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The one- and two-boson momentum spectra are derived in the quantum local-equilibrium canonical
ensemble of noninteracting bosons with a fixed particle number constraint. We define the canonical
ensemble as a subensemble of events associated with the grand-canonical ensemble. Applying simple
hydro-inspired parametrization with parameter values that correspond roughly to the values at the system’s
breakup in pþ p collisions at the LHC energies, we compare our findings with the treatment which is
based on the grand-canonical ensembles where mean particle numbers coincide with fixed particle numbers
in the canonical ensembles. We observe a significantly greater sensitivity of the two-particle momentum
correlation functions to fixed multiplicity constraint compared to one-particle momentum spectra. The
results of our analysis may be useful for interpretation of multiplicity-dependent measurements of pþ p
collision events.
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I. INTRODUCTION

Inasmuch as mean particle multiplicities in relativistic
heavy ion collisions are large, the whole set of collision
events at a fixed energy of nuclear collisions is typically
divided into subsets with fixed charged-particle multiplic-
ities. Corresponding multiplicity classes are associated with
collision centralities and, thereby, with the initial system’s
geometry, which is primarily characterized by the overall
shape of the interaction region. This makes it possible to
study the multiplicity dependence of various observables
measured at the same energy of collisions. In particular, the
fixed particle multiplicity technique has been utilized for
analysis of the Bose-Einstein momentum correlations of
identical particles. These correlations are typically repre-
sented in terms of the interferometry radii. They are the
result of the Gaussian fit of the correlation function defined
as a ratio of the two-particle spectra to the product of the
single-particle ones. These radii reflect the space-time
structure and dynamical evolution of the systems created
in nuclear collisions (for review of the correlation femto-
scopy method, see e.g. Ref. [1]). One notable feature of
these measurements is that the effective system’s volume,
when extracted from the Gaussian interferometry radii,
appears to scale nearly linearly with charged particle

multiplicity (see, e.g., Ref. ([2])). This observation is in
agreement with the hydrodynamical picture of nuclear
collisions.
Recently, because of the start of LHC experiments, the

fixed particle multiplicity technique has been utilized for
analysis of the Bose-Einstein momentum correlations of
identical particles in proton-proton collisions at a fixed
energy of collisions. It was observed, in particular, that,
measured in these collisions, interferometry correlation
radius parameters do not increase with multiplicity at high
charged-particle multiplicities [3,4]. While an explanation
of this effect is still absent, it is suggestive to assume that
the saturation effect in the multiplicity dependence of the
interferometry correlation radius parameters takes place
once the maximal overlap of colliding nucleons is achieved
in most central collisions. Indeed, the color glass con-
densate effective theory predicts that once maximal overlap
is achieved higher multiplicities can only be reached by
certain color charge fluctuations, which do not increase the
initial size of the system [5]. Then, one can speculate that
an individual system created in a high-multiplicity pþ p
collision can be regarded as an element of a quantum-
statistical ensemble of systems with various numbers of
particles produced under the same initial-state geometry.
In a quantum-statistical framework, observables are the

expectation values of the corresponding quantum operators
with respect to a suitable statistical operator. For example,
successful applicability of almost perfect relativistic hydro-
dynamics for the description of a particle production in
relativistic heavy ion collisions (for a recent review see,
e.g., Ref. [6]) indicates that actual state of a system created
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in collisions with the same centrality can be approximated
by a local-equilibrium statistical operator ρleq, Tr½ρleq� ¼ 1,
which is obtained by maximizing the von Neumann
entropy, S ¼ −Tr½ρ ln ρ�, with constrained mean values
of energy-momentum and conserved charge densities on
a given three-dimensional hypersurface (see, e.g., Ref. [7]).
It is noteworthy that high-multiplicity proton-proton colli-
sions exhibit collective behavior similar to that observed in
relativistic nuclear collisions. It indicates that a hydro-
dynamic description of matter formed in these collisions
might also be possible [6]. Application of fixed high-
multiplicity constraint to pþ p collision events means then
selecting some subensemble of events with the same initial-
state geometry to which the considered system belongs. To
assign a quantum statistical state to a subensemble of events
with fixed multiplicity, one can utilize the projection
operator PN, which automatically invokes such a con-
straint. The aim of this work (see also Ref. [8]) is to clarify
how imposed particle number constraint affects the one-
particle spectra and two-boson momentum correlations in a
quantum-field local-equilibrium state. It is worth noting
that for fairly high particle numbers a canonical ground-
state Bose-Einstein condensation can occur. Such a con-
densation could, in principle, lead to noticeable effects in
particle momentum spectra and correlations at fixed mul-
tiplicities. This issue is, however, beyond the scope of this
paper.1

II. LOCAL-EQUILIBRIUM STATISTICAL
OPERATOR

As a starting point, we consider the quasiequilibrium
state (see, e.g., Ref. [7]) of a real relativistic scalar field.
This state is represented by the statistical operator ρqðσÞ as
[we use the convention gμν ¼ diagðþ1;−1;−1;−1Þ]

ρqðσÞ ¼ 1

ZqðσÞ ρ̂
qðσÞ; ð1Þ

ρ̂qðσÞ ¼ exp

�
−
Z
σ
dσnμðxÞβνðxÞTμνðxÞ

�
; ð2Þ

where σ is a three-dimensional spacelike hypersurface with
a timelike normal vector nμðxÞ; βνðxÞ ¼ βðxÞuνðxÞ
uμðxÞuμðxÞ ¼ 1 are the corresponding Lagrange multipliers
(β ¼ 1=T is the inverse temperature, and uμ is the
4-velocity) on the hypersurface σ, adjusted such as to
satisfy the actual mean values of energy and momentum

density at this hypersurface; ZqðσÞ is the normalization
factor making Tr½ρqðσÞ� ¼ 1; and TμνðxÞ is a scalar-field
energy-momentum tensor. For simplicity, we disregard
field self-interactions and consider a noninteracting scalar
quantum field model. Then, the TμνðxÞ reads

TμνðxÞ ¼ ∂
μϕ∂νϕ − gμνL; ð3Þ

where the Lagrangian density is

L ¼ 1

2

�
∂ϕ

∂t

�
2

−
1

2

�
∂ϕ

∂r

�
2

−
m2

2
ϕ2: ð4Þ

Here,

ϕðxÞ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p 1

ð2πÞ3=2 ðe
−iωptþipraðpÞþeiωpt−ipra†ðpÞÞ;

ð5Þ

and

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
: ð6Þ

The quantization prescription means that a†ðpÞ and aðpÞ
are creation and annihilation operators, respectively, which
satisfy the following canonical commutation relations:

½aðpÞ; a†ðp0Þ� ¼ δð3Þðp − p0Þ ð7Þ

and ½aðpÞ; aðp0Þ� ¼ ½a†ðpÞ; a†ðp0Þ� ¼ 0.
Before proceeding further, let us digress for a moment

and consider the simple case of the covariant global-
equilibrium state, where the βμ does not depend on
spacetime coordinates across the infinite three-dimensional
hypersurface. Then, the statistical operator reads

ρeq ¼ 1

Zeq exp ð−βμPμÞ; ð8Þ

where Pμ ¼ R
t d

3rTμ0ðxÞ is 4-momentum of the field
defined at t ¼ const hypersurface. Then, using Eqs. (3)–(5),
we obtain

Pμ ¼ 1

2

Z
d3kkμða†ðkÞaðkÞ þ aðkÞa†ðkÞÞ: ð9Þ

It is convenient to introduce

Pμ
reg ¼ Pμ − h0jPμj0i ¼

Z
d3kkμa†ðkÞaðkÞ; ð10Þ

where j0i is the quantum field vacuum state, aðpÞj0i ¼ 0.
Then, Eq. (8) can be rewritten as

1For such an analysis, the ground state of the local-equilibrium
statistical operator should be specified, and canonical Bose con-
densation in the corresponding ground state should be taken into
account. For simple nonrelativistic quantum-field models, it was
done in Ref. [9], in which the relations of the ground-state Bose-
Einstein condensation at a fixed particle number constraint to the
particle momentum spectra and correlations were discussed.
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ρeq ¼ 1

Zeq
reg

exp ð−βμPμ
regÞ: ð11Þ

It can be shown, e.g., by Gaudin’s method [10], that the
statistical operator (11) is associated with the homogeneous
ideal gas Bose distribution,

feqðpÞ ¼
1

ð2πÞ3
1

eβνp
ν − 1

: ð12Þ

Below, for the reader’s convenience, we present an elemen-
tary derivation of it (see also Ref. [11]). Let us start by
defining aðp; αÞ,

aðp; αÞ ¼ exp ðαβμPμ
regÞaðpÞ exp ð−αβμPμ

regÞ: ð13Þ

Note that aðp; 0Þ ¼ aðpÞ. Expression (13) implies that
aðp; αÞ satisfies equation

∂aðp; αÞ
∂α

¼ ½βμPμ
reg; aðp; αÞ�: ð14Þ

Taking into account that

½βμPμ
reg; aðp; αÞ�

¼ exp ðαβμPμ
regÞ½βμPμ

reg; aðpÞ� exp ð−αβμPμ
regÞ; ð15Þ

this yields then

∂aðp; αÞ
∂α

¼ −βμpμaðp; αÞ: ð16Þ

The solution of this equation is

aðp;αÞ ¼ aðpÞ exp ð−αβμpμÞ: ð17Þ

Our next step is to combine the cyclic invariance of the
trace, Tr½ρeqðσÞa†ðp1Þaðp2Þ�, and Eqs. (13) and (17). Using
the cyclic invariance of the trace and Eq. (13), we obtain

Tr½ρeqðσÞa†ðp1Þaðp2Þ� ¼ Tr½aðp2ÞρeqðσÞa†ðp1Þ�
¼ Tr½ρeqðσÞaðp2; 1Þa†ðp1Þ�: ð18Þ

Taking into account Eqs. (7) and (17), the rhs of the above
equation can be rewritten as

Tr½ρeqðσÞaðp2; 1Þa†ðp1Þ�
¼ Tr½ρeqðσÞa†ðp1Þaðp2; 1Þ� þ ½aðp2; 1Þ; a†ðp1Þ�
¼ e−βμp

μ
2ðTr½ρeqðσÞa†ðp1Þaðp2Þ� þ δð3Þðp2 − p1ÞÞ: ð19Þ

Substituting this into Eq. (18), we finally have

Tr½ρeqðσÞa†ðp1Þaðp2Þ� ¼ δð3Þðp1 − p2Þ
1

eβνðpν
1
þpν

2
Þ=2 − 1

:

ð20Þ

Utilization of the Fourier transformation of Eq. (20) with
respect to Δp ¼ p2 − p1 immediately results in the ideal
gas Bose distribution function (12).
Now, going back to the quasiequilibrium statistical

operator (1), (2), we suppose that βðxÞ and uμðxÞ are
slowly varying functions across the three-dimensional
hypersurface σ. This makes it possible to apply a local
thermal equilibrium approximation (see, e.g., Refs. [7,12])
of the statistical operator (1), (2). The local thermal
equilibrium is an approximate concept which is usually
associated with the possibility of defining a fluid cell, i.e.,
with the existence of a scale at which the system appears to
be at homogeneous equilibrium. Therefore, this scale
should be much smaller than the distance over which
the βμðxÞ ¼ βðxÞuμðxÞ varies essentially. On the other
hand, this scale has to be assumed large enough from a
microscopic point of view, meaning that the typical micro-
scopic correlation lengths are much smaller than the size of
a cell.
To avoid additional complications and formulate the idea

more concretely, we restrict ourselves to the case when the
timelike normal vector nμðxÞ of the hypersurface σ coin-
cides with the 4-velocity field uμðxÞ,

nμðxÞ ¼ uμðxÞ: ð21Þ

Then, we replace the integral in Eq. (2) by the sum as

Z
σ
dσnμðxÞβνðxÞTμνðxÞÞ ≈

X
s

βνðxsÞPνðσsÞ; ð22Þ

where

PνðσsÞ ¼
Z
σs

dσμTμνðxÞ ≈ uμðxsÞ
Z
σs

dσTμνðxÞ; ð23Þ

and the integral in the above equation is taken over the
homogeneity region of the βνðxÞ around some point xμs . The
homogeneity region is defined as a region of the three-
dimensional hypersurface σ where βνðxÞ does not vary in a
noticeable way. It is instructive to rewrite βνðxsÞPνðσsÞ in
the comoving coordinate system where ũμðx̃sÞ ¼ ð1; 0Þ.
Then,

βνðxsÞPνðσsÞ ¼ β̃0ðx̃sÞP̃0ðσ̃sÞ; ð24Þ

P̃0ðσ̃sÞ ¼
Z
t̃s

d3r̃T00ðx̃Þ; ð25Þ

β̃0ðx̃sÞ ¼ βðxsÞ; ð26Þ
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and t̃s ¼ const. The key assumption underlying the local-
equilibrium approximation is that characteristic size, L̃, of
the corresponding volume element is large enough, i.e.,
L̃ ≫ 1=m. This assumption has important consequences. In
particular, by using Eqs. (3)–(5), one can show that
contributions of aa and a†a† terms to the P̃0ðσ̃sÞ can be
neglected. In a sense, this provides the local thermal
equilibrium in the region s around xμs .

2 The corresponding
local-equilibrium statistical operator is

ρleqðσÞ ¼ 1

Zleq
regðσÞ

ρ̂leqðσÞ; ð27Þ

ρ̂leqðσÞ ¼ exp

�
−
X
s

βνðσsÞPν
regðσsÞ

�
; ð28Þ

where Pμ
regðσsÞ ¼ PμðσsÞ − h0jPμðσsÞj0i. By using

Eqs. (3)–(5), we get

βνðσsÞPν
regðσsÞ ≈ βðσsÞ

Z
d3k
k0

d3k0

k00

uμðxsÞkμuνðxsÞk0ν
ð2πÞ3

Z
σs

dσeiðk−k0Þx
ffiffiffiffiffiffiffiffiffi
k0k00

q
a†ðkÞaðk0Þ: ð29Þ

Going to the local rest frame for a cell, we can write Eq. (29) in the following form:

βðxsÞP̃0
regðσ̃sÞ ≈ βðσsÞ

Z
d3k̃d3k̃0

1

ð2πÞ3
Z
t̃s

d3r̃eiðk̃−k̃
0Þx̃

ffiffiffiffiffiffiffiffiffi
k̃0k̃

0
0

q
a†ðk̃Þaðk̃0Þ: ð30Þ

Equation (29) makes possible to rewrite the operator
P

s βνðσsÞPν
regðσsÞ as

X
s

βνðσsÞPν
regðσsÞ ≈

Z
d3kd3k0Aðk;k0; σÞa†ðkÞaðk0Þ; ð31Þ

where

Aðk;k0; σÞ ¼
X
s

Asðk;k0; σÞ; ð32Þ

Asðk;k0; σÞ ¼ βðσsÞ
1ffiffiffiffiffiffiffiffiffi
k0k00

p uμðxsÞkμuνðxsÞk0ν
ð2πÞ3

Z
σs

dσeiðk−k0Þx: ð33Þ

III. QUANTUM LOCAL-EQUILIBRIUM GRAND-CANONICAL ENSEMBLE

In this section, we calculate one-particle and two-particle momentum spectra in the grand-canonical ensemble, which is
described by the local-equilibrium statistical operator. For this aim, it is convenient to compute fist ha†ðp1Þaðp2Þi, where
h…i ¼ Tr½…ρleqðσÞ�. It can be done by adapting the Gaudin’s method to our problem. We start by defining aðp; αÞ,
aðp; 0Þ ¼ aðpÞ, ImðαÞ ¼ 0, as

aðp; αÞ ¼ exp

�
α
X
s

βνðσsÞPν
regðσsÞ

�
aðpÞ exp

�
−α

X
s

βνðσsÞPν
regðσsÞ

�
; ð34Þ

where
P

s βνðσsÞPν
regðσsÞ is defined by Eqs. (31)–(33). Applying the operator identity

eXYe−X ¼ Y þ ½X; Y� þ 1

2!
½X; ½X; Y�� þ 1

3!
½X; ½X; ½X; Y��� þ � � � ; ð35Þ

we can write the result as

2Then, in particular, an ideal fluid approximation with a corresponding form of the energy-momentum tensor is approximately valid;
see, e.g., Ref. [7]. For quasiequilibrium states characterized by strong βμðxÞ gradients, corrections to local thermal equilibrium
approximation and, thereby, to ideal fluid approximation are sizeable and need to be taken into account.
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aðp; αÞ ¼ aðpÞ þ ð−αÞ
Z

d3kAðp;k; σÞaðkÞ þ ð−αÞ2
2!

Z
d3k1d3kAðp;k1; σÞAðk1;k; σÞaðkÞ

þ ð−αÞ3
3!

Z
d3k1d3k2d3kAðp;k1; σÞAðk1;k2; σÞAðk2;k; σÞaðkÞ þ � � � : ð36Þ

Taking into account the nonoverlapping of different cells and neglecting the surface effect on the boundaries of neighboring
cells, we get

aðp; αÞ ≈ aðpÞ þ ð−αÞ
X
s

Z
d3kAsðp;k; σÞaðkÞ þ

ð−αÞ2
2!

X
s

Z
d3k1d3kAsðp;k1; σÞAsðk1;k; σÞaðkÞ

þ ð−αÞ3
3!

X
s

Z
d3k1d3k2d3kAsðp;k1; σÞAsðk1;k2; σÞAsðk2;k; σÞaðkÞ þ � � � : ð37Þ

Substituting Eq. (33) into Eq. (37) and going to the local rest frame for each cell, we can perform an approximate integration
over the momenta assuming that L̃ ≫ 1=m, where L̃ is the characteristic length scale of a cell. The result written in the
laboratory coordinate system is

aðp; αÞ ≈ aðpÞ þ ð−αÞ
X
s

Z
d3kAsðp;k; σÞaðkÞ þ

ð−αÞ2
2!

X
s

Z
d3k

�ðpν þ kνÞ
2

βνðσsÞ
�
Asðp;k; σÞaðkÞ

þ ð−αÞ3
3!

X
s

Z
d3k

�ðpν þ kνÞ
2

βνðσsÞ
�

2

Asðp;k; σÞaðkÞ þ � � � : ð38Þ

Taking into account that main contribution in the integral over k is given by k ≈ p, it is convenient to substitute
uμðxsÞpμuνðxsÞkν in the Asðp;k; σÞ by ððpν þ kνÞuνðxsÞ=2Þ2. The result is

aðp;αÞ ≈ aðpÞ þ ð−αÞ
X
s

Z
d3k

�ðpν þ kνÞ
2

βνðσsÞ
�
δð3Þs ðp − kÞaðkÞ

þ ð−αÞ2
2!

X
s

Z
d3k

�ðpν þ kνÞ
2

βνðσsÞ
�

2

δð3Þs ðp − kÞaðkÞ

þ ð−αÞ3
3!

X
s

Z
d3k

�ðpν þ kνÞ
2

βνðσsÞ
�

3

δð3Þs ðp − kÞaðkÞ þ � � � ; ð39Þ

where we introduced notation

δð3Þs ðp − kÞ ¼ uμðxsÞ
ð2πÞ3

Z
σs

dσ
ðpμ þ kμÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
ωpωk

p eiðp−kÞx: ð40Þ

Note that the first term in Eq. (39) may be written as

aðpÞ ¼
Z

d3kδð3Þðp − kÞaðkÞ ≈
Z

d3k
X
s

δð3Þs ðp − kÞaðkÞ: ð41Þ

Substituting (41) into (39), we obtain

aðp; αÞ ≈
X∞
n¼0

ð−αÞn
n!

X
s

Z
d3k

�
kν þ pν

2
βνðσsÞ

�
n
δð3Þs ðp − kÞaðkÞ: ð42Þ

It is convenient to introduce notation
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G�
αðp;k; σÞ ¼

X
s

exp

�
−αβμðσsÞ

kμ þ pμ

2

�
δð3Þs ðp − kÞ

ð43Þ

and rewrite Eq. (42) in the form

aðp; αÞ ≈
Z

d3kG�
αðp;k; σÞaðkÞ: ð44Þ

From Eq. (43), we have that

G�
αðp;k; σÞ ¼ Gαðk;p; σÞ ð45Þ

and that3

Z
d3kG�

α1ðp2;k;σÞG�
α2ðk;p1;σÞ≈G�

α1þα2ðp2;p1;σÞ: ð46Þ

We can now employ the cyclic invariance of the trace to
get expression for ha†ðp1Þaðp2Þi. By using Eq. (34) and the
cyclic invariance of the trace, one can write

Tr½ρleqðσÞa†ðp1Þaðp2Þ� ¼ Tr½ρleqðσÞaðp2; 1Þa†ðp1Þ�
¼ Tr½ρleqðσÞa†ðp1Þaðp2; 1Þ�
þ ½aðp2; 1Þ; a†ðp1Þ�: ð47Þ

Here, aðp2; 1Þ is given by Eq. (44). By using Eq. (44), we
can write

½aðp2; 1Þ; a†ðp1Þ� ¼ G�
1ðp2;p1; σÞ: ð48Þ

Then, Eq. (47) becomes

ha†ðp1Þaðp2Þi ¼ Tr½ρleqðσÞa†ðp1Þaðp2Þ�

¼
Z

d3kG�
1ðp2;k; σÞha†ðp1ÞaðkÞi

þG�
1ðp2;p1; σÞ: ð49Þ

This equation can be solved by iteration. The result is

ha†ðp1Þaðp2Þi ¼ G�
1ðp2;p1; σÞ

þ
Z

d3kG�
1ðp2;k; σÞG�

1ðk;p1; σÞ þ � � � :

ð50Þ

Taking into account (46), we get

ha†ðp1Þaðp2Þi ¼
X∞
n¼1

G�
nðp2;p1; σÞ; ð51Þ

where G�
n is given by Eq. (43). Substituting G�

n into
Eq. (51), we have

ha†ðp1Þaðp2Þi≈
X
s

1

exp

�
ðpν

1
þpν

2
Þ

2
βνðσsÞ

�
−1

δð3Þs ðp1−p2Þ:

ð52Þ

Our next step is to replace sums over cells with integral
over the hypersurface σ. This leads to

Gnðp1;p2;σÞ≈
1

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
p0
1p

0
2

p
Z
σ
dσμpμe−iðp1−p2Þxe−nβνðxÞpν

;

ð53Þ

ha†ðp1Þaðp2Þi

≈
1

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
p0
1p

0
2

p
Z
σ
dσμpμe−iðp1−p2Þx 1

eβνðxÞpν − 1
; ð54Þ

where pμ ¼ ðpμ
1 þ pμ

2Þ=2. One-particle momentum spectra
then read

p0

d3hNi
d3p

¼ p0ha†ðpÞaðpÞi ≈
Z
σ
dσμpμfleqðx; pÞ; ð55Þ

where fleqðx; pÞ is the grand-canonical distribution func-
tion, which has the familiar form of the local-equilibrium
distribution function of the relativistic ideal gas of bosons,

fleqðx; pÞ ¼ 1

ð2πÞ3
1

eβνðxÞpν − 1
: ð56Þ

It is worth noting that our derivation can be readily extended
to the local-equilibrium grand-canonical ensemble with
nonzero constant chemical potential, μ, associated with
mean number of particles. Then, uνðxÞpν → uνðxÞpν − μ.
Evidently, our derivation is rather heuristic and non-

rigorous. But, in our opinion, it is instructive and adds some
insights into the consistency of the approximations needed
to associate quasiequilibrium statistical operator ρq with the
local-equilibrium ideal Bose gas distribution fleqðx; pÞ.
Proceeding in the same way as above, one can readily

derive an expression for the two-particle momentum
spectra,

p0
1p

0
2

d6hNðN − 1Þi
d3p1d3p2

¼ p0
1p

0
2ha†ðp1Þa†ðp2Þaðp1Þaðp2Þi:

ð57Þ

We start by using the cyclic invariance of the trace. This
leads to

3Note here that for G�
α, which make Eq. (44) an exact equality,

Eq. (46) also becomes an exact equality.
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ha†ðp1Þa†ðp2Þaðp1Þaðp2Þi ¼ ha†ðp1Þaðp1ÞiG�
1ðp2;p2; σÞ þ ha†ðp2Þaðp1ÞiG�

1ðp2;p1; σÞ

þ
Z

d3kha†ðp1Þa†ðp2Þaðp1ÞaðkÞiG�
1ðp2;k; σÞ: ð58Þ

The above equation is solved by iteration. We obtain

ha†ðp1Þa†ðp2Þaðp1Þaðp2Þi ¼ ha†ðp1Þaðp1Þi
X∞
n¼1

G�
nðp2;p2; σÞ þ ha†ðp2Þaðp1Þi

X∞
n¼1

G�
nðp2;p1; σÞ: ð59Þ

Using Eq. (51), we can write the result as

ha†ðp1Þa†ðp2Þaðp1Þaðp2Þi ¼ ha†ðp1Þaðp1Þiha†ðp2Þaðp2Þi þ ha†ðp2Þaðp1Þiha†ðp1Þaðp2Þi; ð60Þ

where ha†ai are given by Eq. (54). Equation (60) is the particular case of the thermal Wick’s theorem [13].

Results of this section, in particular Eq. (53), will be used
in the next section to evaluate particle momentum spectra
and correlations at a fixed particle number constraint.

IV. QUANTUM LOCAL-EQUILIBRIUM
CANONICAL ENSEMBLE WITH FIXED
PARTICLE NUMBER CONSTRAINT

We begin this section by defining the local-equilibrium
canonical ensemble with a fixed particle number constraint
as a subensemble of the corresponding grand-canonical
ensemble. For this aim, we apply the constraint to the
statistical operator given by Eq. (28). It implies utilization
of the projection operator PN,

PN ¼
Z

d3p1…d3pN jp1;…; pNihp1;…; pN j; ð61Þ

jp1;…; pNi ¼
1ffiffiffiffiffiffi
N!

p a†ðp1Þ…a†ðpNÞj0i; ð62Þ

which automatically invokes the corresponding constraint.
Then, the local equilibrium statistical operator with the
constraint, ρleqN ðσÞ, is4

ρNðσÞ ¼
1

ZNðσÞ
ρ̂NðσÞ; ð63Þ

ρ̂NðσÞ ¼ PN ρ̂ðσÞPN; ð64Þ

ZNðσÞ ¼ Tr½ρ̂NðσÞ�; ð65Þ

and we define h…iN ¼ Tr½ρN…:�. To evaluate two-
boson momentum spectra at a fixed multiplicity,
ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN , we will follow the same strat-
egy as in the previous section. We begin with evaluation of
ha†ðp1Þa†ðp2ÞiN . This can be done by using its invariance
under cyclic permutations. One gets

ha†ðp1Þa†ðp2ÞiN ¼ Tr½ρNðσÞa†ðp1Þaðp2Þ�
¼ Tr½aðp2ÞρNðσÞa†ðp1Þ�

¼ 1

ZNðσÞ
Tr½aðp2ÞPN ρ̂ðσÞPNa†ðp1Þ�:

ð66Þ

Utilizing elementary operator algebra, one can prove that

aðp2ÞPN ¼ PN−1aðp2Þ: ð67Þ

We also have

aðp2Þρ̂ðσÞ ¼ ρ̂ðσÞaðp2; 1Þ; ð68Þ

where aðp2; 1Þ and ρ̂ðσÞ are defined by Eqs. (34) and (28),
respectively. Therefore, the rhs of Eq. (66) can be rewritten as

1

ZNðσÞ
Tr½aðp2ÞPN ρ̂ðσÞPNa†ðp1Þ�

¼ 1

ZNðσÞ
Tr½PN−1ρ̂ðσÞaðp2; 1ÞPNa†ðp1Þ�: ð69Þ

Next, using Eqs. (44) and (67), we obtain
aðp2; 1ÞPN ¼ PN−1aðp2; 1Þ. Therefore,

4Below, for brevity, we omit subscripts and superscripts leq
and reg whenever it is clear from the context.
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1

ZNðσÞ
Tr½PN−1ρ̂ðσÞaðp2; 1ÞPNa†ðp1Þ� ¼

1

ZNðσÞ
Tr½PN−1ρ̂ðσÞPN−1aðp2; 1Þa†ðp1Þ�

¼ 1

ZNðσÞ
Tr½PN−1ρ̂ðσÞPN−1a†ðp1Þaðp2; 1Þ� þ

1

ZNðσÞ
½aðp2; 1Þ; a†ðp1Þ�Tr½PN−1ρ̂ðσÞPN−1�: ð70Þ

Furthermore, accounting for Eq. (44), one can see that

1

ZNðσÞ
Tr½PN−1ρ̂ðσÞPN−1a†ðp1Þaðp2; 1Þ� ¼

ZN−1ðσÞ
ZNðσÞ

Tr½ρN−1ðσÞa†ðp1Þaðp2; 1Þ�

¼ ZN−1ðσÞ
ZNðσÞ

ha†ðp1Þaðp2; 1ÞiN−1 ¼
ZN−1ðσÞ
ZNðσÞ

Z
d3kG�

1ðp2;k; σÞha†ðp1ÞaðkÞiN−1 ð71Þ

and that

1

ZNðσÞ
½aðp2; 1Þ; a†ðp1Þ�Tr½PN−1ρ̂ðσÞPN−1� ¼

ZN−1ðσÞ
ZNðσÞ

½aðp2; 1Þ; a†ðp1Þ�

¼ ZN−1ðσÞ
ZNðσÞ

G�
1ðp2;p1; σÞ: ð72Þ

Substituting Eqs. (71) and (72) into Eq. (70) and then into the rhs of Eq. (66), we finally obtain the iteration relation,

ha†ðp1Þaðp2ÞiN ¼ ZN−1ðσÞ
ZNðσÞ

G�
1ðp2;p1; σÞ þ

ZN−1ðσÞ
ZNðσÞ

Z
d3kG�

1ðp2;k; σÞha†ðp1ÞaðkÞiN−1; ð73Þ

which yields

ha†ðp1Þaðp2ÞiN ¼
XN
n¼1

ZN−nðσÞ
ZNðσÞ

G�
nðp2;p1; σÞ: ð74Þ

Now, let us derive an expression for the two-particle momentum spectra at a fixed particle number constraint,

p0
1p

0
2

d6NðN − 1Þ
d3p1d3p2

¼ p0
1p

0
2ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN: ð75Þ

Using the cyclic invariance of the trace, we obtain

ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN ¼ ZN−1ðσÞ
ZNðσÞ

ha†ðp1Þaðp1ÞiN−1G
�
1ðp2;p2; σÞ þ

ZN−1ðσÞ
ZNðσÞ

ha†ðp2Þaðp1ÞiN−1G
�
1ðp2;p1; σÞ

þ ZN−1ðσÞ
ZNðσÞ

Z
d3kG�

1ðp2;k; σÞha†ðp1Þa†ðp2Þaðp1ÞaðkÞiN−1: ð76Þ

One can prove by induction that

ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN ¼
XN
n¼1

ZN−nðσÞ
ZNðσÞ

ha†ðp1Þaðp1ÞiN−nG
�
nðp2;p2; σÞ

þ
XN
n¼1

ZN−nðσÞ
ZNðσÞ

ha†ðp2Þaðp1ÞiN−nG
�
nðp2;p1; σÞ: ð77Þ

Combining Eqs. (74) and (77), we finally obtain
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ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN ¼
XN−1

n¼1

XN−n

s¼1

ZN−n−sðσÞ
ZNðσÞ

ðG�
nðp2;p2; σÞG�

sðp1;p1; σÞ þ G�
nðp2;p1; σÞG�

sðp1;p2; σÞÞ: ð78Þ

It is immediately apparent from the above expression that
the computation of ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN involves
summations over n and s, and these summations fail to
factorize. Then, the question may arise as to whether this
expression is invariant with respect to permutation of
particles, i.e., with respect to permutation p1 ↔ p2. To
address this question, let us note that sums

P
N−1
n¼1

P
N−n
s¼1

can be rewritten as
P

N−1
s¼1

P
N−s
n¼1 . This means that Eq. (78) is

invariant with respect to permutation s ↔ n and, therefore,
is invariant with respect to permutation p1 ↔ p2.
To evaluate Eqs. (74) and (78), we need explicit

expressions for G�
nðp2;p1; σÞ and the partition functions

ZnðσÞ. The former has been evaluated in the previous
section; see Eq. (53). As for the latter, it can be evaluated as
follows. First, note that the definition of ρNðσÞ means
that

Z
d3pha†ðpÞaðpÞiN ¼ N: ð79Þ

Then, accounting for Eq. (74), we get the recursive formula

nZn ¼
Xn
s¼1

Zn−s

Z
d3pG�

sðp;p; σÞ; ð80Þ

where Z0 ¼ 1 by definition.
It is now a simple matter to write explicit expressions for

the one- and two-particle momentum spectra. First, using
Eqs. (53) and (80), we get the recurrence relation that can
be easily implemented numerically,

nZn ¼
Xn
s¼1

Zn−s

Z
d3p

1

ð2πÞ3
Z
σ

dσμpμ

p0
e−sβνðxÞpν

: ð81Þ

Substituting Eq. (53) into Eq. (74), we get

ha†ðp1Þaðp2ÞiN ¼
XN
n¼1

ZN−nðσÞ
ZNðσÞ

1

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
p0
1p

0
2

p

×
Z
σ
dσμpμe−iðp1−p2Þxe−nβνðxÞpν

: ð82Þ

Consequently, the one-particle momentum spectra at a
fixed multiplicity constraint take the form

p0
d3N
d3p

¼ p0ha†ðpÞaðpÞiN ¼
Z
σ
dσμpμfleqN ðx; pÞ; ð83Þ

where fleqN ðx; pÞ is the local-equilibrium canonical distri-
bution function at fixed N,

fleqN ðx; pÞ ¼ 1

ð2πÞ3
XN
n¼1

ZN−nðσÞ
ZNðσÞ

e−nβνðxÞpν
: ð84Þ

It is worth noting that constant chemical potential of the
grand-canonical ensemble, whose subensemble is the
canonical fixed-N ensemble, does not influence on particle
momentum spectra and correlations calculated at fixed
multiplicity. It follows from the recurrence relation that
Zn½μ� ¼ eβμnZn½μ ¼ 0�, and therefore eβμn is factored out
from expressions for particle momentum spectra and
correlations.
Comparing Eq. (84) with Eq. (56), one can conclude that

the selection of a fixed-N subensemble of the correspond-
ing local-equilibrium grand-canonical ensemble results in
nontrivial modifications of distribution functions. In par-
ticular, the one-particle distribution function (84) demon-
strates multiplicity-dependent deviations in spacetime
and momentum dependencies from the familiar local-
equilibrium Bose ideal gas distribution function; see
Eq. (56). In the next section, we compare particle momen-
tum spectra and correlations calculated in the local-
equilibrium grand-canonical and canonical ensembles for
some simple but reliable for pþ p collisions model.

V. PARTICLE MOMENTUM SPECTRA AND
CORRELATIONS: COMPARISON

OF THE ENSEMBLES

It is instructive to compare our findings with the treat-
ment which is based on the grand-canonical ensembles
where chemical potential, μ ¼ const < m, is taken such
that mean particle number, hNi, is equal to particle number,
N, in the canonical ensembles with a fixed multiplicity.
Such an approach is often used for the sake of calculational
convenience. Our simulations are performed for a simple
hydro-inspired [14] local-equilibrium model of the longi-
tudinally boost-invariant expanding system. In this model,
the longitudinal direction (Z axis) coincides with the beam
direction, and the 4-velocity is given by5

uμ ¼ ðt=τ; 0; 0; z=τÞ; ð85Þ

5The initial collision of the two approaching nuclei or nucleons
results in a rapid expansion, which at first proceeds in the
longitudinal direction. Here, for simplicity, we do not take into
account transverse expansion of a system.
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where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the proper time. We assume that a

local-equilibrium state is defined at a hypersurface with
constant energy density in the comoving coordinate system.
Then, βðxÞ is constant on the corresponding hypersurface,
and such a three-dimensional hypersurface σ is defined by a
constant τ. It is convenient to parametrize t and z at this
hypersurface as

t ¼ τ cosh η; ð86Þ

z ¼ τ sinh η; ð87Þ

where η is the longitudinal spatial rapidity, tanh η ¼ vL, and
vL ¼ z=t is the longitudinal velocity. This implies that

dσμ ¼ dσnμ ¼ dσuμ ¼ τdηd2rTuμ; ð88Þ

where rT ¼ ðrx; ryÞ are the transverse Cartesian coordinates.
This picture of an ultrarelativistic collision is, of course,

not valid for large values of the spatial rapidity and for large
transverse distances. We assume that the system has a finite
transverse size encoded in the limits of integration over rT :
0 < rT < RT . As for the longitudinal direction, the finite-
ness of the system is provided by limits of integration over
spatial rapidity η: −ηf < η < ηf.
The on-mass-shell particle 4-momentum pμ can be

expressed through the momentum rapidity y, tanh y ¼
pz=p0; transverse momentum pT ; and transverse mass
mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

p
,

pμ ¼ ðmT cosh y;pT; mT sinh yÞ: ð89Þ

Then,

pμuμ ¼ mT cosh ðy − ηÞ: ð90Þ

For specificity and in order to compare the ensembles at
the extreme small-system limits, we utilize for numerical
calculations the set of parameters corresponding roughly to
the values at the system’s breakup in pþ p collisions at the
LHC energies. We take the particle’s mass as of a charged
pion,m ¼ 139.57 MeV, and the temperatureT ¼ 150 MeV
(then the inverse temperature β ¼ 1=T ¼ 1=150 MeV−1).
For τ, we use 1.5 fm=c. To account for finiteness of the
system, we assume that RT ¼ 2 fm and ηf ¼ 2.
One-particle momentum spectra in the canonical ensem-

ble with fixed multiplicity constraint, p0 d3N
d3p, are calculated

utilizing Eqs. (81), (83), and (84):

p0
d3N
d3p

¼ p0ha†ðpÞaðpÞiN

¼ 1

ð2πÞ3
XN
n¼1

ZN−nðσÞ
ZNðσÞ

Z
σ
dσμpμe−nβνðxÞpν

: ð91Þ

Employing the longitudinally boost invariant parametriza-
tion, we get

d2N
2πmTdmTdy

¼ πR2
T

ð2πÞ3
XN
n¼1

ZN−nðσÞ
ZNðσÞ

Φðn;mT; yÞ; ð92Þ

where Zn are defined by the recurrence relation

nZn ¼
πR2

T

ð2πÞ3
Xn
s¼1

Zn−s

Z
2πmTdmTdyΦðs;mT; yÞ; ð93Þ

and

Φðn;mT; yÞ ¼
Z
σ

τdηmT cosh ðy − ηÞ
enβmT cosh ðy−ηÞ : ð94Þ

One-particle momentum spectra in the grand-canonical
ensemble with hNi ¼ N are calculated utilizing
Eqs. (55) and (56) after substituting βðxÞpνuνðxÞ →
βðxÞðpνuνðxÞ − μÞ. Then,

p0
d3hNi
d3p

¼ p0ha†ðpÞaðpÞi

¼ 1

ð2πÞ3
Z
σ
dσμpμ 1

eβðxÞðpνuνðxÞ−μÞ − 1
: ð95Þ

For the considered model, it implies that

d2hNi
2πmTdmTdy

¼ 1

ð2πÞ3 πR
2
T

Z
σ
τdη

mT cosh ðy − ηÞ
eβðmT cosh ðy−ηÞ−μÞ − 1

:

ð96Þ

We now turn to the two-particle momentum correlations.
The two-particle momentum correlation function at fixed
multiplicities is defined as ratio of two-particle momentum
spectrum to one-particle ones and in the canonical ensemble
with fixed particle number constraint can be evaluated as

CNðp1;p2Þ ¼ GN

p0
1p

0
2
d6NðN−1Þ
d3p1d3p2

p0
1
d3N
d3p1

p0
2
d3N
d3p2

¼ GN
p0
1p

0
2ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN

p0
1ha†ðp1Þaðp1ÞiNp0

2ha†ðp2Þaðp2ÞiN
;

ð97Þ

where ha†ðp1Þa†ðp2Þaðp1Þaðp2ÞiN and ha†ðp1Þaðp1ÞiN are
defined in Eqs. (53), (78), (83), and (84). Here, GN is the
normalization constant. The latter is needed to normalize the
theoretical correlation function in accordance with normali-
zation that is applied by experimentalists:Cexp

N → 1 for jp1 −
p2j → ∞ and fixed ðp1 þ p2Þ.
It is convenient to evaluate the correlation function in

terms of the relative momentum q ¼ p2 − p1 and the pair
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momentum k ¼ ðp1 þ p2Þ=2. The correlation function
takes a particular simple form for pairs with vanishing
longitudinal pair momentum kz ¼ ðp1z þ p2zÞ=2 ¼ 0 and
with kT ¼ p1T ¼ p2T , where kT is the pair momentum
projected onto the transverse plane. Then, momentum
rapidities of the particles in pairs are y1 ¼ −y2.

Explicitly, the longitudinal projection (qT ¼ 0) of the
correlation function, CNðkT;qLÞ (the subscript L ¼
“long” indicates the longitudinal direction), is given by

CNðkT; qLÞ ¼ GNðCð1Þ
N ðkT; qLÞ þ Cð2Þ

N ðkT; qLÞÞ; ð98Þ

where

Cð1Þ
N ðkT; qLÞ ¼

XN−1

n¼1

XN−n

s¼1

ZN−n−s

ZN
Φðn;mT; y2ÞΦðs;mT; y1Þ

×

�XN
n¼1

ZN−nðσÞ
ZNðσÞ

Φðn;mT; y1Þ
�−1�XN

n¼1

ZN−nðσÞ
ZNðσÞ

Φðn;mT; y2Þ
�−1

; ð99Þ

and

Cð2Þ
N ðkT; qLÞ ¼

XN−1

n¼1

XN−n

s¼1

ZN−n−s

ZN
Ψðn;mT; y2;−qLÞΨðs;mT; y1; qLÞ

×

�XN
n¼1

ZN−nðσÞ
ZNðσÞ

Φðn;mT; y1Þ
�−1�XN

n¼1

ZN−nðσÞ
ZNðσÞ

Φðn;mT; y2Þ
�−1

: ð100Þ

Here,

Ψðn;mT; y1; qLÞ ¼
Z
σ

τdηmT cosh η cosh y1eiqLτ sinh η

enβmT cosh η cosh y1
: ð101Þ

To completely specify the two-boson correlation function (98), one needs to estimate the normalization constant GN . It can
be realized by means of the limit jqLj → ∞ at fixed kT in the corresponding expression. One can readily see that proper
normalization is reached if

GN ¼ ZN

ZN−2

�
ZN−1

ZN

�
2

: ð102Þ

It is of interest to estimate the significance of the differences between the correlation functions calculated in the canonical
and grand-canonical ensembles. We define the correlation function in the grand-canonical ensemble with hNi ¼ N as

Cðp1;p2Þ ¼
p0
1p

0
2ha†ðp1Þa†ðp2Þaðp1Þaðp2Þi

p0
1ha†ðp1Þaðp1Þip0

2ha†ðp2Þaðp2Þi

¼ 1þ
����
Z
σ

dσμpμe−iðp1−p2Þx

eβðxÞðpνuνðxÞ−μÞ − 1

����
2�Z

σ

dσμp
μ
1

eβðxÞðpν
1
uνðxÞ−μÞ − 1

�−1�Z
σ

dσμp
μ
2

eβðxÞðpν
2
uνðxÞ−μÞ − 1

�−1
; ð103Þ

where pμ ¼ ðpμ
1 þ pμ

2Þ=2. Then,

CðkT; qLÞ ¼ 1þ
����
Z
σ
τdη

mT cosh η cosh y1e−iqLτ sinh η

eβðmT coshðηÞ cosh y1−μÞ − 1

����
2

×

�Z
σ
τdη

mT cosh ðy1 − ηÞ
eβðmT cosh ðy1−ηÞ−μÞ − 1

�
−1
�Z

σ
τdη

mT cosh ðy2 − ηÞ
eβðmT cosh ðy2−ηÞ−μÞ − 1

�
−1
: ð104Þ
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To compare the ensembles, we begin by calculating hNi
as function of μ=m. The results are presented in Fig. 1. One
observes from this figure that μ is aboutmwhen hNi is near
11. Because we do not aim to calculate here the Bose-
Einstein condensation in the grand-canonical and canonical
ensembles, in what follows, we do not consider canonical
ensembles with N larger than 11.
Then, to calculate particle momentum spectra and

correlations in the canonical ensembles, we need to
evaluate ZN for various N. The results are plotted in Fig. 2.
Now, we are ready to compare spectra and correlations

calculated in the grand-canonical and canonical ensembles.
First, we compare particle number rapidity densities,
dN=dy, for hNi ¼ N. As illustrated by Fig. 3, the grand-
canonical particle number rapidity densities are virtually
indistinguishable from their canonical counterparts.
The transverse particle momentum spectra are compared

in Fig. 4. Aside from the low transverse momenta region of
the spectra with N ¼ hNi ¼ 11, where the grand-canonical

spectrum is above the canonical one due to the Bose-
Einstein enhancement (μ is approximately equal to m; see
Fig. 1), we see no significant differences.
Figures 5 and 6 display two-boson momentum correla-

tion functions CNðkT; qLÞ calculated in the canonical
ensembles as a function of the momentum difference.
From these figures, it is evident that the intercepts of the
canonical correlation functions, CNðkT; 0Þ, are not equal to
2 and that the canonical correlation functions approach to 1
from below when jqLj → ∞. It distinguishes two-boson
correlation functions in the canonical ensembles from the
ones in the corresponding grand-canonical ensembles
where the correlation functions (not shown here) approach
to 1 from above and the intercepts are equal to 2.
Notwithstanding the essential non-Gaussianity of the

canonical correlation functions, if the fitting procedure is
restricted to the correlation peak region, then the correlation
function is well fitted by the Gaussian expression

FIG. 1. The μ=m dependence on hNi. See the text for details.

FIG. 2. The ZN dependence on N. See the text for details.

FIG. 3. The particle rapidity densities for the canonical (left)
and grand-canonical ensembles (right).

FIG. 4. The transverse momentum spectra calculated in the
canonical and grand-canonical ensembles with differentN ¼ hNi.
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CNðkT; qLÞ ¼
CNðkT; 0Þ

2
ð1þ e−q

2
LR

2
longðkT ;NÞÞ: ð105Þ

It is instructive to compare canonical radius parameters
extracted according to this expression with the ones
calculated in the grand-canonical ensembles for hNi ¼ N,

CðkT; qLÞ ¼ 1þ e−q
2
LR

2
longðkT ;hNiÞ: ð106Þ

For definiteness, for both ensembles, we apply the fitting
procedures in the qL range 0 < qL < qmax

L , where qmax
L is

such that e−q
2
LR

2
long ¼ 0.4. Our results are depicted in Figs. 7

and 8. One can see that the canonical radius parameters
slightly decrease withN, and the same trend, i.e., a decrease
with hNi ¼ N, is also observed for the grand-canonical
radius parameters that are slightly smaller than the canoni-
cal ones. This decrease with hNi ¼ N can be interpreted as

increasing deviations from the Boltzmann approximation.
Figure 8 shows Rlong as a function on kT ¼ jkT j for several
different values of N. One can see that Rlong in both
ensembles is much smaller than the actual longitudinal size
of the system (∼τ sinh ηf) and decreases when kT increases.
Such a smallness of the correlation radius parameters and a
decline with increasing pair momentum are typical for
locally equilibrated expanding systems [1]. In Fig. 8, we
plot for comparison the approximate analytical formula

for Rlong, Rlong ≈ τ
ffiffiffiffiffiffiffi
1

βmT

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðβmTÞ
K1ðβmTÞ

q
≈ τ

ffiffiffiffiffiffiffi
1

βmT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2βmT

q
[15].

The latter approximate equality is obtained by means of the
asymptotic (large argument) expansion of the Macdonald
functions. In the limit, βmT ≫ 1, this reduces to the

FIG. 5. The canonical correlation functions for N ¼ 5 and
several different values of kT .

FIG. 6. The canonical correlation functions for N ¼ 11 and
several different values of kT .

FIG. 7. The Rlong dependence on N ¼ hNi in the canonical and
grand-canonical ensembles for several different values of kT . See
the text for details.

FIG. 8. The Rlong dependence on mT in the canonical and
grand-canonical ensembles for several different values of N ¼
hNi and the Rlong calculated from the approximate analytic
expression. See the text for details.
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formula Rlong ≈ τ
ffiffiffiffiffiffiffi
1

βmT

q
[16] (see also [17]). All of the two

figures reveal a consistent trend: if radius parameters are
fitted in the region of the correlation peak, then deviations
of the canonical radius parameters from their grand-
canonical counterparts are rather small. It is also the case
for N ¼ hNi ¼ 11 and small kT , because the effects of the
Bose-Einstein enhancement (μ is approximately equal to m
at hNi ¼ 11) are nearly canceled out in the ratio (104).

VI. CONCLUSIONS

In this paper, we derived analytical expressions for one-
and two- particle momentum spectra of a noninteracting
relativistic boson field in the canonical ensemble
described by the local-equilibrium statistical operator
with a fixed particle number constraint. To see the effect
of this constraint, we considered a corresponding grand-
canonical state and compared the one-particle spectra and
two-particle Bose-Einstein correlation functions. The
correspondence was fixed by the condition that particle
numbers, N, in the canonical states and mean particle
numbers, hNi, in the grand-canonical states are the same.
Then, applying hydrodynamically motivated parametriza-
tion and parameter values that correspond roughly to the
values at the system’s breakup in pþ p collisions at the
LHC energies, we compare our results with the grand-
canonical ensemble where artificial chemical potential,
μ ¼ const < m, is taken such that hNi ¼ N. We have
found that, calculated in both ensembles, one-particle
momentum spectra are rather close to each other except
for low transverse momenta region of the spectra with
N ¼ hNi ¼ 11, where the grand-canonical spectrum is
above the canonical one due to the Bose-Einstein
enhancement (μ is approximately equal to m). Then, we
compared the two-particle Bose-Einstein momentum

correlations. We demonstrated that there are small quan-
titative but qualitative differences between the correlation
radius parameters in both ensembles if they are fitted in
the region of the correlation peak: the canonical radius
parameters are slightly larger than the grand-canonical
ones. Furthermore, we showed that, in contrast to the
predictions of the grand-canonical ensemble, the inter-
cepts of the canonical correlation functions are not equal
to 2 and depend on particle multiplicities and momenta
and that the canonical correlation functions can be less than
unity in some intermediate region of relative momentum of
particles. Such features should be taken into account when
theoretical models are compared with the multiplicity-
dependent measurements of the Bose-Einstein momentum
correlations. As a final comment, we wish to note that the
apparent independence of correlation radius parameters on
the particle number densities in high-multiplicity pþ p
collisions at a fixed energy of the LHC [3,4] still remains
unexplained, inviting further studies.
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