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The interaction between the quantum vacuum and time-dependent boundaries can produce particles via
the dynamical Casimir effect. It is known that, for asymmetric Casimir systems, there is an imbalance in the
particle production on either side of the boundary. Here, we consider a real massless scalar field in (1þ 1)
dimensions interacting with a moving δ − δ0 mirror with time-dependent properties. The spectral
distribution and particle creation rate are computed, which now include an additional interference term
that can affect different parts of the spectrum in a constructive or destructive manner. The asymmetry of the
system is investigated by analyzing the difference in particle spectra produced on the two sides of the
mirror. Additionally, we also explore enhancement of the spectrum and its asymmetry within the context of
a stationary δ − δ0 mirror subject to multiple fluctuation sources.
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I. INTRODUCTION

A quantized field subjected to time-dependent boundary
conditions will interact (exchange energy) with the quan-
tum vacuum to produce real particles in a phenomenon
called the dynamical Casimir effect (DCE). Originally
introduced by Moore [1], and expanded upon by the works
of DeWitt [2], Fulling and Davies [3,4], and Candelas and
Deutsch [5], there is now an abundance of literature on
the DCE. See Refs. [6–8] for several detailed reviews of
this topic.
As shown by Moore in his pioneering work [1], there are

practical limitations for DCE experiments, as it is difficult
to overcome the physical limitations required to mechan-
ically oscillate materials at frequencies on the order of GHz,
as is required for measurable particle production [8–11].
While there have been several clever experimental propos-
als of mechanically induced DCE [12–17], there are still
many challenges to overcome [8]. This issue has led to the
proposal of alternative methods for observing particle
production due to the DCE. Inspired by some of the early
work done by Yablonovitch [18], a number of different
proposals have been introduced which show that a mirror
with time-varying material properties can give rise to the
DCE. In particular, the varying material properties will
introduce time-dependent boundary conditions in a similar
manner to physically oscillating the mirror [10,12,18–26].
Experimental evidence supports the real production of

particles from time-varying materials [11,27–29]. Most
notably, the first experimental DCE detection modulated
the inductance of a superconducting quantum interference
device (SQUID) to alter the electrical length of a super-
conducting circuit [11].
One of the more astounding consequences of quantum

vacuum interactions occurs when objects with asymmetric
boundary conditions are subjected to time-dependent fluc-
tuations [30–39]. Within the context of the DCE, it is
possible to construct a mirror whose surface properties on
either side of the mirror are different. This leads to an
asymmetric production of particles on either side of the
mirror in what is known as the asymmetric dynamical
Casimir effect (ADCE) [30]. One consequence of this
asymmetric production of particles is that a previously
stationary mirror will begin to move due to the unbalanced
radiation pressures between the two sides [31].
To model such an asymmetric system, a δ − δ0 potential

[31,32,40–46] (here δ is the Dirac delta) is used to simulate
a partially transparent mirror interacting with the (1þ 1)-
dimensional spacetime, or ð1þ 1ÞD, quantum vacuum.
Thus, the ADCE model becomes (hereafter c ¼ ℏ ¼ 1)

L ¼ 1

2
½ð∂tϕÞ2 − ð∂xϕÞ2� − ½μδðxÞ þ λδ0ðxÞ�ϕ2ðt; xÞ; ð1Þ

where μ is related to the plasma frequency and λ is a
dimensionless factor that controls the degree of asymmetry
in the system. The inclusion of the δ0 term is what gives rise
to the asymmetric boundary interaction, and so when λ ¼ 0
the asymmetry vanishes and the system reduces to a δ
mirror [40,47]. This asymmetry manifests in the reflection
and transmission coefficients that determine the scattering
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interactions between the mirror and the vacuum. This
asymmetry means that the reflection coefficients on each
side of the mirror will not be equivalent.
The δ − δ0 mirror has been investigated using the

standard DCE generation techniques, with both time-
varying materials properties [31] and fluctuations in mirror
position [32]. Here, we investigate the ADCE for a single
moving δ − δ0 mirror that possesses both sources for
particle creation. More precisely, we will examine the
interaction between the ð1þ 1ÞD real massless scalar field
and the time-dependent δ − δ0 mirror at the instantaneous
position of a moving mirror by computing the spectral
distribution and rate of particle production. With this, we
can investigate the degree of asymmetry in the system by
comparing the particle production by each of the two sides
of the mirror.
Given that the motion of the mirror and the varying of its

material properties can be viewed as two simultaneous and
distinct sources, interference effects will arise from the
interaction of the two sources and modify the total
spectrum and degree of asymmetry in the system [48].
This is not unexpected, as this emergent effect has been
seen in similar DCE systems [48–52]. In these systems the
relationship between the relative oscillation frequency and
phase difference of the distinct sources gives rise to
constructive and destructive interference in the spectral
distribution of created particles.
Highlighted in [48,49], the modified DCE spectrum,

now accounting for the interference between the two
sources, closely resembles the formula for the wave
intensity of the double-slit interference experiment (or
more generally, any monochromatic two source interfer-
ence). Specifically, the authors in [48] observe an analo-
gous formula relating the spectra of the distinct fluctuation
source and the interference term. We will also obtain a
corresponding formula, whereby we show that the asym-
metric components of the different spectra (spectral
differences) can also be related to each other in a similar
manner.
This paper is organized as follows. In Sec. II, we use a

scattering approach [53–55] to determine how the move-
ment of the mirror and its time-varying material properties
each modify the outgoing field as the mirror interacts with
the vacuum. In Sec. III, we compute the full spectrum of
created particles and the rate of particle creation, high-
lighting the contribution from an interference term that can
contribute in a constructive and destructive way. In Sec. IV,
we investigate the asymmetric contribution to the spectrum
and comment on how the different contributions to the
asymmetry are effected by the oscillation frequency of the
mirror’s time-dependent components. In Sec. V, we con-
sider a stationary, asymmetric δ − δ0 mirror with two
distinct sources modifying the mirror’s properties, explor-
ing the enhancement to the asymmetry of the system, and
generalizing this to a system with an arbitrary number of

distinct fluctuation sources. Final results are presented
in Sec. VI.

II. THE SCATTERING FRAMEWORK

We start by considering a mirror, at rest, interacting with
a real and massless scalar field in ð1þ 1ÞD. Due to the
presence of the mirror, fixed at x ¼ 0, we may decompose
the field as

ϕðt; xÞ ¼ ΘðxÞϕþðt; xÞ þ Θð−xÞϕ−ðt; xÞ; ð2Þ
where ΘðxÞ is the Heaviside step-function and ϕþ (ϕ−) is
the field on the right (left) side of the mirror. Since both of
ϕ� obey the Klein–Gordon equation individually, they can
be represented by the sum of two freely counterpropagating
fields. In the frequency domain these are

ϕþðt; xÞ ¼
Z

dωffiffiffiffiffiffi
2π

p ½ϕoutðωÞeiωx þ ψ inðωÞe−iωx�e−iωt ð3Þ

and

ϕ−ðt; xÞ ¼
Z

dωffiffiffiffiffiffi
2π

p ½ϕinðωÞeiωx þ ψoutðωÞe−iωx�e−iωt; ð4Þ

where the amplitudes of the incoming and outgoing fields
are labeled accordingly.
The incoming fields are unaffected by the mirror and

take the standard form

ϕinðωÞ ¼ ð2jωjÞ−1=2½ΘðωÞaLðωÞ þ Θð−ωÞa†Lð−ωÞ� ð5Þ

and

ψ inðωÞ ¼ ð2jωjÞ−1=2½ΘðωÞaRðωÞ þ Θð−ωÞa†Rð−ωÞ�; ð6Þ

where ajðωÞ and a†jðωÞ (j ¼ L, R) are the annihilation and
creation operators for the left (L) and right (R) sides of the
mirror. These operators obey the commutation relation

½aiðωÞ; a†jðω0Þ� ¼ δðω − ω0Þδij; ð7Þ

where δij is the Kronecker delta.
The ingoing and outgoing fields are linearly related as

ΦoutðωÞ ¼ SðωÞΦin; ð8Þ

where SðωÞ is the most general partially reflecting scatter-
ing matrix. Explicitly it is,

SðωÞ ¼
�
sþðωÞ rþðωÞ
r−ðωÞ s−ðωÞ

�
ð9Þ

where r�ðωÞ and s�ðωÞ are the reflection and transmission
coefficients, respectively. These totally describe the effect

GORBAN, JULIUS, RADHAKRISHNAN, and CLEAVER PHYS. REV. D 108, 096037 (2023)

096037-2



of the mirror on the fields. Here, we are making use of the
vectorized shorthand

ΦinðωÞ¼
�
ϕinðωÞ
ψ inðωÞ

�
and ΦoutðωÞ¼

�
ϕoutðωÞ
ψoutðωÞ

�
ð10Þ

to represent ingoing and outgoing fields. In any situation
where ΦðωÞ is used without a subscript, it can be assumed
that the given relation holds for both ingoing and outgoing
fields.
Up to this point, the properties of the mirror have

remained general. Henceforth, we will consider the mirror
interaction described by the asymmetric, partially reflected
δ − δ0 mirror, whose potential is given as

UðxÞ ¼ μδðxÞ þ λδ0ðxÞ: ð11Þ
Here, μ is related to the plasma frequency of the mirror and
λ is a dimensionless factor. The explicit form of the
scattering matrix transmission and reflection components
can be found to be [32]

r�ðωÞ ¼
−iμ0 � 2ωλ0

iμ0 þ ωð1þ λ20Þ
ð12Þ

and

s�ðωÞ ¼
ωð1 − λ20Þ

iμ0 þ ωð1þ λ20Þ
; ð13Þ

where we introduce the notations μ0 and λ0 to explicitly
denote these as the zeroth-order terms. This distinction
becomes important as we start to include perturbative
effects below.
Let us first begin with the derivation of the δ − δ0 mirror

undergoing mechanical oscillations about x ¼ 0. Scattering
is still linear with

Φ0
outðωÞ ¼ SðωÞΦ0

in; ð14Þ
in the comoving frame (denoted by primes). In this frame
the mirror is instantaneously at rest. The movement is
assumed to be nonrelativistic (jq̇ðtÞj ≪ 1) and limited by a
small amplitude, such that the mirror’s position becomes

qðtÞ ¼ ϵgðtÞ; ð15Þ
with jgðtÞj ≤ 1 and ϵ ≪ 1. To solve this in the laboratory
frame, we use the relation

Φ0ðt0; 0Þ ¼ Φðt; ϵgðtÞÞ ¼ ½1 − ϵgðtÞη∂t�Φðt; 0Þ þOðϵ2Þ;
ð16Þ

where η ¼ diagð1;−1Þ. Taking advantage of the fact that
dt0 ¼ dt to order ϵ2, (16) can be rewritten as

Φ0ðt; 0Þ ¼ ½1 − ϵgðtÞη∂t�Φðt; 0Þ: ð17Þ

We find that applying this transform to (14) in the
frequency domain yields

ΦoutðωÞ¼ S0ðωÞΦinðωÞþ
Z

dω0

2π
δSqðω;ω0ÞΦinðω0Þ; ð18Þ

where we suppress the evaluation of x ¼ 0 inΦðω; 0Þ going
forward. The first order S-matrix, δSqðω;ω0Þ, takes the
form

δSqðω;ω0Þ ¼ iϵω0Gðω − ω0Þ½S0ðωÞη − ηS0ðω0Þ�; ð19Þ

where GðωÞ is the Fourier transform of gðtÞ, and S0 is
the zeroth-order scattering matrix found from Eqs. (12)
and (13). This is in agreement with [32].
Now, let us solve the ADCE for the δ − δ0 mirror with

time-dependent μðtÞ. For this analysis, we assume that the
mirror is held at rest. Here we require fluctuations in μðtÞ
take the form of small oscillations about a fixed value μ0.
Specifically,

μðtÞ ¼ μ0½1þ ϵfðtÞ�; ð20Þ

where μ0 ≥ 1 is a constant and fðtÞ is an arbitrary function
such that jfðtÞj ≤ 1, with ϵ ≪ 1.
To find the modified outgoing field, we apply the field

equation of the system, determined by the potential (11), to
Eqs. (3) and (4). From here, the matching conditions can be
solved to the first order, where the final form of ΦoutðωÞ ¼
SðωÞΦin becomes

ΦoutðωÞ¼ S0ðωÞΦinðωÞþ
Z

dω0

2π
δSμðω;ω0ÞΦinðω0Þ: ð21Þ

The asymmetric correction that originates from the intro-
duction of fðtÞ takes the form

δSμðω;ω0Þ ¼ ϵαμðω;ω0ÞSμðω0Þ; ð22Þ

where

αμðω;ω0Þ ¼ −
iμ0F ðω − ω0Þ
iμ0 þ ωð1þ λ20Þ

ð23Þ

and

Sμðω0Þ ¼
�

sþðω0Þ 1þ rþðω0Þ
1þ r−ðω0Þ s−ðω0Þ

�
: ð24Þ

Here, F ðωÞ is the Fourier transform of fðtÞ. This is in
agreement with [31].
To summarize, we can now write the final form of the

field for the δ − δ0 with the two first order perturbations.
One that arises from fluctuations in position and another
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that arises due to fluctuations of a material property.
Explicitly,

ΦoutðωÞ ¼ S0ðωÞΦinðωÞ þ
Z

dω0

2π
δSμðω;ω0ÞΦinðω0Þ

þ
Z

dω0

2π
δSqðω;ω0ÞΦinðω0Þ; ð25Þ

with δSðω;ω0Þ ¼ ϵαðω;ω0ÞSðω;ω0Þ, where

αqðω;ω0Þ ¼ iω0Gðω − ω0Þ;
Sqðω;ω0Þ ¼ S0ðωÞη − ηS0ðω0Þ ð26Þ

for the fluctuation in position and

αμðω;ω0Þ ¼ −
iμ0F ðω−ω0Þ
iμ0 þωð1þ λ20Þ

; Sμðω0Þ ¼ J2 þ S0ðω0Þ

ð27Þ

for fluctuation in material properties. J2 is the 2 × 2
column-reversed identity matrix. These results of the
perturbation of the field due to the two separate fluctuation
sources will be used in the next section to compute the full
spectrum of particles for this mixed δ − δ0 system.

III. INTERFERENCE FOR A MOVING δ − δ0
MIRROR WITH TIME-DEPENDENT μðtÞ

The spectral distribution of created particles is given
by [56]

NðωÞ ¼ 2ωTr½h0injΦoutð−ωÞΦT
outðωÞj0ini�: ð28Þ

Assuming the incoming waves are vacuum states, and
making use of the following formula,

h0injΦinðωÞΦT
inðω0Þj0ini ¼

π

ω
δðωþ ω0ÞΘðωÞ; ð29Þ

the total spectral contribution becomes

NðωÞ ¼ 1

2π

Z
∞

0

dω0

2π

ω

ω0 Tr½δSðω;−ω0ÞδS†ðω;−ω0Þ�; ð30Þ

where δS ¼ δSμ þ δSq.
The spectrum can be decomposed into several distinct

contributions. Two result from the initial fluctuations in the
mirror’s position and properties, and a third results from the
interference between the two independent sources of
particle creation. Explicitly,

N�ðωÞ ¼ Nq�ðωÞ þ Nμ�ðωÞ þ Nint�ðωÞ; ð31Þ

where we decompose the spectral distribution such that
NðωÞ ¼ NþðωÞ þ N−ðωÞ, where NþðωÞ [N−ðωÞ] is the

spectrum produced on the right (left) half of the mirror.
The first independent contribution in Eq. (31) is due to the
movement of the mirror, given by

Nq�ðωÞ ¼
ϵ2

π

Z
∞

0

dω0

2π
ωω0jGðωþ ω0Þj2

× Re

�
iμ0ð1 ∓ λ0Þ2ðωþ ω0Þ þ 8λ20ωω

0 − 2μ20
ðiμ0 þ ωð1þ λ20ÞÞ½iμ0 þ ω0ð1þ λ20Þ�

�
;

ð32Þ

and the second term originates from the time-dependence
of μðtÞ of the material property of the mirror, given by

Nμ�ðωÞ ¼
ϵ2μ20
π

ð1� λ0Þ2ð1þ λ20Þ

×
Z

∞

0

dω0

2π
ϒðωÞϒðω0ÞjF ðωþ ω0Þj2; ð33Þ

where ϒðωÞ ¼ ω=½μ20 þ ω2ð1þ λ20Þ2�. These are in agree-
ment with [32,31], respectively. The last term describes the
interference effects in the system, taking the form

Nint�ðωÞ ¼
ϵ2μ0
π

ð1� λ0Þ2
Z

∞

0

dω0

2π
ϒðωÞϒðω0Þ

× 2½�μ20 − 2λ0ð1þ λ20Þωω0�
× Re½Gðωþ ω0ÞF �ðωþ ω0Þ�: ð34Þ

This term can exhibit both constructive and destructive
interference, which arises from the fact that the motion of
the mirror and its time-dependent properties act as two
distinct sources of particle creation [48].
To further investigate the particle creation due to the

interference term, we consider the typical functions used to
describe the motion of the mirror,

fðtÞ ¼ cosðω1tÞ expð−jtj=τÞ ð35Þ

and

gðtÞ ¼ cosðω2tþ ϕÞ expð−jtj=τÞ ð36Þ

where the frequencies of oscillation are ω1 and ω2, with τ
being the effective oscillation time of the system and ϕ is a
constant phase. Only the monochromatic limit is consid-
ered, with ω1τ ≫ 1 and ω2τ ≫ 1. In this limit the system
undergoes an effectively spatially symmetric motion about
its starting position. In the monochromatic limit [9,48,57]
we see

lim
τ→∞

jF ðωÞj2
τ

¼ π

2
½δðω − ω0Þ þ δðωþ ω0Þ�; ð37Þ
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where the same relation holds for GðωÞ. Using Eq. (37), we
see that

Nq�ðωÞ
τ

¼ ϵ2

4π
ωðω1 − ωÞΘðω1 − ωÞ

× Re

�
iμ0ð1 ∓ λ0Þ2ω1 þ 8λ20ωðω1 − ωÞ − 2μ20

ðiμ0 þ ωð1þ λ20ÞÞ½iμ0 þ ðω1 − ωÞð1þ λ20Þ�
�
;

ð38Þ

which is in agreement with [32], and

Nμ�ðωÞ
τ

¼ ϵ2μ20
4π

ð1� λ0Þ2ð1þ λ20ÞϒðωÞϒðω2 − ωÞ
× Θðω2 − ωÞ; ð39Þ

which is consistent with [31].
Due to the different oscillation frequencies of the inde-

pendent sources, ω1 and ω2, the calculation of the interfer-
ence termneeds to be carefully considered. From[48],we see
that the interference term Nint�ðωÞ=τ vanishes when
ω1 ≠ ω2, due to the term involving Re½GðωÞF �ðωÞ�=τ in
Eq. (34). However, when ω1 ¼ ω2 ¼ ω0 the interference
term becomes

Nint�ðωÞ
τ

¼ ϵ2μ0
2π

ð1� λ0Þ2½�μ20 − 2λ0ð1þ λ20Þωðω0 − ωÞ�
×ϒðωÞϒðω0 − ωÞΘðω0 − ωÞ cosϕ: ð40Þ

As previously noted, this spectrum exhibits both con-
structive and destructive interference. The exact manner of
this interference will depend on its material properties and
degree of asymmetry. In addition, the phase ϕ, from the
oscillation definition in (36), will alter the sign on the
interference term. From Eq. (40), it is easy to show that
the spectrum on the left side of the mirror, seen in Fig. 1,
will always have the same sign for any ω, thus we will only
have destructive interference if 0 ≤ ϕ < π=2 and construc-
tive if π=2 ≤ ϕ < π.
The spectrum of the right half of the mirror, seen in

Fig. 2, is more complicated, where we now see the only
region whose sign remains constant for any ω occurs when
λ0ð1þ λ20Þω2

0 < 2μ20. Again we see the interference effect
change for different phases, except now we have con-
structive interference if 0 ≤ ϕ < π=2 and destructive if
π=2 ≤ ϕ < π. However, when λ0ð1þ λ20Þω2

0 > 2μ20, we can
now solve for the two real roots (symmetrical with respect
to ω0=2) with the following equation,

2ω� ¼ ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 −

2μ20
λ0ð1þ λ20Þ

s
: ð41Þ

Note that ω� here represents only the positive and negative
roots for the right side of the mirror and does not denote a
frequency with respect to the two halves. For 0 ≤ ϕ < π=2,
the interference is constructive for ω < ω− and ω > ωþ
and destructive for w− < ω < ωþ, while the opposite
occurs if π=2 ≤ ϕ < π. In the limiting case of λ0ð1þ
λ20Þω2

0 ≫ 2μ20 the sign of the interference does not change,
with ω− → 0 and ωþ → ω0. In this regime the interference
of the right side of the mirror will be destructive if 0 ≤
ϕ < π=2 and constructive if π=2 ≤ ϕ < π.
The spectral distribution for each of the separate con-

tributions in Eqs. (42), (39), and (40) is limited by the
oscillation frequency, with no particles being produced

FIG. 1. The spectral distribution due to the interference term
Nint−ðωÞ=ð2ϵ2τπ−1Þ on the left half of the mirror (x < 0) for some
values of λ0, with μ0 ¼ 1 and ϕ ¼ 0.

FIG. 2. The spectral distribution due to the interference term
NintþðωÞ=ð2ϵ2τπ−1Þ on the right half of the mirror (x > 0) for
some values of λ0, with μ0 ¼ 1 and ϕ ¼ 0.
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with frequency greater than ω0 when the interference term
is involved. The spectrums are symmetric with respect to
ω ¼ ω0=2, as it is invariant under the change ω → ω0 − ω.
This is a consequence of the fact that particles are produced
in pairs, where one is produced with a frequency ω and the
other with frequency ω0 − ω [9,32,48,57,58].
Using the spectral distribution for the interference term

in Eq. (40), we are able to calculate how the rate of particle
production is affected by the addition of the interference
effect. The total number of created particles is given by

N ¼
Z

∞

0

dω
2π

NðωÞ; ð42Þ

whereby the particle creation rate is given by N =τ, with
N ¼ N q þN μ þN int. The independent contribution due
to the motion of the mirror can be expressed as

N q ¼ ðϵ2τω3
0=πÞF ðξÞ ð43Þ

where ξ ¼ ð1þ λ20Þω0=μ0 and

F ðξÞ ¼ AðξÞ þ BðξÞ ln½ξ2 þ 1� þ CðξÞ arctan ξ
6ξ3ð1þ λ20Þ2½ξ2 þ 4� : ð44Þ

The explicit form of AðξÞ, BðξÞ, and CðξÞ are lengthy and,
for brevity, are given in the Appendix. We will, however,
present the complete form of the creation rate solely
originating from the changing material properties of the
mirror, as its explicit form has not been published before.
We find that

N μ ¼ ðϵ2τω0=πÞGðξÞ; ð45Þ

where

GðξÞ ¼ ðξ2 þ 2Þ ln½1þ ξ2� − 2ξ arctan ξ
2ξ2ðξ2 þ 4Þ : ð46Þ

The particle creation rate due to the time-varying boundary
conditions takes a near identical form of the creation rate of
a mirror described by the time-varying Robin boundary
condition. These two cases can be related to each other
under the condition λ ¼ 1, with γ0 ¼ 2=μ0 being the Robin
parameter [32]. Under these conditions, the creation rate for
the δ − δ0 mirror with fluctuating properties can be related
to that of the stationary, time-dependent Robin mirror
via N μ ¼ ω2

0N γ .
The interference term (40) takes the form

N int ¼ ð2ϵ2τλ0ω3
0 cosϕ=μ0πÞIðξÞ; ð47Þ

where

IðξÞ ¼ ξðln½1þ ξ2� − 4 − ξ2Þ þ 2ð2þ ξ2Þ arctan ξ
ξ3ðξ2 þ 4Þ : ð48Þ

We can compare this result to that of the interference in the
creation rate of the moving, time-dependent Robin mirror
[48]. Just as before, with λ ¼ 1 and γ0 ¼ 2=μ0, we find that
the interaction creation rates are nearly identical, up to an
overall factor of −2ω0. From Eq. (47), it is evident that the
nature of the interference will depend on the value of ξ and
the phase angle ϕ. When 0 ≤ ϕ < π=2, the interference is
constructive for 0 < ξ < 2.23 and destructive for ξ > 2.23.
The reverse occurs for when π=2 < ϕ ≤ 2π. The value of
ξ ≈ 2.23 is consistent when compared to the inflection
point of the moving, time-dependent Robin mirror. This is
not unexpected, as this value corresponds to a general
inhibition of particle creation for the Robin mirror [32,48].
For this specific value of ξ, GðξÞ ¼ 0. The interference
creation rate will completely vanish when ϕ ¼ π=2.

IV. ASYMMETRIC PARTICLE PRODUCTION

In order to quantify and understand the asymmetry
present in the mixed δ − δ0 system, we will investigate
the difference in particle spectrum by the two sides of the
mirror. This quantity, ΔNðωÞ ¼ N−ðωÞ − NþðωÞ, is a
useful tool in quantifying the ADCE spectrum. For the
simplicity, and the sake of a comparison, we will use
ω1 ¼ ω2 ¼ ω0. Just as we presented in (31) we can present
the total difference between the two sides as

ΔNðωÞ ¼ ΔNqðωÞ þ ΔNμðωÞ þ ΔNintðωÞ: ð49Þ

The spectral difference for the particle spectrum generated
by the motion of the mirror

ΔNqðωÞ
τ

¼ ϵ2

π
ω2
0μ

2
0λ0ð1þ λ20ÞϒðωÞϒðω0 − ωÞΘðω0 − ωÞ

ð50Þ

and from its changing properties

ΔNμðωÞ
τ

¼ −
ϵ2

π
μ20λ0ð1þ λ20ÞϒðωÞϒðω0 − ωÞΘðω0 − ωÞ

ð51Þ

which leads to the relationship

ΔNqðωÞ ¼ −ω2
0ΔNμðωÞ: ð52Þ

From Eq. (52), we see clear resonance behavior exhib-
ited by the mixed δ − δ0 system. The system is in total
resonance when ω0 ¼ 1, with ΔNqðωÞ ¼ −ΔNμðωÞ, and
the only contribution to the total difference between the two
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sides is the spectral difference of the interference ΔNintðωÞ.
Note that, even though the total spectral difference can
appear to be negative, the particle production by each side
will always be positive. A negative (positive) spectral
difference indicates that the right (left) half of the mirror
produces the greater number of particles. From the form of
resonance relationship in Eq. (52), we see that the two
distinct sources of particle production, Nq and Nμ, oppose
each other. The asymmetry present in the production of
particles for these two fluctuation sources oppose each
other, each reducing the other’s contribution to the total
imbalance of the system.
From Eq. (52), it is clear that in the low driving

frequency regime, ω0 ≪ 1, the asymmetry in particle
production will be dominated by the contribution from
the time-varying properties of the mirror. The reverse is true
for the high frequency regime, where the dominant asym-
metric contribution comes from the physical oscillation of
the mirror when ω0 ≫ 1. In the low oscillation frequency
regime, the dominant contribution to the total spectral
difference term is now

ΔNμðωÞ ≈
λ0ð1þ λ20Þμ20ω2

π½μ20 þ ω2ð1þ λ20Þ2�2
ω0 ≪ 1: ð53Þ

In the high oscillation frequency regime, the dominant
contribution to the total spectral difference term is now

ΔNqðωÞ≈
λ0μ

2
0ωðω0þωÞ

πð1þλ20Þ½μ20þω2ð1þλ20Þ2�
ω0 ≫ 1: ð54Þ

We can see the effects the oscillation frequency has on the
total spectral difference in Fig. 3. The higher the oscillation

frequency ω0 becomes, the more pronounced the two peak
behavior in ΔN becomes. These two peaks emerge near
ω ≈ 0 andω0.When the phase shiftϕ in the interference term
is anti-aligned (ϕ ¼ π), the two peak behavior will dominate
the total spectral difference as the spectrumnearω ¼ ω0=2 is
suppressed, with ΔNðω0=2Þ ¼ 0.
The spectral difference that comes from the interference

effect between these two particle sources is

ΔNint

τ
¼ −

ϵ2

π
μ0ð1þ λ20Þ½μ20 − 4λ20ωðω0 − ωÞ�

×ϒðωÞϒðω0 − ωÞΘðω0 − ωÞ cosϕ: ð55Þ

We can relate these differences in the following manner,

jΔNintðωÞj ¼ IðωÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔNqðωÞΔNμðωÞj

q
cosϕ ð56Þ

where the interference term IðωÞ takes the form

IðωÞ ¼ ð2λ0μ0ω0Þ−1½μ20 − 4λ20ωðω0 − ωÞ�: ð57Þ

The difference in right and left half constructive and
destructive interference will again be dependent on the
region and form of the system. Now, the only region whose
sign remains constant for any ω occurs when λ0ω0 < μ0,
where we have destructive interference if 0 ≤ ϕ < π=2 and
constructive if π=2 ≤ ϕ < π. For the case when λ0ω0 > μ0,
we can again solve for the two real roots using the
following equation,

2ω� ¼ ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − μ20=λ

2
0

q
: ð58Þ

For 0 ≤ ϕ < π=2 the interference is destructive for ω < ω−
and ω > ωþ and constructive for ω− < ω < ωþ, while the
opposite occurs if π=2 ≤ ϕ < π. In the limiting case of
λ0ω0 ≫ μ0, the interference will be constructive if 0 ≤ ϕ <
π=2 and destructive if π=2 ≤ ϕ < π. These characteristics
can been seen in Fig. 4.
For 0 ≤ ϕ < π=2, the interference term will produce

more particles, while the opposite occurs if π=2 ≤ ϕ < π.
In the limiting case of λ0ð1þ λ20Þω2

0 ≫ 2μ20 the sign of the
interference effect becomes effectively constant for any ω,
with ω− → 0 and ωþ → ω0. In this regime the interference
of the right side of the mirror will be destructive if 0 ≤
ϕ < π=2 and constructive if π=2 ≤ ϕ < π.
It is convenient to write the total spectral difference in the

following form,

ΔNðωÞ ¼ ½1þ 2ω0IðωÞ cosϕ − ω2
0�ΔNμðωÞ: ð59Þ

We can now clearly see how the different values of the
frequency and phase shift will effect the magnitude and
direction of the asymmetry. For positive values of λ0,
the spectral difference for the time-varying properties

FIG. 3. The total spectral difference ΔNðωÞ=ðτϵ2π−1Þ for
different values of ω0, with μ0 ¼ λ0 ¼ 1 and ϕ ¼ 0.
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contribution in Eq. (51) is always going to be negative; the
right side of the mirror will always produce more particles
than the left side. Thus, the total spectral difference (59)
will also be negative when ω2

0 − 2ω0IðωÞ cosϕ > 1 and
will be positive for the reverse. The asymmetry will vanish
(ΔNðωÞ ¼ 0) when ω2

0 − 2ω0IðωÞ cosϕ ¼ 1.

V. ASYMMETRIC ENHANCEMENT

Amplification of the DCE particle production is an
important consideration when designing experimental tests
of this phenomenon. Just as Moore pointed out, the particle
production in DCE systems is limited [1], so any means by
which the spectrum can be enhanced will allow for easier
and better experimental measurements. Within the context
of the ADCE, enhancement of the spectral output will
couple with the asymmetry of the system to produce even
greater imbalances between the two sides of the mirror.
This leads to an increase in the magnitude of the unbal-
anced radiation pressure, resulting in a larger net force
which induces motion on an otherwise stationary mirror.
For the δ − δ0 mirror setup we have considered up to this

point, it is evident from Eq. (52) that the individual particle
spectrum of the two distinct fluctuation sources, the time-
varying properties and the movement of the mirror, work in
opposition to each other. However, it is possible to
construct a system whose creation terms work in con-
junction with each other and whose interference pattern
allows the asymmetry of the system to be further enhanced
(or reduced).
Now, we will modify our asymmetric setup in a similar

manner as the construction of a mixed SQUID system with
two independent sources of magnetic flux [48], where both
sources driving harmonic variations in the Josephson

energy of the SQUID present different phases and frequen-
cies. Here, we consider a stationary δ − δ0 mirror with two
distinct, unspecified fluctuation sources that each modify
the material properties in such a way that the new time-
dependent μðtÞ now takes the form

μðtÞ ≈ μ0½1þ ϵ1f1ðtÞ þ ϵ2f2ðtÞ�; ð60Þ

where

f1ðtÞ ¼ cosðω1tÞe−jtj=τ; ð61Þ

f2ðtÞ ¼ cosðω2tþ ϕÞe−jtj=τ: ð62Þ

Just as before, when ω1 ≠ ω2, the interference term
vanishes and the total spectra for the two sides of the mirror,
each taking the form of (39), is now only the sum of the two
independent particles spectrum:

Nμ�ðωÞ ¼ Nð1Þ
μ�ðωÞ þ Nð2Þ

μ�ðωÞ ð63Þ

where

Nð1Þ
μ�ðωÞ ¼

ϵ21τ

4π
μ20ð1� λ0Þ2ð1þ λ20ÞϒðωÞϒðω1 − ωÞ

× Θðω1 − ωÞ; ð64Þ

Nð2Þ
μ�ðωÞ ¼

ϵ22τ

4π
μ20ð1� λ0Þ2ð1þ λ20ÞϒðωÞϒðω2 − ωÞ

× Θðω2 − ωÞ: ð65Þ

It is straightforward to calculate the total spectrum when
ω1 ¼ ω2 ¼ ω0, which now includes the contribution from
the interference term. Since we are interested in amplifying
the asymmetry of the system, we will focus on analyzing
the enhancement of the spectral difference. The greater the
spectral difference, the greater the asymmetry of the
system, which leads to an increase in nonvanishing net
force on the system due to the further imbalance in the
radiation pressure from the production of real particles.
The total spectral difference when the frequencies are in
resonance, ω1 ¼ ω2 ¼ ω0, is now

ΔNμðωÞ ¼ ΔNð1Þ
μ ðωÞ þ ΔNð2Þ

μ ðωÞ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔNð1Þ

μ ðωÞΔNð2Þ
μ ðωÞ

q
cosϕ ð66Þ

Using Eqs. (64) and (65) in (66), one can show that

ΔNμðωÞ ¼ −
ϵðϕÞ2τ

π
μ20λ0ð1þ λ20ÞϒðωÞϒðω0 − ωÞ

× Θðω0 − ωÞ; ð67Þ

FIG. 4. The spectral difference from the interference term
ΔNintðωÞ=ð2ϵ2τπ−1Þ for some values of λ0, with μ0 ¼ 1 and
ϕ ¼ 0.
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where

ϵðϕÞ2 ¼ ϵ21 þ ϵ22 þ 2ϵ1ϵ2 cosϕ; ð68Þ

which is in agreement with [48]. The interference term in
Eq. (67) leads to either an increase or decrease in the
magnitude of the asymmetry of the system. A maximum
enhancement (reduction) of the asymmetry will occur when
the relative phase between the two fluctuation sources are
aligned (antialigned) when ϕ ¼ 0 (ϕ ¼ π). In fact, for the
case of two sources with ϵ1 ¼ ϵ2, the spectral difference
completely vanishes in the antialigned case (ϵðϕÞ ¼ 0).
This results in a purely symmetric production of particles as
this leads to the total spectral difference vanishing. When
the two sources are out of phase (ϕ ¼ π=2), the resulting
spectral difference reduces to only the contribution from the
independent source terms, as expected.
To further maximize the enhancement of the asymmetry,

it is natural to investigate the ramifications of adding an
arbitrary number of distinct fluctuation sources. In this
model, we will further modify Eq. (60) in the following
manner

μðtÞ ≈ μ0

�
1þ

XN
i¼1

ϵifiðtÞ
�
; ð69Þ

where

fiðtÞ ¼ cosðωitþ ϕiÞe−jtj=τ; ð70Þ

and ϕ1 ¼ 0, with N being the number of distinct sources.
Using our new definition of μðtÞ for a generic number of
fluctuation sources, we can find the expression for the new
total spectral difference. It follows that ΔNðωÞ will be of
the same form as Eq. (67), except ϵðϕÞ2 becomes

ϵðϕÞ2 ¼
XN
i¼1

ϵ2i þ
XN
i≠j

ϵiϵj cosðϕj − ϕiÞ: ð71Þ

As one would expect, to obtain the maximally asymmetric
enhancement the relative phase shifts of the independent
sources need to all be in-phase with one another. That is,
ϕi ¼ ϕj for all i and j. With this in mind, we will set all
ϕi ¼ ϕj ¼ 0. Additionally, we will normalize the magni-
tude of the different fluctuation sources such that ϵi ¼ 1.
In this maximally enhanced limit, we see that

ϵðϕÞ2 ¼ ðNϵÞ2: ð72Þ

This shows that the ADCE exhibits a clear sign of two
source monochromatic interference. When sources are
totally coherent (Δϕ ¼ 0) contributions will add purely
as amplitudes (ϵ ¼ P

ϵi) and when sources are totally
incoherent (Δϕ ¼ π=2) contributions add purely as

intensities (ϵ2 ¼ P
ϵ2i ). From Eq. (72), we find that the

total asymmetry of the system will increase by a factor of
N2 due to the additional independent sources acting on the
stationary δ − δ0 mirror.

VI. FINAL REMARKS

We investigated the interference effects that arise from
the presence of multiple independent sources of particle
creation in an ADCE system. This was modeled by a
partially reflecting moving mirror simulated with a δ − δ0
point-like mirror interacting with a real massless scalar
field in ð1þ 1ÞD. Specifically, one of our models involves
the interaction of a moving δ − δ0 mirror with time-
dependent material properties μðtÞ. The other model
explores the interaction between two independent sources
of material property fluctuations of μðtÞ for a stationary
mirror. This analysis is expanded to account for an arbitrary
number of independent field perturbation sources and its
enhancement of the asymmetric spectrum produced.
For the moving time-dependent δ − δ0 model, we find the

spectral contribution from the motion (32) (in agreement
with [32]) and the fluctuating properties (33) (in agreement
with [31]), along with an interference term (34) that arises
from the interaction between the two distinct sources of
particle creation. Using the typical functions to describe the
time fluctuations (35) and (36) (which reduce to (37) in the
monochromatic limit), we see (as in [48]) that the inter-
ference term vanishes when the two perturbation sources
are driven by two different oscillation frequencies and the
system reduces to only the contribution from the indepen-
dent sources in (42) and (39). However, when the oscil-
lation frequencies coincide, the interference term is given
by (40) and is found to contribute constructive and
destructive effects to different regions of the spectrum.
We characterize the different ranges of the interference
effect in (41) and identify the necessary conditions on the
input variables, the phase difference ϕ and values of λ0, μ0,
andω0, that modify the constructive and destructive regions
in the interference term.
The total particle production is found for the interference

term (47), where we note an interesting feature of null
particle production when ð1þ λ20Þω0=μ0 ≈ 2.23. This fea-
ture is present in other Casimir interference systems [48], as
this value corresponds to decoupling of the mirror from the
field and can be related to the Robin boundary condition
(with λ0 ¼ 1 and γ0 ¼ 2=μ0 being the Robin parameter),
which is associated with a strong inhibition of the particle
production for γ0ω0 ≈ 2.23 [32,57,58].
The difference between the spectrum produced on the

left and right sides of the mirror, which encodes the
asymmetry of the system, is quantified for the contributions
from the motion of the mirror (50) and the time-varying
properties (51), along with the asymmetry from the
interference (55). Resonance behavior between the two
different fluctuation sources is identified (52) and the
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dominant spectral contribution to the low and high fre-
quency regimes are discussed; for low frequencies, the
dominant contribution to the spectral difference comes
from the fluctuations on the mirror’s properties (53) and,
for high frequencies, the spectrum from the motion of the
mirror (54) is dominant. We find that the spectral difference
can be written in a formula analogous to the wave intensity
of the double-slit experiment (56), similar to the relation-
ships found for the interference pattern of a cavity with
moving oscillating walls [49] and for a moving mirror with
a time-dependent Robin parameter [48].
A model describing a stationary δ − δ0 mirror with two

distinct, unspecified fluctuation sources, described by (60),
is explored for the ADCE system. Here, enhancement of
the asymmetry by means of increasing the spectral differ-
ence is achieved when both fluctuation sources are reso-
nating at the same frequency. The enhanced spectral
difference is presented in (68). It is possible to tune this
enhancement with the phase difference, the magnitude of
the spectrum doubles when the system is fully in-phase and
completely vanishes when the two frequencies are anti-
aligned. We expand upon this model to include an arbitrary
number of fluctuation sources (69). When all the fluc-
tuation sources are in-phase, the spectrum is enhanced
quadratically in the number of independent sources.
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APPENDIX: THE FORMS OF AðξÞ,
BðξÞ, AND CðξÞ

For the sake of completeness, here we present the
complete expression of the total number of created particles
for a moving δ − δ0 mirror.
From Eqs. (42) and (43), the independent contribution

due to the motion of the mirror can be expressed as

N q ¼ ðϵ2τω3
0=πÞF ðξÞ ðA1Þ

where ξ ¼ ð1þ λ20Þω0=μ0 and

F ðξÞ ¼ AðξÞ þ BðξÞ ln½ξ2 þ 1� þ CðξÞ arctan ξ
6ξ3ð1þ λ20Þ2½ξ2 þ 4� : ðA2Þ

The functional forms of AðξÞ, BðξÞ, and CðξÞ are

AðξÞ ¼ 4ξ5λ20 − 24ξð1 − λ20Þ2 − 6ξ3ð1þ λ20Þ2 þ 40ξ3λ20;

ðA3Þ

BðξÞ¼ 3ξ3½ð1−λ20Þ2−4λ20�þ12ξ½ð1−λ20Þ2−2λ20�; ðA4Þ

CðξÞ ¼ 6ξ2ð1þ λ20Þ2 þ 24ð1 − λ20Þ2; ðA5Þ

which is in agreement with [32].
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