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The Genetically Evolved NEutrino Telescopes for Improved Sensitivity project seeks to optimize
detectors in physics for science outcomes in high-dimensional parameter spaces. In this project, we
designed an antenna using a genetic algorithm with a science outcome directly as the sole figure of merit.
This paper presents initial results on the improvement of an antenna design for in-ice neutrino detectors
using the current Askaryan Radio Array (ARA) experiment as a baseline. By optimizing for the effective
volume using the evolved antenna design in ARA, we improve upon ARA’s simulated sensitivity to
ultrahigh energy neutrinos by 11%, despite using limited parameters in this initial investigation. Future
improvements will continue to increase the computational efficiency of the genetic algorithm and the
complexity and fitness of the antenna designs. This work lays the foundation for continued research and
development of methods to increase the sensitivity of detectors in physics and other fields in parameter
spaces of high dimensionality.
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I. INTRODUCTION

The high-dimensional parameter spaces of detector
design problems motivate using a heuristic to improve
upon designs made using traditional techniques. A heuristic
is a computational method for efficiently finding a high-
quality solution to a given problem without evaluating all
possible solutions. In particular, the design of antennas for
ultrahigh energy (UHE) neutrino detection has explicit
constraints and a high-dimensional parameter space, mak-
ing it well suited for heuristic optimization. Given the
immense scale of these experiments and the low flux of
UHE neutrinos, each detector element must be designed to
return the best science outcome for its cost.

The Genetically Evolved NEutrino Telescopes for
Improved Sensitivity (GENETIS) project aims to optimize
the science outcomes of detector designs in high-
dimensional parameter spaces to advance the field of
physics. As a first application, GENETIS has produced a
genetic algorithm (GA) [1] that evolves antenna geometries
optimized for UHE neutrino detection in a six-dimensional
parameter space. GENETIS applies a heuristic optimization
method for designing an antenna using a science outcome
as the sole measure of fitness.
This paper presents initial results from GENETIS on the

improvement of antenna designs used in UHE neutrino
experiments with a limited number of parameters. This
study aims to provide a proof of concept for using GAs to
optimize detectors for science outcomes.
GENETIS chose to use GAs, among other potential

computational intelligence and machine learning algo-
rithms, for antenna design because of their effectiveness
at complex optimization problems, especially when many
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optima could exist [2]. GAs are also often more transparent
than other methods, such as machine learning optimization
techniques, which allows for an intuitive understanding of
how the algorithm arrived at a final result. Searching the
six-dimensional parameter space explored in this inves-
tigation using increments of the size necessary to find a
peak fitness score would require the evaluation of more
than 108 designs. By contrast, the GA used here needed
only 1550 designs to search the parameter space.
The use ofGAswas initiallymotivated by theNASAST-5

antenna, in which a GA designed a simple segmented
wire antenna for satellite communications [3]. Many other
examples of antenna design optimization using GAs
exist, including Yagi-Uda antennas [4], electrically loaded
wire antennas [5], broadband cage antennas [6], planar
antennas [7], pyramid horn antennas [8], ultrawideband slot
antennas [9], helical antennas [10], patch antennas [11],
adaptive antennas [12,13], and others [14].
GAs have previously been used in the design of various

detectors and experiments, although rarely to optimize for a
science outcome directly [15,16]. A horn antenna was
designed using a GA optimized for the detection of cosmic
microwave background radiation [17]. Both the Long-
Baseline Neutrino Oscillation experiment and the Deep
Underground Neutrino Experiment employed GAs to opti-
mize the design of neutrino beamlines using simulations of a
science outcome to determine the fitness [18,19]. GAs have
also been used to optimize the layout of detectors, sensors,
shielding, and trigger optimization [20–24].
Here, we report on the initial evolution of bicone antennas

for use in radio UHE neutrino detection experiments. Using
the simulated sensitivity of the antennas to neutrino inter-
actions as the fitness score, we evolved antennas that exceed
the performance of antennas now in service. This paper
begins with a brief background discussion of GAs and UHE
neutrino detection. Next, a description of the antenna
geometry used and the associated constraints is given in
Sec. IV. In Sec. V, the GENETIS GA is presented in detail.
Next, the results and subsequent discussion are presented.
Finally, the conclusion and future steps of the GENETIS
project are given. Appendix A provides the derivation of a
single frequencymatching circuit. AppendixB discusses the
steps taken to investigate and optimize the parameters of the
GA. Additional gain patterns are provide in Appendix C to
supplement those in Sec. VI. An evolution of a symmetric
biconical antenna is given in Appendix D for comparison to
the results of this paper.

II. GENETIC ALGORITHMS

A GA is an optimization technique that applies natural
selection to generate populations of individuals so that they
evolve toward an improved outcome [25–34]. Individuals
are defined solely by their genes, which are a set of values
representing the individual’s characteristics. These genes
form the parameter space that the GA explores. The

population of individuals makes up a group of potential
solutions to the problem. An individual is assessed based
on its fitness score, which is the objective score that the
algorithm is designed to maximize. This fitness score is the
criterion used by the GA to select individuals to pass their
genes to the next generation. For example, a GA may be
used to optimize for the largest volume of a box-shaped
container given a constant surface area. The fitness score
would then be the volume of the box, which becomes
higher as the box evolves into a cube.
Each new generation of individuals is created by first

selecting individuals from the prior generation to form
the new individuals. These “selection methods” are prob-
abilistic in nature, incorporating the fitness score of the
individuals to promote the selection of better performing
individuals. After individuals are selected, modifications are
performed on their genes to form the new individuals that
populate the next generation. These techniques are called
genetic operators [35] and are discussed in detail in Sec.V C.

III. UHE NEUTRINOS

One important missing piece of particle astrophysics is
the detection of UHE neutrinos with energies above about
1017 eV [36]. Neutrinos do not carry an electric charge and
are weakly interacting, which means they can be traced
back to their source more readily than other cosmic
particles. However, the properties that make neutrinos
resilient communicators also make them extremely difficult
to detect. Their low flux of approximately tens of UHE
neutrinos per km2 per year per steradian [37–40], and their
interaction lengths of order 1000 km in the earth [41,42]
necessitates that experiments view on the order of
∼100 km3 to detect a single UHE neutrino in a year.
Many experiments are employing antenna arrays to detect

Askaryan radiation produced when a neutrino collides
within a large dielectric volume (such as ice in Antarctica
or Greenland) [43,44]. The resulting shower moves through
the ice faster than the speed of light (in ice), creating a cone
of Askaryan radiation. These experiments include ANITA
and PUEO, ARA, ARIANNA, and RNO-G, which use a
variety of different antenna types [40,45–49].Differing from
optical-Cherenkov experiments such as IceCube, Askaryan-
focused experiments seek to explore higher energies, cur-
rently with best constraints above 1019.5 eV.
ARA is located at the South Pole, a few kilometers from

the IceCubeNeutrinoObservatory. It consists of five stations
buried in theAntarctic: one prototype station 100mdeep and
four stations 200 m deep [50]. Each station consists of four
measurement strings, which consist of two vertically polar-
ized antennas and two horizontally polarized antennas, for a
total of 16 antennas per station. Themeasurement strings are
located approximately 20mapart, forming a square [50–52].
ARA uses two different antenna designs to detect

vertically polarized (Vpol) signals and horizontally polar-
ized (Hpol) signals. ARA antennas must be designed to fit
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in narrow holes drilled in the ice. The ARA antennas are
broadband, with the Vpol antennas being birdcage bicones
(13.9 cm diameter) with bandwidth 150–850 MHz, while
the Hpol antennas are ferrite-loaded quad-slot antennas
(12.7 cm diameter), with bandwidth 200–850 MHz
[50–52]. This work uses ARA as a test case, evaluating
antenna performance with ARA simulation software and
comparing the evolved designs to the ARAVpol antennas.

IV. THE ASYMMETRIC BICONE ANTENNA

The results presented in this paper involve the evolution
of an asymmetric bicone antenna, as illustrated in Fig. 1. A
bicone antenna consists of two cones with openings facing
opposite directions. This shape was chosen because it is
similar to antennas currently deployed in the ARA experi-
ment and has a broadband response, which is desirable for
the detection of the broadband Askaryan emission. The
asymmetric bicone used here is entirely defined by six
genes (parameters): the inner radius (r), the length (L), and
the opening angle (θ) for the top and bottom cones. A single
individual in the GA is an antenna design given by these six
parameters.
An asymmetric design was chosen for this work because

the additional genes give a larger parameter space to
explore than a symmetric design. In the interest of
comparison, an evolution of symmetric antennas was
conducted and is shown in Appendix D.
The GA constrains the diameter of the antennas to 15 cm

to match the diameter of the ARA boreholes [53]. The outer
diameter of the antenna is therefore prevented from being
larger than the ARA borehole width (both during initial-
ization and in later generations). While no required bore-
hole diameter clearance (the distance between the antenna
and the borehole) was specified in the GA, ARA uses a

borehole clearance of 1.1 cm for theVpol antennas and2.3 cm
for the HPol antennas [51]. Future experiments may drill
larger boreholes (over 28 cm in diameter) [54]. This would
improve antenna sensitivities since larger and more complex
designs could be created (from the perspective of the GA,
therewould be a greater parameter space to explore).Here,we
maintain the same borehole diameter that ARA currently uses
to directly compare to ARA’s Vpol antenna design.
In this initial investigation, the GA also constrains the

minimum full length to be 75 cm (37.5 cm for each cone).
Note that this requirement does not allow for the length of
the current ARA bicone antennas, which have a full length
of 50 cm. The length parameter space explored corresponds
to dipole antenna resonance at frequencies lower than the
usual frequency range considered for ARA, although
biconical antennas operate in a wider band than their
resonance. Future work will decrease this minimum length
to 10 cm to fully explore the parameter space.

V. THE GENETIC ALGORITHM

Figure 2 presents a schematic of the GENETIS algo-
rithm. An initial population is generated, and this begins an
iterative cycle where a new generation is produced by
selecting individuals from the prior generation and using
variants of those individuals’ genes to form the next
generation. The process repeats until predetermined termi-
nation requirements are met. The following sections
describe the GENETIS GA in more detail.

A. Initialization

The first population is initialized by selecting values for
the six genes for each individual from a uniform distribu-
tion with a mean similar to the current ARA design. The
parameters for the initialization can be seen in Table I. The
aforementioned simulation constraint gives the minimum
length. Using the minimum radius and length, the maxi-
mum angle is calculated as the angle that will cause the
antenna width to equal the borehole diameter.

B. Fitness calculation

Once every individual in a generation is defined, the
fitness score of each individual must be determined. The

FIG. 1. A schematic of an asymmetric bicone antenna. The
lengths (L1, L2), inner radii (r1, r2), opening angles (θ1, θ2), and
separation distance (s) fully define the geometry. In the results
presented here, the separation distance was held constant, and the
other six parameters were varied.

FIG. 2. A diagram of the GENETIS work flow used to evolve
antennas. The boxes on the far left and right give the beginning
and end of the loop. The two central boxes represent the fitness
calculation and the bottom two boxes represent the creation of the
next generation.
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fitness score is a measure of performance evaluated for each
individual in a generation and is used by the tournament and
roulette methods (see Sec. V C). A higher fitness score
indicates that the individual performed better. The calcu-
lation of fitness scores is a multistep process that involves
two main programs integrated with the GA. First, the gain
pattern of each individual is simulated. Then, a measure of
the ARA detector’s sensitivity to neutrino-induced radio
signals is calculated by running a neutrino detection sim-
ulation software using the individual for the Vpol antennas.
This measure of sensitivity is the final fitness score.
The first step in evaluating the fitness of an individual is

to model its geometry in XFdtd, a commercial electro-
magnetic simulation software by Remcom [55]. XFdtd
simulates the antenna response at 60 different frequencies
(equal steps from approximately 100 to 1000 MHz) at each
azimuth-zenith coordinate (in steps of 5°). An antenna’s
gain is a measure of how efficiently it converts received
radio waves from a given direction into power. XFdtd
calculates the far-zone absolute gain (hereafter referred to
as simply “gain”) of an antenna at a specific (θ;ϕ)
coordinate using Eq. (1) [56]:

G ¼ 2πr2jẼðθ;ϕÞj2
ηP0

: ð1Þ

Here, G is the absolute far-zone gain [57] of the antenna in
a specific direction, which XFdtd reports in dBi. Ẽðθ;ϕÞ
gives the complex electric field incident on the antenna
from the (θ;ϕ) direction, η is the wave impedance in the
medium (377 Ω in free space), r is the distance between the
power source and the sensors in the simulation (1 m), and
P0 is the power accepted by the antenna. Antenna gain is
related to the antenna’s effective area by [58]

G ¼ 4π

λ2
Ae: ð2Þ

Note that Eqs. (1) and (2) are not the fitness score that
will be used to evaluate an individual antenna’s
performance.
For the second step in calculating the fitness score, a

neutrino detection simulation program called AraSim is
used to measure the performance of the antenna [39].
Developed by the ARA Collaboration, AraSim can model
neutrinos with energies between Eν ¼ 1017–1021 eV [39].
AraSim simulates high-energy neutrino interactions in the
Antarctic ice that produce electromagnetic and hadronic

showers resulting in the production of Askaryan radiation.
AraSim uniformly distributes these interactions within a
cylindrical volume with a 3 km radius centered around the
detector [39]. The direction of the incoming neutrino is
uniformly distributed over a solid angle of 4π. The radio
emission propagation is modeled using ray tracing, which
determines the path length from the interaction to the
detector. The ray tracing models the depth-dependent index
of refraction of the ice, which is n ¼ 1.3 at the surface to
n ¼ 1.8 at 200 m deep [39]. The simulation includes both
the direct and refracted ray solutions [59]. Because of this
variable index of refraction, the electromagnetic waves
emitted from the interaction bend en route from the
interaction point to the antenna. AraSim then calculates
the polarization, viewing angle, and travel time at the
receivers, and then models the system electronics, noise
waveforms, and time-domain trigger [39].
GENETIS determines an individual’s fitness score with

AraSim by setting the response of the Vpol antennas to the
individual’s response generated by XFdtd for each of the 60
frequencies simulated. The sensitivity produced by
AraSim, known as the effective volume, is used as the
individual antenna’s fitness score. The effective volume is a
common quantity used to assess detector sensitivities in
neutrino detection experiments making it a natural and
convenient metric for antenna performance. Since the
effective volume is directly proportional to the number
of neutrinos detected, we can directly use it as the fitness
score. The effective volume ½VΩ�eff is given by [37]

Fitness Score ¼ ½VΩ�eff ¼ 4πVice
Ndetected

Nsimulated
; ð3Þ

where V ice is the total volume of ice simulated in AraSim,
Ndetected is the total number of neutrinos detected, and
Nsimulated is the total number of neutrinos simulated. In this
analysis, V ice is given by a cylinder around the detector
with a radius of 3 km and a total volume of approximately
85 km3. For each individual, Nsimulated is 3 × 105 neutrinos
with an energy of 1018 eV. This energy was chosen
because it is in the region of energies where ARA is
expected to be most sensitive, as shown in Fig. 31 of [47].
Simulating this number of neutrinos gives a standard
deviation of 0.2 km3 sr in the effective volume.
The calculation of the fitness scores is a computation-

ally heavy process and is conducted using cluster com-
puting at the Ohio Supercomputing Center. The process is
parallelized to spread Nsimulated across 10 different jobs for
each individual, allowing each job to be completed in
approximately six hours. Because of limitations on con-
currently running jobs, the fitness score calculation takes
12 hours in total per generation when evolving 50
individuals per generation and generating 3 × 105 neu-
trinos per individual.

TABLE I. Range of uniform distributions used for each gene.

Gene Minimum Maximum

Length (cm) 37.5 140
Radius (cm) 0.0 7.5
Opening angle (degrees) 0.0 11.3
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C. New generation creation

Roulette and tournament were the selection methods
used in this GA. Roulette selection, also known as fitness
proportionate selection, is where the probability of an
individual being selected as a parent for the new generation
is proportional to their fitness score [60]. In tournament
selection, a subset of individuals is selected, and the one
with the highest fitness score is selected as a parent [29,61].
Three genetic operators were then used: reproduction,

injection, and uniform crossover. Reproduction uses a
selection method to obtain one parent and passes that
individual directly to the next generation. The injection
operator generates entirely new individuals that are not
derived from any parents. Uniform crossover takes two
parents from the prior generation and generates a child
whose genes each have a fifty percent chance of coming
from each parent [62].
The proportions of individuals for which each of the

selection methods and genetic operators were used were
found through an optimization analysis. Different combi-
nations of selection methods and genetic operators were
tested through an exercise where an asymmetric bicone
with the same six parameters as used here evolved to a
predetermined geometry. The results presented here use the
GENETIS algorithm with 50 individuals over 31 gener-
ations. For each new generation, 80% of parents were
selected using roulette selection, and 20% were chosen
through tournament selection. Four individuals competed
in each tournament (the optimization analysis determined
that it should be 7% of the population). The new population
was generated using 72% crossover, 22% injection, and 6%
reproduction.

D. Loop and termination

After the second generation is created, the GA continues
to iterate and evolve individuals towards more optimal
solutions. The loop was allowed to continue to run until it
appeared that the growth in the average fitness score had
plateaued and was terminated at generation 31. Tests using
the optimization analysis have shown that the majority of
growth should occur by approximately the 30th generation,
so a plateaued mean around generation 30 indicates that
there is little or no growth remaining.

VI. RESULTS

A. Results from evolution

The results of the evolution are presented in the violin
plot in Fig. 3 showing clear evolution toward improved
solutions. For each generation, the range of fitness scores is
illustrated by the height of the violin. The top point of each
generation shows the highest fitness score of that gener-
ation. The width of each violin represents the density of
individuals with that score. The solid orange line shows the
mean of the population, with the standard deviation on the

mean represented by the orange shading, and the dashed
green line shows the median, which is useful for under-
standing the convergence of the population. Lower-scoring
individuals are still present throughout the entire evolution,
despite the average and maximum fitness scores improving
beyond the initial generation. This is primarily due to the
injection operator, which continually introduces new diver-
sity to the population to prevent early convergence to local
maxima [63]. The fitness scores used in the loop have an
error of approximately 0.2 km3 sr, which comes from the
statistical uncertainties on the results from the AraSim
Monte Carlo simulation.
The best performing individual found during the evolu-

tion was individual 8 from generation 23, with a fitness
score of 5.25� 0.2 km3 sr. After the conclusion of the
evolution run, we assessed the top five best performing
individuals with improved statistics. With a factor of 10
increase in the number of neutrinos simulated, the best
performing individual remained the best performing indi-
vidual within uncertainties, with a fitness score of
4.95� 0.04. To more accurately measure the improvement
of the individual’s performance over ARA’s existing bicone
antenna, we resimulated the highest scoring individual with
a factor of 100 more neutrinos in AraSim. The best
individual from the evolution produced a fitness score of
4.90� 0.1 km3 sr, while the ARA bicone produced a score
of 4.38� 0.02 km3 sr. This represents an 11% improve-
ment over the current Vpol design.
Figure 4 is a parallel coordinate plot that illustrates the

genes and fitness scores of each individual in the evolution.

FIG. 3. Initial results of GA. Each distribution represents the
entire range of scores in the generation, while width indicates the
density of scores. The current ARA Bicone Fitness is shown as
the horizontal dotted line.
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An individual is represented by a jagged line spanning the
width of the plot, with the value of each of the individual’s
genes represented by the line’s height on the vertical axes.
The color of the line represents the individual’s fitness
score. The collection of yellow lines following a common
path demonstrates the effectiveness of the GA at converg-
ing in later generations to higher-scoring individuals with
similar design parameters.
Figure 4 also shows general trends in each of the genes

and their impact on the fitness score. For example, most
high scoring antennas share similar values, with the open-
ing angles of the top cone (A1) being under 1 degree, the
length of the bottom cone (L2) being less than 50 cm, and
the angle of the bottom cone (A2) being between 4 and
6 degrees for high scoring antennas. However, the other
parameters have a larger spread in viable values, with the
radius of the top cone (R1) being spread across the entire
parameter space for high-scoring individuals. The fitness
score was not expected to depend highly on the inner radii
because even the largest permitted radius was still smaller
than any of the wavelengths simulated.
Figure 5 shows a three-dimensional (3D) model of the

highest performing antenna evolved in this work. Notice
that the top cone of the antenna is longer than the bottom,
has a larger inner radius, and has a smaller opening angle.

This is also true of the next best antennas, which had similar
genes to the highest performing individual. Of the five
highest scoring antennas, only a combined three genes (out
of thirty) were more than 5% different from the highest
scoring individual.
The genes and fitness score of the top individual are

represented as the top bold row in Table II, along with the
genes and fitness scores of the next top four performing
individuals. The fitness scores listed in Table II are from re-
simulation using 3 × 107 neutrinos for the top individual,
and 3 × 106 neutrinos for the other four.

B. Comparing gain and realized gain

As discussed in Sec. V B, an antenna’s gain is calculated
in XFdtd using Eq. (1). While the antenna gain is not the
fitness score, AraSim uses it to evaluate the fitness score. In
addition to calculating the antenna gain that assumes
perfect matching, XFdtd also calculates the realized gain.
Realized gain accounts for the reflection of a received
signal due to an impedance mismatch [57]. The results in
Sec. VI B were generated using the gain assuming perfect
matching. The reflection coefficient affects the power that
reaches the antenna P0. Given a power PM reaching the
matched transmission line, we have [58]

P0 ¼ PMð1 − Γ2Þ; ð4Þ

where Γ is the reflection coefficient. Minimal reflection
occurs when the load and characteristic impedances are
equal, as the reflection coefficient, given by

Γ ¼ Za − Z0

Za þ Z0

; ð5Þ

which is minimized when Za ¼ Z0. The realized gainGR in
XFdtd is given by the following equation, which replaces
P0 from Eq. (1) with PM:

FIG. 4. Evolution of the six antenna parameters optimized so
far, showing trends toward preferred features (bright yellow being
most fit).

FIG. 5. Model of the best antenna design, individual 8, evolved
in generation 23. This bicone is shown on its side here, with the
top side on the left. Other individuals are not shown because they
are not visually distinguishable from this one.

TABLE II. Genes and fitness scores of the top five individuals
from this evolution.

Cone

R1, R2 L1, L2 A1, A2 Score

(cm) (cm) (rad) (km3 sr)

Top 2.1 90.0 0.016 4.90� 0.01
Bottom 0.30 45.4 0.091

Top 2.1 90.0 0.016 4.93� 0.04
Bottom 0.30 45.4 0.091

Top 2.1 90.0 0.020 4.91� 0.04
Bottom 0.30 45.4 0.091

Top 2.1 90.0 0.020 4.91� 0.04
Bottom 0.24 45.4 0.091

Top 2.1 90.0 0.020 4.78� 0.04
Bottom 0.24 45.4 0.091
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GR ¼ 2πr2jẼðθ;ϕÞj2
ηPM

: ð6Þ

For this work, a simple matching circuit was designed to
match the impedance of the load to the source at 200 MHz,
as shown in the Simulation Program with Integrated Circuit
Emphasis (SPICE) schematic in Fig. 6 [64]. For the
neutrino energy used in this work, the maximum power
of the induced Askaryan radio signal occurs near 300 MHz
for hadronic showers and 100 MHz for electromagnetic
showers for events viewed within about 5 degrees of the
Cherenkov angle [65]. The matching frequency was chosen
to be 200 MHz because it is the frequency at which the
ARA signal chain has maximal sensitivity for a typical
Vpol receiving antenna [47].
Figure 6 is a schematic of a matching circuit for a

radiating antenna at a single frequency. It is important to
note that we are designing receiver antennas, but the
schematic in Fig. 6 is for a transmitting antenna. This is
because the antennas were modeled as transmitting anten-
nas in XFdtd. When we build antennas produced from the
GENETIS GA, we will use matching circuits that we will
design for receiver antennas where the antenna takes the
place of the source V and resistance Rs. The antenna
impedance is matched to the radiating source V, which had
an amplitude of 1 V, a Gaussian derivative waveform, and
an impedance of 50 Ohms.
Given a load impedance of Za ¼ Ra þ iXa, a source

impedance of Zs ¼ Rs, and an angular frequency of
ω ¼ 2πf, the inductance and capacitance of the matching
circuit components can be derived (see Appendix A)
to be [66]

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RaðRsR2

a − R2
sRa þ X2

aRsÞ
p

þ XaRs

ωðRa − RsÞ
; ð7Þ

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra

ω2ðRsR2
a − R2

sRa þ X2
aRsÞ

s
: ð8Þ

The impedance of the best antenna was determined to
be Za ¼ 311 − 197i Ohms at 300 MHz. Using Eqs. (7)
and (8) produce an inductance L ¼ 87.8 nH and a
capacitance C ¼ 3.82 pF for the circuit elements in Fig. 6.

The current ARA bicone achieves broadband matching
to 50 Ω by putting four lines of its 200 Ω input impedance
in parallel at the feed. Being part of the antenna design
itself, this matching was naturally included in the simu-
lation of the ARA bicones that we use to compare with our
results, where we use the realized gains.
Figure 7 compares the fitness scores of the individuals

from generation 23 when evaluated using the gain with
perfect matching to the fitness scores when evaluated with

FIG. 6. SPICE schematic of the matching circuit.

FIG. 7. Fitness scores using gain vs realized gain with a
matching circuit (blue circles) and without (red crosses).

FIG. 8. Antenna fitness score using perfect matching minus
antenna fitness score using realized gain for unmatched (red/dots)
and matched (blue/circles) antennas.
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the realized gain. For the realized gain, we use a custom
matching circuit for each individual designed as described
above for 200 MHz. Naturally, the performance decreases
when using realized gain; however, the matching circuit
mitigates this effect.
Figure 8 shows a histogram of the fitness scores for each

individual in generation 23 when calculated with gain
assuming perfect matching minus the fitness scores of those
individuals when calculated with realized gain for both
the unmatched and matched cases. The unmatched and
matched scores are, on average, 1.2 km3 sr and 0.6 km3 sr

lower than the scores evaluated with gain assuming perfect
matching, respectively. The highest performing individual
in generation 23 falls to 4.00 km3 sr when evaluated with
realized gain using the matching circuit. When applying the
matching circuit, four antennas still exceeded the ARA
bicone’s score of 4.38 km3 sr. Thus, there is still an
improvement when comparing the realistic performance
of evolved antennas with a matching circuit to the perfor-
mance of the ARA antennas. We note that, in the future, the
antennas will perform even better with a matching circuit
that is broadband.

FIG. 9. Antenna gain [Eq. (1)] for the evolved bicone (purple dashed line) and the ARA bicone (black dotted line) from XFdtd. Angles
are measured from the positive vertical direction. See Appendix C for gain patterns for frequencies from 500 MHz to 1 GHz.
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C. Physics interpretation of results

Here we interpret the previous results and investigate
potential physical reasons for the observed behavior. It is
important to determine what causes the improvement
observed in fitness scores to validate the results of the
GA. One notable difference between the antenna evolved
here and the one used by ARA is the asymmetry of the
geometry, which results in a qualitative difference in the
shape of the antenna responses. In this section, we examine
how the gain pattern of the evolved bicone compares to the
ARA bicone at different frequencies, the distribution of
incident angles of detected neutrinos, and how these results
connect to the evolved asymmetrical bicone design.
Figure 9 shows the gain patterns of the best performing

individual in the evolution, individual 8 in generation 23,
compared to the gain pattern of the ARAVpol antenna at
four frequencies. The beam patterns show modestly higher
peak gains (1–2 dB at low frequencies to a few dB at higher
frequencies). While at 200 MHz the peak gain is actually at
about 50° from the vertical, a preference for signals from
below the surface becomes evident at higher frequencies, as
can be seen in the 400 MHz gain pattern.
Figure 10 shows two histograms comparing the evolved

bicone and the ARA bicone for a simulation with 3 × 107

neutrinos at 1018 eV. The left panel of Fig. 10 presents the
number of detected neutrinos by ARAwhen the GENETIS
antenna and existing ARA Vpol antenna are used, binned
by the cosine of the zenith angle of the neutrino’s
originating direction, where cos θν ¼ 1 (θν ¼ 0°) indicates
that the neutrino originated from above the detector (down-
going). Few events are detected by ARA with a cosine

angle less than about −0.2 (θν more than about 100°) due to
the absorption of those events in the Earth. When the
GENETIS bicone is used, AraSim predicted 14% more
detected events with neutrino incidents at angles between
the horizontal and 37° below horizontal than with the
current ARA design.
The right panel of Fig. 10 also shows the number of

detected neutrinos, now binned by the cosine of the zenith
angle at which the RF signal is the incident on the antenna.
Here, cos θRF ¼ −1 (θRF ¼ 180°) indicates that the radio

FIG. 10. Histograms of the number of detected neutrinos (left) and radio frequency (RF) signals (right) by each bicone for 3 × 107

simulated events. These angles denote the direction in which the event is seen by the detector, making them defined the same as the
angles in Fig. 9. A RF angle of cos θRF > 0 would mean that the signal is the incident from the above horizontal.

FIG. 11. A down-going neutrino interacting in the ice below the
antenna, creating a particle cascade that produces Askaryan
radiation that is viewed by the antenna.

USING EVOLUTIONARY ALGORITHMS TO DESIGN ANTENNAS … PHYS. REV. D 108, 102002 (2023)

102002-9



signal is the incident from below. ARA with the evolved
bicone is predicted to detect more RF signals between
cosine angles of −0.2 and −0.6 (about 100–130° from the
vertical), meaning more signals were detected at angles
originating from events below horizontal. These results are
consistent with an improvement in the detection of down-
going neutrinos that interact in the ice and produce radio
signals that propagate up to the detectors. This is shown in
Fig. 11, where a down-going neutrino interacts in the ice
and creates a particle cascade.
We can see here that improvements in the antenna gain

pattern for signals from the upward direction seen in Fig. 9
do not produce a strong contribution to the improved
performance of the antenna for detecting neutrinos. This is
because for those events the radio signal would arrive from
above the horizon, and those events only account for about
10% of detected events, as shown on the right side
of Fig. 10.

VII. CONCLUSION

With these results, GENETIS presents the results of a
GA-designed antenna using a physics outcome as a
measure of fitness and lays the foundation for future
detector optimizations. We show that a GA evolving six
parameters of a bicone antenna can evolve a design that
results in an ARA detector with an 11% greater sensitivity
to in-ice UHE neutrino detection than one using the current
Vpol antennas. The improved design outperforms the
existing ARA Vpol antenna in detecting down-going
neutrinos that produce radio waves that propagate up
towards the detector.

VIII. FUTURE WORK

An antenna prototype of the best performing individual
will be fabricated through additive manufacturing using
industrial 3D printers capable of processing metals at
The Ohio State University Center for Design and
Manufacturing Excellence. This will allow us to compare
laboratory measurements to the results of the simulations
produced by GENETIS and therefore validate the optimi-
zation process. In future work, we will continue to evolve
improved antennas with the goal of doubling the current
ARA Vpol antenna sensitivity. If an evolved antenna
successfully improves on the current Vpol antennas by a
factor of 2, it will be deployed in-ice for further testing.
GENETIS plans to improve on this work to broaden the

parameter space while ensuring that results remain robust.
In general, as the parameter space is increased it will take
more generations for the GA to converge. More individuals
can ensure that the breadth of the parameter space is
covered and help to prevent an early convergence of the
results. Additionally, in the future, we will simulate with a
predicted neutrino energy spectrum instead of using a
single energy. Decreasing the angle step size of the gain

pattern simulations would also provide a more accurate
result.
The GENETIS Collaboration is currently working on

several improvements to the GA to further improve
computational efficiency, convergence speed, and maxi-
mum fitness. First, we are introducing more complex
antenna geometries, such as bicones with nonlinear sides.
These antennas would require additional genes that
describe the coefficients of polynomials that represent
the shape of the sides of the bicone. This project is
underway, and the evolution of other types of antennas
will soon begin development, including the optimization of
the Hpol antennas and comparing the performance of the
evolved designs to the current ARA Hpol antenna. In the
future, we will be testing the effect of the borehole size on
the evolved fitness scores. We are also exploring the use of
additional and more advanced selection methods and
genetic operations, including rank selection and elitism.
Additionally, we will continue to refine our work flow to

improve the sophistication of our modeling, such as by
constructing broadband matching circuits for evolved
antennas. The construction of a single frequency matching
circuit can currently be automated in the loop, allowing us
to evolve using realized gain directly. We plan to fully
implement this with broadband matching circuits to more
realistically and efficiently evolve designs.
In the future, the GENETIS project will expand beyond

antenna design and explore other aspects of experimental
design and analysis, including detector layouts and trigger
optimization. As a first step toward this goal, we will
develop the capability to evolve the layout of an array of
antenna stations for UHE detection together with the
antenna designs. The GENETIS project will also expand
to employ different types of computational intelligence and
machine learning techniques and perform optimizations for
other experimental applications.
The successful deployment of GA-designed detectors

could pave the way for additional applications of optimi-
zation heuristics for the design of scientific instruments.
Expanded research in this area will streamline the opti-
mization of the design of many types of experiments across
fields for superior science outcomes.
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APPENDIX A: IMPEDANCE MATCHING

The following is a derivation of Eqs. (7) and (8) for the
elements of a single frequency matching circuit. We begin
with a source resistor with impedance Zs ¼ Rs and a load
(antenna) impedance Za ¼ Ra þ iXa.
In summary, we seek to use purely reactive circuit

components to minimize reflection and deliver all of the
power from the source to the load. To do this, we will first
construct a parallel subcircuit (the parallel inductor-load
resistor in Fig. 6), which has a resistance equal to the
resistance of the source resistor. In this case, the parallel
component will be an inductor.
This parallel subcircuit has impedance

Zp ¼ Rp þ iXp ¼
�

1

Ra þ iXa
þ 1

iωL

�
−1
; ðA1Þ

where iωL is the impedance of the inductor. We want to
find an inductance such that Rp ¼ Rs. We can rearrange
Eq. (A1) to solve for the impedance of the inductor:

iωL ¼ RpRa − XpXa þ iðXpRa þ RpXaÞ
Ra − Rp þ iðXa − XpÞ

: ðA2Þ

Equation (A2) gives the unknown L in terms of another
unknown Xp. To simplify, we can rewrite it as

iωL ¼ Aþ iB
Cþ iD

; ðA3Þ

using the substitutions

A ¼ RpRa − XpXa

B ¼ XpRa þ RpXa

C ¼ Ra − Rp

D ¼ Xa − Xp:

We can further rewrite Eq. (A3) so that the denominator
is purely real:

iωL ¼ ACþ BDþ iðBC − ADÞ
C2 þD2

: ðA4Þ

Since the impedance of the inductor must be purely
reactive (imaginary), we obtain a second equation to
constrain our two unknowns: ACþ BD ¼ 0. We substitute
D ¼ −AC=B into Eq. (A4) to obtain

iωL ¼ iB
C
: ðA5Þ

Using the condition D ¼ − AC
B , we can solve for Xp:

Xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RpR2

a þ X2
aRp − RaR2

p

Ra

s
: ðA6Þ

Finally, using Eq. (A6) in B, substituting B and C back
into Eq. (A5), setting Rp ¼ Rs, and solving for L
yields Eq. (7).
Using an inductor with inductance given by Eq. (7) gives

a parallel subcircuit with Zp ¼ Rp þ iXp ¼ Rs þ iXp.
Now, we will use a capacitor to offset the reactive
component of Zp so that Z ¼ Zp þ Zc ¼ Rs. This gives us

Z ¼ Zp þ Zc ¼ Rs þ iXp þ Rc þ iXc: ðA7Þ

Since Z should be purely real, the reactance of the
capacitor is given by

Xc ¼ −Xp: ðA8Þ

The reactance of a capacitor is Xc ¼ 1
ωC, so Eq. (A8)

gives us

C ¼ 1

ωXp
: ðA9Þ

Note that the capacitance is negative here. The negative
sign indicates that the capacitor serves to decrease the
circuit’s reactance. Substituting Xp from Eq. (A6) into
Eq. (A9) yields Eq. (8).
This process of impedance matching can be visualized

using a Smith chart [67]. Figure 12 [68] is a Smith chart
showing a load impedance ZL and a source impedance Z0.
The purple path connecting ZL to A represents the shunt
inductor we designed. The inductor in parallel with the load
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forms a subcircuit with a resistance equal to the resistance
of the source, represented by the red circle passing through
Z0 and A. The series capacitor, represented by the green
path, moves us along the red circle by changing the circuit’s
reactance until it matches the reactance of Z0.

APPENDIX B: OPTIMIZATION OF THE GA

The parameter values of the GENETIS GA used in this
work were chosen by optimizing the performance of a test
GA, which utilized a faster and simpler fitness function.
Besides the fitness function, the test GA is identical to the
GA used in the GENETIS loop. This allowed many
variations of the GA parameter values to be tested in a
short amount of time. The test GA does not optimize
antenna designs to improve their performance in a physics
experiment. Instead, it optimizes the parameters of the GA
itself, such as the fraction of individuals formed through
crossover, reproduction, and injection. This effectively
means that we are evolving the same antenna genes but
with a simpler fitness score that requires no simulation. Due
to the stochastic nature of GAs, each evolution with a given
set of GA parameters was repeated 10 times and the
average maximum fitness score of those ten runs was used
as the measure of the GA’s performance given those GA
parameters. This was used to determine which parameters
to use for the GENETIS GA.
The test GA uses a fitness score based on the antenna

geometry compared to a target geometry fitness score to
evaluate an antenna’s performance instead of results from
computationally expensive simulations. To do this, a single
bicone antenna was selected as the “reference” antenna.
The test GA generates populations in the same manner as
discussed in Secs. VA and V C. However, the antenna’s
fitness score is calculated by measuring how similar it is to

the reference antenna. The fitness score of an antenna is
given by

Fi ¼ 100 −
X

jRi − gij: ðB1Þ

Here, Fi is the individual’s fitness score, Ri is the value
of the ith gene of the reference antenna, and gi is the value
of the ith gene of the individual. Since the objective of the
test GA is to evolve to an antenna that is identical to the
reference antenna, the maximum fitness score is 100.
Because the fitness score is determined by an equation

instead of simulations, a single generation can be generated
and evaluated in less than 1 second. This allows a run of
100 generations to be executed in less than 2 minutes,
making it computationally inexpensive to evaluate the
performance over a wide range of possible parameters.
The testing procedures are highlighted in more depth

below. We held the parent selection methods constant,
given by results from a preliminary test. We then varied the
number of individuals generated through crossover, repro-
duction, and injection operators. Here, the fraction of
individuals generated through crossover was varied from
60% to 80% in step sizes of 10%. The fraction of
individuals generated through reproduction varied from
2% to 20% in step sizes of 2%. The remaining individuals
were generated using the injection operator (from 0% to
38% in step sizes of 2%). This test was run using 100
individuals in each generation over 30 generations and was
repeated 10 times for each combination of parameters.
The results of this optimization are presented in Fig. 13.

Each pair of red and blue bars represents the performance
of the test GA for the associated parameters, with the blue
bars representing the average of the highest fitness scores
achieved by each of the ten runs and the red bars
representing the absolute highest fitness score achieved
by any the ten runs. The GENETIS GA discussed in this
paper used the same ratio of operators to generate new
individuals as the run in this test with the highest average
maximum fitness score (rounded to align with a population
of 50 individuals rather than 100).
In addition to evaluating the optimal combination of

generative operators, the test GA was also used to test the
impact of the population size on performance. In this test,
the test GA was run 10 times for 30 generations with
population sizes of 50, 100, and 1000 individuals per
generation. The results are shown in Fig. 14. Note that
the fitness score used for this test was adjusted to vary from
0 to 1.
As expected, the performance of the GA improves with

larger population sizes. However, the increase in perfor-
mance grows logarithmically with population size. Because
of the linear increase in computational expense with
population size, a population size of 50 individuals is
justified as an efficient population size.

FIG. 12. Smith chart example matching load ZL to source
Z0 [68].
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FIG. 14. Overlapping bar chart showing the performance of the test GA for different population sizes. For this study the fitness score
was adjusted to range from 0 to 1.

FIG. 13. Overlapping bar plot of results from running the test GAwith various combinations of generative operator ratios. The labels
on the x axis indicate the percent of individuals formed through reproduction (“R”) and crossover (“C”), with the remainder coming
from injection. The results are arranged in descending order of performance as measured by the average maximum score (purple/
crosses) of ten runs using the labeled set of ratios. Note that the zero has been suppressed on this plot. While there is no guarantee that the
maximum score of a run is close to 100, no individual run in this test produced a maximum fitness score below 92.
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APPENDIX C: ADDITIONAL GAIN PATTERNS

In addition to those in Fig. 9 in Sec. VI, we have included additional gain patterns for the ARA and evolved bicones up to
1 GHz in Figs. 15 and 16.

FIG. 15. Gain patterns for the evolved and ARA bicones at 500–800 MHz.
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APPENDIX D: COMPARISON WITH EVOLUTION
OF SYMMETRIC ANTENNAS

In the interest of comparison, an evolution was run using
the same GA but holding the genes of the top and bottom
antenna to be equivalent, making a symmetric bicone. The
results of the evolution can be seen in the violin plot in
Fig. 17. Compared to the evolution of the asymmetric
antennas, this evolution shows a mean and median that

remain relatively flat over the 31 generations and close to
the ARA Vpol score.
The highest scoring individual from the symmetric run

was individual 3 in generation 30, with a fitness score
calculated during the run of 5.15� 0.2 km3 sr, compared
to 5.25� 0.2 km3 sr for the top individual from the
evolution of asymmetric antennas. After simulating the
top five individuals from the run again using 3 × 107

neutrinos, the best individual remained the best performing,
with a score of 4.78� 0.02 km3 sr, compared to 4.90�
0.02 km3 sr from the resimulation of the best individual
from the evolution of asymmetric antennas, showing that

FIG. 16. Gain patterns for the evolved and ARA bicones at 900 and 1000 MHz.

FIG. 17. Results of the GA for the symmetric evolution.
FIG. 18. A parallel coordinate plot of the genes in the
symmetric evolution.
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the improved fitness score from the evolution of asym-
metric antennas was significant. The best individual from
the evolution of the symmetric antennas had a 9% higher
fitness score than the ARAVpol antenna, compared to the
11% higher fitness score for the best individual from
evolution of asymmetric antennas. None of the resimulated
scores of the top five individuals from the evolution of
symmetric antennas had a higher fitness score than any of
the resimulated top five individuals from the evolution of
asymmetric antennas.
The parallel coordinate plot in Fig. 18 illustrates the

genes and fitness scores for each individual in the evolution
of symmetric antennas. Antennas with shorter lengths
performed best, which agrees with the results for the
bottom cone of the antennas in the evolution of asymmetric
antennas. This is also shown in Table III, which shows the

genes of the top five individuals from the evolution of
symmetric antennas. All of the top five individuals had a
length between 40 cm and 42 cm. The top five individuals
in the evolution of asymmetric antennas all had lengths of
approximately 45 cm.
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