2κd
þ 3cd tanh cd − 3

4κ2d

�
þOðκ−4d Þ

≈
Δθ2dā

ðln 2ÞN̄m̄2

�
1þ ðcd − 3ÞΔθ2d

ð2 ln 2Þ
�
þOðΔθ6dÞ; ð42Þ

with τ ¼ τPT ∈ ½0.148; 0.155� universally along all phase-
transition curves with different m̄ in the top panel of
Fig. 14. In the second and third lines we used Eqs. (33)
and (34), respectively. Thus, at the phase transition

ā
N̄

����
PT

¼ 2

3

m̄2τPTκd
Qdðκd; cdÞ

≈ τPTm̄2

�
ln 2
Δθ2d

−
ðcd − 3Þ

2

�
: ð43Þ

The first term dominates as Δθ2d approaches zero, explain-
ing the phase curves in Figs. 14 and 15. The distribution
function collapses to a disk as ā decreases below this
critical value or if N̄, m̄, or M̄ increase above the
corresponding critical value or if cd is decreased below
a critical value.
Indeed, Fig. 15 shows the phase diagram at a=ad ¼ 0.01,

cd ¼ 5 and m=md ¼ 0.1 while N=Nd is changed from
0.005 to 0.02 for fixed values of the Δθd FWHM of the
dominant component. In this case τPT ∈ ½0.1496; 0.1505�.
Note however that we restricted attention to the region
where ā is in the regime where the self-energy of the outer
massive perturber dominates over the interaction energy
between the components. We leave a detailed exploration
of the full parameter space allowing a phase transition to a
future study.

B. Phase transition in the microcanonical ensemble

In short-range interacting additive systems, the canonical
and microcanonical ensembles are asymptotically equiv-
alent for large N implying that phase transitions are
possible in both ensembles. A first-order phase transition
exhibits phase separation, i.e. a mixture of ordered and
disordered subsystems whose fraction depends on the
energy of the system between that of the ordered and
disordered states. However, in many nonadditive systems
phase separation is prohibited by the large interaction

FIG. 14. Top panel: the phase diagram of the inner component
for different a=ad, m=md, and outer component’s FWHM θd
[Eq. (34)] and fixed cd ¼ 5 and N=Nd ¼ 0.01. A first-order
phase transition takes place for different stellar masses selected
uniformly on a log scale (see color bar). The star symbols mark
the critical points where a second-order phase transition takes
place. Bottom panel: The order parameter for m=md ¼ 0.1. The
color contours show the order parameter Q of the subdominant
component for different a=ad or θd. The thick red curve high-
lights the discontinuity in Q, which represents the same phase
boundary curve as in the top panel for m=md ¼ 0.1 (i.e. the
middle green curve).

FIG. 15. The phase diagram similar to the bottom panel of
Fig. 14, but with fixed a=ad ¼ 0.01, cd ¼ 5 and m=md ¼ 0.1,
and varying N=Nd hence M=Md.
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energy between subsystems and phase transitions do not
exist in the microcanonical ensemble but they do in the
canonical ensemble, which are manifestly different for
long-range interacting systems. Indeed, this was con-
firmed previously for a one-component VRR systems
[14,19]. In a two-component VRR system, the two
components can be well-separated radially such that the
intercomponent coupling J0 becomes arbitrarily small,
indicating that a phase transition may be possible even
in the microcanonical ensemble. We solve the two-
component isolated system with a fixed total angular
momentum and examine the order parameters Q1 and Q2

at different values of the total energy. Hence, we examine
the components using the microcanonical ensemble as
opposed to the canonical ensemble treatment in the heat
bath approximation in Sec. IVA.
As a proof-of-concept we demonstrate the existence

of a phase transition for an isolated two-component system
with ðm2=m1; N2=N1; a2=a1Þ ¼ ð0.1; 0.01; 0.006Þ and
L=N2l2 ¼ 760.11. This set of parameters produces similar
initial conditions as the phase transition example for the
canonical ensemble in Fig. 13. The top left panel of Fig. 16
shows the value of Q1 and Q2 at different temperatures.
Clearly, the Q2 curve has a similar shape and scale as the

top panel of Fig. 13 in Sec. IV, justifying the validity of the
heat bath approximation there.
In the microcanonical esemble, the relevant thermody-

namic potential is the total entropy. Phase transition occurs
when two distinct states have the same energy and entropy.
This is most easily seen from the β − E caloric curve in the
top right panel of Fig. 16 since β ¼ dS=dE. Using the
Maxwell construction in the microcanonical ensemble
described in Refs. [12,44], the area bounded by A, B,
and the vertical dashed line connecting A and D is equal to
the area bounded by C, D, and the vertical dashed line.
Hence, the entropy of point A is equal to that at point D.
The bottom panel of Fig. 16 gives a schematic plot of the
β − E curve not drawn to scale. Phase transition occurs
when area 1 equals area 2 as labeled. The system undergoes
a phase transition from A to D without following the
A-B-C-D path, which corresponds to a discontinuity in the
order parameterQ2 of the less massive component. There is
a temperature jump from A to D, as opposed to an energy
jump from A to D in the heat bath approximation
calculation in Fig. 13. This is possible due to the ensemble
inequivalence for VRR. However, the phase transition takes
place at a similar dimensionless temperature kT=J2N2

(from 0.1466 at A to 0.1460 at D) as the canonical

FIG. 16. m2=m1 ¼ 0.1, N2=N1 ¼ 0.01, a2=a1 ¼ 0.006 and L=N2l2 ¼ 760.11. The top-left panel shows the value of Q1 and Q2 at
different temperatures in units of J2N2 of the less massive component, near the phase-transition region. The top-right panel is the caloric
curve around the region of phase transition which shows the value of β in units of ðJ2N2Þ−1 at different values of energy in units of J2N2

2.
The bottom panel shows a schematic diagram of the β − E graph not drawn to scale and skewed (the A-B branch is lowered and the C-D
branch is raised) for clarity. Phase transition occurs when areas labeled 1 and 2 are equal.
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ensemble case in Fig. 13 (kT=JN ¼ 0.1467 at phase
transition). The entropy-energy curve has a similar shape
to the self-gravitating fermions in Fig. 9 of Ref. [45].

V. NEGATIVE TEMPERATURE EQUILIBRIA

Negative temperature equilibria are possible if a stable
equilibrium state decreases its entropy with increasing
energy. Such equilibria are found in other long-range
systems such as the 2-dimensional vortices which have
deep analogy with self-gravitating systems in their stat-
istical mechanics [46]. Reference [19] showed that for a
one-component VRR system, negative temperature equi-
libria are always stable and a larger total angular momen-
tum allows for a larger range of states with negative
temperatures. The angular momentum distribution is highly

disordered for these states. If Q > 0 then in this case κ < 0
and ln fðsÞ is a concave function of s, which may have a
maximum at s < 1, as opposed to positive temperature
equilibria for which ln fðsÞ is convex in s and has a
maximum always at s ¼ 1.
Here we show that two-component VRR systems also

exhibit negative temperature equilibria. The top panel of
Fig. 17 shows the entropy-energy plot for Lnorm ¼ 0.5 and
the bottom panel for Lnorm ¼ 0.78. The other parameters
have values of m2=m1 ¼ 0.2, N2=N1 ¼ 1, a2=a1 ¼ 1. The
blue curve has a positive gradient hence corresponds to
the positive temperature equilibria. The equilibria with the
purple dashed curve also have positive temperatures but
with a smaller entropy at the same energy than the states
shown with a red curve, purple states are unstable. The red
curve has dS=dE < 0, these are the negative temperature
equilibria. The particular equilibria presented in this paper
have a positive Q1 and either positive or negative Q2.
The negative temperature equilibria have κ1;2 < 0. The
Lnorm ¼ 0.78 higher angular-momentum case in the bot-
tom panel leads to a larger range of energy with negative
temperatures (red curve), i.e. for Enorm ∈ ½−0.30;−0.17�
[as defined by Eq. (37)]. The lower total angular momen-
tum case (Lnorm ¼ 0.5) has negative temperature equilibria
at Enorm ∈ ½−0.034; 0�.
The maximum energy state is marked with a black star

in Fig. 17. For the low angular-momentum case with
Lnorm < 1=

ffiffiffi
3

p
, the system has attains its maximum energy

at Enorm ¼ 0 with Q1 þ m̄Q2 ¼ 0 (see detailed explana-
tions in Appendix B). The maximum energy state also
corresponds to the zero temperature state approaching from
T < 0 [19]. This is possible as Q1 þ m̄Q2 ¼ 0 ensures that
κ1;2 remains finite at infinite β, see Eqs. (A1) and (A2). At
this point the red curve reaches infinite gradient, kT ¼
1=β ¼ 0− and the system reaches negative zero temper-
ature.15 For the high angular momentum case with
Lnorm > 1=

ffiffiffi
3

p
, it is not possible to have Q1 þ m̄Q2 ¼ 0

due to Eq. (B3). The maximum energy state has E < 0 as
given by Eq. (B9), consistent with the numerical solution
shown in Fig. 17. In this case the black star indicating the
maximum energy state in the bottom panel of Fig. 17 has a
finite nonzero negative temperature, less negative temper-
ature equilibria (closer to zero) do not exist.

VI. CONCLUSION

We examined the statistical mechanics of VRR, the
dominant gravitational mechanism that determines the
direction of angular momentum vectors of objects orbiting

FIG. 17. The total entropy against the normalized total energy
[as defined by Eq. (37)] of the two-component system for
ðm2=m1; N2=N1; a2=a1Þ ¼ ð0.2; 1; 1Þ and Lnorm ¼ 0.5 (top
panel) or Lnorm ¼ 0.78 (bottom panel). The gradient of the curve
gives the inverse temperature of the system. The equilibria shown
with the blue curves have positive temperatures, while the red
curve corresponds to negative temperature equilibria. The purple
dotted line represents the unstable equilibria (cf. O2 −Q3 in
Ref. [19] for the one-component case). These states do not exist
for Lnorm ≥ 1=

ffiffiffi
3

p
as in the one-component case [19]. The black

stars mark the maximum energy state.

15Note that similar to the one-component system there are
possibly three zero temperature states for Lnorm ≤ 1=

ffiffiffi
3

p
. One for

the positive temperature stable equilibria, one for the positive
temperature unstable states and one for negative temperature
equilibria. The first two can be found by extending the blue and
purple curves to the minimum energy configuration dS=dE ¼ ∞.
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in a spherical background potential. This is a long-range
interacting system where the subsystems’ energies are not
additive due to the significant interaction energy between
the subsystems. We extended the mean-field theory of a
one-component system in Ref. [19] to an isolated two-
component system of bodies orbiting a supermassive black
hole. We used the principle of maximizing Boltzmann
entropy at fixed total energy and total angular momentum.
The system admits an implicit analytical solution using the
one-component partition function in case where one of the
two components dominates the energy and angular momen-
tum budget and serves as an effective heat bath for the
subdominant component. However we have shown that the
canonical ensemble of the subdominant component that
arises due to the energy exchange with the heat bath is
different from the canonical ensemble of an additive one-
component system due to the interaction energy with the
heat bath.
We found that the distribution exhibits the so-called

vertical mass segregation effect (i.e. in the direction
perpendicular to a disk, as opposed to the more commonly
studied radial mass segregation) in both the heat bath
approximation case and the general two-component cal-
culation unless the component comprised of the heavy
objects is spherically distributed and dominates the total
mass of the cluster, consistently with previous numerical
studies of multicomponent system [6,8,9,31]. We have
shown that for comparable semimajor axis the interaction
among the subdominant component may be negligible if
their total mass is much smaller than that of the dominant
component. These subsystems relax independently, and the
results of these two-component models may be superposed
to find the equilibria of multicomponent systems.
We explored the parameter space of energy and angular

momentum and found evidence of vertical mass segrega-
tion in all regions of the parameter space. When one
component strongly drives the evolution of the subdomi-
nant components, the transition from a spherical-disordered
state to a flattened-ordered state is continuous as a function
of stellar mass, semimajor axis, eccentricity, and net
angular momentum. We determined the mass beyond
which the objects settle into a disk [Eq. (36)].
Asymptotically for large semimajor axis, disk formation
depends only on the relative angular momentum of the two
components and the angular momentum of the dominant
component but it is otherwise independent of the thickness
of the spatial distribution of the dominant component.
In the case of very nearly isotropic initial conditions, this
critical mass may be very large. This helps to explain the
lack of vertical mass segregation signatures in spherically
dominated systems found in recent direct N-body simu-
lations (Ref. [31]) while Ref. [9] found vertical mass
segregation for a wider range of initial conditions. We
have shown that the distribution may become flattened even
for highly spherically dominanted systems, albeit only for

very large individual object masses or for much larger/
smaller semimajor axes relative to that of the dominant
component (Figs. 7 and 14). If the mass distribution does
not extend to such high masses or the radial distribution
does not extend to sufficiently low or high orbital radii, the
system may not exhibit the disk phase within the spheri-
cal phase.
The analytical heat bath models give insight into the

response of the stellar system to a massive perturber such as
a gaseous circumnuclear disk or a population of IMBHs
which may represent the heat bath. The mass and semi-
major axis dependence of the stellar angular momentum
vector distribution can help to determine the features
of these massive perturbers from the observations of the
stellar orbits.
Another interesting aspect of this work is the study of

phase transitions of isolated long-range interacting systems
or systems influenced by an outer massive perturber.
During a phase transition, the angular momentum vector
distribution undergoes a discontinuous change when the
system is subject to a small change in its system param-
eters, leading to a change in the temperature or total energy.
We find that a phase transition is not possible if a dominant
stellar component drives the evolution of a subdominant
component in the test particle (no self-gravity) approxi-
mation to VRR. In this case the subdominant component
responds continuously to changes in the properties of the
dominant component. However an abrupt first-order phase
transition is observed when the self-gravity of the sub-
dominant component is non-negligible, i.e., when it is
perturbed by a distant outer massive perturber (below red
line in Fig. 1). In this case, changes in the thickness of the
dominant component or the relative semimajor axis, mass,
and number of objects induce a discontinuous change in the
statistical equilibrium distribution of angular momentum
vectors (Figs. 13–16) similar to the nematic-isotropic phase
transition of liquid crystals.
We also examined the microcanonical ensemble for the

general two-component calculation. While Refs. [19]
and [8] did not observe phase transitions in the micro-
canonical ensemble for the studied one-component and
multicomponent systems, we find evidence for the pos-
sibility of phase transitions when the two components have
a very different total mass (i.e. M̄ ∼ 10−3) and there is a
large radial gap between the inner and outer stellar
components. The distribution of the less massive compo-
nent around the phase transition is similar to the result
evaluated with the heat bath approximation, but the exact
details of the transition such as the change in energy are
slightly different due to ensemble inequivalence.
We have also shown that two-component systems

exhibit negative absolute temperature equilibria as found
previously for one-component [19] systems and multi-
component simulations [8] at highly isotropic energies.
These negative temperature equilibria are disordered and
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spherical, similar to the high positive temperature equilib-
ria. However, at negative temperature equilibria, the system
has population inversion; the more energetic microstates
are relatively more populated and the angular momentum
distribution function’s logarithm is concave [19].
Having presented cases of astrophysical systems with

vertical mass segregation and phase transition for circular
orbits, we plan to extend the model to less idealized
assumptions in the future. Importantly we resticted attention
to axisymmetric configurations, which are incompatible
with bending waves that are expected to be prominent in the
thin disk limit [15,30]. Further, we assumed bodies on
circular orbits around the central pointmass. Eccentric orbits
satisfy the same self-consistency equations in equilibrium as
in Eqs. (6) and (7) but the coupling constants J; Jd; J0 have
algebraically slightly more complicated forms that depend
on both the semimajor axes and eccentricities, and whether
the orbits are radially overlapping or nonoverlapping [24].
The VRR equilibria and possibility of a phase transition
can be straightforwardly obtained for eccentric orbits by
generalizing the circular case. Indeed the statistical equi-
libria depend only on the underlying coupling constants
fJ; Jd; J0g and angular momenta fl; ldg, in particular
fJ=Jd; J0=Jd; l=ldg. We will also explore the possibility
of phase coexistence or phase separation in two-component
VRR systems similar to ice and water in the orbits of stars
and black holes in the Galactic Center.
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APPENDIX A: ANALYTICAL SOLUTION OF THE
GENERAL TWO-COMPONENT SYSTEM

1. The case of ā= 1

For ā ¼ 1, the parameters defining the distributions of
the two components [Eqs. (23) and (31)] simplify to

κ1 ¼
3

2
βJ1N1ðQ1 þ M̄Q2Þ; c1 ¼ l1γ ðA1Þ

κ2 ¼ m̄κ1; c2 ¼ m̄c1; ðA2Þ

where m̄ ¼ m2=m1 and M̄ ¼ M2=M1 ¼ N2m2=ðN1m1Þ.
The one-particle generating functions of the two compo-
nents are defined as in Eq. (19). Equations (6)–(8) may be
written as

Q1 ≡Qðκ1; c1Þ ¼
∂ lnZ0ðκ1; c1Þ

∂κ1

����
c1

; ðA3Þ

Q2 ≡Qðκ2; c2Þ ¼
∂ lnZ0ðκ2; c2Þ

∂κ2

����
c2

; ðA4Þ

L
N1l1

¼ ∂ lnZ0ðκ1; c1Þ
∂c1

þ M̄
∂ lnZ0ðκ2; c2Þ

∂c2

����
κ2¼m̄κ1
c2¼m̄c1

: ðA5Þ

The derivatives appearing on the right-hand side simplify
analytically using Eqs. (24) and (25). From Eq. (A1)

kT
J1N1

¼ 3

2κ1
½Qðκ1; c1Þ þ M̄Qðκ2; c2Þ�: ðA6Þ

The entropy is given by

S
kN1

¼ −κ1ðQ1 þ M̄Q2Þ −
Lc1
N1l1

þ lnZ1 þ N̄ lnZ2: ðA7Þ

We select a value of κ1 and use Eq. (A5) to numerically
solve for c1 for given L total angular momentum, given
Eq. (A2) which specifies κ2 and c2 for any ðκ1; c1Þ. Here
L≡ Lðκ1; κ2; c1; c2Þ is a strictly monotonically increasing
function of c1 for any given κ1 if setting κ2 ¼ m̄κ1 and
c2 ¼ l̄c1. Thus, for fixed L, we have the functions
fκ2ðκ1Þ; c1ðκ1Þ; c2ðκ1Þg at our disposal which we can
tabulate by letting κ1 span all possible values between
�∞. The corresponding values of Q1, Q2, T, S, and E then
follow immediately by substituting into Eqs. (A3), (A4),
(A6), (A7), and (9). Thus, we obtain a parametric solution
for the equilibria in the planes of ðT;Q1Þ, ðT;Q2Þ, and
ðE; SÞ in this way parametrized by κ1.

2. The case of arbitrary ā

The nonlinear mean-field selfconsistency equations
[Eqs. (23) and (31)] may only be partially decoupled in
the most general two-component case with different semi-
major axes, where

κ1 ¼ β̄ðQ1 þ J̄0N̄Q2Þ; c1 ¼ l1γ ðA8Þ

κ2 ¼ β̄ðJ̄ N̄ Q2 þ J̄0Q1Þ; c2 ¼ l̄c1; ðA9Þ

Lnorm ¼ L̄1 þ N̄ l̄ L̄2

1þ N̄ l̄
; ðA10Þ

Enorm ¼ −
9

4

Q2
1 þ J̄N̄2Q2

2 þ 2J̄0N̄Q1Q2

1þ J̄N̄2 þ 2J̄0N̄
; ðA11Þ
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where β̄¼ 3
2
βJ1N1, J̄0 ¼ J0=J1, J̄ ¼ J2=J1,Q1 ≡Qðκ1; c1Þ,

Q2 ≡Qðκ2; c2Þ, L̄1 ≡ L̄ðκ1; c1Þ, L̄2 ≡ L̄ðκ2; c2Þ, where the
dimensionless functions Qðκ; cÞ and L̄ðκ; cÞ are given
explicitly by Eqs. (25) and (24). Given that these functions
are nonlinear, the system of equations may have several
solutions, and it is useful to decouple the equations in terms
of κ1, κ2, c1, and c2 analytically as follows:
(1) Start with some given β. Solve Eq. (A8) for Q2,

express it as a linear combination of κ1 and Q1 for
any given β,

Q2 ¼
1

J̄0N̄

�
κ1
β̄
−Q1

�
: ðA12Þ

(2) Substitute the result Q2ðκ1; Q1; βÞ in Eq. (A9) to
obtain an expression for κ2 as a linear combination
of κ1 and Q1 ¼ Qðκ1; c1Þ,

κ2 ¼
J̄1=2

j
κ1 − β̄J̄1=2ðj−1 − jÞQðκ1; c1Þ: ðA13Þ

Here we have introduced the dimensionless param-
eter j¼J0=

ffiffiffiffiffiffiffiffiffi
J1J2

p ¼ J̄0=J̄1=2¼minðā2.5;ā−2.5Þ, which
satisfies 0 < j ≤ 1. Furthermore, c2 ¼ l̄c1 and
κ2ðκ1; c1; βÞ may be substituted back into Eq. (A8)
to obtain an expression between κ1 and c1 com-
pletely independent of the other component,

κ1
β̄
¼ jJ̄1=2N̄Q

�
J̄1=2

j
κ1− β̄J̄1=2ðj−1−jÞQðκ1;c1Þ; l̄c1

�

þQðκ1;c1Þ: ðA14Þ

(3) For each value of β̄, we create a table of the whole
range of the ðκ1; c1Þ values, and compute the
convergence of Eqs. (A10) and (A14),

G1ðκ1;c1Þ

¼Lnorm−
L̄ðκ1;c1Þþ N̄ l̄ L̄ðκ2ðκ1;c1;βÞ; l̄c1Þ

1þ N̄ l̄
;

ðA15Þ

G2ðκ1; c1Þ

¼ κ1
β̄
−Qðκ1; c1Þ − jJ̄1=2N̄Q

�
J̄1=2

j
κ1

− β̄J̄1=2ðj−1 − jÞQðκ1; c1Þ; l̄c1
�
: ðA16Þ

We plot the contours of G1 and G2 with respect
to ðκ1; c1Þ and find the intersection points of
G1ðκ1; c1Þ ¼ G2ðκ1; c1Þ ¼ 0. We find one or three

intersection points depending on the value of β̄,
hence solutions of ðκ1; c1Þ.

(4) We substitute the solution of ðκ1; c1Þ into Eq. (A13)
to obtain κ2 and c2 ¼ l̄c1. We then compute the
value ofQ1,Q2 and the total energy using Eq. (A11).
By calculating the solutions of ðκ1; κ2; c1; c2Þ over
the allowed domain of −∞ < β̄ < ∞, we obtain the
equilibrium solutions for the complete range of
energy values.

The equilibria are globally stable if the entropy is
maximized at given ðEnorm; LnormÞ, where

S
kN1

¼ −Q1κ1 − N̄Q2κ2 − ð1þ N̄ l̄ÞLnormc1

þ lnZ0ðκ1; c1Þ þ N̄ lnZ0ðκ2; c2Þ: ðA17Þ

3. Numerical method

When the semimajor axes of the two components are
different, Eqs. (6)–(8) can also be solved numerically using
Newton’s method. This is done by looking for the zeros of
the three functions FiðXÞ of the unknowns X ¼ ðQ1; Q2; γÞ
iteratively for a given β:

F1 ¼ Q1 −
R
1
−1ðs2 − 1

3
Þe3

2
βðJ1N1Q1þJ0N2Q2Þs2þl1γsdsR

1
−1 e

3
2
βðJ1N1Q1þJ0N2Q2Þs2þl1γsds

; ðA18Þ

F2 ¼ Q2 −
R
1
−1ðs2 − 1

3
Þe3

2
βðJ2N2Q2þJ0N1Q1Þs2þl2γsdsR

1
−1 e

3
2
βðJ2N2Q2þJ0N1Q1Þs2þl2γsds

; ðA19Þ

F3 ¼
L

N1l1
−
R
1
−1 se

3
2
βðJ1N1Q1þJ0N2Q2Þs2þl1γsdsR

1
−1 e

3
2
βðJ1N1Q1þJ0N2Q2Þs2þl1γsds

− l̄ N̄

R
1
−1 se

3
2
βðJ2N2Q2þJ0N1Q1Þs2þl2γsdsR

1
−1 e

3
2
βðJ2N2Q2þJ0N1Q1Þs2þl2γsds

: ðA20Þ

The pþ 1 iteration value of Xi is given by

Xi½pþ 1� ¼ Xi½p� −
X
j

ðM−1ÞijFjðX½p�Þ; ðA21Þ

where Mij ¼ ∂FiðXÞ=∂Xj evaluated at X½p� and M−1

denotes the inverse matrix. The iteration is stopped when
Fi ¼ 0 within a tolerance of 10−9. There may be more than
one solution for some values of β as discussed in the main
text which leads to the possibility of a phase transition. In
the multivalued T region for given κ1, we initialize the
iteration with three different Xi to obtain the three different
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solutions. To find the solution at a given energy, we scan
through a range of T values, obtain the solutions of Xi and
select the one with the correct energy. Alternatively we may
increase the parameters X ¼ ðQ1; Q2; β; γÞ and add a fourth
equation F4ðXÞ of the energy constraint in the Newton’s
method.

APPENDIX B: MAXIMUM ENERGY OF
TWO-COMPONENT SYSTEM

In the axisymmetric two-component system studied
in this paper, the total energy is given by Eq. (9). For
radially nonoverlapping circular components J0 <

ffiffiffiffiffiffiffiffiffi
J1J2

p
,

and the local extrema of Ewith respect toQ1 andQ2 can be
found by setting ∂E=∂Q1 ¼ ∂E=∂Q2 ¼ 0, which gives
Q1 ¼ Q2 ¼ 0. The second derivative is negative definite,
showing that this is a maximum point of E.
For radially overlapping components on circular orbits,

ā ¼ 1 and J02 ¼ J1J2, implying that

E ¼ −
3

4
J1N2

1ðQ1 þ M̄Q2Þ2; ðB1Þ

where the maximum energy E ¼ 0 is attained if

Q1 ¼ −M̄Q2: ðB2Þ

For nonzero Q1;2, this requires exactly one of Q1;2 to take
negative values, while the other to take a positive value.
Generally the bounds on Q1;2 are limited by the angular
momentum of each component [19]:

−
1

3
þ hsi21;2 ≤ Q1;2 ≤

2

3
; ðB3Þ

where hsi1;2 ¼ L1;2=N1;2l1;2. The total angular momentum
constraint can be written in terms of the Lnorm [defined in
Eq. (38)] as

hsi1 ¼ Lnormð1þ M̄Þ − M̄hsi2: ðB4Þ

For Lnorm ≤ 1=
ffiffiffi
3

p
, it is possible to arrange the angular

momenta such that both hsi1;2 ≤ 1=
ffiffiffi
3

p
. Hence bothQ1 and

Q2 can take negative values and the system can reach
E ¼ 0 via satisfying Eq. (B2).
Conversely, if Lnorm > 1=

ffiffiffi
3

p
, we cannot have both

hsi1;2 ≤ 1=
ffiffiffi
3

p
. But to reach E ¼ 0 Eqs. (B2) and (B3)

require that one of the components must satisfy Q1;2 ≤ 0

and hence hsi1;2 ≤ 1=
ffiffiffi
3

p
. Without loss of generality

assume that Q1 > 0 and Q2 ≤ 0, so that hsi1 > 1=
ffiffiffi
3

p
and

hsi2 ≤
1ffiffiffi
3

p : ðB5Þ

For Eq. (B2) to hold, we require

0 ¼ Q1 þ M̄Q2 ≥ minðQ1Þ þ M̄minðQ2Þ ðB6Þ

where
minðQ1;2Þ ¼

1

3
þ hsi21;2: ðB7Þ

Substituting Eqs. (B4) and (B7), the inequality (B6) may be
solved in terms of the variables ðLnorm; M̄Þ subject to the
constraint of the inequality (B5). The solution is Lnorm ≤
1

ffiffiffi
3

p
irrespective of the ratio of M̄. This contradicts the fact

that Lnorm > 1=
ffiffiffi
3

p
. Hence Lnorm ≤ 1=

ffiffiffi
3

p
is a necessary

and sufficient condition for the maximum energy to
reach E ¼ 0.
For Lnorm ≥ 1=

ffiffiffi
3

p
, Eq. (B2) cannot hold since both Q1

and Q2 can only take positive values. Substituting
Eqs. (B7) and (B4) into Eq. (B1), the energy may be
expressed as a function of ðM̄; Lnorm; hsi2Þ. Taking the
derivative of E with respect to hsi2 gives the maximum
energy at a fixed set of ðM̄; LnormÞ:

dE
dhsi2

¼ M̄ð1þ M̄Þ2ðLnorm − hsi2Þ

× ð−1þ 3L2
normð1þ M̄Þ

− 6LnormM̄hsi2 þ 3M̄hsi22Þ; ðB8Þ

where the second bracket vanishes when hsi1 ¼ hsi2 ¼
Lnorm and the last bracket has no zeros at Lnorm > 1=

ffiffiffi
3

p
.

The maximum energy at hsi1 ¼ hsi2 ¼ Lnorm is given by

Enorm;max ¼ −
1

4
ð1 − 3L2

normÞ2: ðB9Þ

At the maximum energy, the order parameters are given by

Q1 ¼ Q2 ¼ −
1

3
þ L2

norm: ðB10Þ

APPENDIX C: PLOTS OF MASS SEGREGATION
WITHOUT A DOMINANT COMPONENT
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FIG. 18. The order parameter of both components as a function of mass for a2=a1 ¼ N2=N1 ¼ 1. Different panels have different initial
conditions parametrized by the conserved quantities ðLnorm; EnormÞ as labeled [Eqs. (37) and (38)].

FIG. 19. Similar to Fig. 18 but showing the net angular momentum of each component relative to the total for a system with
a2=a1 ¼ N2=N1 ¼ 1.
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FIG. 20. Similar to Figs. 6 and 9, showing the distribution function of the L̂z component of the angular momentum vector for the less
heavy component for fixed a2=a1 ¼ N2=N1 ¼ 1 and differentm2=m1 shown in the color bar. The distribution function is plotted for ten
selected mass ratios separated by log scale. The dashed lines represent the distribution of the more massive component 1 using the same
color code. The top-left plot has L ¼ 0.15; E ¼ −0.66, the bottom-left plot has L ¼ 0.82; E ¼ −0.81, the top right plot has
L ¼ 0.16; E ¼ −0.09, the bottom right plot has L ¼ 0.38; E ¼ −0.09. Note that L and E here stand for the normalized total angular
momentum and energy as defined in Eqs. (37) and (38).

HANXI WANG and BENCE KOCSIS PHYS. REV. D 108, 103004 (2023)

103004-22



FIG. 21. The cumulative distribution levels of L̂z are plotted for different mass ratios for the less heavy stellar component C1. The plots
show the value of L̂z at which the cumulative distribution function reaches 25%; 50%; 75%. Different panels show different normalized
total angular momentum and total VRR energy as defined in Eqs. (37) and (38): ðLnorm; EnormÞ ¼ ð0.15;−0.66Þ top left, ð0.82;−0.81
bottom left, ð0.16;−0.09Þ top right, ð0.38;−0.09Þ bottom right.

FIG. 22. Similar to Fig. 18 but showing the order parameter Q1

and Q2 at different mass ratios m2=m1 for nearly isotropic initial
conditions with ðEnorm; LnormÞ ≈ ð5 × 10−4; 0.05Þ and M2=M1 ¼
10−3 and a2=a1 ¼ 1.

FIG. 23. Similar to Fig. 20 showing the distribution function of
the normalised orbital angular momentum vector direction cos θ
of both components along the axis of symmetry but for nearly
isotropic initial conditions with ðEnorm; LnormÞ ≈ ð5 × 10−4; 0.05Þ
andM2=M1 ¼ 10−3 and a2=a1 ¼ 1. The solid curves correspond
to the lighter total-mass component C2 while the dashed curves
correspond to the heavier component C1.
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