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We carry out a detailed study of the three-point fermion-photon interaction vertex at one-loop order for
massive fermions in reduced quantum electrodynamics. This calculation is carried out in arbitrary covariant
gauges and space-time dimensions within a recently proposed innovative approach based upon an efficient
combination of the first- and second-order formalisms of quantum electrodynamics. This procedure
provides a natural decomposition of the vertex into its components which are longitudinal and transverse to
the photon momentum. It also separates the spin and scalar degrees of freedom of a fermion interacting
electromagnetically, allowing us to readily establish the gauge independence of the Pauli form factor and
compute it in an expeditious manner. All incoming and outgoing momenta are taken off shell at the outset.
However, we present results for cases of particular kinematic interest whenever required. For the sake
of completeness, we also provide expressions for the massive fermion self-energy and photon vacuum
polarization, verifying known expressions for massless reduced quantum electrodynamics and computing
the renormalization constants Z;, Z, and Z5. As we provide general expressions for the computed Green
functions, we readily reproduce and confirm the results for standard quantum electrodynamics. Comparing
the two cases, we infer that the Pauli form factor for reduced quantum electrodynamics is 8/3 times that for
the standard QED in four dimensions, implying a higher Landé g-factor. We expect our perturbative
calculation of the fermion-photon vertex to serve as a guide for any nonperturbative construction of this
Green function, invariably required in the Schwinger-Dyson equation studies of the subject. We also
comment on the Landau-Khalatnikov-Fradkin transformations of the massive fermion propagator and
provide a comparison with its one-loop calculation.

4.8

DOI: 10.1103/PhysRevD.108.096036

I. INTRODUCTION

Electromagnetism is a fundamental force of nature, more
studied and far better understood than any other interaction
at the elementary level, i.e., strong or weak interactions.
It is characterized by the following action of quantum
electrodynamics (QED):
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where v is the fermion field, A* is the gauge field, F*¥ is the
electromagnetic tensor field, e is the electric charge of the
fermion, ¢ is the covariant gauge fixing parameter and d, is
the number of space-time dimensions (see Appendix A for
our conventions). For d, = 4, the quantum field theory
associated with the action of Eq. (1) is renormalizable,
while for d, = 3 it is super-renormalizable. Though QED
has been extensively studied for more than 50 years, it
continues to be an active field of research. For example,
precision tests of the standard model, see for example [1,2],
and the use of electromagnetic probes to unravel the
internal of structure of hadrons, e.g. [3-5], ensure QED
interactions are increasingly relevant and important.
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Moreover, new variations of standard QED find appli-
cations in condensed matter systems. In the last decades,
for example, a considerable research effort has been
dedicated to study an extended version of the action in
Eq. (1) which includes nonlocal operators [6—10] (for
scalar quantum field theories with nonlocal operators see
Ref. [11]). Such a QED action Sy;,, where NL stands for
nonlocal, can be written as [9]

1 y —. v 1 §— v
SNL = /ddex |:—ZFHDD ZF” - 2—5(3”A”D zayA

+plid=my - e, @
where the nonlocal derivative D* is defined as

/ dexDp(x)e™ = [k (k). (3)

with s being a real number and

d(k) = / dex p(x) e, (@)

As stated before, in contrast with a mere academic interest,
these theories, dubbed in the literature as pseudo-QED
or reduced QED (RQED), have potential applications in
condensed matter physics, particularly to investigate the
properties of graphene (see for example [12-14]). The
name carries the adjective reduced because some of the non
local quantum field theories can be equivalently described
by a dimensional reduction of a bulk gauge field in d,
dimensions interacting with a fermionic field in d, dimen-
sions as discussed in the Refs. [7-9,15]. The corresponding
action, Sgrogep, can be written as

1 1
SRQED = /ddyx |:_Zanan - z_g(amAm)2:|

+ [ atalptia-m - apra. ()

where the Roman indices m, n associated with the bulk
coordinates run from O, ..., dy — 1, while the Greek indices
associated with the fermion coordinates run from
0,...,d,— 1. Here one assumes that d, >d,, and that
the gauge field in the interaction term is evaluated
at A*(xy, e Xg,, 0, ...,0).

For the action defined in Eq. (5), the corresponding
generating function Z(n, 7, J™) for RQED reads as

Z(n.7,J") = NExp {—ie / dhab(x)5m G&J"(’S(x))

§ (iénfm)“ Géﬁ?x»ﬂz‘” ©)

8(%) = 6(xg,41)---0(xa),

where

if m=u,

{1 foru=0,...,d, — 1
S =
0 otherwise,

(7)

x, is a shorthand notation for xo, ..., x, , N is a normali-
zation constant such that Z(0,0,0) =1, and Z, is
defined as

Z, = Exp [—i / dexd® yi(x)S(x,y)n(y)
i
+3 / d xd®ryJ™ (x) A (x, y)J”(y)} (8)
where

dd .
S(X,y):/ V4 e—zp(x—y) F+m

(2m) p*—m*’

d%k —ik(x—y) k k
Amn(xuy):/(zﬂ_)dyekz <’7mn_(1_‘§) 22n> (9)

According to the generating function of Eq. (6), the
external legs in Feynman diagrams are amputated as in
standard QED with on shell photons represented by the
polarization vectors €4 (k), but with the momentum varia-
bles for both photons and fermions restricted to the reduced
space with dimensions d,. When the internal photon
appears in coordinate space, we need to perform the
following type of integrals,

/ A xd% y3(3)3(5)S B on Do (5. )

d%k . A=k
= [ ddexad / AT k() /
/ * Y (Zﬂ)d" ¢ (Zﬂ)dy_de
1
X k2 _ 7{2 (’7/4” + (1 - §>k,uky>7 (10)

where k* = kj | + -+ + kj . After integrating over the k
variable, the integrals above can be rewritten as

/ ddrxddry5()_6)5()_’)5ﬂm5mAmn ()C, y)

d, 7 d'k —ik(x—y) &
=— [ d%xd“y (2a) e YA, (k) (11)
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where
Bul) = oy e (= 1-0%5). (12
with

=% Foet(-e)  (13)

Thus, the integration on the coordinate space variables that
do not participate in the interaction of the bulk gauge field
with the fermion field produces the effective photon
propagator defined in Eq. (12). It is the same type of
propagator that arises from the nonlocal action of Eq. (2),
(see for example [9]).

According to the discussion above, the Feynman rules
for the action given by Eq. (5) correspond to the ones
displayed in Fig. 1, which are merely the massive version of
the Feynman rules derived in Ref. [7].

In the case where d, = d,, we have ¢, = 0, yielding the
usual Feynman rules for standard QED. To the best of our
knowledge, there is no in-depth analysis of the one-loop
massive RQED theories though there are related works for
the massless case. Moreover, as we pointed out in our
recent work [16], most computations of one-loop fermion-
boson vertex are carried out through employing the
standard first-order formalism, see for example, [17-26].
In this article, following the procedure detailed in [16], we
combine this approach with the second-order formalism,
Refs. [27-30]. We primarily compute the three-point vertex
in terms of scalar integrals using the Feynman rules for
massive RQED, Fig. 1 and invoking this innovative
formalism. Consequently, we evaluate Pauli form factor
for RQED and compare it with standard QED result in 4
dimensions. For the sake of completeness, we also present
results for one-loop fermion and photon propagators for

D . p+m
sz_mz

2 i T-c) (. - MR
N e (R (" A >

—jeyk

FIG. 1. Feynman rules for RQED.

massive RQED and compute the renormalization constants
Zl’ Zz and 23.

The article is organized as follows: In Sec. II we
generalize the results of Ref. [16] for standard QED to
decompose the fermion-photon vertex function V# of
RQED at one loop into longitudinal and transverse
components in arbitrary gauge and dimensions. We
express these components in terms of scalar Feynman
integrals. In Sec. III, we use the results of the previous
section to obtain the Dirac and Pauli form factors for a
fermion in RQED. The expressions obtained for these
form factors are also evaluated for some particular
kinematic cases of interest. In Sec. IV, we obtain a general
expression for the fermion self-energy X and photon
vacuum polarization z(p?) of RQED in terms of
Feynman scalar integrals. From the results obtained for
the vertex function, the fermion self-energy and the
photon vacuum polarization, we identify ultraviolet diver-
gent integrals when d, = d, = 4, and when d, = 4 with
d, =3 in Sec. V. Once we identify these Feynman
integrals, we compute the renormalization constants Z,
Z, and Z3. Concluding remarks and a summary of the
main results of the article are provided in Sec. VI. The
manuscript is complemented with three appendices with
supplemental information. Appendixes B and C contain
useful identities for the three-point on shell and the two-
point scalar integrals that appear in the computation of the
Dirac and Pauli form factors, fermion self-energy and the
photon vacuum polarization. Appendix D contains dis-
cussion on the Landau-Khalatnikov-Fradkin (LKF) trans-
formations for massive fermion propagator.

II. THE ONE-LOOP VERTEX V#(p', p)

While we refer the reader to Ref. [16] for all relevant
details and the nitty gritty of the combined first- and
second-order formalisms, it might be important to
flash the Feynman rules for the second-order formalism,
see Fig. 2. It is relevant to the discussion on the one-loop
vertex and the efficient identification of the Pauli form
factor and its gauge independence. Consequently,

(1) We arrive at our result efficiently and the decom-
position of the fermion-photon vertex into its longi-
tudinal and transverse components is achieved
naturally without a Ball-Chiu [17] decomposition.

(2) Moreover, the combined analysis allows us to track
those terms which identically vanish when external
momenta are taken on shell. The operator (p — m)
remains on the far right whereas (p + m) is kept
on the left. Therefore, when on shell conditions
(p—m)uy(p) =0 and i,(p)(p+ m) =0 are im-
posed, these terms are identically zero. Employing
on shell symmetries of the Feynman integrals,
we observe that the terms which depend explicitly
on the covariant gauge parameter £ in the evaluation
of the on shell Pauli form factor vanish. These
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FIG. 2. Second-order rules for spinor QED.

cancellations lead to a compact expression for this
quantity in an arbitrary space-time dimension in
terms of scalar integrals with: (i) higher powers of
scalar propagators; (ii) shifted dimensions. It hints
towards a possible analogous simplification in the
evaluation of the anomalous magnetic moment of
charged fermions at higher orders of perturbation
theory.
Figure 3 depicts Feynman diagram for the one-loop
vertex function V# at order e’. According to the
Feynman rules given in Fig. 1, the vertex function reads
as follows:

eI,

pr = £ 16
(4m)cet™

+(d, =3+ 8o + (m? + p) (1 =& T I = (2= d) (U,

d,+4
+2p- p'I5S e )Py

+ (1= )(‘]lle (f1+12+z~ _Jtlif;,;i +4mzjtlif;f+ée
(1 )( L211+€2 +2m 2J‘212+,14+é +4P'P/J§1€1+14+é )]Pﬂﬂ/—
+ (1 =8, =1 e, + 190 +4P2 15 e,
~[(d, =2) (U5, = 4J502) + (1= E (U512 +2p

I
FIG. 3. One-loop Feynman diagram for the vertex function
Vi(p'. p).
3 d
e’I'(1—e dil m
—lV”(p',p): ( . 8)/ v 7//) ’i,_‘_lj 5 U
(4n) ) Qm)%" (p'+1)*=m

’ L
o zfj R L ( ~(1-9% )

(14)

To evaluate the one-loop expression of the vertex given in
Eq. (14), we follow the approach presented in Ref. [16].
There, the Feynman rules of the first-order formalism,
Fig. 1, were merged with those of the corresponding
second-order formalism, Fig. 2, to obtain a natural decom-
position of the vertex into longitudinal and transverse
components with respect to the external photon momentum
k*. We generalize the identities employed in Ref. [16] to
arbitrary power of the internal photon propagator and
implement them to decompose and evaluate Eq. (14) as
follows:

V= VE VR, (15)
where the longitudinal V% and transverse V% vertex

components can be written in an apparently cumbersome
yet logically straightforward notation:

{m(1=&=d,) (T, = 20050 )p" +m(l =E=d,) (U1 o = 20572 )p" + (2 = d )T

- 37152 + 4015
d, d,+4
—[(d, =2)(J5,2 = 2755%)
d,+2 d,+2 d,+4
[(2 d)( 116 _J12+e _2J21j,Lée+2J2.2J,ré(,)

d,+2 ’
_2J21+* +2(m* = p +P'P)J221+ée)]l?/”ﬁ
ZJd+4 4 _ Je+4 I o 16
Yorte, +4m* = p*+p- PSP ) (16)
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e’T(e, ~

_ (74 )E +L {26~ 1)[-]‘215’24,—14+é€ (p"¥—p-ky')p + Jgf;:liée (p“K = p' - ky")p + 2Jff;;‘+é€ (p'¥—p - ky")p
)¢ 2

25 e (PR = P k)P ) (4= )T, + (1= O, = 20100 )]0 k) (=7 + )

+ 2, + (de = 6)T150 = (1= U e, =2 P53 e, = 4P 5 e, = 102 0" ket

= [(6 = do)J3e = (1=8)(2p235 e, +4p - P IS e, + 500 o ket

d, d,+2 2\ 7det2 d,+4 d,+4 d,+2
+ 2[2J1,1,a - 2J1,2J,rae - (1=4)( 1,1J,r1+ée —2p- p/JZ,;,_l+ée - 4P2J1,;1+a( - JI,JEF)](p”k —k-pr*)

d,+2 = d,+4 d,+4 d,+2
- 2[2']2,;}6 - (1 - 5)(2p2‘]2,2+,1+§e + 4}7 : plj3,1+,1+ée + Jz,iée)}(plﬂk_ pl : kyﬂ)}’ (17)

where o =1[y* 1], &, = 1 —¢,, and the scalar integrals JP, . are defined as

&

1

Jlll),b,c(p’ p/) = /

The expressions obtained thus far consider all external
momenta off shell. In order to derive Dirac and Pauli form
factors, we go on shell in the next section.

III. DIRAC AND PAULI FORM FACTORS

Evaluation of explicit expressions for Dirac and Pauli
form factors requires imposing on shell conditions for the
incoming and outgoing fermions:

(F—mus(p) =0, ay(p')(p' —m)=0. (19)
We keep the photon off shell for now. The spinor bilinear
covariants it,(p") VY yu(p), with V/ ;- given by Egs. (16)
and (17) thus acquire the following form:

- / o e3r(é€) 7
ity (p")Viu,(p) = (47T)—6+d7 {l(d, +&=3)T10g,
+ (2= d )T+ 2mp
+ far0"k, }, (20)
_ _ eTE) )
ity (p")Viyus(p) = (4”)—6”‘178(]01”” - faro™k,), (21)

where we have used the on shell symmetry of the
scalar integrals J, - = J}, ., and applied the well-known
Gordon identity

iy (p))(p + p') =0k, Ju(p) = 2ming (p')r*us(p). (22)

i = 17 + = + 1 + P ()

(18)

The conveniently defined scalar functions f»;, f7, fo7 that
appear explicitly in Eqs. (20) and (21) can be readily
identified as

for = =2mJ{ . +4m(d, - 2)J557 +2m(4 - d,) I3
—2m(2-d,)1557
+m(1 =BT ~20m 4 p P,
—4(m? +p - p)I5i e — 20552,
fir==24-d)k-p'Jy 7 — 4k pll . +4k-pJy7
+2k- p(1 = EUT T =20 P55,
—am2 IS =0,
Sfor =2m(6 — de)fgfﬁi - zm‘]‘li,ﬂl,é(,
+m(1 =Bl =20+ p PSS
—4(m® + p- p)Is e — 20521, (23)

31142,

The spinor product i, (p")V*u,(p) can thus be written in
the standard form

1
ity (p)V'us(p) = ety (p') | F1(R2)7" = 5 Fa(K*)o"k,
n

X ug(p), (24)

where, explicitly,
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e’I'(e,)

Fi(k?) =—¢ {(d, - 2)J§’50,ée +(2=d )7 —202m? - k2)J{q@

(4m)ects

e
e,

+[4(4 = d)m? = (6 — d K52 + 4m(d, = 2)(J557 +2J577)

—(1=9Ufos — @m —k2)T

tlif]J,rIZJréﬂ + (4m4 + (2m2 _ kz)z)Jdg+4

22,148,

+ 8m*(2m? — k2)J§fffl4+Q + (4m? - k2)J;’f1T; 1} (25)

4e’m’T'(e,)

Fy(k*) =
2( ) (4”)€e+117€

2057 + 2= d ) @IS+ 5]
(26)

These are the general expressions for the Dirac and Pauli
form factors at one-loop order for RQED as a function of
the photon momentum squared k> while the incoming and
outgoing fermions are on shell. We now discuss each of

[

these form factors in greater detail in the following
subsections.

A. The Dirac form factor

Focusing on the Dirac form factor F;(k*) given in
Eq. (25), we can mould it into a compact form if we make
systematic use of the equations in (B6). It can be rewritten

. o . d d
as a linear combination of the scalar integrals J,%, . , J|¢ 2

d
and J7¢ . as follows:
1,0,&,

5 T(1—¢,) 1 _ —d — e 2y
Fl (k ) N (4ﬂ)€e+% { <2<de -2+ ee)(de -3+ €e)> [Z(de 2)<3 de 6‘) ‘]l,O,E€

+ (4m*4-2d, + (2—4d, + d)e, + 2(d, — 1)e2] + K*[d} + 3d%(e, — 3)

) o\ gd N 2m2 I3
_8(63_2) +2de(15_ 10€e+€e)])‘llglé] - (1 _é:) Sloe, T2 o : (27)
s 1,€e sU,€e de —_ 3 + €e
Since
I'(d, —a—2b) d de

Jde = ¢ T b __€ 2 ——a—b7 28
s = Ta = (00 ) %)

we readily obtain

2m2J,

Jde 208 _ 29
1,0.e€+de_3+€e ( )

Thus the Dirac form factor in Eq. (27) reduces to a gauge-independent expression:

e’I(1 —e,) 1 )
- 2Ud, —2)B—d, —e 2%
(47r)€e+%e (2(de—2+€e)(de_3+€e))[ ( e )( e Ee) 10z,
+ dm*4-2d, + (2-4d, + d*)e, + 2(d, — 1)€] + k*[d} + 3d>(e, — 3)
—8(e, —2)% +2d,(15 = 10e, + €))J}, . . 30
1.1,e,

Fl(kz) =

If we set €, = 0 and use the identities in Eqs. (B7), we arrive at the Dirac form factor for standard QED:

2
N € _ _ 2 _ — 2\ 2] g%
Fl (k ) - m2(4ﬂ)d78(de _ 4)(de _ 3)(/(2 _ 4m2) [ 2(de 2>[k + (de 5)(de 2) ]JO,I,O
—m?(d, = 3)[(16 + d% = 7d,)k* — 8m?J ", o], (31)

which agrees with the result computed in the seminal work of Davydychev et al. in Ref. [31].
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B. The Pauli form factor

For the simplification and eventual evaluation of the
Pauli form factor, it is easy to appreciate that the combi-
nation of scalar integrals in Eq. (26) can be rewritten in a
much simpler manner by a direct application of Feynman
parametrization without the need to use elaborate expres-
sions given in Appendix B to express it in terms of master
integrals. Therefore, with some straightforward algebra, it
can be shown that

4e2m T (3 —e, —%)

2
(4r) ety
1- x
<faf e

where A has been defined as

Fy(k*) =

2x+(2—d,)(x* +xy)

de *

(1—x—y)eA3 7

(32)

A= (x+y)Pm? —xyk® + (1 —x—y)m2.  (33)
Here we have introduced a photon mass regulator m, to
regularize infrared divergences. For ¢, = 0, which implies
d, = d,, the Pauli form factor in Eq. (32) reads as

4e’m’T'(3 - —e)
F(l?) =— 2

d_g

(4r)2
2x+(2-d )(x +xy)

/ dx / T 5 (34)

It yields the standard (as the superscript “S” suggests)
result for d, = 4 and d, = 3 corresponding to conventional
QED4 and QED3, respectively, (see for example Ref. [16]).
If we use the notation F5~#(k?) for the Pauli form factor in
4 space-time dimensions for standard QED, we easily
reproduce the result obtained first by Schwinger:

F$~4(0) = = 35
40 =5 (33)
Now notice that d, =4 and d, =3 implies ¢, = 1/2.
In this case of RQED (as the notation below with the
superscript R signifies), the Pauli form factor of Eq. (32)

simplifies to the following integral form over the Feynman
2x — (x* + 2x = (x* +xy)

parameters:
d 1- x
/ x/ Y T=x—y

g (w——m) (36)

where ¢ = k?>/m?. Moreover, we have discarded the
redundant photon mass regulator in this case as the result
is convergent anyway.

FR(K) =

After a convenient change of variables y — x(1/y — 1)
in the second integral over the y-variable, and interchang-
ing the order of integration, we can readily integrate over
the variable x. The above equation then reduces to

8a y
e — 7
3ﬂAdl—cy(l—y)’ (37)

where, as usual, the fine structure constant or the QED
coupling is defined as @ = ¢?/(4x). Now making use of the
simple identity

/ld 4 —l/ld ! (38)
o YTra-y 2/ CTrad—y)

Eq. (37) for the Pauli form factor for the case of RQED in
d, =4 and d, = 3 dimensions for the photons and charged
fermions, respectively, can be cast in the following equiv-
alent form

FR(k?) =

FR(k2) = ;‘Z A dy #(l—y) (39)

Notice that F5~*(k?) for the Pauli form factor in 4 space-
time dimensions for standard QED, Eq. (34), is trivially
related to FX(k?), Eq. (39), through the following multi-
plication constant:

FR(E) = iFS d(k2), (40)
since, [32],
S—4 (72 a [ dy
F() = 27:A I+ey(l—y) (“41)

Thus, the Pauli form factor for the reduced theory is the
same as in the standard QED in four dimensions scaled up
by a factor of .

We can now take the photon on shell and consider the
case k> = 0 which corresponds to the conventional defi-
nition of the anomalous magnetic moment of the fermion.
Therefore, Eq. (39) implies that,

FE(0) = (42)

3n’
It agrees with the result reported in Ref. [13] modulus the
sign. As we reproduce known results in the literature for
other cases and do not expect a change of sign in the value
of the anomalous magnetic moment of the fermion as
compared to the one for standard QED, we are confident of
our result.

096036-7



VICTOR MIGUEL BANDA GUZMAN et al.

PHYS. REV. D 108, 096036 (2023)

IV. FERMION AND PHOTON SELF-ENERGIES
AT ONE LOOP

For the sake of completeness, we also evaluate one-loop
fermion self-energy and the photon vacuum polarization.
Figure 4 depicts the Feynman diagram for one-loop
fermion self-energy function X(p). According to the
Feynman rules given in Fig. 1, it reads as

_ _TE,) [ d*l i - on i+ m)
—iZ(p) = an) / 2 (<P (—iey )[Mz_mz]

< (cier) (= (1-B%5). )

which can be reorganized as follows:

» _ e’I'(e,) [ d%l 1
)= Gy | G

< md =148 = (@ =3+ By

—<de—1—%+72(1_l§)l'p)l]. (44)

We can now implement the tensor reduction algorithm
described in Refs. [33-35] to express the fermion self-
energy in Eq. (44) in terms of scalar integrals,

2 —_
I(p) = —L(ez_
(4m)cet2
+[(d, =3+ &I — (d, - 1-8)5
+ (=8I —apr (1 =Eus L . (45)

{-m(d, -1+ &),

where the scalar integrals J2, with two labels are defined as
follows:

oo / dll 1 (46)
“b ) imP R =(p + D + mh (= 12)P
and where we have made use of the following well-known

identities:
p ) % p

FIG.4. One-loop Feynman diagram for the fermion self-energy
Z(p).

d*1 l” d,+2
= :uJ ¢ s
/ iﬂd('/2 [(p + l)z — mZ](_IZ)b p 2.b
/ dde] # _ lnﬂp‘]dﬁz
in®/2[(p + 1) — m?)(=2)> 2 1.b
=2 ISy (47)

Note that in the massless case, after performing the
Feynman integrals, the fermion self-energy of Eq. (45)
reduces to a compact expression

T, (d = 2)(=p?)Fte?

Z =
(p) (471)69#’75 256 (de - 2 + 66)

X [ée(de - 2) - (1 - 5)(de -2+ ee)]
x G(d,, 1,&,)p, (48)

where the function G(D, a, b) is defined according to

b [d1_ 1
Jan = / i (p - AP

= (=p")7**G(D.a.b), (49)
I(a+b-2TE-a)(2-b)
D.a,b) = =2 2 50
G(D.a.b) = = S F D =a=1b) (50)
Introducing the new variable,
de
ey:2—?—€e, (51)

we can rewrite the expression in Eq. (48) for the massless
self-energy as

ezr<ée)(_ Z)SV 2(1 - ey - ee)
I(p) =- (4ﬂ)dy/l27 [ 2-2, —€,
(e, - eg] G, Le)p.  (52)

which agrees with the earlier result presented in the
literature, see Refs. [7,15].

In the case of standard QED with massive fermions, and
which corresponds to €, = 0 as stated earlier, the fermion
self-energy given in Eq. (45) can be rewritten as follows:

62

(4m)%

S(p) = - {m<1 _e—d )

d, -2
+2—pz§[]ffo + (m* + Pz)fli,el]} (53)

where we have used the identities given in the Egs. (C4) in
the corresponding appendix. This resulting expression of
Eq. (53) for the massive fermion self-energy in standard
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p+1

l

FIG. 5. One-loop Feynman diagram for the photon self-energy
function IT(p)~*.

QED agrees with the known result in the literature (see for
example [16,29,31]).

We now proceed with the calculation of the photon self-
energy tensor I1#*(p) at one loop. Figure 5 depicts the
Feynman diagram for this function. According to the
Feynman rules in Fig. 1, the function IT*(p) reads as

() = (1)(=ie? [ g

i(J+m)  i(g+]+m)
Tr | y# v . 54
x r{y P—m>" (I+p)?—-m? (54)
Defining the function IT(p?) as
Hﬂ
n(p?) = 5———. 55
) =t (59)

and carrying out the standard calculations, we obtain the
result

(p?) = : =/ (56
") === =2 (56)

2

de
2d,e’T(2-%) /1 g X1 =)
0

with
A =m?—x(1-x)p?, (57)

where we have considered the gamma matrices y* to have
dimensions d x d. The expression in Eq. (56) agrees with
the textbook result when we identify the dimensions of the
gamma matrices with the space-time dimensions under
consideration (see for example [32]).

V. RENORMALIZATION CONSTANTS

When dy =d, =4, and d), = 4 with d, = 3, the scalar

. d d,+2 d,+2
integrals J 12,0 zg and J 1511@0

self-energy are UV divergent. For the case of the vertex
function V¥ the only UV divergent scalar integrals in
Egs. (16) and (17) are J‘lljo.ée and le11+62 . Note that the
divergences of the fields, charge and mass can be absorbed
into the renormalization constants Z;, Z,, Z3 and Z,,
which relate the bare fermionic field v, the bare coupling
constant e, the bare photon field A# and the fermion mass
m, respectively, to the renormalized fermion field ,,
charge e,, photon field A% and mass m, as

in Eq. (45) for the fermion

e = Ze,,
m=Z,m,. (58)

W= Z,,
At = Z;AF,
Let us proceed to evaluate these constants. Notice that after

the Feynman parametrization, the two-point scalar integrals
J2,(p) can be rewritten as

Tla+b-2) 1 xa1(1=x)>-!
IP,(p) = —— it / dx———F5—., (59
)= TFar®) o gt 59)
where
B = x(x = 1)p* + xm? + ym?. (60)

Thus the UV divergent parts of the fermion self-energy in
Eq. (45) read as

e’ 3+4+¢ £
a5 ) v
e? 4+ 2& 6E — 4
TR, =— - . (61

e R C o L
Here X3 represents the UV divergent part for standard
QED where we have fixed ¢, = 0, and d, = 4 — 2¢, while
2R represents the UV divergent part for RQED were we
have set ¢, =1, and d, = 3 - 2¢,.

Therefore, one can readily compute the renormalizations
constants Z, from Egs. (61) at the one-loop order in the MS

scheme:
z -1 (£)
iy, €,

Z§:1—1<3E_2>, (62)

6r €,

S—4 _
2UV -

which agree, respectively, with the well known result for
standard QED in d, = 4 dimension, see for example [36],
and for the massless result in RQED ind, =3 and d, = 4
dimensions reported in Ref. [15].

Similarly, drawing on Egs. (61) again, we obtain the
following fermion mass renormalizations constants in the
MS scheme:

ZS—4:1_1<3+§>

Az \ ¢,
a (4+2F
ZR = _E< . ) (63)
4

Now, since Jtlifo,e( and J‘,lfﬁ; are the only UV divergent
scalar integrals that show up in the vertex, the term

(d, =3+ &)U +(2-d,)J{,7 in equation (16) is
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the unique contribution to the UV-divergent part for the
vertex V¥#. Thus, following a similar analysis as presented
for the fermion self-energy, the UV-divergent parts for V,,
within the dimensional regularization scheme, read as

3
yS—4 — € é ’
p (4,5)26?7#
e (684
1 J— e P2 64
“ (47;)2( 3, >“ (64)

The first equation corresponds to the standard QED in 4
dimensions, and the second equation to RQED in d, =4
and d, = 3. We can identify Z; through Eq. (64), con-
cluding that at the one-loop order for both the standard
QED as well as RQED,

Zl :ZQ’ (65)

in agreement with the nonperturbative Ward-Takashi
identity.

Finally, according to Eq. (56) the computation of Z5 at
one loop proceeds as in standard QED in d, = 4 dimen-
sions, while for d, = 3 it vanishes at one loop, since the
photon self-energy is finite at that order. Thus, since
Z, = Z,, the beta function f(a) receives no corrections
at this order of approximation which agrees with the result
reported in Ref. [15].

VI. SUMMARY AND CONCLUSIONS

In this article, we obtain general expressions for the
vertex function V#(p’, p) in general and Dirac and Pauli
form factors F; (k?) and F,(k?), respectively, in particular
in arbitrary covariant gauges and dimensions at one-loop
order in perturbation theory for QED. We allow the bulk
gauge field to reside in d, space-time dimensions interact-
ing with a fermionic field whose dynamics might be
restricted to different space-time dimensions d,, with
d, <d, The main feature of this work is the novel
computational tool available to us by a combination of
first- and second-order formulation of QED as was
employed in our previous work [16]. As stated earlier,
this coupled formalism has numerous advantageous as
compared to the usual solely first-order formulation of
QED calculations:

(1) It renders the calculation efficient.

(2) It implements Ward-Takahashi identity and decom-
poses the fermion-photon vertex naturally into its
longitudinal and transverse components with respect
to the photon momentum without resorting to the
customary Ball-Chiu construction.

(3) It allows us to systematically demonstrate that the
Pauli form factor for on shell fermions is indepen-
dent of the gauge parameter for this general setup
of potentially different d, and d, dimensions by

invoking identities which stem from the combined
formalism.

(4) The extraction of the anomalous magnetic moment
of the charged fermions is greatly expedited and we
hope this combined formalism will be of practical
usage in the computation of this and other physical
observables at higher loops.

For the sake of completeness, we also compute fermion
self-energy X and photon vacuum polarization tensor IT#,
respectively. The expressions for the longitudinal and
transverse parts of the vertex function V#(p’,p), the
Dirac form factor F,(k?), the Pauli form factor F,(k?),
the fermion self-energy X(p) and the photon vacuum
polarization tensor IT* can be referred to in Egs. (16),
(17), (30), (32), (45) and (56), respectively, in terms of
Feynman scalar integrals. Starting from these equations, as
has been detailed all along the article, one can easily
reproduce known results for standard QED where d, = d,,
and for massless RQED. Though some of the connections
are rather trivial, it might be worth summarizing our cross-
checks and collecting them in the following list:

(1) Setting ¢, = 0 in Egs. (14) and (17), we obtain the
same expressions found in Ref. [16] for the longi-
tudinal and transverse components of the vertex
function V* in standard QED.

(i) The Dirac form factor for standard QED, Eq. (31),
agrees with the results reported in [31].

(iii) The Pauli form factor for standard QED is displayed
in Eq. (34) and it agrees with the well-known results
in the literature (see for example [16]).

(iv) The fermion self-energy for standard QED, i.e.,
Eq. (53), is in agreement with the known result in
the literature (see for example [16,29,31]).

(v) The fermion self-energy for massless RQED, i.e.,
Eq. (52), agrees with the result presented in the
Refs. [7,15].

(vi) The computation of the photon self-energy function
at one loop yields the same result as in the conven-
tional QED, Eq. (56).

From the results obtained in the article, we can compare
and contrast the difference between standard QED and
RQED. For example, as shown in Sec. III B, the Pauli form
factor for the massive RQED, d, =4 and d, = 3, is 8/3
times the form factor of standard QED in four dimensions
(see Eq. (40). One may be tempted to attribute it to the
observation that the response of the gyromagnetic ratio g of
the charged fermion to a magnetic field in RQED does
not get diluted into the third space dimension and gets
augmented.

Additionally, from our general expressions in Egs. (16),
(17), and (45), we can easily identify the ultraviolet diver-
gences in the QED theories, observing that the only scalar
integrals with ultraviolet divergences when d, = d, =4,

. . d, d,+2 d, d,+2 d,+2
and dy =4,d, = 3’areJLo,agsJ1,1,eg’11,ze»12,af andJLHéf.

Extracting the singular parts of these integrals in dimensional

096036-10



ONE LOOP REDUCED QED FOR MASSIVE FERMIONS WITHIN ...

PHYS. REV. D 108, 096036 (2023)

regularization, we obtain the result displayed in Eq. (62) for
the renormalization constant Z,. We also show that Z;, = Z,
at one loop, as expected by the Ward-Takahashi identity
which relates the fermion propagator with the fermion-
photon vertex. This result, together with the observation
that the photon self-energy in d, = 3 dimensions is finite,
Eq. (56), implies that the beta function for RQED in d, = 4
and d, = 3 vanishes at one-loop order.

Moreover, our computation of the three-point fermion-
photon interaction vertex at one-loop order in RQED in
arbitrary gauges and dimensions may provide a natural
guide for any nonperturbative construction of this Green
function which is a highly sought after goal in the
Schwinger-Dyson equation studies of nonperturbative field
theories, see for example [21,23,24,26,37-48]. All this is
for future.
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APPENDIX A: CONVENTIONS

Our Minkowski space metric #* = diag(+, —, —, —),
while the Dirac gamma matrices are in general d X d
matrices, where d equals to the space-time dimension d,
of the fermion when d, is even, and different when d, is
odd. The Dirac gamma matrices satisfy the anticommuta-
tion relation {y*,y*} = 2n**, and Tr(y*y*) = dn*.

APPENDIX B: THREE-POINT ON SHELL
SCALAR INTEGRALS

Using the dimensional recurrence relations for n-point
one-loop integrals discussed in Ref. [49], we can obtain the
following on shell integral identity which transforms scalar
integrals in D + 2 dimensions into scalar integrals in D
dimensions,

JaD,b,c—l (p’ p,)

JD+2
D—a—b-c+t1)’

a,b.c(p’ p/) = (

(B1)

where JP, is defined in Eq. (18).

ab.c
We can obtain further relations between on shell scalar
integrals through the implementation of the now widely
used integration by parts technique (IBP), [50,51]. This
method yields the following useful identities:

d, d,
de _ aJaJrl.b,c—l + b‘]a.bJru.c—l (BZ)
a.b,c de—a—b—ZC k]

dﬂ dﬂ
= a(Ja+l.b—l.c - ‘]a+1,h,c—1)

d d
+b(Jypmtert = Tabite—1)

- (C - b)JZebc - meZJZTbJrl,c’

d€
2(1p ’ p/‘]a+],b,c

(B3)

where we have suppressed the p and p’ dependence for
notational simplicity.

By combining the above identities (B2) and (B3), we
arrive at the following practically useful relation. Note that
it leaves the third label in the on shell scalar integrals
unchanged:

1
d, d, d, d,
Ja.b,c = B [al‘]a—l.b,c - a2‘]a—l.b+l.c + a3‘]a$b—l,c:| ’ (B4)

where

a=01+d,—a-2b-2c)(d,—a—-b-c),
a =2m*b(a+b+2c—d,),
o= (a-1)a+b+2c-d,),

p=2p-pla=1)(a+b+2c—d,). (B5)

Using the identities in Egs. (B1)—-(B4), the scalar integrals
that appear in the Dirac and Pauli form factors acquire the
following form:

1
d,+2 o d,
Jl,l,l-‘ré(, - d _3+€ Jl.l,é(,’
d,+2 de - 2(1 + ée) d,
‘12.1,@(, =57 _2 L.\ 1L
2(d, -3 +e¢,)
1
I = - p'(d,
2,2,1+€, 4(m4 _ (p . p/)z)(de -3 + ee) [(p V4 (

—6+2¢,) +m2(4—d, —2¢,)J 1,

+ zmzjgfz,éf]v

1
Siise, = p-p'd,
M = (- p))d, 3 e

— 44 2¢,) + m*(6 = d, = 26,1 ¢,
d,
—2p - p'Josg, s
1
Jt2 — d,—3
1.1e, (de_3+€e)(de_2+€e) [( e +€e)
X Jtlifo,ée - (m2 +tp- p/)(de -4+ zee)Jf.el,é,]v
e+ d,—4+2, g4
1.2,e, 2(de -3 +€€) 1,1,
Jdg+4 _ (de -3+ 266)(616 -4+ 266) d,
226 2(d, -3 +e)(d. —2+e) "M

d,+4
—2J15%.-

(B6)
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We can also derive the following useful relations for the
standard QED case,

d,—2

d? p— - d(‘
J0,2,1 - 4m4 JO,I,O’
d,—2
d, _ e d,
‘]l.O,l - _2m2(de _ 3) 10,1-0’
d,—2
d, e d,
J5e = — Jn¢
1,1,1 z(de _4)m2(m2 + p- pl) 0,1,0
d, -3 .,

C(d, =4 (mE+p-p) Jii0- (B7)

We now focus our attention on the relatively simpler two-
point scalar integrals in the next appendix.

APPENDIX C: TWO-POINT
SCALAR INTEGRALS

Making use of the dimensional recurrence relations
for n-point one-loop integrals discussed in Ref. [49], we
readily obtain

1
D42 _ 2
“b T2 D—a—-b+1) [(m

= (m? = PR+ (m? + Iy ].

_ pZ)ZJE’b
(C1)

For these types of Feynman integrals we obtain the
following recursive relations from the IBP procedure,

0= (d,—a—-2b)J", - aJa’:’H_’b_1 +a(m? - pz)JgH’b,
0==bJ) 4+ (b=a)?, +b(m*—p)JD,.,

+all . +a(m*+p*)JP . (C2)

From these relations we can further derive the following
identities:

1
Tois = 2am? [6J2_ | o + (PP —m?)I2,
+ (2a+b-D)J?,].
1
]lD,h+1 = b(m? — p?)
—(m? + P2,

[(1=0)IDy =I5,
(C3)

Combining these equations with Eq. (C1), we can also
obtain

1
d,+2 d, d,
J2,1+ = “2p? (Jio + (m* = p*)Ji),
1
d,+2 d, d,
J1,2Jr = 27 (J1o + (m* 4+ p*)J19).

1
J5 = 5 (doJ %) + [~4p2 + d (m? + p?)lJ%).  (C4)

APPENDIX D: LKF TRANSFORMATION
FOR THE FERMION PROPAGATOR
IN MASSIVE RQED

The transformation of the fermion propagator in coor-
dinate space under a variation of the gauge parameter is
given by the LKF transformation, which for RQED reads
as [52]

Sp(x, &) = Sp(0, &)emilBa Oc)=Ba(xe)] (DY)
where Sp(x,&) is the fermion propagator in coordinate
space in an arbitrary covariant gauge &, and

- E.[e,] £ F(%)
(4r)ce Z“Ede/zr(%)

(px)e=%, (D2)

where a = 4 — 2¢,, and p is a regulator with mass scale.
For the case of RQED in d, = 4 and d, = 3 dimensions,
the exponent in the exponential factor in the Eq. (DI)

reduces to [52],
—2v
) oy

Xmin

-ilAs(0.e) - Bl e = In

where x,;, is a regulating cutoff in the coordinate space,
and v = aé/(4n).

Now, the fermion propagator in momentum space can be
written as follows in its most general form:

F(p;¢)

Sp(p:é) =A(p:é) +B(p;é)p = ﬂ—T(p;é)’

(D4)

where we have explicitly expressed the dependence on
momentum p and gauge parameter £ The scalar functions
A(p;€) and B(p;¢&) are related to the wave function
renormalization F(p;¢) and the mass function M(p;¢&)
according to

M(p: &) = 282
. 2
F(p;&) = B(p;&)p* - f;(é’;?) : (Ds)

Using Egs. (D1) and (D3), and following the procedure
outlined in Ref. [53], we can obtain nonperturbative
expressions for the functions A(p;¢) and B(p;¢&) defined
through Eq. (D4). Thus, motivated by the lowest-order
perturbation theory, we take

F(p;0) =1,
M(p;0) = m. (D6)

Employing Egs. (D1), (D3), and (D6), we obtain
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. d3 '
s [l e (£25)

X\ 2
—= . D7
() ©)
Performing first the position space integration,
d*q d+m
Simo=c [ oY)
(27)° [(p = )} (4> = m?)
where
3wy o (3
C=—-—""T(z-v]. D9
T (3-) >

After a direct application of Feynman parametrization,
some standard calculations and using Eq. (D8), we
obtain the following expressions for the scalar functions
AYXE(p: &) and BYF(p;&) in terms of one Feynman
integration parameter:

|

2 T (=20)
FLKE( .8y — _(p2 _ 2w Jmin”
(0:8) = =(p? = m2y 22

1
>~V

1
y
AXKF(prg) = cm/ dy i
0

1 y%_”

BN (i) = [ (D10)
0
where
e7mx2 (1 —v)
c=— ,
22T ()

D = (1 -y)(m* - yp?). (D11)

Here, the superscript label LKF on the scalar functions
A(p; &) and B(p;¢) indicates that these functions are
obtained from the LKF transformation.

Making use of Egs. (D5) and (D10) and then performing
integration on the variable y, we obtain the following
nonperturbative expressions for F(p;¢&) and M(p;¢&) for
RQED in d, =4 and d, = 3 dimensions,

[m?* + p? + (p? — m*)G* + 4ump)

p2 _ m2 + (mZ + pZ _ 4l/mp)G2” :|
m* + p* + (p—m)(m> + p*> + (1 = 20)mp)G* + 2vmp(m + p)|’

MLKF([J; 5) —

(1+20)pVG(G*' = 1)(m* - p?)

m(GZD _

where p = /p?, and the function G is defined as

2
G=-""T"_.

= (D13)

Taking massless limit m — 0 in Egs. (D12), we obtain the
following expressions:

(Pin) cOs(m)T(1 = 20)
1+ 2v

FLKF(p; é:) —

M (p; &) =0,

(D14)

which agree with the results presented in Ref. [52]. Since
we want to compare with the one-loop results in the main
text, we take a linear expansion in v in Egs. (D12). Thus,

2m?>  m?In(G
e e O
p p
2

T 1n <p2;2m ) + ln(4)]z/ +0(A),

M (p;&) = m {1 it pz)(";;n(c) —2p) 1/]

+ 0(1?), (D15)

2N\ —L
p 2
)(m? + 2vp?) = p(G* + 1)(p* + 2vm?) ( m2> ’

(D12)

where we have set A =2/x.,, and yg is the Euler’s
constant. Following the perturbative approach, the fermion
propagator can be written as

1

Sp(p:&) = p—-m—-2(p:&)’

(D16)

where X(p; &) is the fermion self-energy. Comparing the
equation above with Eq. (D4), we obtain

1
F(p,f) =1 + 4—p2Tr(p/21—LOOp> + O(az),

m

M(p;€)=m+4p2

Tr (ﬂl —Loop )

1
+ZTr(21—Loop) + 0(6{2), (D17)

where 2 _; oo, 1s the one-loop result given in Eq. (45), with
d, =3—2¢, and €, = % To evaluate the scalar integrals
involved in Z;_,,,, we use Feynman parametrization to
rewrite these expressions as
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Tatb-9
s N A = (1

o—b-1 (1 _ x)b—l

_ x)]a+b—§ ’

(D18)

Using this expression along with Egs. (44) and (D17), and the MS scheme to renormalize RQED with d, = 4, and d, = 3

dimensions, we obtain
a
F(p:) —1+—[——1 (-2
2—

+35( In(G) -

- >_1n(4)+2’;’—22—
2’”_2 ln< #) +ln(4)>} +0(?).

3
m
p

@ L. 2 2 2 2 2 p*—m?
M(p;&) =mql+—=|—z(m’ + 15mp*)In(G) + = p | 3m* +77p* =24p*(In (| ———— | +In(4)
4zp- | 3 9 7

2 = ) 1n(G) - 20)| | + 0(@),

where ji> = 4me e,

(D19)

From Eqgs. (D15) and (D19), we verify that the following equations hold at linear order in a:

— FLKF(p;f) _ 1’
=M™ (p; &) -

(D20)

Thus, as expected, the LKF approach and the one-loop calculation are equivalent up to some term that would solely arise in

the Landau gauge &£ = 0.

[1] T. Aoyama et al., Phys. Rep. 887, 1 (2020).

[2] G. Colangelo et al., arXiv:2203.15810.

[3] I. G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015
(2013).

[4] A.C. Aguilar et al., Eur. Phys. J. A 55, 190 (2019).

[5] R.J. Hernandez-Pinto, L. X. Gutiérrez-Guerrero, A. Bashir,
M. A. Bedolla, and I. M. Higuera-Angulo, Phys. Rev. D
107, 054002 (2023).

[6] E. V. Gorbar, V.P. Gusynin, and V. A. Miransky, Phys.
Rev. D 64, 105028 (2001).

[7]1 S. Teber and A.V. Kotikov, Phys. Rev. D 97, 074004
(2018).

[8] E. C. Marino, Nucl. Phys. B408, 551 (1993).

[9] M. Heydeman, C.B. Jepsen, Z. Ji, and A. Yarom, J. High
Energy Phys. 08 (2020) 007.

[10] E.C. Marino, L.O. Nascimento, V.S. Alves, and C. M.
Smith, Phys. Rev. D 90, 105003 (2014).

[11] A. Belenchia, D. M. T. Benincasa, and S. Liberati, J. High
Energy Phys. 03 (2015) 036.

[12] A. V. Kotikov and S. Teber, Phys. Rev. D 89, 065038 (2014).

[13] N. Menezes, V.S. Alves, E.C. Marino, L. Nascimento,
L. O. Nascimento, and C. Morais Smith, Phys. Rev. B 95,
245138 (2017).

[14] P.I1. C. Caneda and G. Menezes, Phys. Rev. D 103, 065010
(2021).

[15] S. Teber, Phys. Rev. D 86, 025005 (2012).

[16] V.M. B. Guzman and A. Bashir, Phys. Rev. D 107, 073008
(2023).

[17] J.S. Ball and T.-W. Chiu, Phys. Rev. D 22, 2542
(1980).

[18] D.C. Curtis and M. R. Pennington, Phys. Rev. D 42, 4165
(1990).

[19] A. Kizilersu, M. Reenders, and M. R. Pennington, Phys.
Rev. D 52, 1242 (1995).

[20] A. Bashir, A. Kizilersu, and M.R. Pennington, arXiv:
hep-ph/9907418.

[21] A. Bashir, A. Kizilersu, and M. R. Pennington, Phys. Rev. D
62, 085002 (2000).

[22] A. Bashir and A. Raya, Phys. Rev. D 64, 105001 (2001).

[23] A. Kizilersu and M.R. Pennington, Phys. Rev. D 79,
125020 (2009).

[24] A. Bashir, R. Bermudez, L. Chang, and C. D. Roberts, Phys.
Rev. C 85, 045205 (2012).

[25] R. Bermudez, L. Albino, L. X. Gutiérrez-Guerrero, M. E.
Tejeda-Yeomans, and A. Bashir, Phys. Rev. D 95, 034041
(2017).

[26] L. Albino, A. Bashir, A.J. Mizher, and A. Raya, Phys. Rev.
D 106, 096007 (2022).

[27] L. C. Hostler, J. Math. Phys. (N.Y.) 26, 1348 (1985).

[28] A.G. Morgan, Phys. Lett. B 351, 249 (1995).

096036-14


https://doi.org/10.1016/j.physrep.2020.07.006
https://arXiv.org/abs/2203.15810
https://doi.org/10.1142/S0218301313300154
https://doi.org/10.1142/S0218301313300154
https://doi.org/10.1140/epja/i2019-12885-0
https://doi.org/10.1103/PhysRevD.107.054002
https://doi.org/10.1103/PhysRevD.107.054002
https://doi.org/10.1103/PhysRevD.64.105028
https://doi.org/10.1103/PhysRevD.64.105028
https://doi.org/10.1103/PhysRevD.97.074004
https://doi.org/10.1103/PhysRevD.97.074004
https://doi.org/10.1016/0550-3213(93)90379-4
https://doi.org/10.1007/JHEP08(2020)007
https://doi.org/10.1007/JHEP08(2020)007
https://doi.org/10.1103/PhysRevD.90.105003
https://doi.org/10.1007/JHEP03(2015)036
https://doi.org/10.1007/JHEP03(2015)036
https://doi.org/10.1103/PhysRevD.89.065038
https://doi.org/10.1103/PhysRevB.95.245138
https://doi.org/10.1103/PhysRevB.95.245138
https://doi.org/10.1103/PhysRevD.103.065010
https://doi.org/10.1103/PhysRevD.103.065010
https://doi.org/10.1103/PhysRevD.86.025005
https://doi.org/10.1103/PhysRevD.107.073008
https://doi.org/10.1103/PhysRevD.107.073008
https://doi.org/10.1103/PhysRevD.22.2542
https://doi.org/10.1103/PhysRevD.22.2542
https://doi.org/10.1103/PhysRevD.42.4165
https://doi.org/10.1103/PhysRevD.42.4165
https://doi.org/10.1103/PhysRevD.52.1242
https://doi.org/10.1103/PhysRevD.52.1242
https://arXiv.org/abs/hep-ph/9907418
https://arXiv.org/abs/hep-ph/9907418
https://doi.org/10.1103/PhysRevD.62.085002
https://doi.org/10.1103/PhysRevD.62.085002
https://doi.org/10.1103/PhysRevD.64.105001
https://doi.org/10.1103/PhysRevD.79.125020
https://doi.org/10.1103/PhysRevD.79.125020
https://doi.org/10.1103/PhysRevC.85.045205
https://doi.org/10.1103/PhysRevC.85.045205
https://doi.org/10.1103/PhysRevD.95.034041
https://doi.org/10.1103/PhysRevD.95.034041
https://doi.org/10.1103/PhysRevD.106.096007
https://doi.org/10.1103/PhysRevD.106.096007
https://doi.org/10.1063/1.526945
https://doi.org/10.1016/0370-2693(95)00377-W

ONE LOOP REDUCED QED FOR MASSIVE FERMIONS WITHIN ...

PHYS. REV. D 108, 096036 (2023)

[29] N. Ahmadiniaz, V. M. Banda Guzman, F. Bastianelli, O.
Corradini, J. P. Edwards, and C. Schubert, J. High Energy
Phys. 08 (2020) 049.

[30] N. Ahmadiniaz, V.M.B. Guzman, F. Bastianelli, O.
Corradini, J. P. Edwards, and C. Schubert, J. High Energy
Phys. 01 (2022) 050.

[31] A.I Davydychev, P. Osland, and L. Saks, Phys. Rev. D 63,
014022 (2001).

[32] M.E. Peskin and D.V. Schroeder, An Introduction to
Quantum Field Theory (Westview Press, Addison-Wesley,
Reading, USA, 1995).

[33] A.IL Davydychev, Phys. Lett. B 263, 107 (1991).

[34] M. Re Fiorentin, Int. J. Mod. Phys. C 27, 1650027 (2015).

[35] C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi, and
J. B. Tausk, Nucl. Phys. B580, 577 (2000).

[36] M. Srednicki, Quantum Field Theory (Cambridge University
Press, Cambridge, England, 2007).

[37] D.C. Curtis and M. R. Pennington, Phys. Rev. D 48, 4933
(1993).

[38] C.J. Burden and C.D. Roberts, Phys. Rev. D 47, 5581
(1993).

[39] A. Bashir and M. R. Pennington, Phys. Rev. D 50, 7679
(1994).

[40] A. Bashir, A. Huet, and A. Raya, Phys. Rev. D 66, 025029
(2002).

[41] A. Bashir and R. Delbourgo, J. Phys. A 37, 6587 (2004).

[42] A. Bashir and A. Raya, Nucl. Phys. B709, 307 (2005).

[43] A. Bashir, Y. Concha-Sanchez, and R. Delbourgo, Phys.
Rev. D 76, 065009 (2007).

[44] A. Bashir, A. Raya, and S. Sanchez-Madrigal, Phys. Rev. D
84, 036013 (2011).

[45] A. Kizilersii, T. Sizer, M. R. Pennington, A.G. Williams,
and R. Williams, Phys. Rev. D 91, 065015 (2015).

[46] L. Albino, A. Bashir, L. X. G. Guerrero, B. E. Bennich, and
E. Rojas, Phys. Rev. D 100, 054028 (2019).

[47] L. Albino, A. Bashir, B. El-Bennich, E. Rojas, F. E. Serna,
and R. C. da Silveira, J. High Energy Phys. 11 (2021) 196.

[48] J.R. Lessa, F.E. Serna, B. El-Bennich, A. Bashir, and O.
Oliveira, Phys. Rev. D 107, 074017 (2023).

[49] O. V. Tarasov, Phys. Rev. D 54, 6479 (1996).

[50] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159
(1981).

[51] F. V. Tkachov, Phys. Lett. 100B, 65 (1981).

[52] A. Ahmad, J.J. Cobos-Martinez, Y. Concha-Sanchez, and
A. Raya, Phys. Rev. D 93, 094035 (2016).

[53] A. Bashir and A. Raya, Phys. Rev. D 66, 105005 (2002).

096036-15


https://doi.org/10.1007/JHEP08(2020)018
https://doi.org/10.1007/JHEP08(2020)018
https://doi.org/10.1007/JHEP01(2022)050
https://doi.org/10.1007/JHEP01(2022)050
https://doi.org/10.1103/PhysRevD.63.014022
https://doi.org/10.1103/PhysRevD.63.014022
https://doi.org/10.1016/0370-2693(91)91715-8
https://doi.org/10.1142/S0129183116500273
https://doi.org/10.1016/S0550-3213(00)00251-0
https://doi.org/10.1103/PhysRevD.48.4933
https://doi.org/10.1103/PhysRevD.48.4933
https://doi.org/10.1103/PhysRevD.47.5581
https://doi.org/10.1103/PhysRevD.47.5581
https://doi.org/10.1103/PhysRevD.50.7679
https://doi.org/10.1103/PhysRevD.50.7679
https://doi.org/10.1103/PhysRevD.66.025029
https://doi.org/10.1103/PhysRevD.66.025029
https://doi.org/10.1088/0305-4470/37/25/011
https://doi.org/10.1016/j.nuclphysb.2004.12.010
https://doi.org/10.1103/PhysRevD.76.065009
https://doi.org/10.1103/PhysRevD.76.065009
https://doi.org/10.1103/PhysRevD.84.036013
https://doi.org/10.1103/PhysRevD.84.036013
https://doi.org/10.1103/PhysRevD.91.065015
https://doi.org/10.1103/PhysRevD.100.054028
https://doi.org/10.1007/JHEP11(2021)196
https://doi.org/10.1103/PhysRevD.107.074017
https://doi.org/10.1103/PhysRevD.54.6479
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1103/PhysRevD.93.094035
https://doi.org/10.1103/PhysRevD.66.105005

