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Many theories that attempt to formulate a quantum description of gravity suggest the existence of a
fundamental minimum length scale. A popular method for incorporating this minimum length is through
a modification of the Heisenberg uncertainty principle known as the generalized uncertainty principle
(GUP). Experimental tests of the GUP applied to composite systems can be performed by searching for the
induced frequency perturbations of the modes of mechanical resonators, thus constraining the degree of
minimum length in certain scenarios. In this work previous constraints made with mechanical resonators
are improved upon by three orders of magnitude, via the utilization of a cryogenic quartz bulk acoustic
wave resonator. As well as purely mechanical resonant modes, hybrid electromechanical antiresonant
modes are investigated and shown to be sensitive to the same GUP induced effects.
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I. INTRODUCTION

The existence of a fundamental minimum length scale,
on the order of the Planck length lp ¼ 1.62 × 10−35 m, is a
prevalent idea in many theoretical models that contain a
quantum description of gravity [1,2]. Such a concept can
be formulated in the context of nonrelativistic quantum
mechanics through modifications of the Heisenberg uncer-
tainty relations. So-called generalized uncertainty princi-
ples [3–8] provide a model independent way of introducing
minimum length whilst recovering ordinary quantum
mechanics on larger scales. Generalized uncertainty prin-
ciple (GUP) phenomenology has been subject to much
theoretical examination [9–19], yet critical insights from
experiment are highly limited due to the scales at which the
introduced modifications induce an observable effect. The
GUP may take the general form

ΔxΔp ≥
ℏ
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�
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�
; ð1Þ

where Δx and Δp denote the measurement uncertainties
in the physical coordinate x and corresponding conjugate
momentum p and β0 is a dimensionless, model-dependent
parameter. This uncertainty principle results in the inequality
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; ð2Þ

which according to [20] defines a minimum length if the
right-hand side contains a minimum greater than zero.
Differentiating this inequality leads to a positive minima at
Δp ¼ ℏ=lp

ffiffiffiffiffi
β0

p
giving rise to a minimum length Δxmin ¼

lp
ffiffiffiffiffi
β0

p
. Critically, β0 must be positive for this model to omit

a real minimum length. It is usually assumed to be close
to unity, which leads to corrections to measurement uncer-
tainties that only become relevant at lengths l ∼ lp or
energies E ∼ ℏc

lp
¼ 1.2 × 109 GeV.

Due to such extreme scales, direct tests of (1) are
challenging. However, β0 may be constrained by meas-
uring the perturbations to the ground state energy of a
harmonic oscillator implied by (1). Recently, resonant
mass gravitational wave experiments, such as AURIGA
exploited this effect to place upper bounds β0 < 1033 [21];
however these bounds are still far from the expected
Planck scale. Tighter bounds can be achieved by consid-
ering the application of this phenomenology to quantum
mechanics.
In order to recover GUP of (1), one can associate a

deformed Heisenberg algebra [1]

½x̂; p̂� ¼ iℏ
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Extensive discussions on the motivations and theoretical
implications behind this approach can be readily found
elsewhere [2,20]. The introduction of Eq. (3) immediately
has consequences to the energy spectrum for single particle
quantum systems. Further constraint on β0 has thus been
made by looking for corrections to the Lamb shift, and
Landau levels of scanning tunneling microscopes [22],
implied by the reconstructed quantum mechanics of (3).
However these constrains only manage an upper bound
of β0 < 1020.
A different approach to excluding minimum length can

be found when considering the application of the deformed
Heisenberg algebra (3) to the center-of-mass modes of
composite particle systems. Such systems typically exhibit
larger momenta, increasing the magnitude of GUP induced
effects. Interestingly, the exact implications of extending
this formalism to the center-of-mass mode of macro-
scopic systems is still unclear, with some arguments
suggesting that the strength of minimum length induced
effects may be suppressed by the total number of composite
particles [23–25]. However, it has been remarked [26] that
the exact constituent level at which quantum gravitational
effects intervene is completely unknown. Thus, further
dedicated experimental investigation into these effects,
under the assumption that (3) holds for the center-of-mass
mode of macroscopic systems, is necessary.
Dedicated investigations into minimum length have

recently been conducted that search for macroscopic
GUP induced effects such as the broadening of molecular
wave packets [27], various optomechanical effects [28–31],
and perturbations to the resonant modes of mechanical
resonators [21,26,32].
In this work, previous tests utilizing mechanical reso-

nators are improved upon. The minimum length order
parameter β0 is constrained by measurement of the non-
linear frequency perturbations to the resonant modes of a
macromechanical quartz bulk acoustic wave (BAW) reso-
nator. For such constraints to be made, we assume β0 to be
positive. Otherwise if β0 < 0 no such exclusions is pos-
sible. Such resonators exhibit extraordinarily high acoustic
quality factors at cryogenic temperatures [33,34], and have
long been used as timing standards with impressive short to
midterm frequency stability. This inherent frequency pre-
cision coupled with a gram-scale mass makes the quartz
BAW resonator an ideal technology to probe minimum
length induced effects, as well as performing other tests of
fundamental physics [35–37]. The results presented in this
work improve upon the upper bounds on β0 placed by
previous mechanical resonators experiments [32] by up to
three orders of magnitude.

II. MODEL

In order to describe the perturbations to a mechanical
oscillator due to the existence of a minimum length, it is
commonly assumed [26,28,32] that any two conjugate

position and momentum observables, attributed to the
center-of-mass mode of a composite system, obey the new
deformed commutator of Eq. (3). Whilst the form of the
resonator’s classical Hamiltonian remains unchanged. It
then follows that a suitable representation for the physical
position and momentum operators x̂; p̂ in terms of some
general operators X̂; P̂ can be chosen such that the
canonical commutation relation ½X̂; P̂� ¼ iℏ, is recovered.
The simplest choice of representation can be described by
the transformation [38]

x̂; p̂ → X̂; P̂

�
1þ β0

1

3ðmpcÞ2
P̂2

�
; ð4Þ

where mp denotes the planck mass. It has been shown [26]
that this representation leads to a nonlinear correction to the
resonator’s Hamiltonian, resulting in a dependence of the
device’s perturbed resonant frequency ω̃r on its oscillation
amplitude x0:

ω̃r ¼ ωr

�
1þ β0

2

�
meffωrx0
mpc

�
2
�
; ð5Þ

where meff denotes the resonators effective mode mass.
Equation (5) immediately applies to the frequencies of the
purely mechanical resonant modes of the quartz BAW
resonator. However, the piezoelectric nature of the device
allows for the further study of antiresonant modes in which
an electrical half degree of freedom is contributed by the
capacitive electrodes and the external circuit.
Application of the same GUP formalism to these anti-

resonant modes can be understood by first considering the
Butterworth-VanDyke model of the resonator in the vicinity
of a resonant mode λ, in which the piezoelectric crystal is
described by a lumped element electrical circuit consisting
of a series resistor inductor capacitor (RLC) branch shunted
by the capacitance of the external electrodes. An example
can be seen in the shaded blue region of Fig. 1. Assuming a
linear coupling, the charge form equation

q ¼ κλx ð6Þ

can be introduced to relate the electrical charge variable q
back to the mechanical displacement x of the crystal plate.
This allows for full interchangeability between lumped
element electrical and mechanical descriptions of the
resonator.
In order to explore the GUP phenomenology of the anti-

resonant modes of this system, it is helpful to employ a
Hamiltonian formalism to the electrical circuit description.
This allows for GUP induced effects to be introduced in a
fully consistent manner. Following the circuit quantization
procedure by Vool et al. [39] the Hamiltonian of the
lossless resonator can be written as
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H ¼
ˆ̃q2m
2Cλ

þ
ˆ̃q2e
2C0

þ
� ˆ̃ϕm − ˆ̃ϕe

�2
2Lλ

; ð7Þ

where ˆ̃ϕi is the magnetic flux node operator corresponding
to the circuit node i with conjugate node charge ˆ̃qi. These
node operators are defined such that for a lumped element
E connected to nodes i and j the magnetic flux of that
element ϕE ¼ ϕ̃i − ϕ̃j, with a similar definition for the
conjugate charge qE. The motional node denoted by m is
the intersection of the motional inductance Lλ and capaci-
tance Cλ, whereas the electrical node e connects Lλ and the
electrode capacitance C0. With the motional resistance Rλ

made to vanish, the remaining circuit node is then identified

as the electrical ground g such that ˆ̃ϕg; ˆ̃qg ¼ 0.
The Hamiltonian of Eq. (7) generates two sets of coupled

equations of motion, one for each pair of variables ˆ̃ϕi; ˆ̃qi.
Substituting these coupled equations into each other gives

̈ϕ̂L þ ω2
aϕ̂L ¼ 0; ωa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cλ þ C0

CλC0

1

Lλ

s
; ð8Þ

where ϕ̂L ¼ ˆ̃ϕm − ˆ̃ϕe. This differential equation clearly
generates oscillatory solutions with frequency ωa corre-
sponding to the antiresonant modes of the circuit.
Conversely, by shorting the electrical node to ground such

that ˆ̃ϕe; ˆ̃qe ¼ 0, we recover the equations that lead to the
resonant solutions:

̈ϕ̂L þ ω2
rϕ̂L ¼ 0; ωr ¼

ffiffiffiffiffiffiffiffiffiffi
1

LλCλ

s
: ð9Þ

This distinction can be understood as coupling an ideal port
to the electrical node of the circuit with either infinite

output impedance giving antiresonant solutions, or zero
output impedance shorting the electrical node to ground
and giving resonant solutions. In a physical dissipative
system, both modes can be coupled to.
Employing the deformed Heisenberg algebra of Eq. (3)

and utilizing the charge form (6), it follows that a suitable
representation for the physical charge and flux operators
q̂; ϕ̂ in terms of some general operators Q̂; Φ̂, that recovers
the canonical commutation relation ½Q̂; Φ̂� ¼ iℏ is

q̂; ϕ̂ → Q̂; Φ̂
�
1þ β0

1

3ðmpcÞ2
κλΦ̂2

�
: ð10Þ

This representation thus perturbs the structural form of the
Hamiltonian of Eq. (7), to leading order in β0, by the addition

of the term ϵð ˆ̃Φm − ˆ̃ΦeÞ4=Lλ, where ϵ ¼ β0κλ=3ðmpcÞ2.
The Heisenberg equations of motion in this new repre-

sentation can then be solved via Poincare’s method [40]
to give coupled differential equations for ΦLðtÞ ¼ Φ̃mðtÞ−
Φ̃eðtÞ. Assuming ϵ ≪ 1, this gives a solution with a
perturbed antiresonant frequency.

ω̃a ¼ ωa

�
1þ β0

2

�
κλΦL

mpc

�
2
�
: ð11Þ

This relation can be converted back into the mechanical
description by the substitution of κλΦ ¼ P ¼ meffωX. It is
thus follows that under the GUP formalism the electro-
mechanical antiresonant modes of the quartz resonator
experience the exact same degree of amplitude dependent
frequency perturbation as that of the purely mechanical
resonant modes described by Eq. (5).
Nonlinear effects in quartz associated with high order

elasticity terms in the crystal Hamiltonian induce a similar
amplitude dependent frequency shift. This is known as
the amplitude-frequency effect and has been extensively
studied in quartz resonators [41]. As a result an observed
frequency perturbation due to the deformed commutator
cannot be decoupled from that due to the crystal’s inherent
nonlinearity. However, an upper bound on β0 can still be
determined up to some confidence limit by fitting Eq. (5)
to any observed change in ω0 as a function of oscillation
amplitude. Setting such an exclusion limit is independent
of the origin of any observed nonlinear affect. Detailed
modeling of the resonators nonlinearity in the future would
allow for separation of the inherent amplitude-frequency
effect from any extra perturbation potentially induced
by the GUP, and thus improved discovery potential. This
would require measurement of the crystals fourth order
elastic tensor components at 4 K utilizing nonresonant
methods such as stress compensation testing, which has
been achieved at room temperature for various quartz cut
angles [42,43].

(a) (b)

FIG. 1. Schematics of the resonator network topologies uti-
lized. The quartz resonator in the vicinity of a resonant mode is
described as a single RLC branch in parallel with the electrode
capacitance as shown. The shaded blue box distinguishes this
lumped element resonator model from external electrical com-
ponents. (a) Series network for coupling to the resonant modes
ωr. (b) Parallel T network for coupling to the antiresonant
modes ωa.
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III. METHODOLOGY

The resonator used in this work consists of a 30 mm
diameter by 1 mm thick quartz crystal plate cut along the
SC axis [44], with a planoconvex surface in order mitigate
phonon losses due to anchoring. Copper electrodes are held
close to the crystal’s surface by an additional supporting
quartz structure, with the entire assembly placed into a
surrounding copper enclosure and sealed under vacuum
pressure. A copper mount attaches the resonator assembly
onto the cold plate of a dilution refrigerator, where it is
subject to a stable cryogenic environment of temperature
T ¼ 4 K. Sub-Kelvin dilution temperatures are also attain-
able with this setup, however the nonlinear effects in the
quartz crystal become far more dominant at these extremely
low temperatures [45]. Additionally, the quality factors of
certain modes may degrade for T < 1 K. This occurs as the
crystal’s loss mechanisms undergo a phase transition into a
regime that is dominated by two level systems associated
with crystalline disorder. Thus, a higher temperature of 4 K
is preferred for this work.
Two separate electrical topologies were employed in

measuring frequency perturbations of the resonator in order
to investigate both resonant and antiresonant modes.
Schematics of both topologies are presented in Fig. 1.
The motivation behind these configurations is understood
by once again considering the electric circuit description
of the crystal resonator. In this model, resonant or series
modes of the crystal can be described by the minimum
impedance modes of the series RLC branch parametrized
by the crystal’s motional degrees of freedom. In addition,
the antiresonant or so-called parallel modes can be
described as the minimum admittance modes of the
motional RLC branch in parallel with the physical electrode
capacitance. Thus, different electrical configurations can
be employed to optimize coupling to either the purely
mechanical resonant modes, or hybrid electromechanical
antiresonant modes of the resonator.
The first topology utilized was a series configuration

where each of the resonator’s electrodes were coupled to
individual coaxial signal lines that feed out of the cryogenic
system. This allows for an electrical drive signal supplied
by external source to excite resonant acoustic modes in the
crystal bulk, due to the piezoelectric coupling of the quartz
lattice to a charge density on the electrodes. The same
mechanism can be exploited in order to read out the
mechanical motion of the crystal plate.
In the parallel configuration, the quartz electrodes were

directly soldered to a capacitive T network. This circuit
was then coupled to the signal lines in such a way as to
shunt the quartz resonator to the electrical ground plane.
This configuration allowed for direct coupling to the
antiresonant modes of the resonator, through the same
piezoelectric mechanism. Studying the antiresonant modes
of this system is of interest as the resonance shares a half
degree of freedom with the purely electrical component

in the parallel capacitance, perhaps modifying the degree
of frequency perturbation due to inherent crystal non-
linearities.
Impedance measurements of the resonant network were

made utilizing a vector network analyzer (VNA) locked to a
stable frequency reference supplied by hydrogen maser,
with signals supplied by coaxial cables that feed into the
cryogenic system and connect to the resonators electrodes.
The measurement set up is displayed diagrammaticality in
Fig. 2. Measurements of the system transmission parameter
S21 as a function of frequency ω in the vicinity of a mode,
show maximum transmission at the frequency correspond-
ing to the resonant mode ωr for the case of the series
configuration, or the antiresonant mode ωa for the case of
the parallel T-network configuration. The exact frequency
of each mode, as well as their quality factors Qλ, can thus
be determined by fitting a Lorentzian to the corresponding
S21ðωÞ measurements.
The VNA supplies a power PVNA to the system through

the signal input line that drives the acoustic modes. The
transfer function that relates PVNA to the crystal displace-
ment x in the vicinity of resonance can be written as

xðωÞ ¼ 1

ωκλ

				
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ΓÞðPVNA þ αÞ

Re½ZinputðiωÞ�

s
ZgenðiωÞ

				; ð12Þ

where Γ is the reflection coefficient of the resonant mode,
α is the loss in the input line, ZinputðiωÞ is the complex input
impedance of the resonator network, and ZgenðiωÞ is a
generalized transfer function that relates the current input to
the resonator network to the motional branch current Iλ.
The coupling constant κλ is experimentally determined and
has units of C/m.

4K

Phonon Distribution

Cu Enclosure

Quartz BAW
z

xy

Electrodes

Resonator network

FIG. 2. Diagram of the experimental setup for the case of the
resonator connected in the series configuration.
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The term under the square root sign in Eq. (12) repre-
sents the total current at the input of the resonator network
as I2input ¼ Pinput=Zinput, where Pinput ¼ ð1 − ΓÞðPVNA þ αÞ.
The term ZgenðiωÞ is then the ratio of impedances that form
the current divider equation that determines Iλ from the
input current. This ratio is different for each resonator
network topology. The values of Γ and α for each resonant
mode are experimentally determined from S11ðωÞ mea-
surements of the resonator network in reflection.

IV. RESULTS

To utilize Eq. (12) the values of the motional resistance
Rλ, capacitance Cλ, inductance Lλ and electrode capaci-
tanceC0 for each mode must be known in order to construct
Zinput as well as Zgen. Accurate measurements of Rλ for
multiple modes have already been conducted in previous
works [46]. All other parameters can be determined by
solving the analytical expressions that minimize Zinput for
resonant modes or 1=Zinput for antiresonant modes, given
the experimentally determined values for ωr, ωa, and Qλ.

In order to vary the excitation amplitude, PVNA was
increased in increments to the maximum value attainable
before the excessive power input causes the cryogenic
environment to increase in temperature. At each stage the
S-parameter measurements were made with a narrow
resolution bandwidth in order to avoid any ring-down
effects. With the modal frequencies determined at each
step, Eq. (5) can be fit to the resulting data with β0 set as a
free parameter. The errors in the center frequencies ωr;a

associated with the Lorentzian fitting are accounted for by
running Monte Carlo simulations in which β0 is fit for
multiple Gaussian distributed trajectories. Confidence lim-
its to 3σ on the fitted values of β0 are then obtained from the
aggregate statistics. Examples of such fitting of multiple
resonant modes are presented in Fig. 3, with the full list of
all results and measured parameters given in Table I, and
final exclusion limits plotted in Fig. 4.
When compared to previous experiments that exclude

minimum length with mechanical resonators, the previous
most stringent limits where set by a similar quartz resonator
system at room temperature [32]. We improve upon

(a)

(d)

(b) (c)

(e) (f)

FIG. 3. Plots (a)–(c) show the experimental results of S21 measurements as a function of input power for the third order 5.5 MHz
resonant mode, as well as the fifth order 8.4 and 9.2 MHz resonant modes. The center frequency found by Lorentzian fitting has also
been marked. Plots (d)–(f) show the net frequency perturbations Δω as a function of crystal displacement amplitude, as well as the fitted
limits on β0, for the same corresponding modes. The error bars show the standard error in the center frequency associated with
Lorentzian fitting.

TABLE I. Results from the investigations of resonant and antiresonant quartz BAW modes. Each mode is denoted by λ ¼ Xn;m;p
where X is the polarization (A for longitudinal, B and C for fast and slow shear polarizations), and integers n, m, p denote the

longitudinal and x − y plane wave numbers, respectively. βðrÞ0;5σ and βðaÞ0;5σ are the excluded values of β0 to 5σ confidence derived from
fitting to the resonant and antiresonant modes, respectively.

λ ¼ Xn;m;p ωr=2π (Hz) ωa=2π (Hz) Qλ (106) Rλ (Ω) meff (mg) κλ (10−4 C=m) βðrÞ0;3σ βðaÞ0;3σ

B3;0;0 5 505 406 5 505 613 54.7 2.9 8.5 13.6 62.4 27 971
C5;0;0 8 392 263 8 392 296 106.5 5.36 7.37 8.27 777.8 13 190
B5;0;0 9 151 797 9 151 853 60.5 5.9 6.04 9.87 178.9 4 426

IMPROVED CONSTRAINTS ON MINIMUM LENGTH MODELS … PHYS. REV. D 108, 102006 (2023)

102006-5



these bounds by three orders of magnitude thanks to the
improved accuracy of the analysis in which Eq. (5) is fit to
experimental data, as well as the operation of the resonator
in a cryogenic environment.

V. DISCUSSION

It is acknowledged that tight bounds of β0 ≪ 1 have been
proposed [25] by reusing results from dated experiments
measuring the period of heavy pendulums [47,48]. However,
the lack ofmetrological treatment in these experiments limits
the quantitative significance of these results [32]. Forgenuine
validation of these bounds such experiments would need to
be repeated in a controlled context: where system frequency
stability, external environmental influences, and spurious
mode induced nonlinearities can be measured.
Multiple discussions around the physical conclusions

that can be drawn from experimental tests of minimum
length remain highly active and seemingly problematic. As
mentioned above, the application of the GUP to center-of-
mass coordinates is uncertain. In the case that GUP induced
effects in macroscopic bodies are to be suppressed by either
particle number or the number of elementary interactions,
the results presented in this work would be scalable and
remain of large significance as the most stringent metro-
logical bounds to date. It has also been noted [26] that the
phenomenological model which leads to (5) suggests large
deviations from the classical trajectories of astronomical
objects, possibly leading to conclusions such as β0 dis-
playing some mass dependence. In this case it becomes
well motivated to explore minimum length over a varying
range of mass. The quartz BAW resonator thus presents an
attractive platform for such explorations thanks to a large
density of overtone modes giving access to the effective
mass regime of a few milligrams and below.
An additional complication arises as exclusion of β0,

based on the model of Eq. (4), approaches bounds ofOð1Þ.

The chosen representation of the physical position and
momentum operators is a perturbative approach that
recovers minimum length for β0 ≫ 1. A more exact non-
perturbative treatment is therefore necessary for smaller
length scales [17]. As the results presented in this work
investigate β0 at an order of magnitude larger than β0 ¼ 1,
this perturbative approach is sufficient. Further to this
point, the conclusions that should be drawn by these results
are an exclusion bound on the potential scale of minimum
length intervention in macroscopic systems and not any sort
of confirmation of the GUP approach or phenomenology.
These arguments motivate the need for further experi-

mental investigation into the behaviors of center-of-mass
modes of macroscopic bodies close to the quantum regime.
Exploring the classical to quantum transition in mechanical
resonators with minimal decoherence to the external envi-
ronment could reveal further insights into GUP implications
of composite systems as well as other quantum phenomena
such as spontaneous wave function collapse [49–51].
Previous work has been undertaken in bringing low noise
nanomechanical resonators into the quantum regime through
various cooling procedures [52–57], setting the stage for the
confirmation of purely quantum phenomena in composite
particle systems [58]. Further development of quantum
limited mechanical devices of even larger mass is ongoing
[59]. Thus, pushing the quartz BAW platform to single
phonon occupancy, which would be attainable for ω >
200 MHz in a 10 mK thermal environment, is an ideal next
step towards the demarcation of the quantum-classical limit.

VI. CONCLUSIONS

In summary, minimum length has been tested by explor-
ing the effect of the GUP on the center-of-mass mode of a
macroscopic quartz BAW resonator. Constraints on the
minimum length order parameter β0 have been placed to
3σ confidence by fitting to the observed frequency pertur-
bations of the resonant and antiresonant modes of several
crystal resonances. The constraints derived in this work
improve upon the previous most stringent limits obtained
with dedicated metrological systems by at least three orders
of magnitude, thanks to an improved analysis technique as
well as a low noise cryogenic operating environment. As
further bounds on β0 by macroscopic resonators approach
the theoretically predicted regime of β0 ¼ 1, stringent
approaches and analysis will become necessary in order
to draw physical conclusions.
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FIG. 4. Exclusion limits from this work are plotted as well as
the previous best limits generated by the sapphire mechanical
resonator of Ref. [32]. Also shown is a previously projected
estimate for the sensitivity attainable with an LD-cut quartz
resonator.
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