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The precessional motion of binary black holes can be classified into one of three morphologies, based on
the evolution of the angle between the components of the spins in the orbital plane: Circulating, librating
around 0, and librating around π. These different morphologies can be related to the binary’s formation
channel and are imprinted in the binary’s gravitational wave signal. In this paper, we develop a Bayesian
model selection method to determine the preferred spin morphology of a detected binary black hole. The
method involves a fast calculation of the morphology which allows us to restrict to a specific morphology in
the Bayesian stochastic sampling. We investigate the prospects for distinguishing between the different
morphologies using gravitational waves in the Advanced LIGO/Advanced Virgo network with their plus-era
sensitivities. For this, we consider fiducial high- and low-mass binaries having different spin magnitudes and
signal-to-noise ratios (SNRs). We find that in the cases with high spin and high SNR, the true morphology is
strongly favored with log10 Bayes factors ≳4 compared to both alternative morphologies when the binary’s
parameters are not close to the boundary between morphologies. However, when the binary parameters are
close to the boundary between morphologies, only one alternative morphology is strongly disfavored. In the
low-spin, high-SNR cases, the true morphology is still favored with a log10 Bayes factor∼2 compared to one
alternative morphology, while in the low-SNR cases the log10 Bayes factors are at most ∼1 for many
binaries. We also consider the gravitational wave signal from GW200129_065458 that has some evidence
for precession (modulo data quality issues) and find that there is no preference for a specific morphology.
Our method for restricting the prior to a given morphology is publicly available through an easy-to-use
PYTHON package called bbh_spin_morphology_prior.

DOI: 10.1103/PhysRevD.108.103003

I. INTRODUCTION

The LIGO-Virgo observing runs during 2015-2020 have
discovered ∼100 binary coalescence events, mostly con-
sisting of binary black hole (BBH) mergers (see [1–3] for
the latest results). With these many detections, we are now
able to constrain present-day binary merger rates and their
evolution with redshift as well as the mass and spin
distribution of the components of stellar-mass BBHs in
the Universe [4]. These discoveries thus help us study the
different pathways for compact object binary formation and
associated physical processes. In the coming years, the

number of observed BBHs will rapidly increase with
inclusion of the KAGRA [5] and planned LIGO-India [6]
detectors in the network, as well as upgrades [7] to the
existing Advanced LIGO [8] and Advanced Virgo [9]
detectors.
Understanding astrophysical processes involved in BBH

formation has a particular importance in gravitational wave
(GW) astronomy. Many potential astrophysical processes
can lead to the formation of the observed stellar-mass
BBHs by ground-based GW detectors. These formation
scenarios broadly fall into two categories: the field channel
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in which BBHs are formed from isolated evolution of
massive stars in binaries and the dynamical channel in
which BBHs are created through dynamical encounters in
dense environments such as globular clusters or disks of
active galactic nuclei (for reviews, see [10,11]). Apart from
these astrophysical processes, primordial black holes
formed in the early Universe may also form binaries
dynamically and contribute to the observed population
(see, e.g., [12,13]). The formation mechanisms leave
intriguing features in the distribution of intrinsic parameters
of binaries.
Black hole spin orientations are interesting parameters

that strongly depend on the formation scenarios of BBHs.
Black holes in field binaries are expected to have spins
preferentially aligned with the orbital angular momentum,
whereas spins have no preferred orientation in binaries
formed through the dynamical channel [14,15]. In the post-
Newtonian (PN) picture, the spin-orbit misalignment indu-
ces relativistic precession of the spins and orbital angular
momentum about the binary’s total angular momentum as
the binary evolves (e.g., [16–19]). The precessional effects
are encoded into the emitted GW signal through character-
istic amplitude and phase modulations. These rich char-
acteristics in GW signals enable better measurement of
parameters of the source such as masses and spin
components in precessing systems [20–27]. However,
these characteristics make search and parameter estima-
tion on such signals challenging due to the large dimen-
sionality of the parameter space and correlations between
various parameters [28,29].
One of the exciting features of the spin-precession

dynamics is that precessing BBHs can reside in different
spin morphologies during their evolution. These spin
morphologies are generalizations of the spin-orbit reso-
nances first identified by Schnittman [19] and can be
elegantly described in the PN approximation using the
effective potential formalism given in [30,31]. This for-
malism is also used to study spin morphologies of
precessing binaries in the equal mass limit [32] and with
nonzero eccentricity [33]. In this formalism, the binary’s
spin dynamics can be classified into three spin morpho-
logies based on the evolution of the angle ΔΦ between the
projections of two black hole spin angular momenta onto
the orbital plane (see Fig. 1), commonly referred to as ϕ12

in GW data analysis (e.g., [1,22]). Over a precessional
period, ΔΦ can either circulate in the full range ½−π; π� or
librate around either 0 or π, never reaching the other. These
correspond to the C, L0, and Lπ morphologies, respec-
tively. The librating morphologies reduce to Schnittman’s
spin-orbit resonances [19] in the limit in which the
libration amplitude reduces to zero.
The spin morphology is a property of the conservative

dynamics and can change on the radiation reaction time-
scale. Binaries are in the C morphology at infinite separa-
tion, and can evolve to a librating morphology close to

merger. It is possible to have multiple morphology tran-
sitions, where the binary evolves back to the C morphology
after evolving into a librating morphology [31]. However, in
most cases, there is a single morphology transition. The
evolution of morphologies is much slower than the evolu-
tion of spin tilts which happens on the precessional time-
scale. In [31], it is shown that morphologies of a binary at a
small orbital separation can be related to the binary’s spin
tilt angles at asymptotically large separation. In particular,
one finds that populations of binaries that formed with
different spin tilts evolve into subpopulations with distinc-
tive ΔΦ distributions at the small orbital separations to
which ground-based GW detectors are sensitive [19,34–37].
Spin morphology quantifies the evolution of ΔΦ or pre-
cession dynamics in general in a precession cycle. Thus,
spin morphologies of BBHs in the band of ground-based
GW detectors are indicative of the spin configurations of
binaries at formation [31]. In particular, morphology mea-
surements using GWs enable us to constrain certain for-
mation channels or different evolutionary scenarios of
stellar progenitors of field BBHs in some cases, e.g., when
tidal alignment and natal kicks are significant [37,38]. See
also [39] for more recent work relating the morphologies in
the ground-based detector band with astrophysical proc-
esses in the binaries’ formation.
Recognizing the astrophysical importance of spin mor-

phologies, many studies have investigated issues of
detection and characterization of BBHs in resonant
configurations (e.g., [40]) or ΔΦ measurement. Initial
studies with PN waveforms found that ΔΦ is generally a
poorly constrained quantity in the band of ground-based
GW detectors [23], though it may be possible to constrain
it for highly spinning binaries with suitable inclination

FIG. 1. The angular momentum vectors of a precessing BBH in
a reference frame whose xy-plane is the orbital plane of the
binary, with the z-axis along the Newtonian orbital angular
momentum vector LN. The angles θ1 and θ2 are the tilt angles
of spins of two components of the binary. The orbital plane angles
of the two spins are denoted by ϕ1 and ϕ2, and ΔΦ ¼ ϕ2 − ϕ1 is
the difference between these in-plane angles.
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angles [41]. However, more recent studies show that one
may get reasonably good constraints on ΔΦ at a reference
frequency close to merger from loud signals [42] when
using full inspiral-merger-ringdown waveform models,
including the IMRPhenomXPHM [43] and NRSur7dq4
[44] models that we use here. Previously, [45] presented a
framework to compute time-domain PN inspiralling tem-
plates for BBHs in spin-orbit resonances and showed that
a BBH in a spin-orbit resonance can be distinguished from
other binaries. Reference [46] examined PN waveforms
from resonant binaries and assessed their distinguish-
ability, while Ref. [41] performed parameter estimation
with those waveforms, focusing on parameters which are
important for resonances, and inferred the probability for
the binary to be in a given morphology by counting the
number of posterior samples in each morphology. These
studies considered binaries with total mass less than 35M⊙
due to the use of a PN waveform model.
Recently, Varma et al. [47] presented constraints on the

distribution of in-plane spin angles and ΔΦ in the popu-
lation of high-mass GWTC-2 events using a hierarchical
Bayesian framework and found weak evidence for resonant
configurations in the BBH population. Their analysis
inferred these angles at a fixed dimensionless time soon
before merger, which they found to give better constraints
on the individual angles ϕ1;2 than inferring the angles at a
fixed dimensionful reference frequency, as is commonly
done in GW data analysis, though the constraints on ΔΦ
are not significantly improved. Specifically, they picked the
reference time of 100M before merger, where M is the
binary’s total mass. In [42], they also considered using a
dimensionless reference frequency (so scaling inversely
with the binary’s total mass) and found that this also gives
an improvement in the constraints similar to that obtained
with the dimensionless reference time. In this paper, we
consider a dimensionful reference frequency, as is standard,
and still find that it is possible to infer the morphology with
high confidence in certain cases. We leave considering a
dimensionless reference point for future work.
Additionally, Gangardt et al. [48] considered the con-

straints it is possible to place on the morphology of the
BBHs in GWTC-3 by counting the number of posterior
samples in each morphology, finding that there is no
significant preference for any morphology. In particular,
they find that the fractions of posterior samples in the
librating morphologies agree with those in the prior after
conditioning on the individual masses and effective spin
(while the morphology depends sensitively on additional
spin degrees of freedom, notably ΔΦ).
In this paper, we develop a Bayesian model selection

method to distinguish the three possible spin morphologies
in BBHs. We demonstrate that at the detector sensitivities
expected for the O5 observing run [7], the true morphology
of a BBH can be identified with very high confidence in
optimistic cases such as high spins and high signal-to-noise

ratios (SNRs). In our analysis, we consider comparable
mass BBHs with different spin magnitudes, spin-orbit
misalignments and SNRs and two total masses which are
consistent with the over-dense regions of chirp mass
distribution inferred from GWTC-3 [4]. We also apply
our method on the loud event GW200129_065458 which is
possibly a precessing system [1,49,50], finding that no spin
morphology is preferred. Our code to restrict the prior to
a specific morphology in Bayesian stochastic sampling
is publicly available as a PYTHON package bbh_spin_
morphology_prior [51].
The remainder of the paper is structured as follows. In

Sec. II, we discuss how to compute a given binary’s
morphology. In Sec. III, we give an overview of our
Bayesian inference method and the simulated mock GW
observations we consider to assess the performance of the
method. Section IV contains the results from our analysis on
simulated GW signals and GW200129_065458. Finally, we
conclude in Sec. V, highlighting the relevance of our
findings to GW astrophysics. Throughout the paper, we
work in geometric units ðG ¼ c ¼ 1Þ.

II. COMPUTATION OF PRECESSIONAL
MORPHOLOGIES

We consider a BBH system in the PN approximation, with
individual masses m1;2, dimensionless spin vectors χ1;2, and
Newtonian orbital angular momentum vector LN. For our
purposes, the tilt angles θ1;2 between LN and χ1;2 (or
equivalently the dimensionful spins S1;2) and the angle
between the in-plane spin components ΔΦ (all illustrated
in Fig. 1) will be themost important parameters. The effective
spin ξ ≔ ðm1χ1 þm2χ2Þ · L̂N=ðm1 þm2Þ, where the cir-
cumflex denotes a unit vector, will also be important for our
discussion. The effective spin is often denoted by χeff in the
literature but herewe follow the notation of Gerosa et al. [31].
As discussed in [31], there is a simple method for

computing the morphology of a BBH at a given reference
frequency using the 2PN orbit-averaged equations. Here
one is able to use the conservation of the effective spin ξ to
derive an effective potential for the evolution of the binary’s
total spin magnitude S ¼ kS1 þ S2k. One then obtains a
cubic equation in S2, whose two larger roots S2� give the
values of S2 at the turning points of the binary’s preces-
sional evolution. One can thus determine the binary’s
morphology by evaluating ΔΦ at each of S2�. For the
C (circulating) morphology one obtains ΔΦ ¼ 0 at one
turning point and ΔΦ ¼ π at the other,1 while for the L0
and Lπ morphology, one has the same value of ΔΦ at both

1One can further distinguish between the common case where
ΔΦ ¼ 0 and π correspond to S2þ and S2−, respectively, and the
uncommon case where these correspond instead to S2− and S2þ
(see [52], where these cases are denoted Cþ and C−, respec-
tively). However, we will not make this distinction in the current
study.
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turning points (0 and π, respectively). We now describe our
streamlined method for performing this calculation. This is
released in an implementation [51] that interfaces with the
Bilby inference code [53,54].
We want to obtain the two larger roots of the cubic

S6 þ BS4 þ CS2 þD ¼ 0, where the coefficients are given
in Eq. (16) of [31] and in a slightly different form in
Appendix B of [55]. Here we give them in the form we use
in the code:

B ¼ −2J2 þ 2ξLþ ð1þ q2ÞL2 − X
q

;

C ¼ ðJ2 − L2Þ2 − 2ξLðJ2 − L2Þ þ 4qξ2L2

ð1þ qÞ2

þ 2ðJ2X − L2YÞ
q

−
2ξLZ
1þ q

;

D ¼ L2Z2 − ðJ2 − L2Þ2X
q

þ 2ξLðJ2 − L2ÞZ
1þ q

; ð1Þ

where X ≔ ð1 − qÞðqS21 − S22Þ, Y ≔ ð1 − qÞðS21 − qS22Þ,
and Z ≔ ð1 − qÞðS21 − S22Þ. Here we are working in total
mass ¼ 1 units, S1;2 ¼ m2

1;2χ1;2 denote the magnitudes of
the black holes’ spin angular momenta, q ≔ m2=m1 ≤ 1 is
the mass ratio, J ¼ kLþ S1 þ S2k is the magnitude of the
binary’s total angular momentum, and L is its (PN) orbital
angular momentum, with magnitude L. We found that it is
most efficient to solve the cubic analytically, using trigo-
nometric functions, so there is no need for complex
arithmetic. Specifically, we find that

S2− ¼ −
B
3
−
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 3C

p
cos

�
αþ π

3

�
;

S2þ ¼ −
B
3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 3C

p
cos α; ð2Þ

where α ≔ arctan2ð3
ffiffiffiffiffiffi
3Δ̄

p
;−2B3 þ 9BC − 27DÞ=3 and

Δ̄ ≔ B2C2 − 4B3Dþ 18BCD − 4C3 − 27D2 is (up to a
constant factor) the discriminant of the equation.
We also simplify the expression for cosΔΦðS�Þ used to

obtain the morphology. Noting that all we need is the sign
of this quantity, we start from Eq. (20) in [31] and remove
the sin θA terms that have a single sign and multiply
through by the magnitudes of the spins to obtain

cosΔΦðS�Þ ∝ S2� − S21 − S22 þ
2q

ð1 − qÞ2
�
J2 − L2 − S2�

2L

−
qξ

1þ q

��
J2 − L2 − S2�

2L
−

ξ

1þ q

�
; ð3Þ

where the proportionality factor is positive. This expres-
sion is not well behaved for q ¼ 1, due to the 1=ð1 − qÞ2

term, but this is not a concern for the present application,
where one will never encounter exactly equal masses in
the stochastic sampling. Since we only need to know the
sign of cosΔΦðS�Þ, it is possible to use Descartes’ rule of
signs to determine the morphology without solving the
cubic and thus without any need for trigonometric func-
tions. However, we found that this was only a few percent
faster than the more straightforward computation given
above, so we kept the more straightforward version in our
implementation.
Since this is only a 2PN computation, we need to check

that it still gives reliable results for the fairly relativistic
binaries we are considering, with orbital velocities of ∼0.3
at the reference frequency of 20 Hz for the larger total mass
(75M⊙) we consider. To do this, we compare the results of
the morphology computation and the ΔΦ evolution given
by the 3.5PN point-particle, 3PN spin order orbit-averaged
evolution as implemented in the LALSUITE [56] SpinTaylor
evolution [57] as well as the NRSur7dq4 numerical rela-
tivity (NR) surrogate model [44] that does not use orbit-
averaging. We do not just compare with the NRSur7dq4
model, since this is not available much earlier in the
evolution than the reference frequency. The NRSur7dq4
spin dynamics are also given in terms of coordinate
quantities from the NR simulation. Thus, they are not in
the same coordinate system (and spin supplementary con-
dition) as the PN equations. However, we expect these
coordinate systems to agree well, given how the NR
coordinate system is chosen, and find that this is indeed
the case for the binaries we consider. In fact, [58] found
that the PN spin evolution agrees well with the output of
the NR simulations (computed using the same NR code
that provides the waveforms used for the surrogate model).
Moreover, the surrogate for the remnant properties (also
described in [44]) uses the SpinTaylor evolution to evolve
the spins when the starting frequency is below the
minimum available frequency in the surrogate model,
and then uses the spins output by SpinTaylor as direct
input to the surrogate evolution.
We find that one obtains good accuracy for the mor-

phology calculation (comparing to the SpinTaylor evolu-
tion) when using the 1.5PN expression for the orbital
angular momentum in the 2PN morphology expression
instead of the Newtonian (i.e., 0PN) expression for the
orbital angular momentum that gives a consistent PN result
(and is thus the one used in [31]; we have checked that our
calculation of the morphology agrees with that from the
PRECESSION code [59] when we use the Newtonian orbital
angular momentum). We considered the orbital angular
momentum expressions given up to 2.5PN in Eq. (4.7)
of [60]. Here we orbit average the spins, as discussed in,
e.g., Sec. II of [57] [which also gives the orbital angular
momentum expressions in Eq. (4)]. However, we find that
the corrections to the orbital angular momentum above
1.5PN have a small effect on the morphology. In fact, the
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1.5PN expression for the orbital angular momentum itself
only gives a small correction to the 1PN results in most
cases. We thus use the 1.5PN expressions for the orbital
angular momentum (the first order at which there are spin
contributions), since using higher-order expressions would
lead to a more complicated and expensive morphology
calculation. Note that the nPN spin order SpinTaylor
evolution uses the ðn − 1.5ÞPN order orbital angular
momentum, and there is no 0.5PN correction to the orbital
angular momentum, so the 2PN (3PN) evolution uses the
0PN (1.5PN) orbital angular momentum.
In Fig. 2, we illustrate the transition from the C to Lπ

morphology for a case that gives a notable difference with
the different PN orders. This is a specialized case, but in all
cases using the 0PN orbital angular momentum in the
morphology calculation gives an earlier transition to the

librating morphology than the higher-order terms do.2

However, in most cases there is no apparent transition back
to the circulating morphology, as we find when applying the
0PN orbital angular momentum morphology calculation to
the results from the 3PN evolution. The parameters used are
a mass ratio of 1=1.22, spin magnitudes of χ1 ¼ 0.708,
χ2 ¼ 0.843, and spin angles (in radians) of θ1 ¼ 2.49,
θ2 ¼ 1.41, and ΔΦ ¼ 2.65. Here the angles are defined
at an orbital velocity of 0.253, which corresponds to a
dominant mode GW frequency of 20 Hz for the binary’s
total mass of 52.2M⊙. We use the SpinTaylorT4 approxi-
mant for all the results shown and found that the other two
available approximants (SpinTaylorT1 and SpinTaylorT5)
gave indistinguishable results in the region plotted in Fig. 2.
We find that the PN and surrogate evolutions agree well

in all the cases we consider (parameters given in Table I),
which gives us confidence that the orbit averaging used in
the PN calculations is a good approximation for these
purposes even relatively close to merger. This should be
expected, since there are still tens of orbits in the final
precessional cycle (which is the one during which the
binary reaches a dominant GW frequency of 20 Hz in the
75M⊙ case).
The implementation of the morphology calculation for

Bilby [51] adds ∼2 μs per sample to the time it takes Bilby to
compute the prior on a 2.8 GHz Intel Xeon E5-2680
processor, which is also ∼2 μs per sample without the
morphology computation (so the total time is ∼4 μs per
sample with the morphology computation). Of course,
computing the prior restricted to a given morphology will
be more expensive, particularly in the librating cases, since
one has to reject many more samples. For instance, for the
prior on masses that we use in the 75M⊙ cases, it takes ∼30
times longer to sample a given number of prior samples
from the Lπ morphology than it does to obtain the same
number of prior samples with no restriction on the mor-
phology, while it just takes ∼10% longer to obtain the same
number of C morphology samples. These times (and the
time for the L0 morphology samples) are in line with the
fractions of samples in the different morphologies of 91%,
6%, and 3% that we find for the prior for the 75M⊙ cases.
We find that some of our stochastic sampling runs output

parameters sufficiently close to the boundaries between
morphologies (the spin-precession resonances) where
S2þ ¼ S2−, that very small differences in the parameters
(e.g., a fractional change of 10−14 in one of the masses) can
lead to a change in morphology. We noticed this because in
a few of these runs, computing the morphology of the

FIG. 2. The transition from the C to Lπ morphology for an
example binary (described in the text) versus the binary’s orbital
velocity v as given by the SpinTaylor evolution (and different PN
spin orders) and the NR surrogate evolution. The NR surrogate
evolution is only available starting at v ≃ 0.25, shortly before the
reference frequency (20 Hz, marked with a thin vertical line). The
upper panel shows the evolution of cosΔΦ for different spin
order settings in the SpinTaylor evolution [with nPN spin order
using the ðn − 1.5ÞPN orbital angular momentum], where the
legend gives the spin order. The lower panel shows the morphol-
ogy prediction at each point of the evolution obtained using the
spin angles from the 3PN spin order evolution. Here, we use
different PN orders when computing the orbital angular mo-
mentum in the morphology calculation, illustrating the significant
difference between the 0PN case (solid blue line) and the higher
PN orders (dashed orange and solid green lines). We also show
the morphology prediction with the 0PN orbital angular mo-
mentum applied to the spin angles from the 2PN spin order
evolution (dotted blue line in the lower panel) in order to illustrate
that it agrees with the 2PN spin order evolution (solid blue line in
the upper panel). We do not show the 2PN and 2.5PN orbital
angular momentum results since they are almost indistinguish-
able from the 1.5PN result.

2The fact that the 0PN orbital angular momentum gives an
earlier transition to the librating morphologies than the higher-
order expressions do is to be expected: The 1PN correction
dominates and it always increases the orbital angular momentum,
so one has to consider a larger orbital velocity to obtain the same
magnitude of orbital angular momentum with the 1PN expression
as with the 0PN expression.
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nested samples or posterior samples using the output from
Bilby gives a morphology other than the one selected in the
run, though this is only the case for at most ∼0.3% of the
total samples.

III. STATISTICAL METHODS AND TEST SETUP

In this section we first describe the method we use to
constrain the spin morphology of a given BBH and then
discuss the simulated GW observations we consider to
demonstrate the performance of this method.
To identify whether a given BBH signal strongly favors a

particular morphology, we perform a Bayesian model
selection analysis where we compare the statistical evi-
dence for pairs of morphologies. The Bayesian inference
framework is routinely employed to infer the properties of
detected binary systems (see, e.g., [1,29]) and to perform
model selection studies (see, e.g., [61–63]). In this frame-
work, the Bayesian evidence (Z) quantifies how much the
data d prefer a hypothesis (or a model)H, and is defined as

Z ¼ PðdjHÞ ¼
Z

Pðθ⃗jHÞPðdjθ⃗; HÞdθ⃗; ð4Þ

where the integrand is the product of the likelihood
Pðdjθ⃗; HÞ and the prior Pðθ⃗jHÞ. Here θ⃗ represents the
set of binary parameters such as masses and spins. Once we
choose the appropriate prior boundaries for each model
parameter, the integration is done over the entire range of

parameters. Here we compute the integral using nested
sampling [64], as implemented in DYNESTY [65,66]. If we
have two models H1 and H2, then the corresponding
evidences Z1 and Z2 can be used to compare the models
against data d. This comparison is performed using the
Bayes factor, defined as

BF12 ¼
Z1

Z2

: ð5Þ

A large positive (negative) value of log10 BF12 means that
model H1 (H2) is preferred over model H2 (H1). Here a
standard interpretation of the size of j log10 BF12j (slightly
modified from [67]) is that values in [0, 0.5) are barely
worth mentioning, while values in [0.5, 1.5), [1.5, 2), and
½2;∞Þ, provide positive, strong, and very strong evidence,
respectively, in favor of one model over the other. However,
to obtain a more quantitative interpretation for a given
problem, one can compute a frequentist background of
Bayes factors due to noise, as in, e.g., [68]. We leave such
investigations for future work. Hence, by computing the
Bayes factor for two spin morphology hypotheses, we can
estimate how strongly one morphology is preferred over
another for a given BBH. For example, BFL0C and BFLπC
quantify the preference for the L0 and Lπ morphology over
the C morphology, respectively, where ZC, ZL0, and ZLπ are
the evidences computed using Eq. (4) with different prior
distributions Pðθ⃗jHÞ. Specifically, for each of these, we

TABLE I. The spin angles (in radians) at the reference frequency of 20 Hz used for the different morphology cases we consider and the
luminosity distances that give a network SNR of 89 with IMRPhenomXPHM and the extrinsic parameters we use:
right ascension ¼ 0.5 rad, declination ¼ −0.5 rad, inclination angle ¼ π=3 rad, polarization angle ¼ 0 rad, and a GPS time of arrival
at the geocenter of 1180922494.5. The spin angles and distances are given for the two redshifted total masses we consider (20M⊙ and
75M⊙). To obtain the distances for the SNR 22 cases, multiply each distance by 89=22 ≃ 4. All binaries have the same mass ratio
of 1=1.2.

χ1 ¼ χ2 ¼ 0.25 χ1 ¼ χ2 ¼ 0.75 χ1 ¼ χ2 ¼ 0.95

Type θ1 θ2 ΔΦ dL [Mpc] θ1 θ2 ΔΦ dL [Mpc] θ1 θ2 ΔΦ dL [Mpc]

20M⊙

C central 1.6 1.6 3.0 256 1.2 2.2 3.0 252 1.3 2.5 3.0 250
C near L0 boundary 1.2 2.6 1.1 258 1.2 2.2 1.9 267 1.3 2.5 1.9 265
C near Lπ boundary 2.8 2.6 3.0 246 2.2 2.2 3.0 244 2.2 2.5 3.0 238
L0 central 1.4 2.9 0.3 255 0.8 2.3 0.6 273 0.8 2.3 0.7 275
L0 boundary 1.4 2.9 1.1 256 0.8 2.3 1.6 276 0.8 2.3 1.8 288
Lπ central 1.3 0.1 3.2 259 1.2 0.3 3.2 269 1.3 0.3 3.2 271
Lπ boundary 1.3 0.1 2.0 260 1.2 0.3 2.0 274 1.3 0.3 1.9 278

75M⊙

C central 1.6 1.6 3.0 720 1.3 2.5 3.0 808 1.3 2.5 3.0 809
C near L0 boundary 1.2 2.2 1.1 753 1.3 2.5 2.0 861 1.3 2.5 2.0 892
C near Lπ boundary 2.5 2.2 3.0 675 2.1 2.5 3.0 608 2.0 2.5 3.0 529
L0 central 0.3 2.5 0.3 718 0.8 2.3 0.9 738 0.8 2.3 0.9 724
L0 boundary 0.3 2.5 1.1 709 0.8 2.3 1.9 723 0.8 2.3 1.9 739
Lπ central 1.4 0.2 3.1 733 1.1 0.4 3.2 792 1.0 0.5 3.2 828
Lπ boundary 1.4 0.2 2.1 737 1.1 0.4 2.0 796 1.1 0.5 2.0 815
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restrict the prior to a given morphology using the method
given in the previous section, where Bilby automatically
normalizes the prior to the constrained region using the
ratio of accepted to total samples.
We also compare this full nested sampling Bayes factor

calculation with an approximation using the importance
weights from a run without restricting the prior to a specific
morphology. Specifically, the sum of the weights corre-
sponding to the nested samples in a given morphology
gives an approximation to the fractional evidence in that
morphology multiplied by the fractional prior volume in
that morphology. This sort of approximation was suggested
by Skilling [69]. For example, denoting two morphologies
by I and II, we have

BFIII ≃

�P
Mðθ⃗NSk Þ¼II wk

��R
I Pðθ⃗jHÞdθ⃗

�
�P

Mðθ⃗NSk Þ¼I wk

��R
II Pðθ⃗jHÞdθ⃗

� ; ð6Þ

where fθ⃗NSk g denotes the set of nested samples, with
importance weights fwkg, and Mðθ⃗NSk Þ returns the mor-
phology of the binary with parameters θ⃗NSk . The integrals
restrict to the parameters that give the morphology indi-
cated. We approximate these integrals using a Monte Carlo
sum, drawing 106 points from the prior distribution. We
estimate the errors in this approximation using the method
suggested by Skilling [64], where one computes the dis-
tribution of evidences obtained when resampling the
weights. Here we resample the weights 100 times and
compute the standard deviation of the distribution of the log
evidence, for uniformity with the use of a standard deviation
of the log evidence in the DYNESTY error estimate. We find
that applying this method to the full set of nested samples
(with no restriction on the morphology) produces an error
on the log evidence that is ∼30–40% smaller than the
DYNESTY error estimate. However, these error estimates are
all small enough that they are negligible for our purposes.
We occasionally also use the simple method of counting

the number of posterior samples in each morphology,
where the ratio between the numbers of samples in two
morphologies gives a crude approximation to the Bayes
factor between the two morphologies, though we find that
method actually gives results that agree well with the
importance weights approximation in the cases where
there are a nonzero number of posterior samples in the
morphology. We do this to compare with the use of this
method in [48], and also to allow us to assess the effect of
the distance prior we use: We use distance marginalization
(as described in [70]), so the distance samples are only
reconstructed in postprocessing. The posterior samples are
not all statistically independent, since DYNESTY resamples
the nested samples, but we do not concern ourselves with
this for the purposes of these checks. In particular, for the
comparison with [48] we need to use exactly the same

procedure they do. We compute a simple error estimate for
the Bayes factor in this approximation by estimating the
error in the number of samples in a given morphology byffiffiffi
n

p
, where n is the number of samples in that morphology.

We also checked that the error in the log Bayes factors we
obtain with this method agrees to the number of decimal
places we quote with the error estimate obtained by taking
the standard deviation of the ensemble of log Bayes factors
computed using 100 random draws of half the total number
of samples.
To assess the performance of the method discussed

above, we simulate a set of mock GW signals from BBHs
in different morphologies. We use the IMRPhenomXPHM
model [43] for both the simulated GW signals and as the
recovery template in our Bayesian inference. We choose
the components of our binaries to be of comparable mass
with mass-ratio q ¼ m2=m1 ¼ 1=1.2. This choice is
inspired by the fact that comparable mass binaries spend
more time in the L0 or Lπ morphology during their
evolution [19]. We choose two redshifted total masses,
20M⊙ and 75M⊙, for our binaries. These roughly corre-
spond to the first two peaks (at ∼8M⊙ and ∼30M⊙) of the
observed chirp mass distribution in GWTC-3 [1]. Further,
we choose three values for the spin magnitudes for the
black holes: χ1 ¼ χ2 ¼ 0.25, 0.75, 0.95, as representatives
of moderately-, highly-, and close-to-extremally-spinning
black holes. Finally, we choose two network SNRs, 20 and
89, to capture low- and high-SNR observing scenarios.
These specific values come from considering the 22M⊙
binary with zero spins and the extrinsic parameters given
in the caption of Table I at luminosity distances of 1 Gpc
and 250 Mpc, respectively. Here we choose 250 Mpc since
it is in the 90% credible interval (though on the smaller
side) of the luminosity distance for GW170608 [71,72],
which has a redshifted total mass consistent with 20M⊙.
We choose 1 Gpc since many of the events detected in O3
are at about this distance [1,72,73].
We find that it is easier to distinguish between two

morphologies when the binary’s parameters are far from the
boundaries between morphologies, particularly in the spin
angle subspace—we illustrate the dependence of the
morphology on the spin angles in Fig. 3. For each total
mass and spin magnitude in our simulated observations, we
choose spin angles θ1, θ2, and ΔΦ such that a given binary
is well within each morphology (central cases) as well as
close to the boundary of each morphology (boundary
cases). For the central cases we have, (i) C central,
(ii) L0 central, and (iii) Lπ central, while for the boundary
cases we have (iv) C near L0 boundary, (v) C near Lπ
boundary, (vi) L0 boundary (with C), and (vii) Lπ boun-
dary (with C). The spin angles corresponding to these cases
are given in Table I along with the distances we use to
obtain an SNR of 89. We find that L0 boundary and Lπ
boundary cases have transitioned to L0 and Lπ morphology
only shortly (sometimes by less than a precessional cycle)
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before the binary reached the reference frequency (here
20 Hz), while those far from the boundary have been in the
librating morphology for longer (more than 10 precessional
cycles, in some cases).
For each simulated observation, we choose the lumi-

nosity distance to ensure that the network SNR is fixed at
22 or 89 in a three-detector network consisting of the two
LIGO detectors and the Virgo detector operating with their
plus-era (O5) sensitivities [7], using the more sensitive
Virgo noise curve.3 The other extrinsic parameters are
chosen to be the same for all simulated observations and are
given in the caption of Table I. For all cases, the likelihood
function is computed with the lower cutoff frequency fixed
to flow ¼ 20 Hz and the upper cutoff frequency is given by
fhigh ¼ αroll-off × fNyquist frequencyg, where αroll-off ¼
0.875 is introduced to account for the effects of a window
function (as discussed in Appendix E of [1]) and the
Nyquist frequency is 1024 Hz for the 20M⊙ cases and
512 Hz for the 75M⊙ cases. We do not include noise in the
simulated observations to avoid parameter biases (i.e., we
use the zero realization of the noise).
We use the same agnostic priors used in the standard

LIGO-Virgo-KAGRA (LVK) analyses (discussed in, e.g.,
Appendix E 3 of [1]), notably priors that are uniform in the
redshifted component masses and spin magnitudes and
isotropic in spin directions, binary orientation, and sky
location. Besides the additional restriction to a given
morphology to compute the Bayes factors, the only
difference is that we use a prior on the luminosity distance
dL that is uniform in Euclidean volume (so ∝ d2L), as in
earlier LIGO-Virgo analyses (e.g., [75]), as opposed to the
more complicated prior uniform in the comoving frame
merger rate that is used in the latest LVK analyses [1].

While we do find that there are correlations between the
luminosity distance and the mass ratio and spins in some
cases, we have checked that reweighting to the same prior
that the LVK uses for its latest results makes a negligible
difference in our results, at most a change of 0.1 in the
estimated log10 Bayes factors from the sample counting
calculation.

IV. RESULTS

A. Results for simulated observations

We use Parallel Bilby [53,76] to compute the Bayes factors
of the alternate morphologies with respect to the true
morphology and compare them with the importance
weights approximation applied to the standard parameter
estimation run (with no restriction on the morphology).
This thus requires four parameter estimation runs: One
restricting to each morphology and one standard run with
no restriction on morphology. We plot the results for the
SNR 89 cases in Fig. 4. As expected, we find that the true
morphology is most strongly favored compared to both
alternative morphologies for highly spinning BBHs with
magnitudes 0.75 and 0.95. This is because the spin angles,
particularly ΔΦ, are constrained more accurately in these
cases. Similarly (and also as expected), the morphologies
are in general more strongly constrained for the lower-mass
BBHs, where there are more cycles in band, thus leading to
stronger constraints on spin angles. Moreover, the true
morphology is favored very strongly compared with at least
one alternative morphology, particularly for the 0.75 and
0.95 spin cases, with log10 Bayes factors in favor of the true
morphology larger than 20 for some cases in the 0.95 spin
case, and often greater than 4. There is not a significant
difference between the Bayes factors for the two total
masses in the 0.25 spin case, where the spin angles are not
well constrained.

FIG. 3. The spin angle dependence of the morphology for the 75M⊙, χ1 ¼ χ2 ¼ 0.75, L0 boundary case. The contours show the 50%
and 90% credible level for the spin angles from the standard IMRPhenomXPHM analysis (with no cut on morphology) of the SNR 89
case. The L0 boundary parameters (θ1 ¼ 0.8, θ2 ¼ 2.3, ΔΦ ¼ 1.8, all in radians) are given by the cross, and each of the 2d plots is a cut
through the 3d spin angle parameter space at one of these parameters.

3We do not include the KAGRA detector, since the latest
predictions for its sensitivity in O5 [74] are uncertain by almost
an order of magnitude.
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We find that the central cases often have the largest Bayes
factors in favor of the true morphology, but not always. For
instance, for the 0.75 and 0.95 spin 20M⊙ BBHs, the Lπ
boundary case gives a BFLπL0 that is larger than either of the
Bayes factors in the Lπ central case. This is somewhat
counterintuitive, since the true value of ΔΦ ≃ 2 rad in the
Lπ boundary cases is closer to the L0 morphology region
around ΔΦ ¼ 0. However, in these cases the spin angle
posterior falls off quite quickly in the direction of the L0
morphology region, about as quickly as it does in the Lπ
central cases, even though these have a true value of
ΔΦ ¼ 3.2 rad. This, combined with the fact that the spin
angle posterior in the Lπ central cases extends further
toward the portion of the L0 morphology region close to
ΔΦ ¼ 2π rad, may explain the Bayes factors we obtain.
We also find that the importance weights approximation

gives a reasonable approximation to the full nested sampling
results, though it tends to overestimate large Bayes factors.
The larger differences we find are statistically very signifi-
cant. For instance, in the 20M⊙, χ ¼ 0.95, L0 central case,
the differences in log10 BFL0C and log10 BFL0Lπ are 7.2 and
15.5, respectively, while the errors in the nested sampling
calculation are both �0.2 and those in the importance
weights calculations are�0.5 and �0.6, respectively. Thus,
recalling that the error in the difference is the quadrature
sum of the individual errors, the differences correspond to

∼13σ and ∼25σ, respectively. However, there are still a
significant number of nested samples in the C and Lπ
morphologies in this case: ∼3 × 104 and ∼2 × 103, respec-
tively, or ∼34% and ∼2% of ∼9 × 104 total nested samples.
Additionally, for comparison with the relatively large

SNR used to obtain the previous results, we also consider
a more moderate SNR of 22, giving the Bayes factors
shown in Fig. 5. We find that the true morphology is still
favored over both alternative morphologies with a log10
Bayes factor > 1.2 in the two higher spin 20M⊙ L0 central
cases as well as the χ ¼ 0.95 20M⊙ C near Lπ boundary
case. Additionally, we find that the importance weights
calculation is still a reasonable approximation to the full
nested sampling results in most cases, as we found in the
high-SNR case. However, it gives notably different results
than the full nested sampling computation in some cases,
notably the χ ¼ 0.95 20M⊙ C near Lπ boundary case,
though we have not been able to determine why there is
such a significant difference in that particular case. In this
case, we also find statistically significant differences of
∼8σ for both log10 BFCL0 and log10 BFCLπ and roughly 10%
of the ∼6 × 104 nested samples are in each of the librating
morphologies.
In some low-SNR and/or low-spin cases, we find that the

Bayes factors in librating cases still favor the C morphol-
ogy, notably in the χ ¼ 0.25 75M⊙ high-SNR Lπ central

FIG. 4. The log10 Bayes factors in favor of the true morphology compared to the two alternative morphologies for SNR 89 BBHs. We
give the true morphology on the bottom of the horizontal axis (abbreviating “boundary” to “bdry”) and the two alternative morphologies
above it. For an explicit example, the leftmost Bayes factor plotted is log10 BFCL0. We show the results from the nested sampling
calculation with filled markers and the importance weights method with unfilled markers. We also use triangles for the cases where both
calculations give much larger Bayes factors than the other cases, so the values lie off of the plotted regions, and provide their log10 Bayes
factor values. All the nested sampling log10 Bayes factors have errors of �0.2, while the importance weights results have errors of at
most �0.6, but none of these are visible on the scale of this plot.
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case (log10 BFLπC ¼ −1.5� 0.2). In these cases, the spin
angles are not well constrained, so the posteriors often fill
their prior ranges and thus extend well into the C morphol-
ogy region, giving significant support for that morphology.

B. Systematic uncertainties

Wemake initial investigations of the effects of waveform
systematics on our results by computing the Bayes factors
using the NRSur7dq4 waveform model [44] for injections
and recovery in some of the high-mass, high-SNR cases.
Future work will consider the extent to which waveform
systematics can bias this measurement, by, e.g., analyzing a
signal generated with a more accurate waveform model
using a faster but less accurate one. Specifically, we chose
the cases with the largest and smallest Bayes factor with
IMRPhenomXPHM for each choice of spin magnitudes.
These cases are: C near Lπ boundary and Lπ central for
0.25 spin; L0 central and C near L0 boundary for 0.75 spin;
and L0 central and C near Lπ boundary for 0.95 spin. For
each of these, we adjust the distance so that we still obtain
an SNR of 89 with NRSur7dq4 (leading to differences in
the distance of ≲10%).
We use the NRSur7dq4 model since it is constructed in a

significantly different way than IMRPhenomXPHM, by
directly interpolating waveforms from numerical relativity
simulations, and contains more physics, notably all spheri-
cal harmonic modes with l ≤ 4 in the coprecessing frame,
including the asymmetry between the �m modes (in the
coprecessing frame) for precessing systems. Recall that

IMRPhenomXPHM only contains the ð2;�2Þ, ð2;�1Þ,
ð3;�3Þ, ð3;�2Þ, and ð4;�4Þ modes in the coprecessing
frame, and its �m modes in the coprecessing frame are
related to each other using the nonprecessing relation. We
only made the NRSur7dq4 check for the high-mass case
since the model has a limited length, so it is only able to
model the dominant mode signal from 20 Hz for suffi-
ciently high total masses. In fact, NRSur7dq4 waveforms
are not long enough for the jmj ¼ 3, 4 modes to start at
20 Hz for a total mass of 75M⊙; they instead start around
21 and 28 Hz, respectively, with the exact value depending
on the spins. However, we checked that the SNR in the
missing portions of the inspiral in the jmj ¼ 3, 4 modes is
negligible. Note that we are using NRSur7dq4 outside of its
training region of spin magnitudes ≤ 0.8 in the 0.75 and
0.95 spin cases. (Significant portions of the spin magnitude
posteriors extend above 0.8 in the 0.75 spin cases.)
However, NRSur7dq4 is found to extrapolate well to higher
spin magnitudes.
We find that in most cases the NRSur7dq4 log10 Bayes

factors are greater than the IMRPhenomXPHM ones by
between 0.6 and 1.3. These correspond to fractional
differences in the log10 Bayes factors of ∼30% to
∼230%, where the largest differences correspond to cases
where the sign of the Bayes factor changes, though in these
cases the individual log10 Bayes factors are small enough
that they are only at most ∼2 times the estimated error.
However, for the 0.75 spin L0 central case, log10 BFL0C
and log10 BFL0Lπ are 2.4 and 2.1 larger, respectively (with

FIG. 5. The log10 Bayes factors in favor of the true morphology compared to the two alternative morphologies for SNR 22 BBHs,
plotted the same way as in Fig. 4 (though note the difference in vertical axis ranges when comparing the two figures). As in Fig. 4, the
nested sampling log10 Bayes factors have errors of �0.2, which are not visible on the scale of this plot. The importance weights results
have errors of �0.1, which are not visible either.
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fractional differences of ∼90% and ∼30%, respectively),
due to much better constraints on ΔΦ, while for the 0.95
spin L0 central case, log10 BFL0Lπ is smaller by 9, due to a
difference in the shape of the posteriors, though it is still
quite large (17.7), so the fractional difference is only
∼30%. The only other cases where the NRSur7dq4
analysis gives a smaller Bayes factor are for the 0.25 spin
C near Lπ boundary case, where log10 BFCL0 and log10 BF

C
Lπ

are 1.0 and 0.6 smaller, respectively, and the 0.95 spin C
near Lπ boundary case, where log10 BFCL0 is 0.8 smaller;
these correspond to fractional differences of ∼20% to
∼40%. Ref. [25] finds cases where IMRPhenomXPHM
gives significantly smaller uncertainties in spin quantities
than NRSur7dq4 (see their Fig. 18), though the most
dramatic examples they find are for larger total masses
than we consider, and we still find that NRSur7dq4
generally gives tighter posteriors on spin quantities than
IMRPhenomXPHM in our runs, even in the cases where it
finds smaller Bayes factors. In general, while we find
nonnegligible differences in the Bayes factors due to the
difference in waveform model, the only case where there is
a really significant difference is the 0.75 spin L0 central
case, where NRSur7dq4 gives a value of log10 BFL0C that is
almost double its value with the IMRPhenomXPHM
analysis.
Finally, we consider the uncertainties in our results due to

using 1.5PN expressions for the orbital angular momentum
when computing the morphology. We find that the
differences compared to using the 2PN or 2.5PN expres-
sions are generally small, as expected, given the results
discussed in Sec. II. However, in one case, there is a
considerable difference between the results with the 1.5PN
and 2PN or 2.5PN orbital angular momentum expressions.
As expected, there are also considerable differences
between the results with the Newtonian and higher-PN
orbital angular momentum expressions in a number of
cases. However, in all cases these differences only affect
the degree to which a given morphology is favored and do
not lead to the wrong morphology being favored. We check
these differences using the importance weights calculation,
where it is simple to change the order of the orbital angular
momentum expressions used in the morphology calculation.
The case with the largest difference is the 75M⊙ 0.95 spin

L0 central high-SNR case, where one finds that due to a
decrease in the Lπ evidence, the estimated log10 BFL0Lπ is
9.5 larger with the 1PN, 2PN, or 2.5PN orbital angular
momentum expressions than with the 0PN or 1.5PN
expressions, though it is already quite large (26.7) in those
cases, so this is only a 36% correction. This difference is
because the 1.5PN orbital angular momentum expressions
gives a value that is slightly smaller than that obtained with
the 1PN, 2PN, or 2.5PN expressions for two nested samples,
making those two nested samples be in the Lπ morphology,
and thus increasing the evidence substantially. (The
Newtonian expression for the orbital angular momentum

also gives a smaller value, but that is expected.) In all other
cases, the use of the 2PN or 2.5PN orbital angular
momentum expressions leads to at most a change of 0.06
in the log10 Bayes factor, with this largest difference arising
from a decrease in ZLπ in the 75M⊙ 0.95 spin C near Lπ
boundary high-SNR case with IMRPhenomXPHM (there is
a decrease of 0.04 with NRSur7dq4). We find that using
the Newtonian orbital angular momentum expression
leads to more significant differences in a number of cases,
from a decrease of log10 ZC by 3.1 in the 20M⊙ 0.75 spin
L0 central high-SNR case (giving a 68% increase in
log10 BFL0C ) to an increase of log10 ZL0 by 3.6 in the
20M⊙ 0.95 spin Lπ central high-SNR case (giving a
35% reduction in log10 BFLπL0). The largest difference due
to using the 1PN orbital angular momentum expression
instead of the 1.5PN one is an increase in log10 ZLπ by 0.1
for the 20M⊙ 0.95 spin C near Lπ boundary high-SNR case.

C. Results for GW200129_065458

Sincewe find that one is able to obtain log10 Bayes factors
of ≳1 in favor of the true morphology in a number of the
SNR 22 cases, we thought that it was worth applying this
analysis to a real GWevent. We choose to analyze the BBH
signal GW200129_065458, which has a median SNR of 27
and evidence for precession [1,49,77]. The evidence for
precession has some caveats, since this event required some
glitch mitigation [78] and the uncertainties in the glitch
subtraction are larger than the difference between precessing
and nonprecessing models for the signal [50]. Nevertheless,
we choose GW200129_065458 as a relatively high SNR
system with possible precession. We use the glitch-
subtracted data, noise power spectral densities, and detector
calibration uncertainty envelopes from the Gravitational-
Wave Open Science Center [79] and perform the analysis
using NRSur7dq4, which is more accurate for this signal
than the IMRPhenomXPHM and SEOBNRv4PHM [80]
models used in the analysis in [1], as discussed in [49]. We
marginalize over detector calibration uncertainties as in [81].
We do not find that any morphology is favored, with both

log10 Bayes factors consistent with 0. Specifically, we obtain
log10 BFL0C ¼ 0.0� 0.2 and log10 BFLπC ¼ −0.1� 0.2. The
importance weights (IW) calculation gives log10 ½BFL0C �IW ¼
0.3� 0.1 and log10 ½BFLπC �IW ¼ 0.2� 0.1. We also give the
sample counting (SC) results for comparison with the results
in Gangardt et al. [48], where we do not correct for the
prior volume, since Gangardt et al. do not. These
give log10 ½BFL0C �SC¼ −0.81� 0.01 and log10 ½BFLπC �SC¼
−1.24� 0.02, which are only slightly larger than those
from the prior. We find that 88%, 9%, and 4% of the prior
samples are in the C, L0, and Lπ morphologies, respectively
(the numbers do not sum to 100% due to rounding), which
gives log10 ½BFL0C �prior ≃ −1.0 and log10 ½BFLπC �prior ≃ −1.3.
Our analysis finds significantly fewer samples in

the librating morphologies (17%) than that in Gangardt
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et al. [48] (29%). However, the waveforms used for the
two analyses are different: We use NRSur7dq4, while
Gangardt et al. use the combined samples obtained using
IMRPhenomXPHM and SEOBNRv4PHM from [1].4 The
orbital angular momentum calculations used to obtain
the morphology are also different: We use the 1.5PN
expression for the orbital angular momentum in terms of
the binary’s GW frequency, while Gangardt et al. evaluate
the Newtonian expression for the orbital angular momen-
tum in terms of the binary’s orbital separation using the
2PN (harmonic coordinate) expression for this separation
in terms of the binary’s frequency from [17]. We find that
the difference in waveforms is the larger effect: If we
apply our 1.5PN morphology calculation to the same
samples used by Gangardt et al., we obtain 26% of the
samples in librating morphologies (15% in L0 and 11% in
Lπ). However, the difference in morphology calculations
also has a noticeable effect: If we apply the Gangardt et al.
morphology calculation to our samples, then we obtain
20% of the samples in the librating morphology (14% in
L0 and 6% in Lπ, compared to 13% and 5%, respectively,
with our 1.5PN morphology calculation).5

V. CONCLUSIONS AND FUTURE WORK

The dynamics of spin precession in binary black holes
can be classified into three distinct morphologies depend-
ing on whether ΔΦ oscillates about 0 (L0), oscillates about
π (Lπ), or circulates (C) through the full range ½−π; π� over
a precession cycle. These morphologies encode informa-
tion about the binary’s formation scenarios at much larger
separations [31], and therefore morphological classification
via GWobservations can inform us about the astrophysical
formation mechanism of the binary [37,38]. In this paper,
we developed a Bayesian model selection method to
constrain spin morphologies in binary black holes from
their GW signals. The code is available as a PYTHON

package [51] which can be used directly to set the prior for
a specific morphology with the parameter estimation code
Bilby [53,54].
We demonstrated the performance of our method on

various simulated GW signals of comparable masses
(q ¼ 1=1.2) with different total detector-frame masses
(20M⊙, 75M⊙), spin magnitudes (0.25, 0.75, 0.95) and

SNRs (20, 89). For each of the simulated binary configu-
rations, we chose spin tilts such that the binary is away from
and close to the boundary of a particular morphology in the
spin angle parameter space. In particular, we considered
seven cases for each total mass, spin magnitude and SNR:
C central, C near L0 boundary, C near Lπ boundary, L0
central, L0 boundary (with C), Lπ central, and Lπ boundary
(with C). We used the IMRPhenomXPHM model [43] to
simulate the signals and as the recovery template in
parameter estimation analysis.
We found that one favors the true morphology with log10

Bayes factors ≥ 4 in optimistic cases, e.g., high spins and
higher SNRs. This is due to better constrained spin
parameters. However, one can exclude at least one mor-
phology with a log10 Bayes factor ∼2 for some less
optimistic cases with, e.g., smaller spins or lower SNRs.
We also found that the importance weights approximation
for the Bayes factors gives reasonable agreement with
nested sampling in many cases, though it overestimates
the Bayes factors in most cases where an alternative
morphology is very strongly disfavored.
We also investigated the effects of waveform system-

atics on our Bayes factor results using the NRSur7dq4
waveform model [44] for injections and recovery. We
considered only the high mass (75M⊙) and high-SNR (89)
cases for each spin magnitude injection. We found that in
most cases the NRSur7dq4 log10 Bayes factors are greater
than the IMRPhenomXPHM ones by between 0.6 and 1.3.
However, in one case, the NRSur7dq4 log10 Bayes factors
are significantly larger (increases of ∼2) than those from
IMRPhenomXPHM due to better constraints on ΔΦ,
while in a few other cases the NRSur7dq4 Bayes factors
are smaller than those obtained with IMRPhenomXPHM.
We also applied the analysis (using NRSur7dq4) to
GW200129_065458 due to its relatively large SNR
(∼27) and evidence for precession. We found that
GW200129_065458 does not favor any morphology with
all log10 Bayes factors consistent with zero.
In the future, we will develop methods to constrain the

fraction of binaries in a given morphology in the popula-
tion, following [82], and subsequently apply these methods
to GWTC-3 events. Additionally, we will investigate
whether one obtains better constraints on the morphology
at a dimensionless reference frequency or time (as sug-
gested in [42,47]), rather than the dimensionful reference
frequency we consider. We will also consider whether
inferring the morphology at the reference frequency gives
stronger constraints on the binary’s tilt angles at formation
(e.g., distinguishing between the standard and reversed
mass ratio scenarios in binaries with efficient tides, as
discussed in [37]) than one obtains by directly computing
the posterior on the tilt angles at formally infinite separa-
tion, as in [83,84]. In addition to these studies, we will also
consider the extent to which waveform systematics can bias
the inference of the morphology by analyzing a more

4Gangardt et al. use the samples reweighted to a prior that is
uniform in comoving volume, but using the samples without the
reweighting (and thus the same distance prior we use) only
changes the fractions by increasing the fraction of L0 samples by
a percentage point, due to rounding.

5If we use the 2PN or 2.5PN orbital angular momentum
expressions, then the number of samples in the L0 and Lπ
morphologies decrease by 4% and 2%, respectively, so the L0
fraction decreases by a percentage point, due to rounding, and the
Lπ fraction remains unchanged to the accuracy quoted. Addi-
tionally, the 1.5PN percentages do not sum to the 17% quoted
earlier due to rounding.
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accurate waveform (e.g., produced with NRSur7dq4
for the higher masses for which it is applicable or
SEOBNRv5PHM [85] for lower masses) with a faster
but less accurate model, such as the IMRPhenomXPHM
model that we used for our primary analysis (and is appli-
cable to a wider parameter space than NRSur7dq4 is).
Since SEOBNRv5PHM is only slightly slower than
IMRPhenomXPHM for lower masses such as the 20M⊙
total mass we consider, we could also use it to analyze real
signals in addition to IMRPhenomXPHM as a check of
waveform systematics.
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