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Anisotropic mass segregation: Two-component mean-field model
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Galactic nuclei, the densest stellar environments in the Universe, exhibit a complex geometrical
structure. The stars orbiting the central supermassive black hole follow a mass segregated distribution both
in the radial distance from the center and in the inclination angle of the orbital planes. The latter distribution
may represent the equilibrium state of vector resonant relaxation. In this paper, we build simple models to
understand the equilibrium distribution found previously in numerical simulations. Using the method of
maximizing the total entropy and the quadrupole mean-field approximation, we determine the equilibrium
distribution of axisymmetric two-component gravitating systems with two distinct masses, semimajor axes,
and eccentricities. We also examine the limiting case when one of the components dominates over the total
energy and angular momentum, approximately acting as a heat bath, which may represent the surrounding
astrophysical environment such as the tidal perturbation from the galaxy, a massive perturber, a gas torus,
or a nearby stellar system. Remarkably, the bodies above a critical mass in the subdominant component
condense into a disk in a ubiquitous way. We identify the system parameters where the transition is smooth
and where it is discontinuous. The latter cases exhibit a phase transition between an ordered disklike state
and a disordered nearly spherical distribution both in the canonical and in the microcanonical ensembles for

these long-range interacting systems.

DOI: 10.1103/PhysRevD.108.103004

I. INTRODUCTION

Supermassive black holes (SMBH) are commonly
observed at the centers of galaxies [1]. The strong gravity
of the SMBH influences the dynamics of the nuclear star
cluster; these are the densest environments of the Universe
[2]. At the center of the Milky Way, the lighter and older
stars are observed to be distributed almost spherically while
the younger and more massive stars form a more compli-
cated anisotropic distribution including a coeval warped
stellar disk, the so-called clockwise disk, and a counter-
rotating structure [3-5]. It is difficult to explain the
observed distribution with in situ star formation because
of the presence of strong tidal forces. Another possibility is
that the anisotropy represents a dynamical equilibrium
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where the more massive objects segregate in a counter-
rotating disk where objects orbit in both directions [6-9].

An effective way to study the equilibrium state of self-
gravitating systems is statistical mechanics, which has been
explored for a long time in this context [10,11]. However,
because of the long-range nature of gravity, energy is
nonextensive which makes many results of statistical
mechanics inapplicable [12]. Another complication is that
the uniform distribution on the energy hypersurface
required by the ergodic hypothesis may not hold due to
the unbounded nature of phase space and energy. All these
issues make it challenging to construct the statistical
mechanics of gravitating stellar systems. Fortunately how-
ever, the complications may be circumvented in dense
stellar systems due to the existence of a timescale-
hierarchy, which corresponds to the rate of change of
the different orbital elements of objects in the system. This
leads to an equilibrium distribution in certain bounded
subsets of phase space [7,13-23]. In particular, in the mean
field potential dominated by the SMBH and perturbed by a
spherical star cluster, the orbital motion and apsidal in-
plane precession are much faster than the diffusion of the
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orientation of the orbital planes (i.e. the argument of
node and the z-component of angular momentum, or the
direction of the angular momentum normal vector). The
diffusion of the orientation of the orbital planes is in turn
much faster than the diffusion of the eccentricity and
semimajor axis. The dominant mechanism that drives the
dynamics of orbital orientations is vector resonant relax-
ation (VRR) [13,15], where the torque between stellar
orbits averaged over the orbital period and the apsidal
precession period accumulate coherently in time for
extended periods while the semimajor axis and eccentricity
(hence magnitude of angular momentum and energy) of
each orbit is fixed. The corresponding VRR time scale is
shorter than the age of the stars, and this leads to the
diffusion of angular momentum vectors toward the VRR
equilibrium [24,25], much faster than two-body relaxation
which drives a general gravitating system to thermal
equilibrium. This hierarchy allows one to average the
gravitational interaction over the faster processes and freeze
the slowly changing orbital elements to obtain the corre-
sponding VRR equilibrium of angular momentum.

The equilibrium distribution and phase diagram of
VRR has been mapped out in the mean-field-theory
approximation in the special case of a one-component
system with the same semimajor axis and eccentricity for
all stars [14,19,26], which showed that the system exhibits
a first-order phase transition from a disklike configuration
to a nearly isotropic ordered state in the canonical ensem-
ble." The microcanonical ensemble for an isolated multi-
radius and multimass system was obtained in Ref. [15] for
circular orbits and the thin disk limit showing that the disk
oscillates in independent normal modes each being at the
same temperature, but typically not in equipartition if the
cluster is rotating2 (see also [27-30]). Numerical studies
using Monte Carlo Markov Chain, mean field theory, and
N-body simulations also showed that for multimass models
the more massive components generally tend to settle in
more flattened configurations while low mass components
assume a nearly isotropic state [6,8,9,31]. The massive
components assume a disklike state even if the initial
configuration has a very low amount of anisotropy of order
a per cent [8,9]. This suggests that stellar mass black holes,
which are typically more massive than typical main
sequence stars, may efficiently settle into disks in dense
star clusters, which may boost the collision rate between
these objects and contribute to the observed gravitational
wave events [6,32,33].

The goal of this paper is to construct toy mean-field
models to give a qualitative understanding of the orbital
inclination, mass, and semimajor axis dependence of the

'Similar results hold for the so-called scalar resonant
relaxation equilibria attained on even longer timescales
[7,16-18,20-22].

Equipartition holds in the center-of-mass corotating frame, as
expected.

VRR equilibrium states in multimass models. We examine
the possible equilibrium distributions which may be
applied to stellar systems or a small population of massive
stars, or intermediate mass black holes (IMBHs) and
determine how the surrounding astrophysical environment
such as the tidal perturbation from the galaxy, a massive
perturber, a gas torus, or a nearby stellar system may affect
the equilibrium distribution.

We examine the interesting limiting case when one
of the components with some given mass and semimajor
axis dominates the energy and angular momentum of the
system, which acts as a heat bath for the cluster. The
equilibria may be found analytically in this case, which we
compare with the exact calculation of a two-component
mean field model. We show that these multicomponent
systems exhibit a phase transition in both the canonical and
the microcanonical ensembles analogous to the nematic-
isotropic phase transition in liquid crystals, which is not
possible in the case of a one-component system [19]. We
determine the critical minimum stellar mass where the
distribution collapses to a disklike state as a function of
semimajor axis and the level of anisotropy of the dominant
component.

The physical origin of this analogy between liquid
crystals comes and stellar systems is explained by the
similarity between the Coulomb and the orbit-averaged
Newtonian interactions, and the similarity in the geometry
of the interacting objects; i.e. the liquid crystal molecules
which are axisymmetric and the stellar orbits which rapidly
cover axisymmetric disks due to the rapid eccentric orbital
motion and in-plane apsidal precession. This correspon-
dence manifests a similarity between the mean field
Hamiltonian of the Maier-Saupe model of liquid crystal
[34,35] and the orbit averaged gravitational Hamiltonian of
VRR [19,24]. The interaction energy is minimized in the
configuration where the orientation of these axisymmetric
objects align. This leads to the alignment or antialignment
of the axisymmetric molecules’ orientation vectors at low
temperatures, called the nematic phase, while there is a
first-order phase transition at a certain temperature to an
isotropic orientation distribution. Similarly, in the nematic
phase, the VRR interactions in stellar systems forms an
ordered disklike state, where the angular momentum
vectors are aligned or anti-aligned.’

This paper is structured as follows. In Sec. II, we derive
the mean field theory equilibrium of VRR by maximizing
the entropy for a two-component system by generalizing
Ref. [19]. We compare the limiting case of a heat bath to the
exact two-component calculation and show analytically

*For liquid crystals, alignment or antialignment is equally
probable in the absence of an external magnetic field, and
similarly for gravitating systems with zero net angular momen-
tum. The aligned/antialigned fraction varies as a function of the
external magnetic field for liquid crystals or for the net angular
momentum for VRR [19].
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how the stellar orbital distribution depends on the mass and
orbital radius. In Sec. III, we present the results of the VRR
mean field distribution under the heat bath approximation.
We examine the conditions for the subdominant component
to transit smoothly from an ordered to a disordered phase.
We also determine how the distribution varies systemati-
cally with mass for different sets of total energy and angular
momentum values. In Sec. IV, we explore the existence of
phase tranisition in both the canonical and microcanonical
ensemble. We also explore what conditions affect the
existence of negative temperature equilibria in Sec. V.
We summarize the results in Sec. VL.

II. THE TWO-COMPONENT MEAN FIELD
THEORY OF VRR

We consider toy models of nuclear star clusters with two
types of stellar components denoted by C; and C, of N and
N, number of stars, respectively, orbiting around the same
central SMBH. All stars in C; have the same mass,
semimajor axis, and angular momentum magnitude labeled
(my,ay,1y), and similarly for C, with (m,,a,,l,). For
simplicity, we assume that the distribution of the angular
momentum vectors is axisymmetric and that the two
components share the same axis of symmetry for their
angular momentum vectors. The Hamiltonian of the
system describing VRR in the leading order quadrupole
approximation has the form of [19],4

1 1
Hyrr = _542 Ji1Py(n; -n;) _E.Z JoPy(n; -n;)
i,jeC i,jeC,

- Z J'Py(n;-n;)

ieC.jel,

3
= _Z Z[JlNlQl + J'N,0>]q;

ieCl

3
- Zz[J2N2Q2+J/N1Q1]CIn (1)

iGCz

where n; is the normalized angular momentum vector of
star i, P,(x) = 3 x? — 1 is the second Legendre polynomial,
q; =q(n;) = (s;)* - % s; is the z-component of n; for star i
with respect to the symmetry axis of the cluster, J , are the
coupling constants among stars within the same component
C,,, respectively, J' is the intercomponent coupling con-
stant between C, and C,, Q; = Ny! > iec, 9(n;), and
similarly for Q,. In Eq. (1), we have omitted constant
terms which do not depend on n;. Note that Q;, are
ensemble averages, which we also write in the mean-field
approximation as

*Note that we have dropped the kinetic energy term in the
Hamiltonian following Ref. [24]. Reference [14] confirmed that
the kinetic energy term is indeed negligible if the mass of the
SMBH dominates the potential.

1

012 = lalme, = [

-1

(#=3)ra0as @

where f1,(s) is the distribution function of s (i.e. the z
Cartesian component of ny’ for stellar component Cj ,,
respectively, which are to be determined by maximizing the
Boltzmann entropy. Note that all other parameters (e.g.
m,a,l,N) are constant during VRR. In the mean-field
approximation, the total entropy of the system is a func-
tional of f ,(s). For circular orbits, the coupling constants
are given as

. J/ _ 3Gm1m2 min(al,a2)2

3)

8max(a,,a,)’

and we refer to Ref. [24] for the general eccentric case.
Maximizing the entropy subject to the constraints of
fixed total energy and total angular momentum, the dis-
tribution function at equilibrium can be obtained by
generalizing Ref. [19]. For given Q; and Q,, we get

e%ﬂ(lelQ1+J/N2Q2)52+11YS

, (4
f—ll ePUIN Q1IN 05)s* 75 ] )

f1(s]Q1,0,) =

e%ﬂ(JZNZQZJ"J/Nl 01)s*+bys

fZ(S|Q1’ Q2) - f_ll E%ﬂ(JNQz-‘rJ’N]Ql)S2+lz}’sds : (5)

Here f and y are Lagrange multipliers corresponding to the
constraints of total energy and total angular momentum,
respectively, arising when maximizing the Boltzmann
entropy; where in terms of the thermodynamic temperature
of the system # = 1/(kT) and y is related to the net rotation
rate [14,19,23]. Note that Q, , are the mean trace-removed
quadruple moment of the angular momentum distribution
for C; and C,, respectively, as defined in Eq. (2) above.
Here Q, , are also the order parameters of the equilibrium
distribution of the axisymmetric systems, where Q =0
corresponds to an isotropic distribution and its maximum
value Q =2/3 represents a razor-thin disk in physical
space. Depending on y, the stars may be orbiting both in the
prograde and retrograde senses with respect to the total
angular momentum. (), satisfy the self-consistency
Egs. (4) and (5), i.e.

0, = /_1 <S2 —%>f1(S|Q17Q2)dS» (6)

0 = /_1 <S2 —%>f2(S|Q17Q2)dS- (7)

SThat is, s = cos®@ where 6 is the inclination angle or the
angular momentum vector’s polar angle in spherical coordinates.
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Given f and 7, the total angular momentum and total
VRR energy of the whole system can be evaluated as

| |
L=N111/_1Sfl(S|Q1aQz)dS+N212/_lsz(S|Q1,Q2)dS,
(8)

E= —%JIN%Q% - ZJzN%Q% - %J'NlNleQz. )
If the system is isolated, L and E are fixed and the
system samples the microcanonical ensemble. Egs. (6)—(9)
provide a closed system of equations to obtain the
unknowns (3,7, Q;,0,), and thereby the distribution
function Egs. (4) and (5).

A. The heat bath approximation

An important limiting case is when one of the compo-
nents, e.g., C;, dominates the total VRR energy and total
angular momentum of the system. For the nuclear star
cluster in the Milky Way, the dominant component may be
a massive perturber, e.g., the galactic environment, and in
particular the molecular gas torus (also known as the
circumnuclear disk) of total mass 10°-10°M, at a distance
of 2-7 pc from the center [36-39], and the subdominant
components are the stars around the SMBH in the nuclear
star cluster. Similarly if there are IMBHs at a particular
range of radii, they may represent the dominant component
under which the less massive stellar components relax to
find their statistical equilibrium distribution of orbital
inclinations [40-43], or possibly the large population of
nearly spherically distributed main sequence stars compris-
ing the nuclear star cluster may represent the dominant
component for the clockwise disk of massive stars in the
Galactic Center [3,4] and/or possible IMBHSs.®

From Egs. (8) and (9), this limiting case requires two
conditions to hold:

Nyl (s)c, > Naby(s)c,, (10)

JINYQ} > 1hN303 +2/'NiN,0,0,. (1)

For circular orbits around an SMBH, this is equivalent to
1> Ma'/?(s), (12)

1> IZZQZ +2M min(a=3,a*)Q, (13)

where we define the dimensionless quantities X = X, /X,

for any quantity X for the two components and M = Nm is

®As we will see, as long as the interaction among them is
negligible this approximation leads to an analytic result even in
cases where the subdominant components have not a single value
but multiple mass, eccentricity, and semimajor axes.

the total mass of each component. For instance, M is the
total mass of the subdominant component relative to the
dominant component.

As a result, the dominant component’s distribution f is
approximately independent of O, in Eq. (4),

e%ﬂle] Q5% +1y7s

f—ll e%ﬁ-’lNllez'Hl}’st ’

f1(s]01) = (14)

0 [ (2=3)n6ionas. a9

Further, L and E are approximately determined solely by
f1 and Q, independently of Q, or f,. Component C; thus
also determines the corresponding values of f and y
independently of Q, or f,. Component C, then settles in
the background potential for a given fixed (Q,f,y) and
obtains its equilibrium Q, through Eq. (7). Thus, compo-
nent C; may be regarded as a heat bath for component C,,
which operates like a canonical ensemble. More generally,
similar conclusions may hold for a multicomponent system
with an arbitrary number of subdominant components in
the background potential of the dominant component.

In the following we label the dominant component with a
‘d’ index for “dominant” and drop the label of the sub-
dominant component. We assume that the angular momen-
tum vector distribution is known and may be parametrized as

fals) o exateas, (16)

where s = cos@ and c; and «; are constant fitting coef-
ficients. For x; < 1 and c; <« 1 this clearly represents a
nearly isotropic distribution both in angular momentum
space and in physical space, and for k; > 1 or c¢; > 1 this
represents a narrow cone in angular momentum space and a
thin disk in physical space. The case of ¢, > 1 may
represent the massive gas torus observed around the
Milky Way, irrespective of whether it is in a state of VRR
equilibrium, as long as it is stationary. The values of (x4, ¢,)
are directly measurable by fitting the observed distribution
Eq. (16). They are related to the system parameters (Q4, 3, 7)
via Eq. (15) as

3
Ky = EﬁJdeQd’ and ¢, =7l (17)

The value of Q of the subdominant species, henceforth
“stars”, in this background is

f—ll (SZ - %)B%ﬁ(JNQ+J/NdQd)52+lysds

¢ 1, PUNCHINQ s gs (18)

where the quantities without the subscript (i.e. J, N, Q)
describe the stars, and quantities with the ‘d’ subscript are of
the dominant component (i.e. the heat bath).
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A parametric solution to Eq. (18) can be found using the
one-particle partition function [19],’

1 l 12 2
Zolk.c) = /1 eI = 2”\/—Kexp <_§_ %>
c—2k c+ 2k
() vt =) [, (19
() e (- F)) o

where

!

k= %ﬂUN 0+ J'NQy) = j—dkd[l +(JJIYN D], (20)

c=1ly=lc, (21)

where N =N/N,, O = Q/Q,. For circular orbits this
becomes

M
= i |min(a2,a>3) + —=| k4 (22)

Cyg- (23)

Here Q depends implicitly on k and c. Given Z(k, ), Q is
given by8

deanao(K,c)
K
2

c 1 1 e c
O 2 Y (coshe—Ssinhe). (25
4?2 2k 3+K‘Z0(K,C) <COS T C> (25)

A similar expression holds for Q, = Q(x,, ¢,) by replacing
(k,c) = (k4,cq) in Eq. (25). Note that since /; is always
positive for all components C;, hence ¢; = yl; > 0 must
hold for all i in order for the angular momentum to be in the
positive direction (assumed by construction). Indeed in the
axisymmetric case, two-component VRR, the parallel
aligned configuration has higher entropy and lower free
energy than the antialigned configuration. The numerical
simulations of Refs. [23] and [31] confirm that an initially
anti-aligned disc of young stars will align with the rotating
spherical host star cluster in the Galactic Center.

In these expressions x and ¢ are proportional to f
and y which represent dimensionless effective inverse

"Note that we define Z, = (27)~' ZRKT, where ZRKT denotes
the formula quoted in Ref. [19].

Similarly, the angular momentum simplifies analytically,
which we henceforth denote with the dimensionless function
L(k, c) defined as

L 0lnZy(k.c) —c e*sinhc
B P il A L e O V'
NI (k) oK 2k - kZy(x, ¢) (24)

temperatures conjugate to the VRR energy and total
angular momentum, respectively [cf. Egs. (4) and (5)].
We obtain a solution for Q for the subdominant component
in two ways:

(i) [(HBp)] without any further approximations beyond
(J'/J4)N Q < 1, i.e. obtain Q, for given (k, c ) as
mentioned below Eq. (25), then calculate (x, ¢, Q)
by self-consistently solving Eqgs. (22)—(25).

(i1) [(HB)] using the approximation that the self-
interaction between the stars is negligible compared
to the coupling between the stars and the dominant
component, (J/J')N Q <1, such that Eq. (20)
simplifies to

J/
Kk~ —ky; = mmin(a, a3)x,. (26)
Ja
In the following we refer to these two approaches as
[(HB)] (heat bath) and [(HBp)] (heat bath plus). Q is
obtained by substituting « and ¢ in Eq. (25).

Note that in the former case (HBp) the self-interaction of
the subdominant component is accounted for exactly on top
of the effects caused by the dominant component, and in the
latter (HB) it is neglected. The equilibrium distribution
function follows from Eq. (5)

f(S) — eKS2+CS. (27)

f(n)

The meaning of the parameters (k,c) are as follows
(see Appendix E in Ref. [19]). Generally —co < k < o0 and
0 < ¢ <00 may be assumed without loss of generality
for equilibria. These parameters specify the order parameter
0 [Eq. (25)] and L [Eq. (24)] such that k = ¢ =0 1is
the isotropic disordered state with Q = 0. The ¢ parameter
specifies the corotating vs counterrotating angular momen-
tum density at s =1 and —1 as f(1)/f(=1) = e%*.
Nonrotating clusters have zero-net angular momentum
for which ¢ = 0. The angular momentum increases mono-
tonically between L = L/(NI) = 0 and 1 for fixed « as ¢
changes from 0 to oo. The order parameter Q increases
monotonically with k between —% + (L/NI)? and %, where
a razor-thin disk (maximally ordered state) has x — oo
and/or ¢ — o0, and k = 0 state has the maximum disorder
with Q > 0 among states with a given L. For small x and c,

4 8 , 2,
O~ 58T o435 T45¢

NIT 3T a5

(x| < 1,e < 1), (28)

(x| < 1,c < 1). (29)

Further, Q = 0 is obtained at finite negative x for ¢ # 0.
The stable equilibrium distribution function has local
maxima at s=1 and —1 (=0 and x) for x> 0.
Equilibria also exist with k < 0, where f(s) possibly peaks
at 0 <s# 1. These states with small to intermediate
negative xk and ¢ # 0 may correspond to negative absolute
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temperatures for which Q > 0, discussed further in Sec. V.
States with large negative k have Q < 0, which are unstable
in the one-component case, but in some cases stable in the
two-component case (see Sec. V and Appendix B).

Reference [23] finds that ¢~ 0.3 for the observed
spherical distribution of old stars in the nuclear star cluster
in the Galactic Center.

B. Region of validity of the heat bath approximation

Figure 1 shows the region of the parameter space of
semimajor axis and mass (a@,/m) where the heat bath
approximation (HBp) is valid for two representative cases
(M,x4,cq) = (1073,5,22)  and  (1073,0.155,0.144).
Equations (12) and (13) marginally hold using the exact
two-component calculation.

The red boundary curve in Fig. 1 shows the region of
validity for the (HB) approximation which neglects the self-
interaction of the subdominant component. This is derived
by setting (J/J')N Q =1 in the (HBp) calculation. The
region of validity is strongly limited in semimajor axis for
(HB), but it is not limited in the allowed individual stellar
mass. The energy and the angular momentum of the
subdominant component becomes nonnegligible compared
to the interaction energy respectively beyond the lower and
upper red boundaries in a. The region within the blue
boundaries is where the (HBp) approximation is valid,
where the interaction energy and angular momentum of the
subdominant component is smaller than the self-energy and
angular momentum of the dominant component.

C. Exact calculation

We compare the axisymmeric equilibrium distribution
function of the subdominant component with the (HB) and
(HBp) approximations to the exact calculation for the same
fixed values of (x,, c;) of the dominant component. The
value of Q, is found from Q,(x,, ¢,) by replacing (x, ¢) —
(k4, cg) in Eq. (25). When the interaction energy with the
subdominant component is not neglected then Eq. (17) is
replaced by

3 3 T %6
Kg = Eﬂ(-]deQd +JNQ) = EﬂJdeQd(l +J_dNQ)'
(30)

Here Egs. (20) and (22) are modified as

_3 / T 1+ UIINO
€= PUNC T INaQa) = x (1 T (/TN Q)

47
d
[1 4+ M max(a* a>)Q)]
[1 4+ M min(a?,a=3)Q)] K
[min(a%,a>3) + Ma~' Q)]
[+ Mmin@.a)0] @ (31)

= mmin(a*,a?)

=m

Kg = 5, Cqg= 22
105 b
103 b
10'F 1
. — HB
— HBp
1071+ 1
10—3 b
1075 b
1072 107t 10° 10! 102 103 10*
m
Kg=0.155,c4=0.144
103 L
102 L
10tF _
. — HB
100L — HBp
10—1 L
10—2 L
1073 b n L L n n L d
10! 102 10° 10* 10° 10° 107
m
FIG. 1. The region of validity of the heat bath approximation as

a function of stellar mass (m = m/my) and semimajor axis and
(a = a/ay) relative to the dominant component. In the region
between the blue curves, the self-energy of the dominant
component is larger than the interaction energy [i.e (HBp)
conditions stated in Eqgs. (12) and (13)]. In the region between
the red curves, the interaction energy dominates over the self-
energy of the subdominant component [i.e. (HB) approximation].
The upper and lower panels correspond to a disklike and a
spherical dominant component, respectively, Eq. (16) with
(x4, cq) as labeled with relative total mass M = 1073 for both
panels.

For the exact two-component calculation, we solve
Eq. (31) simultaneously with Egs. (23) and (25) as discussed
in Appendix A.

III. EQUILIBRIUM DISKS OF MASSIVE OBJECTS

Here we present the results of the VRR mean field model
and examine the conditions for the component comprised
of heavier objects to form a disk as a function of mass and
semimajor axis.

We present the results of the (HB) and (HBp) approx-
imations and the exact calculation for fixed ratio of total
mass M = 1073 between the two components, and for two
cases where the dominant component is disklike with
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alag=1,m/myg=0.1

10?2 0.7
0.6
0.5
10t
0.4
S o
0.3
10°
0.2
0.1
107! 0.0
107! 10° 10! 102 103 104
Ka
alag=1,m/my=100
102 N A : 0.67
0.66
§ 0.65
101
0.64
S o
0.63
10°
0.62
0.61
10—1 I 1 n 1 060
107! 10° 10! 102 103 104
Kda

FIG. 2. The order parameter Q of the subdominant component
for different distribution functions of the dominant component
parametrized by k, and c, in Eq. (16). The ratio of total mass is
M = 1073 for both panels, while top and bottom panels have
different individual stellar mass m as labeled. The distribution
approaches the isotropic distribution (Q ~ 0) for small c¢; and
small k; for small mass m/m, = 0.1 and it is a thin disk (Q ~ %)
for m/m4 = 100.

(k4. cq) = (5,22) and when it is nearly spherical (k;, ¢;) =
(0.155,0.144) with order parameter Q, = 0.60 and 0.014,
respectively, and mean angular momentum L;/N,l; =
0.97 and 0.054, respectively [Egs. (28) and (29)]. Note
for reference that if Ny bodies are drawn from an isotropic
distribution their order parameter and mean angular
momentum satisfy (Q,) = 0, (0%)"/? = 1/[(v/5)N], and
Ly/N4l; = 1//Ny, respectively, implying that N, = 32
and 340 are required to yield Q,;=0.014 and
L,/N,4l; = 0.014, respectively. Thus, more abundant iso-
tropic shells of stars with higher N may be in principle even
closer to being isotropic than in our spherical example.9

°If the stars are drawn independently from an isotropic distri-
bution, (s)* = (i) - (1) = N2 37,37 (i -nj) =N7>37,57,6;; =
N~'. Hence, (s) = 1/+/N.

A. Anisotropic mass segregation

Figure 2 shows how the angular momentum vector
distribution of the subdominant component depends on
the dominant component’s parameters (x4, ¢;) for a system
where all objects have the same semimajor axis and
M = 1073, The figure shows the value of the order param-
eter Q of the subdominant component determined via (HBp)
for two different values of 7n = 0.1 and 100, respectively as
labeled. Note that larger x,; and c; values correspond to a
dominant component that is more flattened while smaller «,
and c, values correspond to a dominant component that is
more spherical [see Eq. (34) below]. Recalling that Q
changes between 0 and % between the isotropic (disordered)
and razor thin (ordered) cases. Figure 2 shows that if the
subdominant component has a much larger m, the distribu-
tion is very much flattened for a wide range of parameters
including cases where the dominant component is close to
spherical (x4, ¢;) = (0.1,0.1). If the subdominant compo-
nent has a smaller individual stellar mass itis typically nearly
spherical unless the dominant component is very much
flattened with ¢; > 1 or x; >> 1. We determine an ana-
lytical criterion for the subdominant component to form a
disk next.

1. The case of a dominant disk

When the dominant component is disklike, for small
angles near the axis of symmetry (here @ is the polar angle
in spherical coordinates of the angular momentum vector
direction), Eq. (16) simplifies to

falcos ) o eFatca=(kitzca®® « =(katica)®

(0=~0). (32)
Large «, implies an order parameter of [19]

cdtanhcd—l 3
— 40 , 33
R Ok, (8

which represents a thin disk with a full-width half maxi-
mum (FWHM) thickness of

(In2)'/2

N el
(x4 +%Cd)1/2

(34)

Let us examine the critical m/m,; where the stars
transit from an isotropic state to a disklike configuration.
In the (HB) approximation, Eqs. (23) and (26) can be
used to derive how the thickness of the disk depends on
mass and semimajor axis. The FWHM is analogous to
Eq. (34), we getlo

"Here (k4. c4) may be arbitrary, the dominant component
needs not be disklike.
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FIG. 3. The critical semimajor axis and mass (a,m) =

(a/ag,m/mg) at which the objects of the subdominant compo-
nent gradually transit to a disklike phase with angular momentum
vector distribution FWHM thickness of 10°. Two cases are
presented where the heat bath is disklike (x4, cq) = (5,22)
(red curve) and when it is nearly spherical (0.155,0.144) (blue
curve). The solid curves assume no self-interaction within the
subdominant component [Eq. (36), (HB) approximation] valid
only for the plotted domain (see Fig. 1). The dashed curves are
evaluated by also accounting for the self-interaction with the
(HBp) calculation by solving Egs. (22)—(25).

(In2)!/2 (In2)!/2

T N2 .
(k+30)" \/ﬁz[min(az,&‘3)191—5—%&1/26“,}

A0 (35)

The FWHM thickness of the subdominant component
reaches A@ = 10° when /m is larger than approximately

23
Myge . 36
10 min(a2’ a_3)Kd _’_%al/zcd ( )

The solid curves in Fig. 3 shows 72 for cases with a disklike
and spherical dominant components, respectively. Generally
iy <45.5/(c,a'’?) where equality holds asymptotically
for a < [c,/(2k,)]*/? or @ > [cy/(2k,)]™*/7. The critical
mass ;- s generally much larger if the dominant compo-
nent is nearly spherical, but even so the subdominant
component transitions to a disklike state at large a."' Note
however that these results assume (HB) that a dominant
component drives the evolution which is only valid in the
restricted domain of the solid lines in Fig. 3. The dashed
curves shows the numerical values of 71, evaluated using
the more general (HBp) calculation which is valid throughout
the plotted range. The two calculations clearly agree in the
overlapping region of validity. In fact the extrapolation
of the (HB) curve [Eq. (36)] to larger semimajor axis matches
the (HBp) calculation. However, at very small a values, the

""This conclusion is limited by the range of validity of the
(HB) approximation shown in Fig. 1.

critical mass 7, evaluated with the general (HBp) solution
becomes approximately independent of the perturbing com-
ponent (x4, ¢,) and the two curves converge.

We first present the equilibria as a function of mass in the
heat bath approximation for a disklike dominant compo-
nent with (x4, ¢;) = (5,22) and order parameter Q, = 0.6.
The distribution peaks at € =z, and the fraction of
counterrotating objects for this choice of x; and c; on
axis is practically zero: f,(0 = 7)/f4(0 = 0) = e72¢ =
e~* = 107", The FWHM angular thickness of the disk is
approximately 12° from Eq. (34). The angular momentum
of the dominant component L;/N 41, = 0.97 is close to the
maximum value.

We investigate the distribution function of the subdomi-
nant component as a function of mass and number ratio
(i, N) while fixing the total mass ratio M = 1073 to
ensure that the dominant total energy and total angular
momentum condition are satisfied. We explore the cases
when the subdominant components are radially either
inside (a = 0.1), outside (a = 10), or they are radially
overlapping (a = 1) with the dominant component to
examine how the distribution function transitions from a
more isotropic state to a disklike state [6,8,9].

In all three cases of orbital radii, the stellar distribution
changes smoothly between a sphere for small m/m, to a
disk at large m/m,, where the transition radius depends on
the orbital radius a/a,; and N/N, (discontinuous transi-
tions are possible for smaller a/a,, see Sec. IV below). The
analytical estimate of the transition point from the isotropic
state to the disklike state, /7,0 [Eq. (36)] shown with a
vertical dashed line is clearly consistent with Figs. 4 and 6.

Figure 5 shows the distribution of the angular momen-
tum vectors of the stars for different mass ratios and a/ay
for the (HBp) model. Given the assumption of axisym-
metry we plot the distribution as a function of s = cos#,
which is also the z-component of the normalized angular
momentum Z. The figure shows the distribution function
p(L.) = f(s)/f(1), normalized for clarity such that
p(1) =1. A flatter distribution corresponds to a more
isotropic distribution. Figure 6 shows the values of f,z at
which the cumulative distribution reaches 25%, 50% and
75% respectively. For an isotropic distribution, these three
angles lie close to L, = —0.5, 0 and 0.5.

Figures 4-6 show that in all three radial regions with
different a/a,, the distribution becomes more flattened for
larger stellar masses, as expected for vertical mass segre-
gation. For higher a/a,, the disk-isotropic transition is
shifted towards lower m/m, and conversely for smaller
a/ay, as explained by Eq. (36). The models demonstrate not
only the mass dependence of a two-component stellar
distribution, but the figures may also be interpreted as
showing the distribution of a multimass stellar cluster under
the influence of a massive component provided that the
coupling between the stellar components is neglected, i.e.
for model (HB).
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FIG. 4. The order parameter Q of the orbital angular momentum vector direction distribution [Eq. (2)] of the subdominant component
(e.g. stars or BHs) as a function of mass ratio with respect to a flattened dominant component (e.g. a gaseous circumnuclear disk or a
population of IMBHs]. The dominant component is assumed to represent a thin disk [Eq. (16) with k; = 5 and ¢, = 22], and the total
mass of the subdominant component is M/M, = 1073. The dashed cyan curve shows the values of Q in the heat bath (HB)
approximation neglecting the self-interaction of the subdominant component [Eq. (26)]. The solid black curve shows the values of Q
obtained from solving the self-consistency equations (22)—(25) in the (HBp) approximation with accounting for the self-interaction of
the subdominant component as a perturbation. The red dotted curve shows the solution of the exact two-component VRR calculation
[Eq. (31)]. The three panels have different semimajor axes a/a,; = 0.1 (left), a/a, = 1 (middle), and a/a,; = 10 (right). In all cases, the
distribution exhibits vertical mass segregation as the distribution changes from isotropic (Q = 0) for low-mass stars to nearly disklike
O~ %) for high-mass stars. The black-vertical dashed line shows the value of m/m, at which the stars transit to a disklike state of
FWHM width of 10° as predicted by (36).

alag=0.1 alag=1 alag=10
1.0 1 1.0t B 1.0t
0.8 ] 0.8} 7 4 0.8}
Jos Josr 1 Gos
] a ]
0.4 1 0.4} 1 0.4}
0.2 1 02t 1 0.2t 1
0.0 1 0.0t —J 1 0.0t iy
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
LZ LZ LZ

FIG. 5. The distribution function of the normalized orbital angular momentum vector direction cos 6 for the subdominant component,
i.e. along the axis of symmetry, L, in the presence of a flattened dominant component as defined in Fig. 4. The distribution function is
normalized such that p(I:Z = 1) = 1. Individual curves have fixed m/m, mass ratios between 1073 (violet) to 10 (red) as shown in the
color bar, the mass values are selected uniformly on a log scale. The three panels have different semimajor axes a/a; = 0.1 (left),
a/ay = 1 (middle), and a/a,; = 10 (right). The distribution shows vertical mass segregation; more massive objects are distributed in a
disk while the distribution of low mass objects is nearly isotropic.

2. The case of a dominant sphere occurs at much larger m/m, values, consistent with the
predictions of Eq. (36). This result could potentially explain

Consider now a dominant component such that M = ’ - " - X
the lack of vertical mass segregation signature in the direct

1073 in a nearly isotropic state: x,;, = 0.155 and ¢, = 0.144, 8 ) o o
such that Q, ~ 0.015 and L,/ (N ;) ~ 0.05 from Egs. (28) N-body simulations by Ref. [31] where the initial condition
and (29) is nearly isotropic with (Egm, Lpomm) ~ (1074, 1072) and a
: . - 12
Figures 7-9 show the parameter dependence of vertical ~ relatively narrow mass range (10 > <m/my < 1).

mass segregation as in Figs. 4-6. For this choice of (x4, ¢;)

vertical mass segregation may still take place but only for

m/m, values much larger than for a flattened dominant PFor (kg cq) = (0.155,0.144),  (Eqoms Luom) & (5% 1074,
component. The smooth transition to a disklike phase 5% 1072) using the definition in Eqgs. (37) and (38).
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FIG. 6. The cumulative distribution levels of £, as a function of mass for the subdominant component in the presence of a flattened
dominant component as in Figs. 4 and 5 worked from the (HBp) calculation. The plots show the value of L. at which the cumulative
distribution function reaches 25%, 50%, 75% for three different semimajor axes in different panels as labeled. The distribution exhibits
vertical mass segregation as the distribution changes from isotropic (m/m,; < 0.1) to narrowly peaked around the axis of symmetry
ﬁz =1 for m/m, = 1. The black-vertical dashed line shows the value of m/m, at which the stars transit from an isotropic state to a

disklike state of FWHM width about 10° as predicted by (36).
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FIG. 7. Similar to Fig. 4 showing the order parameter Q of the

orbital angular momentum vector direction distribution [Eq. (2)]
of the subdominant component as a function of mass ratio driven
by a spherical dominant component (k; = 0.155, ¢; = 0.144).
M =1073 and a/a, = 1.

We emphasize that Figs. 4-9 are expected to be valid for
a general multicomponent model with an arbitrary spec-
trum of masses for the subdominant component for the
given values of @ and M since these systems are in the (HB)
heat bath regime where the self-interaction is negligible.

B. Dependence on orbital radius

We examine the systematic variation of the anisotropy
with orbital radius a under the influence of a flattened
dominant component comprised of massive bodies
such that (kg,cq,M,m,N)=(5,22,0.001,0.01,0.1). The
assumptions of a dominant total energy and total angular
momentum are satisfied if 0.1 < a < 10, where the self-
interaction within the subdominant component is negligible
(Fig. 1). These models may be used to explore how a disk
of massive perturbers (e.g. the circumnuclear disk or a

©1073 102 1071 100 10! 102 103
E mmmT—__ Z : -
g
alag=1
1.0
0.8t
TN 0.6
=
Q
0.4r
0.2r
0.0 M ]
10  -05 0.0 0.5 1.0
L,
FIG. 8. Similar to Fig. 5 showing the distribution function of

the normalized orbital angular momentum vector direction cos €
for the subdominant component along the axis of symmetry, L in
the presence of a spherical dominant component (k; = 0.155,
¢y = 0.144). The distribution function is normalized such that
/)(i,z = 1) = 1. Individual curves have fixed m/m, mass ratios
between 1073 (violet) to 10 (red) as shown in the color bar, the
mass values are selected uniformly on a log scale. M = 1073
and a/a; = 1.

population of IMBHs) at a particular radius affects the
distribution of lower mass objects (e.g. main sequence stars
or black holes) as a function of distance.

Figures 10-12 show the value of the order parameter Q,
the distribution of angular momentum vector directions,
and the cumulative distribution levels for different radius
ratios. Again, the (HB), (HBp) models and the exact
calculation give consistent results in this parameter range.
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FIG. 9. Similar to Fig. 6 but showing the cumulative distribu-
tion levels of L, as a function of mass for the subdominant
component in the presence of a spherical dominant component
(kg cqs M/My, a/ay) = (0.155,0.144,1073,1).

The figures show that the spacial distribution is highly
disordered, but the distribution is slightly more flattened at
larger radii and the distribution is more isotropic at
moderately smaller radii. In Sec. IV, we study the behavior
at much smaller a where the heat bath approximation
breaks and find evidence for a discontinuous change in the
order parameter there to higher values (Fig. 14).

C. Mass segregation without a dominant component:
Exploring the (E, mm.Lnorm) landscape

Let us now examine mass segregation in a two-
component model without a dominant component. We
relax the heat bath approximations and solve Egs. (6)
and (7) exactly. An analytical solution exist when a; = a,,
in other cases we resort to a numerical solution, see
Appendix A. Unlike previously in Sec. IIC where we

m/mg=0.01, N/Ng=0.1
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FIG. 10. Similar to Fig. 4 but showing the order parameter Q
for stars under the influence of a disk of massive perturbers with
parameters (kg4, cq, M/ My, m/mg) = (5,22,1073,0.01) as a
function of stellar orbital radii for the two heat bath models
(HB), (HBp), and the exact two-component calculation, all of
which approximately overlap. The stellar distribution is approx-
imately spherical but slightly more anisotropic at higher a/a,.
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FIG. 11. Similar to Fig. 5 but showing the distribution function
of L. for the subdominant component for 10 selected radius ratios
a/a, from 0.1 to 1 in log scale under the influence of a disk of
massive perturbers with the same parameters as in Fig. 10
(Kgycq M /My, m/my) = (5,22,1073,0.01).

used (x4, ¢,) to characterize the system, here, we character-
ise the system with the conserved quantities; the normal-
ized total VRR energy and total angular momentum in
Egs. (8) and (9) defined as [9]

3E
Ejorm = 5) 5) 7 ’ (37)
J\N2 + J,N2 + 2J'N| N,
L
L = 38
"M NY L+ Nyl (38)

These quantities are bounded by 0 < L,y < 1 and —1 <
E orm < 0 (see Appendix B). We explore four representa-
tive combinations in the parameter space (Lyom» Enorm) =
(0.15,-0.66), (0.82,-0.81), (0.16,-0.09), (0.38,—0.09)

following Ref. [9]. This investigation aims to map out the

mi/mg=0.01, N/Ny=0.1
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FIG. 12. Similar to Fig. 6 but showing the cumulative distri-

bution levels of L, for different orbital radii for the subdominant
component. The plots show the value of L, at which the
cumulative distribution function reaches 25%, 50%, 75%, respec-
tively. (kg cqs M/My4,m/my) = (5,22,1073,0.01).
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possible behavior of two-component systems in the quali-
tatively different regions of parameter space. However,
given that the results are qualitatively similar to the
previously stated conclusions, we defer the plots of this
section to Appendix C.

We explore systems with a; = a, and N; = N,, and
vary the mass ratio m,/m; from 0.02 to 1 with cluster C,
being the lighter component. Figure 18 shows the value of
Q, and Q, at different mass ratios. Figure 19 shows the
angular momentum of each component as a fraction of the
total angular momentum. Figure 20 shows the distribution
of angular momentum vectors at different angles of both
components for different mass ratios. Figure 21 shows the
cumulative distribution levels of the lighter component C,
for different mass ratios. Clearly for all four combinations
of total energy and total angular momentum, the less
massive component distribution becomes more anisotropic
as the mass ratio m,/m; becomes larger, similar to the
multicomponent systems examined in Ref. [9]. Figures 18
and 20 show that the order parameter of the more massive
component is insensitive to the mass ratio.

We also explore the behavior of systems with nearly
isotropic configurations with (Eyom» Lnom) = (5 x 1074,
0.05), as in the last part of Sec. Il A. Here we examine the
case of a dominant component with M, /M, = 1073, and
a,/a; = 1. Similarly to Figs. 18, 20, and 21, Figs. 22-24
show the distribution of the two components using the
general two-component calculation for different orbit mass
ratios m,/m;. Results are consistent with the heat bath
approximation of Figs. 7-9. The heavier component C,
maintains an isotropic distribution for all values of m,/m;
while the lighter component C, exhibits vertical mass
segregation but in this case transits to a disklike state only
at very large values of m,/m;.

IV. PHASE TRANSITION IN TWO-COMPONENT
SYSTEMS

A. Phase transition of an inner low-mass component
influenced by an outer massive perturber

In the previous section we have examined the equilibria
of the subdominant component under the influence
of the dominant component with given (k,, c,) and
explored cases without a dominant component with given
(Enorms Lnorm)- Let us now study how the equilibria change
with the total energy and angular momentum of the system
and identify possible discontinuities. Since the interaction
with a heat bath generates the canonical ensemble for the
subdominant component, the angular momentum distribu-
tion of the subdominant component may be expected to
undergo a first-order phase transition from an ordered disk
phase to a disordered spherical phase when varying the
parameters of the heat bath as found previously for one-
component systems [14,19]. The phase transition is char-
acterized by a discontinuous change in the order parameter

Q between an ordered Q.4 and a disordered Qy; state,
where Q.4 = 0.286014 and Q4;, = 0 for a one-component
model with no rotation [19]. Equilibria with Qg < Q <
Q.4 are inaccessible to the system as they are either
metastable or unstable.

However, Eqgs. (21) and (26) show that a system
strongly driven by a dominant component responds
continuously to changes in the dominant component,
indicating that a discontinuous phase transition is not
possible when the (HB) model applies. Thus, a phase
transition is prohibited in the region bounded by the red
lines in Fig. 1). The lack of a phase transition is due to
the intercomponent coupling, which is strongly non-
negligible here. This is in stark contrast with additive
short-range interacting systems where the intercomponent
coupling is absent/negligible and where a first-order phase
transition is possible, such that the system exhibits phase
separation during the transition. Nevertheless, here we
demonstrate that a phase transition is also possible for
VRR for an isolated two-component systems where the
self-interaction is non-negligible in the energy equation
(i.e. this leads to the Q terms in Egs. (22) and (31). This
happens when (J/J')N Q < 1 is violated, i.e. in the
region below the bottom red line in Fig. 1, corresponding
to a system influenced by an outer massive perturber.

For a proof-of-concept, we present an example of such a
phase transition in a two-component model with an outer
massive perturber such that (M, i, a) = (1073,0.1,0.006).
We vary the FWHM of the angular momentum distribution
of the outer massive component between A, = 1.3° and
4.7° with a fixed negligible fraction of counterrotating
objects using the distribution function of Eq. (16) with
parameters 100 < k; < 1500 and ¢, = 5 [see Eq. (34)]."
This is equivalent to varying the temperature [Eq. (17)]
which induces a change in the value of the x parameter of
the inner low-mass component [i.e. its dimensionless
effective inverse temperature, Eq. (22)] and hence the
order parameter Q of the subdominant component
[Egs. (22)—(25)]. The top panel of Fig. 13 shows the
equilibrium value of Q of the subdominant component at
different A@,. Clearly, there are three possible equilibria
for the subdominant component if the FWHM of the
dominant component is between A0, and Af, p.

If a subsystem exchanges both energy and angular
momentum with a heat bath, it will search for the global
minimum value of the Gibbs-like free energy [14,19],

G=E—-wL-TS, (39)
where @ is defined by y = fw. Here the energy E and

angular momentum L denotes that of the subdominant
component. The entropy S is given by

13Qd for these parameters [Eq. (33)] stays close to 2/3,
i.e. 0.66.
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FIG. 13. The order parameter Q of the inner low-mass
component (top) and the Gibbs free energy (bottom) as a function
of the FWHM thickness of the outer massive component
Af, in degrees assuming c¢; =35 and (m/my,N/Ny,a/a,) =
(0.1,0.01,0.006). The thickness of the inner component changes
discontinuously when the FWHM of the outer component is
2.37° which corresponds to Q, = 0.664 and k,; = 404. A phase
transition takes place from point A to point D, which have the
same Gibbs free energy.

S =—kg /f(n) In f(n)dQ. (40)

The bottom panel in Fig. 13 shows the free energy at
different A9,. While changing the order parameter of the
dominant component the free-energy changes in a non-
monotonic way, the free energy along the intervals A-B,
B-C and C-D is higher than along the equilibria with the
same A@, outside of states A and D. Consequently, when
the dominant component undergoes an increase in A@,; near
point A in Fig. 13, instead of moving along the A-B-C-D
smooth curve, the system jumps from point A to point D
which are at the same temperature and free energy. The first
derivative of the free energy with temperature is discon-
tinuous at point A, implying that at first order the phase
transition takes place here. Both the Q curve and G curve
have similar features as the canonical ensemble of a one-
component system (Ref. [19]).

For a first-order phase transition to occur, the equilibria
in the Q-T plane must be multivalued in some temperature
range. This can be ensured if 7 has two extrema with
respect to Q. Since T = T(x, Q) for fixed {J,J,,J',N}
[Egs. (17) and (20)], Q, is approximately constant
[Eq. (33)] while changing x,; across the phase transition,
and Q = Q(x.¢) [Eq. (25)],

T
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_ar
%0, ok

ok

— 41
QdeaQ ( )

’
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and @ is a monotonic function of « at fixed ¢, we identify
the extrema with o7/ 0K|Q =0 using Eq. (20). We fix
cy; =15, N/N; =0.01 and vary the opening angle of the
dominant component from 1.3° to 4.7° as described earlier.
We arbitrarily restrict the range of semimajor axis to
ajay > 1073, where the (HBp) conditions are very well-
satisfied (Fig. 1)."* We find that a phase transition takes
place only if a/a,; < 1.

The top panel of Fig. 14 shows the phase diagram with
respect to @ and the FWHM angular thickness of the dominant
component, A8, [Eq. (34)], for 5 fixed values of mass ratios
fromm/m,; = 0.2to m/m, = 0.05 separated uniformly on a
log scale. The bodies of the subdominant component con-
dense into a disk phase when A8, or a are smaller than the
phase curves in Fig. 14 and become spherical above the
curves for each fixed mass ratio. When the system crosses
the phase curves, it undergoes a first-order phase transition
with a discontinuous jump in the order parameter Q. The
critical points in the figure are labeled with star symbols at
which the system undergoes a second-order phase tran-
sition, with a continuous change in the order parameter Q
but a discontinuity in 0Q/dT |, and in the second derivative
of the free energy 0>°G/dT?|.. At larger @ than the critical
points of the phase curves, there is no phase transition but a
smooth crossover to a disklike state as seen in Sec. III A.
The critical points for the green, blue and purple curves fall
outside of the studied range A@, € [1.3°,4.7°]and @ > 1073
and do not appear in Fig. 14 for this reason. We leave a
detailed exploration of the parameter space allowing phase
transitions to a followup study.

The bottom panel of Fig. 14 shows the order parameter Q
(see color bar) as a function of (A6, @) for a fixed mass
ratio of m/m,; = 0.1. Clearly the order parameter exhibits a
discontinuity highlighted by a thick red curve at the same
place as in the phase diagram of the top panel. The order
parameter Q changes smoothly in regions outside of this
line, it is in the ordered phase (Q = 0.3) and in the
disordered phase (Q < 0.075) below and above the red
line, respectively. When the system crosses the red curve, Q
decreases discontinuously between the ordered and disor-
dered phases. This demonstrates a first-order phase

"“The blue boundary curves in Fig. 1 for (k, c;) = (5.22) lie
close to the boundary curves for the systems considered here.
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FIG. 14. Top panel: the phase diagram of the inner component
for different a/ay, m/my, and outer component’s FWHM 6,
[Eq. 34)] and fixed ¢, =5 and N/N, =0.01. A first-order
phase transition takes place for different stellar masses selected
uniformly on a log scale (see color bar). The star symbols mark
the critical points where a second-order phase transition takes
place. Bottom panel: The order parameter for m/m,; = 0.1. The
color contours show the order parameter Q of the subdominant
component for different a/a, or 8, The thick red curve high-
lights the discontinuity in Q, which represents the same phase
boundary curve as in the top panel for m/m, = 0.1 (i.e. the
middle green curve).

transition. Clearly, the phase transition takes place at a
larger thickness hence larger temperature at smaller a/a, or
larger m/my. This is because J increases with decreasing a
or increasing m.

We find that the phase transition occurs at similar values
of the dimensionless temperature

kT 3aQ,(k4, cq)
T=————=—"m=F
JN 2 Nﬁ”lde

a 3 3Cd tanh Cq— 3
Nk, < 2Ky 4x% > +O()
AG%a (cq—3)A63
~ L 1 d) +O(A69), 42
(In2)Nm? ( (21n2) +0(ad) (42)

m/myg=0.1,alag=0.01

2.6 0.64
0.56

0.48

N

0.40

0.320

0.24

FWHM thickness [°]
5

0.16
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2 .”ll 1
6x1073 1072 2x1072

FIG. 15. The phase diagram similar to the bottom panel of
Fig. 14, but with fixed a/a, = 0.01, ¢, =5 and m/m,; = 0.1,
and varying N/N, hence M/M .

with 7 = 7p; €[0.148,0.155] universally along all phase-
transition curves with different /m in the top panel of
Fig. 14. In the second and third lines we used Egs. (33)
and (34), respectively. Thus, at the phase transition

), g

The first term dominates as A2 approaches zero, explain-
ing the phase curves in Figs. 14 and 15. The distribution
function collapses to a disk as a decreases below this
critical value or if N, m, or M increase above the
corresponding critical value or if ¢, is decreased below
a critical value.

Indeed, Fig. 15 shows the phase diagram at a/a,; = 0.01,
¢y =5 and m/my = 0.1 while N/N, is changed from
0.005 to 0.02 for fixed values of the AG; FWHM of the
dominant component. In this case 7pr € [0.1496, 0.1505].
Note however that we restricted attention to the region
where a is in the regime where the self-energy of the outer
massive perturber dominates over the interaction energy
between the components. We leave a detailed exploration
of the full parameter space allowing a phase transition to a
future study.

a 2 ﬁ’lZTPTKd _y <ln 2
= =R TptM" | — 5 —
Nlpr  3Qu(kgca) T \ad?

B. Phase transition in the microcanonical ensemble

In short-range interacting additive systems, the canonical
and microcanonical ensembles are asymptotically equiv-
alent for large N implying that phase transitions are
possible in both ensembles. A first-order phase transition
exhibits phase separation, i.e. a mixture of ordered and
disordered subsystems whose fraction depends on the
energy of the system between that of the ordered and
disordered states. However, in many nonadditive systems
phase separation is prohibited by the large interaction
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FIG. 16. m,/m; =0.1, N,/N, = 0.01, a,/a;, = 0.006 and L/N,Il, = 760.11. The top-left panel shows the value of Q, and Q, at
different temperatures in units of J, N, of the less massive component, near the phase-transition region. The top-right panel is the caloric
curve around the region of phase transition which shows the value of #in units of (J,N,)~! at different values of energy in units of J, N %
The bottom panel shows a schematic diagram of the # — E graph not drawn to scale and skewed (the A-B branch is lowered and the C-D
branch is raised) for clarity. Phase transition occurs when areas labeled 1 and 2 are equal.

energy between subsystems and phase transitions do not
exist in the microcanonical ensemble but they do in the
canonical ensemble, which are manifestly different for
long-range interacting systems. Indeed, this was con-
firmed previously for a one-component VRR systems
[14,19]. In a two-component VRR system, the two
components can be well-separated radially such that the
intercomponent coupling J' becomes arbitrarily small,
indicating that a phase transition may be possible even
in the microcanonical ensemble. We solve the two-
component isolated system with a fixed total angular
momentum and examine the order parameters Q; and Q,
at different values of the total energy. Hence, we examine
the components using the microcanonical ensemble as
opposed to the canonical ensemble treatment in the heat
bath approximation in Sec. IVA.

As a proof-of-concept we demonstrate the existence
of a phase transition for an isolated two-component system
with (mz/ml,Nz/Nl,az/al) = (01,001,0006) and
L/N,l, =760.11. This set of parameters produces similar
initial conditions as the phase transition example for the
canonical ensemble in Fig. 13. The top left panel of Fig. 16
shows the value of Q; and Q, at different temperatures.
Clearly, the Q, curve has a similar shape and scale as the

top panel of Fig. 13 in Sec. IV, justifying the validity of the
heat bath approximation there.

In the microcanonical esemble, the relevant thermody-
namic potential is the total entropy. Phase transition occurs
when two distinct states have the same energy and entropy.
This is most easily seen from the f — E caloric curve in the
top right panel of Fig. 16 since f = dS/dE. Using the
Maxwell construction in the microcanonical ensemble
described in Refs. [12,44], the area bounded by A, B,
and the vertical dashed line connecting A and D is equal to
the area bounded by C, D, and the vertical dashed line.
Hence, the entropy of point A is equal to that at point D.
The bottom panel of Fig. 16 gives a schematic plot of the
p — E curve not drawn to scale. Phase transition occurs
when area 1 equals area 2 as labeled. The system undergoes
a phase transition from A to D without following the
A-B-C-D path, which corresponds to a discontinuity in the
order parameter Q, of the less massive component. There is
a temperature jump from A to D, as opposed to an energy
jump from A to D in the heat bath approximation
calculation in Fig. 13. This is possible due to the ensemble
inequivalence for VRR. However, the phase transition takes
place at a similar dimensionless temperature k7/J,N,
(from 0.1466 at A to 0.1460 at D) as the canonical
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FIG. 17. The total entropy against the normalized total energy

[as defined by Eq. (37)] of the two-component system for
(my/my,Ny/Ny,ay/a;) =(02,1,1) and Ly, =0.5 (top
panel) or L, = 0.78 (bottom panel). The gradient of the curve
gives the inverse temperature of the system. The equilibria shown
with the blue curves have positive temperatures, while the red
curve corresponds to negative temperature equilibria. The purple
dotted line represents the unstable equilibria (cf. O, — Q3 in
Ref. [19] for the one-component case). These states do not exist
for Lom > 1/4/3 as in the one-component case [19]. The black
stars mark the maximum energy state.

ensemble case in Fig. 13 (kT/JN = 0.1467 at phase
transition). The entropy-energy curve has a similar shape
to the self-gravitating fermions in Fig. 9 of Ref. [45].

V. NEGATIVE TEMPERATURE EQUILIBRIA

Negative temperature equilibria are possible if a stable
equilibrium state decreases its entropy with increasing
energy. Such equilibria are found in other long-range
systems such as the 2-dimensional vortices which have
deep analogy with self-gravitating systems in their stat-
istical mechanics [46]. Reference [19] showed that for a
one-component VRR system, negative temperature equi-
libria are always stable and a larger total angular momen-
tum allows for a larger range of states with negative
temperatures. The angular momentum distribution is highly

disordered for these states. If O > 0 then in this case k < 0
and In f(s) is a concave function of s, which may have a
maximum at s < 1, as opposed to positive temperature
equilibria for which In f(s) is convex in s and has a
maximum always at s = 1.

Here we show that two-component VRR systems also
exhibit negative temperature equilibria. The top panel of
Fig. 17 shows the entropy-energy plot for L, = 0.5 and
the bottom panel for L, = 0.78. The other parameters
have values of m,/m; = 0.2, N,/N, =1, a,/a; = 1. The
blue curve has a positive gradient hence corresponds to
the positive temperature equilibria. The equilibria with the
purple dashed curve also have positive temperatures but
with a smaller entropy at the same energy than the states
shown with a red curve, purple states are unstable. The red
curve has dS/dE < 0, these are the negative temperature
equilibria. The particular equilibria presented in this paper
have a positive Q; and either positive or negative Q,.
The negative temperature equilibria have x;, < 0. The
L,orm = 0.78 higher angular-momentum case in the bot-
tom panel leads to a larger range of energy with negative
temperatures (red curve), i.e. for E, ., € [-0.30,-0.17]
[as defined by Eq. (37)]. The lower total angular momen-
tum case (L,om = 0.5) has negative temperature equilibria
at E om € [-0.034,0].

The maximum energy state is marked with a black star
in Fig. 17. For the low angular-momentum case with

Lo < 1/4/3, the system has attains its maximum energy
at Epom = 0 with Q7 +mQ, = 0 (see detailed explana-
tions in Appendix B). The maximum energy state also
corresponds to the zero temperature state approaching from
T < 0[19]. This is possible as Q; + mQ, = 0 ensures that
K » remains finite at infinite 3, see Eqs. (A1) and (A2). At
this point the red curve reaches infinite gradient, k7 =
1/ =0~ and the system reaches negative zero temper-
ature.”® For the high angular momentum case with
Lo > 1/4/3, it is not possible to have Q; + mQ, =0
due to Eq. (B3). The maximum energy state has £ < 0 as
given by Eq. (B9), consistent with the numerical solution
shown in Fig. 17. In this case the black star indicating the
maximum energy state in the bottom panel of Fig. 17 has a
finite nonzero negative temperature, less negative temper-
ature equilibria (closer to zero) do not exist.

VI. CONCLUSION

We examined the statistical mechanics of VRR, the
dominant gravitational mechanism that determines the
direction of angular momentum vectors of objects orbiting

“Note that similar to the one-component system there are
possibly three zero temperature states for Lo, < 1/v/3. One for
the positive temperature stable equilibria, one for the positive
temperature unstable states and one for negative temperature
equilibria. The first two can be found by extending the blue and
purple curves to the minimum energy configuration dS/dE = co.
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in a spherical background potential. This is a long-range
interacting system where the subsystems’ energies are not
additive due to the significant interaction energy between
the subsystems. We extended the mean-field theory of a
one-component system in Ref. [19] to an isolated two-
component system of bodies orbiting a supermassive black
hole. We used the principle of maximizing Boltzmann
entropy at fixed total energy and total angular momentum.
The system admits an implicit analytical solution using the
one-component partition function in case where one of the
two components dominates the energy and angular momen-
tum budget and serves as an effective heat bath for the
subdominant component. However we have shown that the
canonical ensemble of the subdominant component that
arises due to the energy exchange with the heat bath is
different from the canonical ensemble of an additive one-
component system due to the interaction energy with the
heat bath.

We found that the distribution exhibits the so-called
vertical mass segregation effect (i.e. in the direction
perpendicular to a disk, as opposed to the more commonly
studied radial mass segregation) in both the heat bath
approximation case and the general two-component cal-
culation unless the component comprised of the heavy
objects is spherically distributed and dominates the total
mass of the cluster, consistently with previous numerical
studies of multicomponent system [6,8,9,31]. We have
shown that for comparable semimajor axis the interaction
among the subdominant component may be negligible if
their total mass is much smaller than that of the dominant
component. These subsystems relax independently, and the
results of these two-component models may be superposed
to find the equilibria of multicomponent systems.

We explored the parameter space of energy and angular
momentum and found evidence of vertical mass segrega-
tion in all regions of the parameter space. When one
component strongly drives the evolution of the subdomi-
nant components, the transition from a spherical-disordered
state to a flattened-ordered state is continuous as a function
of stellar mass, semimajor axis, eccentricity, and net
angular momentum. We determined the mass beyond
which the objects settle into a disk [Eq. (36)].
Asymptotically for large semimajor axis, disk formation
depends only on the relative angular momentum of the two
components and the angular momentum of the dominant
component but it is otherwise independent of the thickness
of the spatial distribution of the dominant component.
In the case of very nearly isotropic initial conditions, this
critical mass may be very large. This helps to explain the
lack of vertical mass segregation signatures in spherically
dominated systems found in recent direct N-body simu-
lations (Ref. [31]) while Ref. [9] found vertical mass
segregation for a wider range of initial conditions. We
have shown that the distribution may become flattened even
for highly spherically dominanted systems, albeit only for

very large individual object masses or for much larger/
smaller semimajor axes relative to that of the dominant
component (Figs. 7 and 14). If the mass distribution does
not extend to such high masses or the radial distribution
does not extend to sufficiently low or high orbital radii, the
system may not exhibit the disk phase within the spheri-
cal phase.

The analytical heat bath models give insight into the
response of the stellar system to a massive perturber such as
a gaseous circumnuclear disk or a population of IMBHs
which may represent the heat bath. The mass and semi-
major axis dependence of the stellar angular momentum
vector distribution can help to determine the features
of these massive perturbers from the observations of the
stellar orbits.

Another interesting aspect of this work is the study of
phase transitions of isolated long-range interacting systems
or systems influenced by an outer massive perturber.
During a phase transition, the angular momentum vector
distribution undergoes a discontinuous change when the
system is subject to a small change in its system param-
eters, leading to a change in the temperature or total energy.
We find that a phase transition is not possible if a dominant
stellar component drives the evolution of a subdominant
component in the test particle (no self-gravity) approxi-
mation to VRR. In this case the subdominant component
responds continuously to changes in the properties of the
dominant component. However an abrupt first-order phase
transition is observed when the self-gravity of the sub-
dominant component is non-negligible, i.e., when it is
perturbed by a distant outer massive perturber (below red
line in Fig. 1). In this case, changes in the thickness of the
dominant component or the relative semimajor axis, mass,
and number of objects induce a discontinuous change in the
statistical equilibrium distribution of angular momentum
vectors (Figs. 13—16) similar to the nematic-isotropic phase
transition of liquid crystals.

We also examined the microcanonical ensemble for the
general two-component calculation. While Refs. [19]
and [8] did not observe phase transitions in the micro-
canonical ensemble for the studied one-component and
multicomponent systems, we find evidence for the pos-
sibility of phase transitions when the two components have
a very different total mass (i.e. M ~ 1073) and there is a
large radial gap between the inner and outer stellar
components. The distribution of the less massive compo-
nent around the phase transition is similar to the result
evaluated with the heat bath approximation, but the exact
details of the transition such as the change in energy are
slightly different due to ensemble inequivalence.

We have also shown that two-component systems
exhibit negative absolute temperature equilibria as found
previously for one-component [19] systems and multi-
component simulations [8] at highly isotropic energies.
These negative temperature equilibria are disordered and
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spherical, similar to the high positive temperature equilib-
ria. However, at negative temperature equilibria, the system
has population inversion; the more energetic microstates
are relatively more populated and the angular momentum
distribution function’s logarithm is concave [19].

Having presented cases of astrophysical systems with
vertical mass segregation and phase transition for circular
orbits, we plan to extend the model to less idealized
assumptions in the future. Importantly we resticted attention
to axisymmetric configurations, which are incompatible
with bending waves that are expected to be prominent in the
thin disk limit [15,30]. Further, we assumed bodies on
circular orbits around the central point mass. Eccentric orbits
satisfy the same self-consistency equations in equilibrium as
in Egs. (6) and (7) but the coupling constants J, J;, J' have
algebraically slightly more complicated forms that depend
on both the semimajor axes and eccentricities, and whether
the orbits are radially overlapping or nonoverlapping [24].
The VRR equilibria and possibility of a phase transition
can be straightforwardly obtained for eccentric orbits by
generalizing the circular case. Indeed the statistical equi-
libria depend only on the underlying coupling constants
{J,J4,J'} and angular momenta {l,/;}, in particular
{J/J 4, I )T 4, 1/1;}. We will also explore the possibility
of phase coexistence or phase separation in two-component
VRR systems similar to ice and water in the orbits of stars
and black holes in the Galactic Center.
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APPENDIX A: ANALYTICAL SOLUTION OF THE
GENERAL TWO-COMPONENT SYSTEM

1. The case of a=1

For a = 1, the parameters defining the distributions of
the two components [Eqgs. (23) and (31)] simplify to

3 _
K| = 5/3]1N1<Q1 +MQ,), cp=hLy (Al)

Ky :ﬁ1Kl’ (&) :ﬁ/lclﬁ (Az)
where m = mz/ml and M = MZ/MI = szz/(Nlml).
The one-particle generating functions of the two compo-
nents are defined as in Eq. (19). Equations (6)—(8) may be
written as

d0lnZy(ky, ¢
Q1EQ(K17C1):%I) , (A3)
K| Cy
0lnZy(k,, ¢
0, =0(ky,¢5) = % ) (A4)
K2 [
L _aan()(Kl,Cl)+MaanO(K2’CZ> (AS)
Nlll - acl dcz Ky =K

The derivatives appearing on the right-hand side simplify
analytically using Egs. (24) and (25). From Eq. (A1)

kT 3 _
JlNl = 2—,(,1 [Q(Kh Cl) + MQ(KZv 62)]'

(A6)

The entropy is given by

S — LCl -
— == M ———+InZ NInZ,. A7
kN, k1 (Q) +MQ,) NI, +InZ, +NInZ,. (A7)

We select a value of x; and use Eq. (AS5) to numerically
solve for ¢; for given L total angular momentum, given
Eq. (A2) which specifies «, and ¢, for any (x;, ¢;). Here
L = L(ky, k2, ¢y, ¢y) is a strictly monotonically increasing
function of ¢; for any given «; if setting x, = mk; and
cy = ch. Thus, for fixed L, we have the functions
{ky(k1), c1(k1), c2(ky)} at our disposal which we can
tabulate by letting x; span all possible values between
+o0. The corresponding values of Q¢, Q,, T, S, and E then
follow immediately by substituting into Eqgs. (A3), (A4),
(A6), (A7), and (9). Thus, we obtain a parametric solution
for the equilibria in the planes of (7, Q,), (T, Q,), and
(E, S) in this way parametrized by ;.

2. The case of arbitrary a

The nonlinear mean-field selfconsistency equations
[Egs. (23) and (31)] may only be partially decoupled in
the most general two-component case with different semi-
major axes, where

K1 = P01 +I'NQD,), cp=ly (A8)

Ky =pUINQ,+7'0), cy=lc;,  (A9)
Lorm =L'1++NZIL2 (A10)

E. = _ZQ% +JN?2Q3 + ZJ’NQlQQ’ (All)

1+ JN?+2J'N
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WhereB:%ﬁlel’j/:J,/Jl’j =J/J1, Q1 = Q(ky, ¢1),
Q2 = Q(Kz, Cz), l_‘l = E(Kl, Cl), Zz = E<K2, C2), where the
dimensionless functions Q(k,c) and L(k,c) are given
explicitly by Egs. (25) and (24). Given that these functions
are nonlinear, the system of equations may have several
solutions, and it is useful to decouple the equations in terms
of k1, K, ¢y, and ¢, analytically as follows:
(1) Start with some given f. Solve Eq. (A8) for Q,,
express it as a linear combination of x; and Q; for

any given f3,
_ (ki
Q27.7/N <B Ql)

(2) Substitute the result Q,(x, Q;,f) in Eq. (A9) to
obtain an expression for k, as a linear combination
of k; and Q) = Q(ky, ¢y),

(A12)

e
Ky =—7K
J

=PI = QK1 cr).  (AL3)

Here we have introduced the dimensionless param-
eter j=J'//J;J,=1J'/J'?=min(a*3,a>?), which
satisfies 0 < j < 1. Furthermore, ¢, = lc, and
Ky (K, ¢y, ) may be substituted back into Eq. (A8)
to obtain an expression between x; and c¢; com-
pletely independent of the other component,

1/2 -
_]Jl/ZNQ<—K1 ﬁjl/z(j_l —j)Q(Kl,Cl),lC1>
J

+0(ky.cq). (A14)

<
p

(3) For each value of 5, we create a table of the whole
range of the (ki,c;) values, and compute the
convergence of Egs. (A10) and (A14),

G (x,cy)
=T _I_‘(Kl’cl) Nil—'( 2 (ky,¢0,p ), 1)
o 1+ N1 ’
(A15)
Gy(ky, ¢1)
T
:%_Q(Kl,cl)—jJI/ZNQ<TK1
— BIV2(j! —J')Q(Kucl)jCl)- (A16)

We plot the contours of G; and G, with respect
to (k;,c;) and find the intersection points of
G (xy,c1) = Gy(ky,¢;) = 0. We find one or three

intersection points depending on the value of f,
hence solutions of (ky, c;).

(4) We substitute the solution of (x|, ¢;) into Eq. (A13)
to obtain x, and ¢, = Ic;. We then compute the
value of O, O, and the total energy using Eq. (A11).
By calculating the solutions of (ky,x,, ¢y, ¢,) over
the allowed domain of —co < f# < co, we obtain the
equilibrium solutions for the complete range of
energy values.

The equilibria are globally stable if the entropy is

maximized at given (Ejoms Lyom)s Where

S

= —0iky

kN1 - NQZKZ - (1 + NZ)Lnormcl

+1nZO(K1,C1)+N1nZO(K2,C2). (A17)

3. Numerical method

When the semimajor axes of the two components are
different, Egs. (6)—(8) can also be solved numerically using
Newton’s method. This is done by looking for the zeros of

the three functions F;(X) of the unknowns X = (Q, 0,,7)
iteratively for a given f:
fl ezﬂ (JIN1Q1+J'N,Q,)s +hys Jg
=0~ f—l1 (J NQ+I'N20o)P+hrs gg (A18)
fl evﬁ (JaN202+I'N1 01)s> +1ays ]g
=0 - (A19)

fll e (JzN2Q2+J/ 101)s? +hbrs g ’

L fl e%ﬂ(l N1Q1+J/N2Q7)Sz+l1ysds
N[ e

fl s PN Q2+'N1Q1)S* +1rs g

F
3 (JIN\ Q1+ N, 00)s* +Li7s g

- lN f_ll ez/)’ (JaN,Qy+J'N, 0))s? +127vds (AZO)
The p + 1 iteration value of X; is given by
Xilp+1] = X,[p] = Y (M), F;(X[p]).  (A21)

where M;; = 0F;(X)/0X; evaluated at X[p] and M™!
denotes the inverse matrix. The iteration is stopped when
F; = 0 within a tolerance of 10~°. There may be more than
one solution for some values of # as discussed in the main
text which leads to the possibility of a phase transition. In
the multivalued 7" region for given x;, we initialize the
iteration with three different X; to obtain the three different
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solutions. To find the solution at a given energy, we scan
through a range of 7" values, obtain the solutions of X; and
select the one with the correct energy. Alternatively we may
increase the parameters X = (Qy, Q,, 3, 7) and add a fourth
equation F4(X) of the energy constraint in the Newton’s
method.

APPENDIX B: MAXIMUM ENERGY OF
TWO-COMPONENT SYSTEM

In the axisymmetric two-component system studied
in this paper, the total energy is given by Eq. (9). For
radially nonoverlapping circular components J' < /J,J5,
and the local extrema of E with respect to Q; and Q, can be
found by setting 0E/0Q; = 0E/0Q, = 0, which gives
Q1 = 0, = 0. The second derivative is negative definite,
showing that this is a maximum point of E.

For radially overlapping components on circular orbits,
a=1and J? = J,J,, implying that

3 _
E:—Zle%(Q1+MQ2)2, (B1)
where the maximum energy £ = 0 is attained if
0, = —MQZ- (BZ)

For nonzero Q ,, this requires exactly one of Q; , to take
negative values, while the other to take a positive value.
Generally the bounds on Q;, are limited by the angular
momentum of each component [19]:

2
—~+ ()1, <011 < 3 (B3)
where (s),, = L,/Nj,l;,. The total angular momentum

constraint can be written in terms of the L, [defined in
Eq. (38)] as

<S>1 = Lnorm(1 + M) - M<S>2‘ <B4)

For L, < 1/4/3, it is possible to arrange the angular
momenta such that both (s), , < 1/1/3. Hence both Q; and
Q, can take negative values and the system can reach
E = 0 via satisfying Eq. (B2).

Conversely, if Lyom > 1 /\/§, we cannot have both
(§)12 < 1/+/3. But to reach E =0 Eqgs. (B2) and (B3)
require that one of the components must satisfy Q;, <0
and hence (s);, < 1/+/3. Without loss of generality

assume that Q; >0 and Q, <0, so that (s), > 1//3
and

(s), < % (BS)
For Eq. (B2) to hold, we require
0= 0, +MQ, 2min(Q,) + Mmin(Q,) (B6)
where |
min(Q12) = 5+ ()1 (B7)

Substituting Egs. (B4) and (B7), the inequality (B6) may be
solved in terms of the variables (Lo, M) subject to the
constraint of the inequality (B5). The solution is Lo, <
1\/§ irrespective of the ratio of M. This contradicts the fact
that L, > 1/v/3. Hence L,om < 1/4/3 is a necessary
and sufficient condition for the maximum energy to
reach £ = 0.

For L,om > 1/4/3, Eq. (B2) cannot hold since both Q,
and (@, can only take positive values. Substituting
Egs. (B7) and (B4) into Eq. (B1), the energy may be
expressed as a function of (M, Ly, (s),). Taking the
derivative of E with respect to (s), gives the maximum
energy at a fixed set of (M, Lyom):

X (=1 4 3L2,m(1 + M)

- 6LnormM<s>2 + 3M<S>%), (Bg)
where the second bracket vanishes when (s), = (s), =

Lyom and the last bracket has no zeros at L, > 1/v/3.
The maximum energy at (s); = (s), = Lyom 1S given by

1
Enorm.max = _Z (1 - 3L%0rm)2' (B9)

At the maximum energy, the order parameters are given by

1

Ql = Q2 = __+L%orm'

: (B10)

APPENDIX C: PLOTS OF MASS SEGREGATION
WITHOUT A DOMINANT COMPONENT

103004-20



ANISOTROPIC MASS SEGREGATION: TWO-COMPONENT ... PHYS. REV. D 108, 103004 (2023)

L=0.15,E= 0.66 L=0.82,E= 0.81

0.6

0.5r

0.4r

0.3r

0.2r

o
N
S

01} 1t 1
— O Q1
0.0t S . A

L=0.16, E= —0.09 L=0.38, E= —0.09

0.25r
0.20
0.15r

0.10

0.05 | — 0, 1t — O 1
— — &

\

—
©
of
IN]
o
—
—

0.00 .
0.02 0.1
mo/my mop/m

FIG. 18. The order parameter of both components as a function of mass for a,/a; = N,/N| = 1. Different panels have different initial
conditions parametrized by the conserved quantities (L om, Enorm) s labeled [Egs. (37) and (38)].
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FIG. 19. Similar to Fig. 18 but showing the net angular momentum of each component relative to the total for a system with
(12/01 = N2/N1 =1.
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FIG. 20. Similar to Figs. 6 and 9, showing the distribution function of the ﬁz component of the angular momentum vector for the less
heavy component for fixed a,/a; = N,/N, = | and different m,/m; shown in the color bar. The distribution function is plotted for ten
selected mass ratios separated by log scale. The dashed lines represent the distribution of the more massive component 1 using the same
color code. The top-left plot has L = 0.15,E = —0.66, the bottom-left plot has L = 0.82, E = —0.81, the top right plot has
L =0.16, E = —0.09, the bottom right plot has L = 0.38, E = —0.09. Note that L and E here stand for the normalized total angular
momentum and energy as defined in Egs. (37) and (38).
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FIG.21. The cumulative distribution levels of L, are plotted for different mass ratios for the less heavy stellar component C,. The plots
show the value of ﬁz at which the cumulative distribution function reaches 25%, 50%, 75%. Different panels show different normalized
total angular momentum and total VRR energy as defined in Eqgs. (37) and (38): (Lporm» Enorm) = (0.15,—0.66) top left, (0.82, —0.81
bottom left, (0.16, —0.09) top right, (0.38,—0.09) bottom right.
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FIG. 23. Similar to Fig. 20 showing the distribution function of
the normalised orbital angular momentum vector direction cos €
of both components along the axis of symmetry but for nearly
isotropic initial conditions with (Eyems Lporm) = (5 x 1074, 0.05)
and M,/M, = 1073 and a,/a, = 1. The solid curves correspond
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FIG. 22. Similar to Fig. 18 but showing the order parameter Q,
and Q, at different mass ratios m,/m, for nearly isotropic initial

conditions with (Epom, Lnom) & (5 x 107#,0.05) and M,/M | =
1073 and (12/@1 =1.

to the lighter total-mass component C, while the dashed curves
correspond to the heavier component C;.
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FIG. 24. Similar to Fig. 21 showing the cumulative distribution levels of L, as a function of mass ratio m,/m; of
the subdominant component C, for the nearly isotropic initial conditions with (Egom, Lnom) = (5 x 107#,0.05),

MZ/MI = 10_3 and az/al =1.
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