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We propose a novel method to find local plane-wave solutions of the linearized equations of motion
of relativistic hydrodynamics in inhomogeneous equilibrium configurations, i.e., when a fluid in
equilibrium is rigidly moving with nonzero thermal vorticity. Our method is based on extending the
conserved currents to the tangent bundle, using a type of Wigner transformation. The Wigner-
transformed conserved currents can then be Fourier-transformed into the cotangent bundle to obtain the
dispersion relations for the space-time dependent eigenfrequencies. We show that the connection
between the stability of hydrodynamics and the evolution of plane waves is not as straightforward as in
the homogeneous case, namely, it is restricted to the equilibrium-preserving directions in the cotangent
bundle. We apply this method to Müller-Israel-Stewart (MIS) theory and show that the interplay
between the bulk viscous pressure and the shear-stress tensor with acceleration and rotation leads to
novel modes, as well as modifications of the already known ones. We conclude that, within the domain
of applicability, i.e., when boundary effects are negligible and the vorticity is not too large, MIS theory
is stable and causal, with the same stability and causality conditions as for homogeneous equilibrium
configurations.
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I. INTRODUCTION

Hydrodynamics is a theory that describes the long-
wavelength behavior of fluids near local thermodynamical
equilibrium [1,2]. Its equations of motion comprise the
conservation of various currents, most importantly the
energy-momentum tensor, as well as those of conserved
charges in the system. More often than not, the form of the
conserved currents is only rigorously known in equilibrium.
In such a state, the conserved currents are expressed in terms
of hydrodynamic fields, such as the fluid four-velocity and
temperature. For perfect fluids, knowing the equilibrium
forms of the conserved currents is sufficient. However, real-
world fluids experience dissipation. To describe them, we
need to identify the relevant out-of-equilibrium contributions
to the conserved currents. There are different ways to
construct such terms. As is expected on physical grounds,
some of these terms contain derivatives of the hydrodynamic
fields, which gives rise to the so-called gradient expansion.
One starts by assuming that, near equilibrium, the gradients
of the fields are smaller than the fields themselves. Therefore,
the additional terms in the conserved currents must comprise
these gradients multiplied by parameters, the so-called
transport coefficients, which define the responses of the
fluids to these gradients. These coefficients can be deter-
mined from an underlying theory that determines the micro-
scopic dynamics of the system under consideration. At first

order in derivatives, the gradient expansion yields Navier-
Stokes theory [3,4].
It is legitimate to ask if the equilibrium state has

maximum entropy in a hydrodynamic theory arising from
the gradient expansion [5]. This question is synonymous
to the stability of hydrodynamics. It can be addressed by
assuming an equilibrium state and asking if small pertur-
bations remain small with increasing time. In this spirit
that Hiscock and Lindblom (HL) assumed plane-wave
perturbations around a homogeneous equilibrium state
and showed that such a state is indeed unstable in Navier-
Stokes theory [6]. Also, it is well known that the equations
of motion of Navier-Stokes theory are parabolic; therefore,
they allow for the propagation of signals outside the causal
light cone. In the plane-wave analysis of HL, which we will
refer to as linear stability analysis, this fact is exhibited in
the existence of waves that, for short wavelengths, travel
faster than light. They also found that some modes, which
are damped in the frame of a comoving observer, are
unstable in the frame of another observer, which is moving
uniformly with a finite speed with respect to the fluid. This
connection between stability and causality was also inves-
tigated in Refs. [7,8], and was finally settled in Ref. [9],
where it was found that, in the linear regime, for a causal
theory of hydrodynamics, damped modes remain damped
in any inertial frame.
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The instability of Navier-Stokes theory, which cannot
be cured by including higher-order terms in the gradient
expansion, was one of the main factors in the development
of causal and stable theories of hydrodynamics. In particular,
Müller-Israel-Stewart (MIS) [10–12] theory emerged as an
answer to this problem. The stability of this theory, under
certain conditions, was investigated both by linear stability
analysis [13] and also by amethod relying onGibbs’ stability
criteria [14,15], which was recently put into a systematic
form in Ref. [16]. Following this reference, we will call this
method the information-current method. On the other hand,
using kinetic theory, so-called Denicol-Niemi-Molnar-
Rischke (DNMR) theory [17] was developed, which in
the linear regime is similar to MIS theory. Recently, it was
discovered that a first-order stable and causal theory of
hydrodynamics indeed exists if one does not use the standard
matching conditions according to Landau [3] or Eckart [4].
Such an improved gradient expansion gives rise to so-called
Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory of first-
order hydrodynamics [18–22].
The linear stability analysis not only enables us to

understand the stability of hydrodynamics but also reveals
the nature of the waves arising from perturbing the
equilibrium state. However, unlike the information-current
method, it requires the existence of a homogeneous
equilibrium configuration, i.e., a state where the hydro-
dynamic fields do not depend on space-time. On the other
hand, the information-current method does not give us
any information on the propagation of linear waves and is
only applicable to theories for which the second law of
thermodynamics holds exactly. This shortcoming is, in
particular, relevant for BDNK theory, because its entropy
current does not contain terms that ensure causality [21].
Furthermore, inhomogeneous equilibrium configurations,
e.g., rigidly rotating fluids, always feature a length scale
arising from the existence of a boundary, which is neglected
in the information-current method.
It is known that the equilibrium configuration of an

uncharged fluid is fully determined by a timelike Killing
vector, which we refer to as β-vector (see, for example,
Ref. [23] and references therein). With the β-vector
being fixed, the hydrodynamic variables, such as the four-
velocity and temperature, are unambiguously determined.
In a sense, one might say that geometry dictates the
possible equilibrium configurations. Even in flat space-
time, it is possible to have inhomogeneous equilibrium
configurations. This, for example, includes the case of
rigidly rotating fluids in equilibrium. Such equilibrium
conditions have attracted attention in recent years in the
context of heavy-ion physics, mainly due to the increasing
interest in understanding the process of conversion of the
orbital angular momentum in noncentral collisions into the
polarization of observed particles [24].
Naturally, one may inquire if linear waves can also

be found in an inhomogeneous equilibrium configuration.

If yes, what can we then learn from them about the stability
of the theory? In the current work, we will answer these
questions. This paper is organized as follows: In Sec. II, we
review possible equilibrium configurations and the linear
stability analysis. Then, in Sec. III, we develop the tools
necessary to solve the linearized hydrodynamic equations
of motion in inhomogeneous equilibrium configurations, at
hand of the example of a simple wave equation. Namely,
we extend the wave equation to the tangent bundle,
using a kind of Wigner transformation. The solution of
this extended wave equation is then Fourier-transformed
into the cotangent bundle to find the dispersion relations for
the space-time dependent eigenfrequencies. We show that
the connection between the stability of the solutions and the
imaginary parts of the eigenfrequencies is restricted to
the equilibrium-preserving directions in the cotangent
bundle. In Sec. IV we apply these ideas to hydrodynamics
in general. Subsequently, in Sec. V, we determine the
modes of MIS hydrodynamics in inhomogeneous equilib-
rium configurations and investigate the interplay between
dissipative fluxes, acceleration, and rotation. Section VI
concludes this paper with a summary of our results and an
outlook. Details of our calculations are delegated to several
appendices.
Notations and conventions We use natural units ℏ ¼

c ¼ k ¼ 1. Euclidean three-vectors are denoted with bold-
face letters, such as y, in contrast to four-vectors, like y.
The index-free notation is often used for four-vectors, for
example, u ¼ uμ∂μ. We use the dot notation for scalar
products, both between four and three-vectors, i.e., a · b ¼
aμbμ and a · b. The covariant and Lie derivatives are
denoted by ∇ and L, respectively. We denote the hori-
zontally lifted covariant derivative with D in the tangent
bundle and D̃ in the cotangent one. The metric signature is
mostly minus, i.e., ημν ¼ diagð1;−1;−1;−1Þ. Our con-
vention for the totally antisymmetric tensor ϵμναβ is such
that in Minkowskian coordinates ε0123 ¼ −ε0123 ¼ 1. We
use the standard symmetrization and antisymmetrization
notations, AðμνÞ ≡ 1

2
ðAμν þ AνμÞ and A½μν� ≡ 1

2
ðAμν − AνμÞ,

respectively. The covariant projector Δμν ≡ gμν − uμuν,
with uμ being the fluid four-velocity, projects every vector
Aμ onto the three-space orthogonal to uμ, i.e., Ahμi≡
ΔμνAν. The symmetric, traceless projector of rank four
is Δμν

αβ ≡ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ, the application of

which onto a rank-2 tensor Aμν is denoted by Ahμνi≡
Δμν

αβA
αβ. The convention that we use for the Riemann tensor

is Rσ
ρμν ¼ 2ð∂½μΓσ

ν�ρ þ Γσ
½μβΓ

β
ν�ρÞ.

II. PRELIMINARIES

In this section, we briefly review the concepts required
for the remainder of this work. Let us consider a fluid
described by a set of conserved currents fQμν���

1 ; Qμν���
2 ;…g.

We refer to the conservation equations satisfied by these
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currents, i.e., ∇μQ
μν���
i ¼ 0, with i ¼ 1; 2;…, as equations

of motion (EOM). Although the system in consideration
may possess multiple conserved currents, for the following
we assume a neutral simple fluid that only has the energy-
momentum tensor Tμν as conserved current.
In global equilibrium, there exists a timelike Killing

vector βμ (see, e.g., Ref. [23] for a review), i.e.,

Lβgμν ¼ ∇μβν þ∇νβμ ¼ 0; and β · β > 0: ð1Þ

from which the fluid’s four-velocity and temperature can be
computed as

uμ ¼ βμffiffiffiffiffiffiffiffiffi
β · β

p ; T ¼ 1ffiffiffiffiffiffiffiffiffi
β · β

p : ð2Þ

A fluid in global equilibrium does not necessarily move
with a uniform velocity, in fact, it can be subject to global
rotation and/or acceleration. Such nontrivial kinematics can
be encoded in an antisymmetric rank-2 tensor, which is
referred to as the thermal vorticity,

ϖμν ≡ −∇½μβν�: ð3Þ

As an antisymmetric rank-2 tensor field, ϖμν can be
decomposed as

ϖμν ¼
2

T
a½μuν� þ

1

T
ϵμναβω

αuβ; ð4Þ

where aμ ≡ Tϖμνuν is the electric part of the thermal
vorticity and ωμ ≡ − 1

2
Tϵμναβuνϖαβ is the magnetic part.

Using Eqs. (1) and (2) one finds that both temperature
and four-velocity commute with βμ, i.e., their Lie deriva-
tives with respect to β vanish. This is in fact a general
result: any physical quantity described by a tensor Xμν��� of
arbitrary rank commutes with βμ in global equilibrium,
namely, [23]

LβXμν��� ¼ 0: ð5Þ

Using LβT ¼ 0, we find that aμ ≡ u · ∇uμ is the four-
acceleration of the fluid, while ωμ is usually referred
to as the kinematic vorticity four-vector. Note that ωμ ¼
1
2
ϵμναβuνΩαβ, where Ωαβ ≡ 1

2
ð∇hαiuβ −∇hβiuαÞ is the rank-

2 fluid vorticity tensor. Moreover, the acceleration and the
gradient of temperature are related through

Taμ ¼ ∇μT: ð6Þ

The hydrodynamic fields that arise from Eqs. (2) and (5),
with βμ being a Killing vector, satisfy the perfect-
fluid EOM, i.e., ∇μT

μν
eq ¼ 0. Furthermore, dissipative

currents must be constructed such that they vanish in
global equilibrium regardless of the relevant transport

coefficients. Thus, the conserved currents reduce to their
perfect-fluid counterparts, and the EOM are guaranteed to
be satisfied in equilibrium.1

A. Homogeneous and inhomogeneous
equilibrium configurations

At this stage, let us review some features of possible
equilibrium configurations, and categorize them. In
Minkowski space-time, the vector

β ¼ 1

T0

∂

∂t
; ð7Þ

with a positive constant T0, is a timelike Killing vector.
Using β≡ β · ∂, this β-vector corresponds to a fluid at rest
with a global constant temperature,

uμ ¼ ð1; 0Þ; Tðt;xÞ ¼ T0; ð8Þ

i.e., the fluid is in hydrostatic equilibrium.
Adding a Killing vector to a Killing vector yields by

definition another Killing vector. If the sum is timelike, it
can be regarded as the β-vector for another possible
equilibrium configuration. In general, Minkowski space-
time possesses ten independent Killing vectors, corre-
sponding to the generators of the Poincaré algebra, i.e.,
in addition to ∂

∂t, the generators of the three spatial trans-
lations, ∂

∂xi, the three spatial rotations, ϵijkxj ∂

∂xk
, and the

three Lorentz boosts, xi ∂

∂t þ t ∂

∂xi, where i, j, k ¼ 1, 2, 3.
Therefore, adding T−1

0 vi ∂

∂xi to Eq. (7) results in a time-
like Killing vector if the modulus of the coefficient vi

fulfills jvij < 1,

β ¼ 1

T0

�
∂

∂t
þ vi

∂

∂xi

�
: ð9Þ

Summing over i, we obtain a Killing vector ifP
3
i¼1ðviÞ2 < 1. With the definitions (2), one then obtains

uμ ¼ γð1; vÞ; T ¼ γT0; ð10Þ

i.e., vi are the components of the three-velocity v, with
γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
being the Lorentz factor. Configurations (7)

and (9) are related through a global, i.e., space-time-
independent, boost. In all these cases, physical quantities
are constant in space-time. Thus, we refer to such con-
figurations as homogeneous equilibrium configurations.

1In the case of nonvanishing curvature, a derivative expansion
of the conserved currents also features terms which contain
derivatives of the metric. These curvature-induced terms do not
vanish in equilibrium and are thus not of dissipative nature.
Nevertheless, an equilibrium configuration defined via a timelike
Killing vector remains a solution to the EOM [25].
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However, even in flat space-time, inhomogeneous equi-
librium configurations are possible, for which the hydro-
dynamic quantities are not constant in space and time. These
are found by adding the generators of boosts and rotations
to the hydrostatic β-vector (7). For example, by adding
the generator of a boost along the z-direction, multiplied
with a coefficient a0=T0, where a0 is a positive constant of
dimension energy, the β-vector assumes the form [26]

β ¼ 1

T0

�
∂

∂t
þ a0

�
z
∂

∂t
þ t

∂

∂z

��
: ð11Þ

For β to be timelike, it is required that

j1þ a0zj > ja0tj: ð12Þ

It is simpler to express this configuration in so-called Rindler
coordinates ðτ; x; y; ξÞ, which are related to Minkowski
coordinates through

τ ¼ 1

2a0
log

�
1þ a0ðzþ tÞ
1þ a0ðz − tÞ

�
;

ξ ¼ 1

2a0
log ½ð1þ a0zÞ2 − a20t

2�: ð13Þ

The line element in the above coordinates reads

ds2 ¼ e2a0ξðdτ2 − dξ2Þ − dx2 − dy2: ð14Þ

Using the coordinate transformations (13), the β-vector
has the simple form 1

T0

∂

∂τ, and the four-velocity (in Rindler
coordinates) and temperature are obtained from Eq. (2) as

uμ ¼ e−a0ξð1; 0Þ; T ¼ e−a0ξT0: ð15Þ

We note that in Minkowski coordinates the four-velocity
reads

uμ ¼ γðt; zÞð1; vðt; zÞÞ; with γ ¼ coshða0τÞ;
v ¼ tanhða0τÞẑ: ð16Þ

This configuration has a nonzero acceleration, which reads in
Rindler coordinates

aμ ¼ a0e−2a0ξð0; 0; 0; 1Þ: ð17Þ

The acceleration introduces a specific spacelike direction in
equilibrium, which may be identified with the unit vector (in
Rindler coordinates)

lμ ¼ 1

a
aμ ¼ e−a0ξð0; 0; 0; 1Þ; ð18Þ

where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−a · a

p
. We note that due to Eq. (6) the hyper-

surfaces perpendicular to lμ are hypersurfaces of constant

temperature. One convinces oneself that, for the configura-
tion (11), the thermal vorticity does not have a magnetic,
i.e., rotational, part. Therefore, we refer to this configuration
as an accelerating configuration. More general accelerating
configurations can be found by adding the boost generators
in x- and y-directions, multiplied with appropriate con-
stant factors, to Eq. (11), respecting the restriction that the
resulting β-vector is timelike.
Another inhomogeneous equilibrium configuration can

be obtained by adding a generator of a rotation, multiplied
with a coefficient Ω0=T0, where Ω0 is a positive con-
stant with dimension energy, to the hydrostatic β-vector (7).
For instance, for a rotation around the z-axis, we then
obtain [26,27]

β ¼ 1

T0

�
∂

∂t
þ Ω0

�
x
∂

∂y
− y

∂

∂x

��
: ð19Þ

This β-vector is timelike if

Ω2
0ðx2 þ y2Þ < 1: ð20Þ

This equilibrium configuration corresponds to a rigid
rotation around the z-axis, wherefore we call it a rotating
configuration. It can be expressed in a simpler way in
cylindrical coordinates ðt; ρ;φ; zÞ, where ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

φ ¼ arctanðy=xÞ, where the line element is

ds2 ¼ dt2 − dρ2 − ρ2dφ2 − dz2: ð21Þ

Using Eq. (2), the four-velocity (in cylindrical coordinates)
and the temperature are obtained as

uμ ¼ γðρÞð1; 0;Ω0; 0Þ; T ¼ γðρÞT0;

with γðρÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2Ω2

0

p : ð22Þ

In this case, the thermal vorticity has both electric and
magnetic parts, encoded in the acceleration and kinematic
vorticity, which in cylindrical coordinates read

aμ ¼ −γ2ðρÞρΩ2
0ð0; 1; 0; 0Þ; ωμ ¼ γ2ðρÞΩ0ð0; 0; 0; 1Þ;

ð23Þ

respectively. Although these vectors are orthogonal in this
case, this is not a general result for all rotating configu-
rations, see Appendix A.
As will become clear later, in the rotating case it is

advantageous to define a tetrad of orthogonal four-vectors.
Obviously, uμ is orthogonal to both aμ and ωμ, but the latter
two are not necessarily orthogonal to each other. Therefore,
we decompose ωμ into directions parallel and orthogonal to
the normalized acceleration lμ,

ωμ ¼ ωllμ þ ω⊥ψμ; ð24Þ
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with ωl≡−l ·ω, ω⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω · ω − ω2

l

q
, and ψμ ≡

ðωμ − ωllμÞ=ω⊥. Note that ψμ is only well defined
when ω⊥ ≠ 0, which is always fulfilled for the rotating
configuration. Then we define

ζμ ≡ ϵμναβuνlαψβ: ð25Þ

For the rotation around the z-axis ζμ reads in cylindrical
coordinates

ζμ ¼ −
γðρÞ
ρ

ðρ2Ω0; 0; 1; 0Þ: ð26Þ

The set of vectors ðu;l;ψ ; ζÞ then forms a tetrad of
orthonormal four-vectors.
We can combine the rotating and accelerating cases

with each other or with the homogeneous case to find
more complicated global-equilibrium configurations. Also,
rotations may occur around different axes. One may also
assume a curved background. An example is given in
Appendix A.

B. Linear stability of homogeneous
equilibrium configurations

As mentioned in the Introduction, our goal is to general-
ize the linear stability analysis of hydrodynamic theories to
inhomogeneous equilibrium configurations. It is therefore
useful to first remind ourselves of the standard linear
stability analysis in homogeneous equilibrium configura-
tions [6]. For a homogeneous equilibrium configuration,
the fluid moves with a four-velocity corresponding to the
β-vector (9) in an observer’s frame. The four-velocity of
this observer defines a timelike vector nμ. In the observer’s
rest frame, nμ ¼ ð1; 0Þ is the normal vector on a spacelike
hypersurface ΣðtÞ with volume element d3x, where t is the
time coordinate in the observer’s frame. The energy-
momentum tensor Tμν is then perturbed with respect to
its equilibrium value. The perturbation δTμν is assumed to
be small, such that the EOM can be linearized to first order
in δTμν.
In the following, we denote the components of δTμν as

δXAðt;xÞ, with A being the component index. Inserting
δXAðt;xÞ into the linearized EOM and solving the latter in
Fourier space gives rise to a set of homogeneous linear
equations for the Fourier components δXAðω;kÞ,

MABðω;kÞδXBðω;kÞ ¼ 0: ð27Þ

This system has nontrivial solutions if the determinant of
Mðω;kÞ vanishes. The (in general complex) roots of the
characteristic equation detMðω;kÞ ¼ 0 give the dispersion
relations of the normal modes of the system

ωa ¼ ωaðkÞ; ð28Þ

where a labels the various modes. A mode becomes
unstable if (in our convention for the Fourier transforma-
tion) ImωaðkÞ > 0 in some domain Dk of the space of
three-momenta k. One can show that if at least one mode is
unstable, the L2 norm

kδXAðtÞk2¼
Z
ΣðtÞ

d3x

����
Z
k

X
a

δXA
aðkÞe−iωaðkÞtþik·x

����2; ð29Þ

on spatial surfaces ΣðtÞ diverges as t → ∞. HereZ
k
≡
Z

d3k
ð2πÞ3 :

Vice versa, the equilibrium configuration is linearly stable
if ImωaðkÞ ≤ 0 for all modes and all values of k.

C. Wave equation as an example

In this subsection, we want to elucidate the concepts of
the previous subsection at hand of a simple example: a
relativistic wave equation of the form [28]

ð□ − fβ ·∇þm2ÞϕðxÞ ¼ 0; ð30Þ

where □≡∇ ·∇ is the d’Alembert operator, f and m are
some coefficients, and βμ is a timelike Killing vector. A
homogeneous equilibrium configuration corresponds to the
condition that f and m are constants and space-time is flat,
while in an inhomogeneous equilibrium configuration, f
and m are functions of space-time and/or space-time has a
nontrivial curvature.
In Minkowskian space-time, after Fourier transformation

of Eq. (30), we find the following characteristic equation
in some observer’s frame

ω2 − ifβ0ωþ ifβ · k − k2 −m2 ¼ 0; ð31Þ

where we have used that βμ ¼ ðβ0; βÞ. The two roots of this
equation ω�ðkÞ determine the dispersion relations, and the
solution of the wave equation (30) is

ϕðt;xÞ ¼
Z
k
½ϕþðkÞe−iωþðkÞtþik·x þ ϕ−ðkÞe−iω−ðkÞtþik·x�:

ð32Þ

If f > 0, then the imaginary part of one of the roots, say
ωþðkÞ, is positive in a subdomainDk of the space of three-
momenta k. For example, if m ¼ 0, there are two roots for
k ¼ 0, ωþð0Þ ¼ ifβ0;ω−ð0Þ ¼ 0. Following Ref. [6], we
can then show that the L2 norm satisfies

kϕðtÞk2 ≥ e2Λt
Z
k∈Dk

jϕþðkÞ þ ϕ−ðkÞe−ςtþiReΔωðkÞtj2;

ð33Þ
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where Λ is the minimum value of ImωþðkÞ on Dk,
ΔωðkÞ ¼ ωþðkÞ − ω−ðkÞ, and ς is the maximum value
of ImΔωðkÞ on Dk. This inequality shows that the norm is
growing unboundedly with time.
Now, let us assume an inhomogeneous equilibrium

configuration, for which m and f are only constant on
integral curves of the Killing vector βμ, namely where

Lβm ¼ Lβf ¼ 0: ð34Þ

Now we repeat the same procedure as above, i.e., we
perform a Fourier transformation of Eq. (30). However,
nowm and f are in general not constant on ΣðtÞ [apart from
the lower-dimensional manifold defined by Eq. (34)], and
the characteristic equation (31), and thus the dispersion
relations, will also be coordinate-dependent. This is incon-
sistent with replacing derivatives ∂μ by −ikμ, even in flat
space-time, and the wave equation (30) cannot be solved by
Fourier transformation. In the following section, we pro-
pose an approach to handle this problem at least in flat
space-time.

III. EXTENSION TO THE TANGENT BUNDLE

In this section, we propose a procedure that can be used
for the linear stability analysis in an inhomogeneous
equilibrium configuration in flat space-time. Inspired by
quantum transport theory in curved space-time [29], we
extend the perturbations to the tangent bundle using a
so-called Wigner transform. We then study the wave
equation (30) in tangent space. Analyzing the stability of
its solutions requires a restriction of the norm to the
equilibrium-preserving directions in tangent space. We
first define the latter and then apply this concept to the
definition of the norm.

A. The Wigner transform and its properties

Let Fμ1μ2���
ν1ν2��� be a tensor field of arbitrary rank defined in

some arbitrary Lorentzian space-time manifoldM, and y a
tangent vector at a point P ∈M with coordinates x. Then,
following Ref. [29], we call the following construction the
Wigner transform of Fμ1μ2���

ν1ν2��� ,

Fμ1μ2���
ν1ν2��� ðx; yÞ≡ ey·DFμ1μ2���

ν1ν2��� ðxÞ; ð35Þ

where Dα ≡∇α − Γσ
αρyρ∂

y
σ is the horizontal lift in the

tangent bundle TM. Note that the explicit form of the
covariant derivative ∇ in D depends on the tensor rank of
F, but the second part of Dα does not. To recover the base
tensor Fμ1μ2���

ν1ν2��� ðxÞ from its Wigner transform, one only needs
to evaluate the latter at y ¼ 0, i.e.,

Fμ1μ2���
ν1ν2��� ðxÞ ¼

Z
TxM

d4yδ4ðyÞFμ1μ2���
ν1ν2��� ðx; yÞ; ð36Þ

where TxM denotes the tangent space at point P. Since the
tangent space is Minkowskian, we may Fourier-transform
the Dirac delta function to obtain

Fμ1μ2���
ν1ν2��� ðxÞ ¼

Z
T xM

d4y
Z

⋆TxM

d4k
ð2πÞ4 e

ik·yFμ1μ2���
ν1ν2��� ðx; yÞ; ð37Þ

where kμ is an element of the cotangent space ⋆T xM, and
hence k · y is a scalar under coordinate transformations.
The above relation implies the following definition of the
Fourier transform of Fμ1μ2���

ν1ν2��� ðx; yÞ,

Fμ1μ2���
ν1ν2��� ðx; kÞ ¼

Z
TxM

d4y
ffiffiffiffiffiffi
−g

p
eik·yFμ1μ2���

ν1ν2��� ðx; yÞ; ð38Þ

and its inverse,

Fμ1μ2���
ν1ν2��� ðx; yÞ ¼

Z
k
e−ik·yFμ1μ2���

ν1ν2��� ðx; kÞ; ð39Þ

where Z
k
≡
Z

⋆TxM

d4kffiffiffiffiffiffi−gp ð2πÞ4 ; ð40Þ

and where the square root of the metric determinant
ffiffiffiffiffiffi−gp

in Eqs. (38) and (40) is required to render the integra-
tion measures scalars under coordinate transformations.
Inserting Eq. (39) into Eq. (36) implies that

Fμ1μ2���
ν1ν2��� ðxÞ ¼

Z
k
Fμ1μ2���
ν1ν2��� ðx; kÞ: ð41Þ

The covariant derivative of the base tensor field is
related to the y-derivative of the Wigner transform in the
following way,

∇μF
μ1μ2���
ν1ν2��� ðxÞ ¼

Z
TxM

d4yδ4ðyÞ∂yμFμ1μ2���
ν1ν2��� ðx; yÞ

¼ −
Z
TxM

d4yFμ1μ2���
ν1ν2��� ðx; yÞ∂yμδ4ðyÞ: ð42Þ

The first line can be proven using the definition (35) of
the Wigner transform under the integral on the right-hand
side and employing the fact that, on account of the delta-
function, only the term linear in y of the Taylor expansion
of ey·D survives. In the first line of Eq. (42), one can replace
the y-derivative with the horizontal lift in TM using an
important identity, which is proven in Appendix B,

∂
y
μF

μ1μ2���
ν1ν2��� ðx; yÞ ¼ DμF

μ1μ2���
ν1ν2��� ðx; yÞ − yν

X∞
l¼0

C½y ·D�l
ðlþ 2Þ!

×Gμνðx; yÞFμ1μ2���
ν1ν2��� ðx; yÞ: ð43Þ
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Here, C½A�B≡ ½A; B� is the adjoint map and

Gμνðx; yÞ≡ −Rσ
ρμνyρ∂

y
σ: ð44Þ

On the other hand, one can use the Fourier representation
of the delta-function in the second line of Eqs. (42) and (38)
to obtain

∇μF
μ1μ2���
ν1ν2��� ðxÞ ¼ −i

Z
k
kμF

μ1μ2���
ν1ν2��� ðx; kÞ: ð45Þ

We also need to examine the horizontal lift in the
cotangent bundle, i.e., D̃μ ≡∇μ þ Γρ

μσkρ∂σk. To this end,
we start with

DμF
μ1μ2���
ν1ν2��� ðx; yÞ ¼

Z
k
e−ik·yD̃μF

μ1μ2���
ν1ν2��� ðx; kÞ; ð46Þ

which can be verified by noticing that the right-hand side
subtracted from the left-hand side is a tensor that vani-
shes in the locally flat neighborhood of P [29]. Fourier-
transforming this equation and employing Eq. (43), an
integration by parts, and then Eq. (38), we obtain

D̃μF
μ1μ2���
ν1ν2��� ðx; kÞ ¼ −ikμF

μ1μ2���
ν1ν2��� ðx; kÞ þ curvature terms:

ð47Þ

The curvature terms can be derived using

Gμνðx; yÞFμ1μ2���
ν1ν2��� ðx; yÞ ¼

Z
k
e−ik·yG̃μνðx; kÞFμ1μ2���

ν1ν2��� ðx; kÞ;

ð48Þ

with G̃μνðx; kÞ≡ Rσ
ρμνkσ∂

ρ
k. Equation (48) can be proved

using Eqs. (38) and (44) and replacing ∂
ρ
k → iyρ and

kσ → i∂yσ .

B. The wave equation in tangent space

Let us now consider the wave equation (30) at some
point P with coordinates x. We then use Eqs. (36)
and (42) (applied twice for the d’Alembert operator in
the wave equation) to convert the wave equation into
tangent space TxM,

ð□2
y − fβ · ∂y þm2Þϕðx; yÞ ¼ 0 at yμ ¼ 0: ð49Þ

We then extend the validity of this equation to the whole
tangent space TxM, but keeping the coefficients m, β,
and f, fixed at P,

½□2
y − fðxÞβðxÞ · ∂y þm2ðxÞ�ϕðx; yÞ ¼ 0: ð50Þ

The inverse Wigner transform ϕðxÞ, cf. Eq. (36), of the
solution ϕðx; yÞ to this equation is a solution of the original

wave equation (30) at point P. As a linear partial differ-
ential equation with constant coefficients, Eq. (50) can be
solved via Fourier transformation to the cotangent bundle,

ϕðx; yÞ ¼
Z
k
e−ik·yϕðx; kÞ; ð51Þ

cf. Eq. (39), which then implies

k2 − ifðxÞβðxÞ · k −m2ðxÞ ¼ 0: ð52Þ
The solutions of this equation define the dispersion
relations of ϕðx; yÞ. In order to solve Eq. (50) in similar
way as in Sec. II C, we need a foliation of tangent space in
terms of spacelike hypersurfaces (with timelike normal
vectors).
Let nμðxÞ be a timelike vector field, which at point P

maps to a vector in tangent space and is normalized as
nðxÞ · nðxÞ ¼ 1. We assume that this vector points into the
future direction. At point P, there exists an inertial frame
which moves with a four-velocity nμðxÞ. We refer to this
frame as the frame of the local inertial observer. The vector
nμðxÞ defines a foliation of tangent space T xM in terms of
spacelike hypersurfaces, all with the same normal vector
nμðxÞ. The timelike component of an element yμ of tangent
space T xM is then n · y. Thus any element yμ of a spacelike
hypersurface in tangent space fulfills n · y ¼ 0. The cotan-
gent space ⋆TxM is foliated accordingly, with n · k being
the timelike component of a covector kμ. If we choose
nμðxÞ ¼ uμðxÞ, the local inertial observer’s frame corre-
sponds to the local rest frame (LRF) of the fluid at each
point P. On the other hand, we might choose a vector field
such that at every point P we have nμðxÞ ¼ ð1; 0Þ in local
Minkowski coordinates. This choice is the local analog of
the usual global noncomoving frame, in which a linear
stability analysis for homogeneous equilibrium configura-
tions is performed. Note, however, that in the case of
inhomogeneous equilibrium configurations there is no such
global frame, which necessitates the generalization to a
space-time dependent nμðxÞ and the extension to the
tangent space in order to perform the linear stability
analysis. For further use, we call this choice the coordinate
frame (CF). Any other choice for nμðxÞ is, of course, also
possible.
With the above considerations, we find from Eq. (52),

similarly as from Eq. (31), the dispersion relations
ω�ðx; k⊥Þ, with kμ⊥ ≡ ðgμν − nμnνÞkν being the components
of kμ orthogonal to nμ. Since the characteristic equations are
covariant, one might solve them for u · k, and then perform a
Lorentz boost at P, to find ω ¼ n · k, if required. Summing
over the two modes arising from the roots of Eq. (52), and
integrating over k, we obtain theWigner transformϕðx; yÞ of
the solution ϕðxÞ to the wave equation as

ϕðx; yÞ ¼
Z
k

X
a¼�

ϕaðx; kÞδðn · k − ωaÞe−ik·y: ð53Þ
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According to Eq. (41), the solutionϕðxÞ to the original wave
equation arises from Eq. (53) as

ϕðxÞ ¼
Z
k

X
a¼�

ϕaðx; kÞδðn · k − ωaÞ: ð54Þ

Note that there is no longer an exponential factor which can
tell us whether a mode ωaðx; k⊥Þ is exponentially growing
or not. Nevertheless, this information is still contained in
Eq. (54), as we will show next.

Equation (53) implies that ϕðx; yÞ ¼ P
a ϕaðx; yÞ, where

ϕaðx; yÞ is the Wigner transform of ϕaðxÞ. Therefore,
ϕaðx; kÞδðn · k − ωaÞ, which according to Eq. (53) is the
Fourier transform of ϕaðx; yÞ, fulfills Eq. (47)
D̃μ½ϕaðx; kÞδðn · k − ωaÞ� ¼ −ikμϕaðx; kÞδðn · k − ωaÞ;

ð55Þ
where curvature terms are neglected. We can rewrite
Eq. (55) as

½D̃μϕaðx; kÞ�δðn · k − ωaÞ ¼ −ϕaðx; kÞD̃μðn · k − ωaÞn · ∂kδðn · k − ωaÞ − ikμϕaðx; kÞδðn · k − ωaÞ
¼ n · ∂k½ϕaðx; kÞD̃μðn · k − ωaÞ�δðn · k − ωaÞ − ikμϕaðx; kÞδðn · k − ωaÞ; ð56Þ

where we have performed an integration by parts from the first to the second line, using the fact that n · ∂k corresponds
to d=dk0 under the integral. Using ½D̃μ; ∂νk� ¼ 0, cf. Eq. (B4), and nνD̃μnν ¼ nν∇μnν ¼ 0, we expand the first term on the
right-hand side to obtain

½D̃μϕaðx; kÞ�δðn · k − ωaÞ ¼ f½n · ∂kϕaðx; kÞ�D̃μðn · k − ωaÞ − ϕaðx; kÞnνD̃μ∂
ν
kωa − ikμϕaðx; kÞgδðn · k − ωaÞ

¼ f½n · ∂kϕaðx; kÞ�D̃μðn · k − ωaÞ þ ϕaðx; kÞ½∂νkωa�D̃μnν − ikμϕaðx; kÞgδðn · k − ωaÞ; ð57Þ

where we have used the fact that ωa depends only on xμ and the projection of kμ orthogonal to nμ, i.e., n · ∂kωa ¼ 0. Finally,
we use D̃νkρ ¼ 0, cf. Eq. (B3), to find

½D̃μϕaðx; kÞ�δðn · k − ωaÞ ¼ f½n · ∂kϕaðx; kÞ�ðkρD̃μnρ − D̃μωaÞ þ ϕaðx; kÞ½∂νkωa�D̃μnν − ikμϕaðx; kÞgδðn · k − ωaÞ: ð58Þ

Let us now consider a curve C passing through P, of which nμðxÞ is the tangent vector and which is parameterized with
the affine parameter s, with s ¼ 0 at P. An infinitesimal change in this parameter is given by ds≡ nμdxμ. At each point, s
can be chosen to coincide with the corresponding local inertial observer’s proper time. Since the derivative of a quantity
with respect to s is the component of the gradient of that quantity in nμ-direction,

d
ds

≡ nðxÞ · D̃; ð59Þ

we obtain from Eq. (58) by contraction with nμ

dϕaðx; kÞ
ds

δðn · k − ωaÞ ¼
�
½n · ∂kϕaðx; kÞ�

�
k ·

dn
ds

−
dωa

ds

�
þ ϕaðx; kÞ

dn
ds

· ∂kωa − iωaϕaðx; kÞ
	
δðn · k − ωaÞ: ð60Þ

The right-hand side of Eq. (60) shows that, along the curve C,
the evolution of ϕaðx; kÞ is only partially governed by the
local frequency ωaðx; k⊥Þ, as there are additional nontrivial
contributions. In the LRF, where nμðxÞ ¼ uμðxÞ, there is a
term proportional to dnμ=ds≡ aμ, i.e., the acceleration
of the fluid along C. On the other hand, in the CF frame,
where nμ ¼ ð1; 0Þ, the acceleration vanishes, but the fre-
quency still changes along C, and there is a term proportional
to −dωa=ds.
We now define the norm

kϕðsÞk2 ¼
Z
ΣnðsÞ

dΣnjϕðxÞj2; ð61Þ

where dΣn ≡ ϵαβγδnαdxβdxγdxδ is the infinitesimal
3-dimensional volume element on a spacelike hypersurface
ΣðsÞ with timelike normal vector nμðxÞ. As we will show
below, this norm will grow beyond bounds as s → ∞ if
there is an instability. We can convince ourselves that this
works in the case of a homogeneous equilibrium configu-
ration and nμ ¼ ð1; 0Þ. Then, D̃μ in Eq. (58) reduces to ∂μ in
Minkowski coordinates, s≡ t up to some arbitrary con-
stant, and the first two terms on the right-hand side of
Eq. (58) vanish since nμ and ωa are constant in space-time.
The solution of Eq. (58) is then simply given by

ϕaðx; kÞ ¼ e−iωatþik·xϕað0; kÞ; ð62Þ
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where ϕað0; kÞ is determined by the initial condition.
Inserting this into Eq. (54) and the result into Eq. (61),
we obtain after repeating similar steps as in Sec. II B an
expression analogous to Eq. (33).
On the other hand, if the configuration is inhomo-

geneous, the solution of Eq. (58) is not just a simple
exponential factor, due to the additional terms on the right-
hand side. However, there might still exist directions in
space-time for which such a solution arises. In the next
subsection, we identify these directions, which we refer
to as equilibrium-preserving directions. After that, in
Sec. III D, we argue that, in the short-wavelength regime,
if Imωaðx;k⊥Þ> 0 in a subdomain of equilibrium-preserving
components of kμ, the theory becomes linearly unstable.

C. Equilibrium-preserving directions in tangent space

The Wigner transform of the β-vector reads

βμðx; yÞ ¼ ey·DβμðxÞ: ð63Þ

Expanding the exponential, the next-to-leading order in
the above equation features yν∇νβμ ¼ yνϖμν, where we
used the Killing condition (1). The next-to-next-to-leading
order is then proportional to yλyν∇λϖμν ¼ yλyνRμνλσβ

σ,
cf. Appendix D, which vanishes in flat space-time.
The same is true for all higher orders, therefore, in flat
space-time

βμðx; yÞ ¼ βμðxÞ þ yνϖμνðxÞ: ð64Þ

If we compare the above with the standard relation for the
β-vector in terms of the thermal vorticity in Minkowski
space-time, see, e.g., Ref. [30],

βμðxÞ ¼ bμ þ xνϖμν; ð65Þ

and setting bμ ≡ βμð0Þ, we find that the Wigner transform
(63) translates the β-vector by yμ in flat space-time,

βμðxþ yÞ ¼ βμðx; yÞ: ð66Þ

The directions in TxM for which the Wigner transform
does not modify the β-vector, the so-called equilibrium-
preserving directions in TxM, are now given by the
condition

βμðx; yeÞ ¼ eye·DβμðxÞ ¼! βμðxÞ; ð67Þ

where the subscript “e” denotes “equilibrium-preserving.”
Comparing Eqs. (64) and (67) the equilibrium-preserving
directions ye in flat space-time are given by the condition

yμeϖμνðxÞ ¼! 0: ð68Þ

In the accelerating configuration (without rotation, ωμ ¼ 0),
this requires that ye · u ¼ ye · l ¼ 0, cf. Eq. (4). Con-
sequently, yμe has only two independent components.
From Eqs. (15) and (18) we then deduce that (in Rindler
coordinates)

yμe ¼ ð0; y1; y2; 0Þ; ð69Þ

i.e., the independent components are the x- and y-coordinates
transverse to the direction of acceleration.
In the rotating configuration we expand yμe in the tetrad

ðu;l;ψ ; ζÞ,

yμe ¼ yuuμ þ yllμ þ yψψμ þ yζζμ; ð70Þ

as well as ϖμν according to Eq. (4), and insert this into
Eq. (68).Withaμ ≡ alμ andEqs. (24) and (25), this results in

ayluν þ ðayu − ω⊥yζÞlν þ yζωlψν

þ ðylω⊥ − yψωlÞζν ¼ 0: ð71Þ

Since a ≠ 0, ω⊥ ≠ 0 [otherwise we could not have defined
the tetrad ðu;l;ψ ; ζÞ], we immediately deduce fromEq. (71)
that forωl ≠ 0 all components of yμe must vanish, or in other
words, an equilibrium-preserving subspace of TxM exists
only if ωl ¼ 0. Consequently, for ωl ¼ 0 we deduce from
Eq. (71) that yl ¼ 0 and

yμe ¼ yuuμ þ yψψμ þ a
ω⊥

yuζμ; ð72Þ

i.e., we again have only two independent components. With
Eqs. (22)–(24) and (26) we then deduce that (in cylindrical
coordinates)

yμe ¼ ðy0; 0; 0; y3Þ; ð73Þ

i.e., the independent coordinates are the time coordinate and
the coordinate along the direction of the rotation vector ωμ.
In the above, we restricted the discussion to flat

space-time. In this case, the base manifold has the same
equilibrium-preserving directions as the tangent space.
Assuming Minkowski coordinates, the components of yμ

can be considered as the coordinates of a coordinate
system with origin in x. In what follows, we use the terms
“equilibrium-preserving directions” and “equilibrium-non-
preserving directions” both in the base manifold and in
tangent space.

D. Linear-stability analysis
in equilibrium-preserving directions

Now we are in a position to understand the relation-
ship between the dispersion relations and linear sta-
bility in inhomogeneous equilibrium configurations for
which equilibrium-preserving directions exist. As above,
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the equilibrium-preserving directions will be denoted by an
index “e”, while the equilibrium-nonpreserving directions
will carry an index “ne”, such that xμ ≡ xeμ þ xneμ .
We now study the solutions of Eq. (60), which also

fulfill Eq. (58). Note that it is the former equation whose
solution is constrained by the dispersion relations arising
from the wave equation (30). Let us now consider Eq. (60)
in the LRF, i.e., for nμ ¼ uμ, with the following ansatz
for ϕa,

ϕaðx; kÞ ¼ eΓaðs;xne⊥ ;k⊥Þ−ike⊥·xe⊥ψaðs; xne⊥ ; kÞ; ð74Þ

where ke⊥;μ is found from the condition

ke;μ⊥ ϖμν ¼ 0; ð75Þ

and

Γaðs; xne⊥ ; k⊥Þ ¼ −i
Z

s

0

ds0 ωaðs0; xne⊥ ; k⊥Þ: ð76Þ

In the equilibrium-preserving directions xe⊥ of flat space-
time, we have xe⊥ · D̃nν ¼ 0 ¼ xe⊥ · D̃ωa. The first equality
can be shown by using nν ¼ uν ¼ Tβν and the fact that βν
is a Killing vector. The second equality arises because
the only dependence of ωa on an equilibrium-preserving
direction can be through s, which is, however, orthogonal
to xe⊥. Thus, Eq. (58) reduces to

∂
e
μϕaðx; kÞ ¼ −ikeμϕaðx; kÞ: ð77Þ

Projecting this equation onto the spacelike directions
orthogonal to nμ, we find that the ansatz (74) fulfills this
equation. Plugging the ansatz (74) into Eq. (60), we find
with Eq. (76)

dψaðs; xne⊥ ; kÞ
ds

δðn · k − ωaÞ ¼
�
n · ∂kψaðs; xne⊥ ; kÞ

�
k ·

dn
ds

−
dωa

ds

�
þ ψaðs; xne⊥ ; kÞ

dn
ds

· ∂kωa

	
δðn · k − ωaÞ: ð78Þ

Here, the part of the ansatz (74) ∼e−ike⊥·xe⊥ factors out
immediately, since its momentum dependence is orthogonal
to nμ. Furthermore, the term ∼ − iωaϕaðx; kÞ cancels be-
tween left- and right-hand sides. Finally, Γaðs; xne⊥ ; k⊥Þ does
not depend on the components of kμ in the direction of nμ.
We note that the terms on the right-hand side of

Eq. (78) arise from terms in Eq. (58) which are propor-
tional to D̃μnν ≡∇μuν ∼ Tϖμν. We remind ourselves of the
discussion in Sec. II A, namely that in an inhomogene-
ous equilibrium configuration, the requirement β · β > 0
demands the existence of some boundary condition,
which then introduces a characteristic length scale lvort
for the system. For the pure accelerating configuration (11),
this scale is 1=a0, while for the rigidly rotating configu-
ration (19) it is 1=Ω0; and in both cases Tϖμν ∼ l−1

vort.
Consequently, we find

dψaðs; xne⊥ ; kÞ
ds

∼ l−1
vortψaðs; xne⊥ ; kÞ: ð79Þ

Next, we insert the ansatz (74) into Eq. (54) and trivially
perform the integration over n · k using the delta-function.
Then, we decompose k⊥ ¼ ke⊥ þ kne⊥ , formally Taylor-
expand Γaðs; xne⊥ ; k⊥Þ in kne⊥ , and absorb any term beyond
kne⊥ ¼ 0 into ψaðs; xne⊥ ;ωa; k⊥Þ. After taking the integration
over kne⊥ in Eq. (54), we find

ϕðxÞ ¼
Z

ddke⊥
ð2πÞd

X
a¼�

eΓaðs;xne⊥ ;ke⊥Þ−ike⊥·xe⊥Ψaðs; xne⊥ ; ke⊥Þ; ð80Þ

where d is the number of spacelike equilibrium-preserving
directions, and we defined

Ψaðs; xne⊥ ; ke⊥Þ≡
Z

d3−dkne⊥
ð2πÞ4−d ψaðs; xne⊥ ;ωa; k⊥Þ: ð81Þ

Note that, on account of Eq. (79), we also have

dΨaðs; xne⊥ ; ke⊥Þ
ds

∼ l−1
vortΨaðs; xne⊥ ; ke⊥Þ: ð82Þ

Plugging Eq. (80) into the wave equation (30) and
using the characteristic equation (52) for kne⊥ ¼ 0, we
find a differential equation that can be solved to
find Ψaðs; xne⊥ ; ke⊥Þ. However, the functional form of
Ψaðs; xne⊥ ; ke⊥Þ is irrelevant for the following discus-
sion; we only demand that ϕðxÞ is square-integrable at
some initial s ¼ 0 on Σn,

kϕð0Þk2 < ∞; ð83Þ

where kϕðsÞk2 is defined in Eq. (61).
Now, we assume that there exists a subdomain Dke⊥ for

which Imωþ > 0 for any x. Then, according to Eq. (76),
there exists a positive real-valued number Λ such that

ReΓþðs; xne⊥ ; ke⊥Þ > Λs > 0; for ke⊥ ∈Dke⊥ : ð84Þ

The integration in Eq. (61) over xe⊥ yields a delta function
which puts the ke⊥ of ϕðxÞ and the corresponding qe⊥ of
ϕ�ðxÞ on the same value, and since we have eliminated the
kne⊥ -dependence in Γaðs; xne⊥ ; k⊥Þ, after similar steps as in
Sec. II B this gives rise to
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kϕðsÞk2 ≥ e2Λs
Z

dΣne⊥Fðs; xne⊥ Þ; ð85Þ

where dΣne⊥ is the (3 − d)-dimensional hypersurface
element in the equilibrium-nonpreserving directions of
the 3-dimensional hypersurface element dΣn, and

Fðs; xne⊥ Þ ¼
Z
ke⊥ ∈Dke⊥

jΨþðs; xne⊥ ; ke⊥Þ

þΨ−ðs; xne⊥ ; ke⊥Þe−ΔΓðs;x
ne⊥ ;ke⊥Þj2: ð86Þ

Here, ΔΓ≡ Γþ − Γ−, where we have ordered the solutions
ω� such that ReΔΓ > 0 onDke⊥ . If Fðs; xne⊥ Þ remains finite,
the norm grows with s. This is sufficient for the existence of
an instability.
As mentioned before, for the wave equation (30), if

f > 0, then Imωþ > 0 for some subdomain Dke⊥ . If f is
only determined by equilibrium quantities, such as the
temperature, then its sign is independent of s, and the
condition (84) is fulfilled.
In our argument, we have also assumed that FðxneÞ in

Eq. (86) remains finite on the timescale 1=Λ, such that
the exponential factor e2Λs dominates Eq. (85). In other
words, the exponential factor ∼eΓaðs;xne⊥ ;k⊥Þ gives the leading
behavior in Eq. (74). This is evidently the case in the short-
wavelength regime k → ∞ because the wavelength can be
arbitrarily small, while lvort is fixed. Consequently, the
asymptotic group velocities of waves are unaffected by a
nonvanishing thermal vorticity, and therefore a theory
found causal in homogeneous equilibrium configurations
is also causal in inhomogeneous ones. On the other hand,
linear instabilities commonly occur in the long-wavelength
regime, i.e., k → 0. According to Eqs. (82) and (86), the
exponential factor e2Λs dominates if

Λ ≫ l−1
vort: ð87Þ

One can argue that in known applications in hydrody-
namics the value of Λ, which arises from so-called non-
hydrodynamic modes, is proportional to the inverse of the
characteristic microscopic length scale lmicro. Therefore, if
an instability occurs, it will survive if

lvort ≫ lmicro: ð88Þ

Since lvort is proportional to the size of the system, this
condition is always fulfilled in the hydrodynamic regime.

IV. APPLICATION TO HYDRODYNAMICS

In this section, we apply the ideas developed above
to hydrodynamics. We first consider the general tensor
decomposition of the energy-momentum tensor with res-
pect to the fluid four-velocity uμ and then extend this into

the cotangent space. We note that the extension of the
energy-momentum tensor into cotangent space does not
commute with the tensor decomposition. We then study as
examples a perfect fluid and a dissipative fluid. The actual
stability analysis of the latter is deferred to Sec. V.

A. Tensor decomposition in base manifold
and cotangent space

The tensor decomposition of the energy-momentum
tensor with respect to the fluid four-velocity uμ reads

Tμν ¼ Euμuν − PΔμν þQμuν þQνuμ þ πμν; ð89Þ

where the components are

E ¼ uαuβTαβ; P ¼ −
1

3
ΔαβTαβ;

Qμ ¼ ΔμαuβTαβ; πμν ¼ Δμν
αβT

αβ: ð90Þ

Following the standard procedure, we assume Tμν to be in a
state slightly out of equilibrium, Tμν ¼ Tμν

eq þ δTμν with
the equilibrium energy-momentum tensor Tμν

eq having the
perfect-fluid form,

Tμν
eqðxÞ ¼ εeqðxÞuμeqðxÞuνeqðxÞ − peqðxÞΔμν

eqðxÞ; ð91Þ

with εeqðxÞ and peqðxÞ being the energy density and pre-
ssure in equilibrium, respectively, and Δμν

eqðxÞ≡ gμν−
uμeqðxÞuνeqðxÞ. Evidently,Qμ

eq and π
μν
eq vanish in equilibrium.

Consequently, up to first order in deviations from equilib-
rium we find

δTμνðxÞ ¼ δEðxÞuμeqðxÞuνeqðxÞ − δPðxÞΔμν
eqðxÞ

þ heqðxÞ½uμeqðxÞδuνðxÞ þ uνeqðxÞδuμðxÞ�
þ δQμðxÞuνeqðxÞ þ δQνðxÞuμeqðxÞ þ δπμνðxÞ;

ð92Þ

where heqðxÞ ¼ εeqðxÞ þ peqðxÞ is the enthalpy density and

δEðxÞ ¼ uαeqðxÞuβeqðxÞδTαβðxÞ;

δPðxÞ ¼ −
1

3
Δαβ

eq ðxÞδTαβðxÞ;
δQμðxÞ ¼ Δμα

eq ðxÞuβeqðxÞδTαβðxÞ − heqðxÞδuμðxÞ;
δπμνðxÞ ¼ Δμν

eq;αβðxÞδTαβðxÞ; ð93Þ

where Δμν
eq;αβðxÞ has the same form as the rank-four

projection operator Δμν
αβ, but with the four-velocity u

replaced by ueq.
Since∇μT

μν
eq ¼ 0, energy-momentum conservation reads

∇μδTμν ¼ 0. We now extend this equation to the tangent
bundle, similar to Sec. III, to obtain
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∂
y
μδTμνðx; yÞ ¼ 0; ð94Þ

where

δTμνðx; yÞ ¼ ey·DδTμνðxÞ: ð95Þ

This is then Fourier-transformed as

δTμνðx; yÞ ¼
Z
k
δTμνðx; kÞe−ik·y; ð96Þ

with the EOM in the tangent bundle (94) giving rise to

kμδTμνðx; kÞ ¼ 0: ð97Þ

In order to solve this equation, similar to the wave equa-
tion in the previous section, we consider a normalized
timelike vector field nμðxÞ and find the characteristic
equation, the roots of which determine the dispersion
relations ωaðx; k⊥Þ ¼ n · k of the modes in terms of x
and k⊥. We always work in the LRF, where nμ ≡ uμeq. We
decompose δTμνðx; kÞ using the equilibrium four-velocity
uμeqðxÞ as

δTμνðx; kÞ ¼ δEðx; kÞuμeqðxÞuνeqðxÞ − δPðx; kÞΔμν
eqðxÞ

þ heqðxÞ½uμeqðxÞδuνðx; kÞ þ uνeqðxÞδuμðx; kÞ�
þ δQμðx; kÞuνeqðxÞ þ δQνðx; kÞuμeqðxÞ
þ δπμνðx; kÞ; ð98Þ

where

δEðx; kÞ ¼ uαeqðxÞuβeqðxÞδTαβðx; kÞ;

δPðx; kÞ ¼ −
1

3
Δαβ

eq ðxÞδTαβðx; kÞ;
δQμðx; kÞ ¼ Δμα

eq ðxÞuβeqðxÞδTαβðx; kÞ − heqðxÞδuμðx; kÞ;
δπμνðx; kÞ ¼ Δμν

eq;αβðxÞδTαβðx; kÞ: ð99Þ

Inserting Eq. (98) into Eq. (97), we find

0 ¼ δEðx; kÞuνeqðxÞk · ueqðxÞ − δPðx; kÞΔμν
eqðxÞkμ

þ heqðxÞ½δuνðx; kÞk · ueqðxÞ þ uνeqðxÞk · δuðx; kÞ�
þ uνeqðxÞk · δQðx; kÞ þ δQνðx; kÞk · ueqðxÞ
þ kμδπμνðx; kÞ: ð100Þ

Let us denote the components in Eq. (93) by δXAðxÞ and the
ones in Eq. (99) by δXAðx; kÞ, where A is the component
index. As in homogeneous equilibrium configurations,
Eq. (100) yields a set of homogeneous linear equations
of the form

MABðx; kÞδXBðx; kÞ ¼ 0; ð101Þ

which has a nontrivial solution if detM ¼ 0. This gives
rise to a characteristic equation whose solutions are
the dispersion relations ωa ¼ ωaðx; k⊥Þ. Consequently,
according to Eq. (53) the solution of Eq. (94) in the tangent
space is found to be

δTμνðx; yÞ ¼
Z
k

X
a

δTμνðx; kÞδðn · k − ωaÞe−ik·y: ð102Þ

The energy-momentum tensor in the base manifold is then
found as

δTμνðxÞ ¼
Z
k

X
a

δTμνðx; kÞδðn · k − ωaÞ; ð103Þ

cf. Eq. (54). We note that Eqs. (98) and (99) look similar as
Eqs. (92) and (93). However, integrating the quantities
δXAðx; kÞ over the cotangent space ⋆T xMdoes not yield the
Wigner transform of the corresponding quantity δXAðxÞ.
As an example, let us consider δEðxÞ. By taking the integral
over ⋆T xM and using Eq. (96), we find

δEðx; yÞ −
Z
k
δEðx; kÞe−ik·y ¼ ey·D½uμeqðxÞuνeqðxÞδTμνðxÞ�

− uμeqðxÞuνeqðxÞδTμνðx; yÞ;
ð104Þ

which is of order OðyÞ and only vanishes if yμ is
in the equilibrium-preserving directions, because then
expðye ·DÞuμeqðxÞ ¼ uμeqðxÞexpðye ·DÞ. Consequently, only
the solution δTμνðxÞ has the form given in Eq. (103), but not
the individual components δXAðxÞ, and there is an inherent
freedom in defining the latter. We will use this freedom to
extend the relations between the components δXAðxÞ in the
base manifold to corresponding relations of the compo-
nents δXAðx; kÞ in ⋆TxM. The procedure is similar to the
extension of quantities in the base manifold to the tangent
bundle. This will be demonstrated in the following at
hand of the examples of a perfect and a dissipative fluid,
respectively.

B. Perfect fluid

Let us first consider a perfect fluid, for which only the
components δE, δP, and δuμ appear in the EOM (100). In
the base manifold, we have δPðxÞ ¼ v2sðxÞδEðxÞ, where

v2s ¼
∂p
∂ε

; ð105Þ

is the speed of sound in equilibrium. Using Eqs. (93), (99),
and (103), this implies thatZ
k

X
a

½δPðx; kÞ − v2sðxÞδEðx; kÞ�δðn · k − ωaÞ ¼ 0: ð106Þ
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An obvious solution to this equation is δPðx; kÞ ¼
v2sðxÞδEðx; kÞ. We use the freedom in defining the compo-
nents of the energy-momentum tensor in cotangent space
by demanding that this relations holds everywhere in that
space. We then insert this relation into Eq. (100) and obtain

½ωaðx; k⊥ÞδEðx; kÞ − heqðxÞk⊥δukðx; kÞ�uνeqðxÞ
þ ½heqðxÞωaðx; k⊥Þδuνðx; kÞ − v2sðxÞδEðx; kÞkν⊥� ¼ 0;

ð107Þ

where δukðx; kÞ≡ −k · δuðx; kÞ=k⊥, k⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kα⊥k⊥;α

p
, and

kμ⊥ ≡ Δμν
eqðxÞkν. Projecting Eq. (107) onto ueq;νðxÞ and k⊥;ν

results in a system of two equations of the form (101).
The characteristic equation detMABðx; kÞ ¼ 0 leads to
the well-known dispersion relations of the sound modes,
ω�ðx; k⊥Þ ¼ �vsðxÞk⊥.

C. Dissipative fluid

As a next step, we consider a dissipative fluid. As will
become clear in the next section, we will require deriva-
tives of the components (93) of the energy-momentum
tensor. These are computed as follows. Instead of δQðxÞ
and δQðx; kÞ it is advantageous to introduce

δQ̃μðxÞ≡Δμα
eq ðxÞδTαβðxÞuβeqðxÞ¼δQμðxÞþheqðxÞδuμðxÞ;

ð108aÞ

δQ̃μðx; kÞ≡ Δμα
eq ðxÞδTαβðx; kÞuβeqðxÞ

¼ δQμðx; kÞ þ heqðxÞδuμðx; kÞ: ð108bÞ

We then take the derivative on both sides of the
definitions (93), (108) and use Eqs. (45), (98), and (99),
to obtain

∇μδEðxÞ ¼
Z
k

X
a

½−ikμδEðx; kÞ − 2TeqðxÞϖμνðxÞδQ̃νðx; kÞ�δðn · k − ωaÞ; ð109aÞ

∇μδPðxÞ ¼
Z
k

X
a

�
−ikμδPðx; kÞ −

2

3
TeqðxÞϖμνðxÞδQ̃νðx; kÞ

�
δðn · k − ωaÞ; ð109bÞ

∇μδQ̃νðxÞ ¼
Z
k

X
a

f−ikμδQ̃νðx; kÞ þ TeqðxÞϖμαðxÞ½ueqν ðxÞδQ̃αðx; kÞ − δπανðx; kÞ�

þ ½TeqðxÞϖμνðxÞ − aμðxÞueqν ðxÞ�½δEðx; kÞ þ δPðx; kÞ��gδðn · k − ωaÞ; ð109cÞ

∇ρδπ
μνðxÞ ¼

Z
k

X
a

�
−ikρδπμνðx; kÞ þ 2TeqðxÞϖραðxÞδπαðμðx; kÞuνÞeqðxÞ þ 2½TeqðxÞϖðμ

ρ ðxÞ − aρðxÞuðμeqðxÞ�δQ̃νÞðx; kÞ

−
2

3
TeqðxÞΔμν

eqðxÞϖραðxÞδQ̃αðx; kÞ
	
δðn · k − ωaÞ; ð109dÞ

where we have used βeq;νðxÞδQ̃νðx; kÞ ¼ 0. Higher-order
derivatives can be computed following a similar strategy.

D. Linear-stability analysis
in equilibrium-preserving directions

As mentioned before, the approach developed here yields
the modes of the energy-momentum tensor, which are not
necessarily the modes of its components (90). However, as
discussed in Sec. III D, when the momenta are restricted by
Eq. (75), themodes of the energy-momentum tensor will still
provide information about whether the system is linearly
stable or not. As in Eq. (80), we make the ansatz

δTμνðxÞ ¼
Z

ddke⊥
ð2πÞd

X
a

eΓaðs;xne;ke⊥Þ−ike⊥·xe⊥δTμν
a ðs; xne⊥ ; ke⊥Þ:

ð110Þ

Furthermore, considering the components of the deri-
vatives in Eqs. (109) in the equilibrium-preserving direc-
tions, we find that, because of Eq. (75) and aμðxÞ ¼
TeqðxÞϖμνðxÞuνeqðxÞ,

∇e⊥;μδX
AðxÞ ¼

Z
k

X
a

½−ike⊥;μδX
A
aðx; kÞ�: ð111Þ

Therefore, the components (93) can be written as

δXAðxÞ ¼
Z

ddke⊥
ð2πÞd

X
a

eΓaðs;xne;ke⊥Þ−ike⊥·xe⊥δXA
aðs; xne⊥ ; ke⊥Þ;

ð112Þ

where, similar to Sec. III D we have absorbed all
dependence from the equilibrium-nonpreserving direc-
tions into δXA

aðs; xne⊥ ; ke⊥Þ. We then define the norm of the
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components (93) on spacelike hypersurfaces ΣnðsÞ orthogo-
nal to nμðxÞ similar to Eq. (61) as

kδXðsÞk2 ¼
X
A

Z
ΣnðsÞ

dΣnjδXAðxÞj2; ð113Þ

which growswith s if Imωa > 0 for at least one of themodes,
provided that

lvort ≫ lmicro: ð114Þ

V. MODES OF THE MIS THEORY
IN INHOMOGENEOUS EQUILIBRIUM

CONFIGURATIONS

In this section, we apply the approach developed in the
previous section to MIS theory [10–12]. We work in the
Landau frame, where δQ≡ 0. The dissipative correc-
tion (92) to the energy-momentum tensor thus reads with
δP ¼ v2sδE þ δΠ,

δTμν ¼ δEuμequνeq − ðv2sδE þ δΠÞΔμν
eq

þ heqðuμeqδuν þ uνeqδuμÞ þ δπμν: ð115Þ

We note that the above form is valid both in the base-
manifold form of Eq. (92), where both equilibrium quan-
tities and perturbations are functions of x, as well as in
the cotangent-bundle form of Eq. (98), where equilibrium
quantities are functions of x and perturbations are functions
of x and k.
The evolution of the perturbation δΠðxÞ of the bulk

viscous pressure in the base manifold is given by the
linearized MIS equation [2]

τΠueq ·∇δΠþ δΠþ ζ∇ · δu ¼ 0; ð116Þ

where τΠ is the bulk relaxation time. The linearized MIS
EOM for the shear-stress tensor δπμνðxÞ in the base
manifold reads [2]

τπΔ
μν
eq;αβðueq · ∇δπαβ − 2δπαλΩ

βλ
eqÞ þ δπμν − 2ηδσμν ¼ 0;

ð117Þ

where τπ is the shear relaxation time and η is the shear
viscosity coefficient, while Ωμν

eq ¼ 1
2
ð∇hμiuνeq −∇hνiuμeqÞ

and δσμν ≡ Δμν
eq;αβ∇αδuβ. Note that Δμν

eq;αβ∇αuβeq ¼ 0 on
account of the Killing condition (1). Translating Eqs. (116)
and (117) into cotangent space, the resulting equations,
together with the energy-momentum conservation equa-
tion (97), comprise a closed system that can be solved to
obtain solutions of the form (103). In the following, we will
explicitly demonstrate how this works.
It is advantageous to work with dimensionless quantities,

i.e., we divide perturbations of the energy density δE, the

bulk viscous pressure δΠ, and the shear-stress tensor δπμν

by the enthalpy density in equilibrium, heq,

δẼ ≡ δE=heq; δΠ̃≡ δΠ=heq; δπ̃μν ≡ δπμν=heq: ð118Þ

Next, we generalize the method proposed in Ref. [31] for
the covariant decomposition of vectors and tensors into
the directions of uμ, lμ, and directions transverse to the
latter two. To this end, it is useful to define a tetrad of
four orthonormal vectors, which is different from the one
defined in Sec. II A. The first two elements of the tetrad are
ueq and l. To obtain the third one, we decompose the four-
momentum kμ as

kμ ¼ TeqðΩuμeq þ κllμ þ κμÞ; ð119Þ

where Ω≡ k · ueq=Teq is the frequency scaled by the
temperature in the LRF, κl ≡ −k · l=Teq, and

κμ ≡ 1

Teq
Ξμνkν; with Ξμν ≡ Δμν

eq þ lμlν: ð120Þ

Consequently, κ̃μ ≡ κμ=κ, with κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
−κ · κ

p
, which is

orthogonal to both ueq and l, is the third element of the
tetrad. Since we assume that l is nonzero, the fourth
element of the tetrad is found to be

χμ ≡ ϵμναβueqν lακ̃β: ð121Þ

Tensors of arbitrary rank can be decomposed in terms of the
tetrad fueq;l; κ̃; χg. To begin, δuμ is decomposed as

δuμ ¼ δullμ þ δuκκ̃μ þ δuχχμ; ð122Þ

where

δul ¼ −l · δu; δuκ ¼ −κ̃ · δu; δuχ ¼ −χ · δu: ð123Þ

There is no component in the direction of ueq since δuμ is
orthogonal to uμeq. Then, using δπ̃μν ¼ δπ̃νμ, δπ̃μνueq;ν ¼ 0,
and δπ̃μμ ¼ 0, we decompose the dimensionless shear-
stress tensor δπ̃μν as

δπ̃μν ¼ δπllðlμlν − χμχνÞ þ 2δπlκlðμκ̃νÞ

þ 2δπlχlðμχνÞ þ δπκκðκ̃μκ̃ν − χμχνÞ þ 2δπκχκ̃
ðμχνÞ;

ð124Þ
where

δπll ¼ lμlνδπ̃
μν; δπlκ ¼ lμκ̃νδπ̃

μν; δπlχ ¼ lμχνδπ̃
μν;

δπκκ ¼ κ̃μκ̃νδπ̃
μν; δπκχ ¼ κ̃μχνδπ̃

μν: ð125Þ
Now, following the procedure explained in the previous

section, we insert δTμνðx; kÞ in the decomposed form of

MASOUD SHOKRI and DIRK H. RISCHKE PHYS. REV. D 108, 096029 (2023)

096029-14



Eq. (115) into the EOM (97) in the cotangent space, use
Eqs. (118), (119), (122), and (124), and contract it with
successive elements of the set fueq;l; κ̃; χg to find

ΩδẼ − ðκlδul þ κδuκÞ ¼ 0; ð126aÞ

Ωδul − κlðv2sδẼ þ δΠ̃þ δπllÞ − κδπlκ ¼ 0; ð126bÞ

Ωδuκ − κðv2sδẼ þ δΠ̃þ δπκκÞ − κlδπlκ ¼ 0; ð126cÞ

Ωδuχ − κlδπlχ − κδπκχ ¼ 0: ð126dÞ

Next, we turn to the EOM (116) for the bulk viscous
pressure. To obtain the derivative of δΠ, we set δP ¼
v2sδE þ δΠ in Eq. (109b), and use Eq. (109a) to find

∇μδΠðxÞ ¼
Z
k

X
a

�
−ikμδΠðx; kÞ þ

�
2v2sðxÞ −

2

3

�
TeqðxÞheqðxÞϖμνðxÞδuνðx; kÞ

− TeqðxÞ
∂v2s
∂T

aμðxÞδEðx; kÞ
	
δðn · k − ωaÞ: ð127Þ

Furthermore, from Eq. (109c) we find using δQ̃μ ¼ heqδuμ and the definitions (118)

∇μδuνðxÞ ¼
Z
k

X
a

�
−ikμδuνðx; kÞ þ TeqðxÞϖμαðxÞ½ueqν ðxÞδuαðx; kÞ − δπ̃ανðx; kÞ�

þ ½TeqðxÞϖμνðxÞ − aμðxÞueqν ðxÞ�½δẼðx; kÞ þ δP̃ðx; kÞ� −
�
1þ 1

v2sðxÞ
�
aμðxÞδuνðx; kÞ

	
δðn · k − ωaÞ: ð128Þ

Contracting the indices, we obtain

∇ · δuðxÞ ¼
Z
k

X
a

�
−ik · δuðx; kÞ −

�
2þ 1

v2sðxÞ
�
aðxÞ · δuðx; kÞ

	
δðn · k − ωaÞ: ð129Þ

Finally, we insert Eqs. (127) and (129) into Eq. (116) and demand that the integrand vanishes on the whole cotangent space.
Using Eqs. (118), (119), and (122), this gives rise to

ð1 − iRζΩÞδΠ̃þ ðαVζ þ iCζκlÞδul þ iCζκδuκ ¼ 0; ð130Þ

where we defined the quantities

α≡ a
Teq

; Rζ ≡ τΠTeq; Cζ ≡ Teqζ

heq
; Vζ ≡

�
2þ 1

v2s

�
Cζ −

2

3
ð1 − 3v2sÞRζ: ð131Þ

We note that only the acceleration (via α) appears in Eq. (130), but not the kinematic vorticity. In other words, the bulk
viscous pressure couples only to the acceleration and not directly to the rotation, as expected.
The EOM (117) for the shear-stress tensor requires a similar treatment. Using Eq. (109d), we find

Δμν
eq;αβðxÞueqðxÞ ·∇δπαβðxÞ ¼ Δμν

eq;αβðxÞ
Z
k
½−ik · ueqðxÞδπαβðx; kÞ − 2heqðxÞaαðxÞδuβðx; kÞ�: ð132Þ

From Eq. (128) one readily computes δσμν ¼ Δμν
eq;αβ∇αδuβ. Plugging the result and Eq. (132) into Eq. (117), and using

Eqs. (119) and (122), as well as α ¼ a=Teq, we obtain

0 ¼ ð1 − iRηΩÞδπ̃μν þ 2iCη

�
κllðμδuνÞ þ κðμδuνÞ þ 1

3
ðκlδul þ κδuκÞΔμν

eq

�

þ 6αVη

�
lðμδuνÞ þ 1

3
δulΔ

μν
eq

�
− 2

Rη þ Cη

Teq
δπ̃α

ðμΩνÞα
eq ; ð133Þ

where
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Rη ¼ Teqτπ; Cη ¼
Teqη

heq
; Vη ¼

1

3

��
1þ 1

v2s

�
Cη − Rη

�
: ð134Þ

Finally, we use Eq. (125) to decompose Eq. (133) into five independent equations,

0 ¼ ð1 − iRηΩÞδπll −
2

3
iCηκδuκ þ

4

3
ðiCηκl þ 3αVηÞδul −

2ω⊥ðCη þ RηÞ
κTeq

ðκζδπlκ þ κψδπlχÞ; ð135aÞ

0 ¼ ð1 − iRηΩÞδπlκ þ iCηκδul þ ðiCηκl þ 3αVηÞδuκ −
ω⊥ðCη þ RηÞ

κTeq
½κζðδπκκ − δπllÞ þ κψδπκχ � þ

ωlðCη þ RηÞ
Teq

δπlχ ;

ð135bÞ

0 ¼ ð1 − iRηΩÞδπlχ þ ðiCηκl þ 3αVηÞδuχ −
ω⊥ðCη þ RηÞ

κTeq
½κζδπκχ − κψð2δπll þ δπκκÞ� −

ωlðCη þ RηÞ
Teq

δπlκ; ð135cÞ

0 ¼ ð1 − iRηΩÞδπκκ þ
4

3
iCηκδuκ −

2

3
ðiCηκl þ 3αVηÞδul þ

2ω⊥ðCη þ RηÞ
κTeq

κζδπlκ þ
2ωlðCη þ RηÞ

Teq
δπκχ ; ð135dÞ

0 ¼ ð1 − iRηΩÞδπκχ þ iCηκδuχ þ
ω⊥ðCη þ RηÞ

κTeq
ðκζδπlχ þ κψδπlκÞ −

ωlðCη þ RηÞ
Teq

ðδπll þ 2δπκκÞ; ð135eÞ

where

κζ ¼ −κ · ζ; κψ ¼ −κ · ψ : ð136Þ

Note that κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2ζ þ κ2ψ

q
. In order to derive Eqs. (135), we

have in particular used Eqs. (24), (25), and (121) to obtain

ψ · χ ¼ ω · χ
ω⊥

¼ −
κ · ζ
κ

; κ · ω ¼ ω⊥κ · ψ : ð137Þ

We note that both acceleration (in terms of α) and kinematic
vorticity (in terms of ωl and ω⊥) appear in Eqs. (135).
To recover the characteristic equation in the limit of

a homogeneous equilibrium configuration, we first set κl,
α, ωl, and ω⊥ to zero in Eqs. (126), (130), and (135).
Consequently, Eq. (135c) yields δπlχ ¼ 0. This is because,
by taking the homogeneous limit, the rotation symmetry
with respect to κ is restored and the equations are symmetric
under l ↔ χ. Using this symmetry, the fact that δπ̃μν is
traceless gives the condition δπll ¼ − 1

2
δπκκ, which renders

the equation for δπll identical to that for δπκκ. Ultimately, the
system of equations is reduced to six equations for the six
variables fδẼ; δuκ; δuχ ; δΠ̃; δπκκ; δπκχg,

ΩδẼ − κδuκ ¼ 0; ð138aÞ

Ωδuκ − κðv2sδẼ þ δΠ̃þ δπκκÞ ¼ 0; ð138bÞ

Ωδuχ − κδπκχ ¼ 0; ð138cÞ

ð1 − iRζΩÞδΠ̃þ iCζκδuκ ¼ 0; ð138dÞ

ð1 − iRηΩÞδπκκ þ
4

3
iCηκδuκ ¼ 0; ð138eÞ

ð1 − iRηΩÞδπκχ þ iCηκδuχ ¼ 0: ð138fÞ

Writing the above in the form (27) and setting detM ¼ 0,
we find that, as is well known, the characteristic equation
decomposes into the characteristic equations for the so-called
shear and sound channels, which read

ð1 − iRηΩÞΩþ iCηκ
2 ¼ 0; ð139aÞ

ð1− iRζΩÞð1− iRηΩÞðΩ2 −v2sκ2Þ

þ iΩκ2
�
Cζð1− iRηΩÞþ

4

3
Cηð1− iRζΩÞ

�
¼ 0: ð139bÞ

The imaginary parts ImΩa of the roots of Eq. (139a) are≤ 0,
provided the relaxation time Rη > 0, thus implying linear
stability. Using the Routh-Hurwitz criterion, we find that
the imaginary parts ImΩa of the roots of Eq. (139b) are≤ 0 if
Rη, Cη, Rζ, and Cζ are positive. These are the well-known
conditions for linear stability of MIS theory in the LRF.
Taking the limit κ → ∞ and demanding that the asymptotic
group velocity does not exceed the speed of light, we find the
linear causality conditions [8]

Rη > Cη;
4Cη

3Rη
þ Cζ

Rζ
< 1 − v2s : ð140Þ
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One can show that these conditions, together with the
stability conditions in the LRF, lead to linear stability in
any frame [9].
In inhomogeneous equilibriumconfigurations, Eqs. (126),

(130), and (135) comprise a set of linear equations of
the form (101), which, by setting detM ¼ 0, yields the
dispersion relations. Calculating the determinant of the
ð10 × 10Þ matrix M is cumbersome. The reason is that
the rotational symmetry is broken and therefore one can no
longer decompose the characteristic equation into shear and
sound channels. In the following, we restrict our attention to
certain special cases.

A. Nonzero bulk viscous pressure,
zero shear-stress tensor

Let us first consider the case that the bulk viscous
pressure is the only source of dissipation. Consequently, the
system of linearized EOMs is constituted by Eqs. (126),
where δπμν ¼ 0, as well as Eq. (130). From Eq. (126d) we
then find δuχ ¼ 0, similar as for homogeneous equilibrium
configurations, i.e., there is no mode transverse to both l
and κ̃. The remaining four equations for the four variables
fδẼ; δul; δuκ; δΠ̃g give rise to a fourth-order characteristic
equation. One solution is Ω ¼ 0, while the other three are
given by the roots of

ð1 − iRζΩÞ½Ω2 − v2sðκ2 þ κ2lÞ�
þ Ω½αVζκl þ iCζðκ2 þ κ2lÞ� ¼ 0: ð141Þ

The equilibrium-preserving directions can be identified via
Eq. (75). With Eqs. (4), (24), (25), (119), (121), (136), and
(137), we obtain

0 ¼ aκlu
eq
ν þ ω⊥κζlν þ ðω⊥κl þ ωlκψÞζν − ωlκζψν:

ð142Þ
Since fueq;l; ζ;ψg form an orthogonal basis, we have to
demand that all coefficients vanish, leading to the require-
ment ωl ¼ κζ ¼ κl ¼ 0, i.e., the equilibrium-preserving
direction is the ψ direction, as κψ can be nonzero. Using
this in Eq. (141), the latter reduces to its homogeneous
counterpart (139b) (for Rη ¼ Cη ¼ 0). Therefore, the sta-
bility conditions found in the homogeneous equilibrium
configuration in the LRF, i.e., Rζ > 0, Cζ > 0, extend to
inhomogeneous equilibrium configurations. However, the
imaginary parts of the roots of Eq. (141) can become positive
in the equilibrium-nonpreserving direction l, as we will
show now.
By performing a Routh-Hurwitz analysis [32] on

Eq. (141) we find that ImΩa ≤ 0 for all values of κ and
κl only if Rζ > 0, and

Cζκ
2 þ ðCζ − Rζα

2V2
ζÞκ2l > 0; ð143aÞ

C2
ζκ

2 þ ½C2
ζ − ðCζ þ v2sRζÞRζα

2V2
ζ �κ2l > 0: ð143bÞ

Therefore, for κ ¼ 0, we must have

C4 ≡ Cζ − Rζα
2V2

ζ > 0;

C6 ≡ C2
ζ − ðCζ þ v2sRζÞRζα

2V2
ζ > 0: ð144Þ

Setting C4 ¼ 0, we find that for any set fvs; Cζ; Rζg, there
exists a critical value

αc4 ≡
ffiffiffiffiffiffiffiffiffiffiffi
Cζ

RζV2
ζ

s
; ð145Þ

such that for α > αc4, C4 is negative and therefore ImΩa > 0

for at least one of the modes. A similar critical value

αc6 ≡
Cζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RζðV2
ζCζ þ v2sRζÞ

q ; ð146Þ

exists, such that for α > αc6, C6 is negative. For positive
values of Cζ and Rζ, αc6 ≤ αc4. Therefore ImΩa ≤ 0 if and
only if α ≤ αc6.
Now, let us consider the following parametrization of the

bulk transport coefficients which ensures linear causality
for v2s < 1=3 [33],

Cζ ¼
3

2π
ð1 − 3v2sÞ; Rζ ¼

9

10π
ð1 − 3v2sÞ−1: ð147Þ

In the range 0 < v2s < 1=3, the coefficient Vζ, cf. Eq. (131),
is a function of vs that, as can be seen in Fig. 1, becomes
very large for smaller values of v2s . Consequently, the lower
bounds αc4;6 become small, as illustrated in Fig. 2.
In order to estimate the typical magnitude of α in

applications to heavy-ion collisions, let us imagine a
cylinder of QGP, which is rigidly rotating according to

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

50

100

150

200

vs2

FIG. 1. Vζ as a function of v2s , with the parametrization
of Eq. (147). For v2s ≳ 0.31, Vζ < 0, which is not visible in
this figure.

LINEAR STABILITY ANALYSIS IN INHOMOGENEOUS … PHYS. REV. D 108, 096029 (2023)

096029-17



the configuration (19), and let us take T0 ¼ 200 MeV and
Ω0 ¼ 6 MeV. The latter number corresponds to the order
of magnitude of angular velocities reported in heavy-ion
collisions, i.e., ∼1022 s−1 [34]. Inserting these numbers
into Eq. (23) and using α≡ ffiffiffiffiffiffiffiffiffiffiffiffi

−a · a
p

=Teq, we find α as a
function that monotonously increases with radial distance
ρ. For example, it assumes the concrete values αð1 fmÞ≈
0.01, and αð5 fmÞ ≈ 0.04. In order to estimate the critical
values (145) and (146), we assume that v2s ¼ 0.2, which
is reasonable at T0 ¼ 200 MeV. From Fig. 2 one then
reads off that the values of α are much smaller than the
critical ones for the violation of the conditions (144),
i.e., αc6 ≈ 0.34. Thus, for these assumptions, there is no
instability. Nevertheless, even if the conditions (144) are
violated, it does not necessarily mean that there is an
instability the amplitude of which grows without bounds,
because the momenta of the corresponding modes point
into the equilibrium-nonpreserving directions (in our case
the direction of acceleration l) which were absorbed into
δXA

aðxne; ke⊥Þ in the linear-stability argument of Sec. IV D.
It is illuminating to investigate the modes arising from

the roots of Eq. (141) in the long- and short-wavelength
regimes. Let us first consider the former, for which

κt ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ κ2l

q
≪ 1. We then expand Eq. (141) in terms

of κt, with κl=κt being an arbitrary number between −1 and
þ1. Solving the resulting equation order by order, we
obtain two hydrodynamic sound modes and one nonhy-
drodynamic mode,

Ωsound ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2sκ2t þ

1

4
α2V2

ζκ
2
l

r
−
1

2
αVζκl

−
i
2

0
B@1∓ αVζκlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4v2sκ2t þ α2V2
ζκ

2
l

q
1
CA�

Cζκ
2
t þRζ

�
v2sκ2t

−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2sκ2t þ
1

4
α2V2

ζκ
2
l

r
∓ 1

2
αVζκl

�
2
�	

þOðκ3t Þ;

ð148aÞ

Ωnonhydro ¼−
i
Rζ

þαVζκlþ iðCζκ
2
t −α2RζV2

ζκ
2
lÞþOðκ3t Þ:

ð148bÞ

This expansion reveals the significance of Vζ. Letting
κ ¼ 0 in Eq. (148a) we find the group velocity of the
sound mode in the direction of acceleration to be

∂ReΩsound

∂κl
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s þ

1

4
α2V2

ζ

r
−
1

2
αVζ þ � � � : ð149Þ

Assuming α ≪ 1, the leading term in the group velocity
is �vs − 1

2
αVζ, i.e., that velocity is modified in the direc-

tion of acceleration. While the absolute value of the
group velocity increases for the mode originally moving
with −vs, it decreases for the other one. Thus, a nonzero
acceleration breaks the symmetry of the sound waves
moving in opposite directions relative to the acceleration.
Next, let us assume the short-wavelength regime, i.e.,

κt ≫ 1. In this limit, we find

ReΩ ∼�κt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s þ

Cζ

Rζ

s
: ð150Þ

This means that the asymptotic group velocity is indepen-
dent of κl=κ and remains smaller than the speed of light,
with the same conditions that are found for the homo-
geneous case (140). Furthermore, Eq. (150) shows that, in
the short-wavelength regime, the symmetry of the sound
modes traveling in opposite directions is recovered.

B. Conformal MIS theory

Let us now consider a conformal fluid, for which v2s ¼
1=3 and δΠ ¼ 0. Inserting this into Eqs. (126) and (135),
we find a system of nine equations for nine variables. The
characteristic equation of this system of equations is a
polynomial of order nine, which can in general not be
further decomposed due to the lack of rotational symmetry
in the direction orthogonal to the momentum. The general
characteristic equation is not shown here since it is too
complicated, but we comment on some aspects.
Let us first consider the characteristic equation in the

long-wavelength regime. Similarly to the previous sub-
section, we expand the characteristic equation in terms
of κt, keeping the ratios κζ=κt, κψ=κt, and κl=κt arbitrary
numbers between−1 andþ1 (but respecting the constraints
κ2 ¼ κ2ζ þ κ2ψ and κ2t ¼ κ2l þ κ2). At zeroth order in κt, the
characteristic equation has four roots with Ω1;2;3;4 ¼ 0 and
five other roots solving

ð1 − iΩRηÞ½ð1 − iΩRηÞ4 þ 5ðC2l þ C2⊥Þð1 − iΩRηÞ2
þ 4ðC2l þ C2⊥Þ2� ¼ 0; ð151Þ
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FIG. 2. The critical parameters (145) and (146) as a function of v2s .
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where

Cl ≡ Rη þ Cη

Teq
ωl; C⊥ ≡ Rη þ Cη

Teq
ω⊥: ð152Þ

Consequently, the roots of Eq. (151) are five nonhydrody-
namic modes, which are distinct only if the kinematic
vorticity does not vanish,

Ω5 ¼ −
i
Rη

; Ω6;7 ¼
−i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2l þ C2⊥

q
Rη

;

Ω8;9 ¼
−i� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2l þ C2⊥

q
Rη

: ð153Þ

We note that these modes differ only in their real parts. It is
interesting to note that the last four modes have a nonzero
real part even for vanishing momentum. We attribute this to
the Coriolis force introduced by a nonvanishing rotation.
For the hydrodynamic modes Ω1;2;3;4, i.e., the ones

which vanish for zero momentum, the calculation of the
term which is of first order in momentum is cumbersome.
Therefore, we restrict ourselves to the equilibrium-preserv-
ing ψ direction in the rigidly rotating configuration. After
setting ωl ¼ κζ ¼ κl ¼ 0, cf. discussion after Eq. (142), in
the first-order term of the expansion of the characteristic
equation, we find two vanishing roots Ω1;2 ¼ 0 and two
nonvanishing roots, which correspond to the sound modes
and read

Ωe
3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
−

9α2V2
η

1þ C2⊥

s
κψ : ð154Þ

One notices that, in contrast to the case with bulk viscosity
only, the group velocity is modified in the equilibrium-
preserving ψ direction. The other two hydrodynamic modes
are modifications of the shear modes in the homogeneous
case (with dispersion relation Ω ¼ −iCηκ

2), cf. Eq. (139a),
which in the equilibrium-preserving ψ direction have a
contribution of the form −iCηκ

2
ψ .

Let us now turn to the nonhydrodynamic modes (153).
For the fifth mode, up to first order in κt, we find

Ω5 ¼ −
i
Rζ

þ αVη

�
3ωlω⊥
ω2
l þ ω2⊥

κψ þ
�
1þ 3ω2

l

ω2
l þ ω2⊥

�
κl

�
:

ð155Þ

The term in brackets vanishes in the equilibrium-preserving
ψ direction, because there ωl ¼ κl ¼ 0. Furthermore,
the term of second order in momentum in this direction
reads 4

3
iCηκ

2
ψ . This indicates that Ω5 is the counterpart of

the nonhydrodynamic sound mode in the homogeneous

case (with dispersion relation Ω ¼ −i=Rη þ 4iCηκ
2=3),

cf. Eq. (139b).
For the other nonhydrodynamic modes, the terms of

first order in momentum look more complicated, and we
restrict our attention to their forms in the equilibrium-
preserving ψ direction. In this direction, the first- and
second-order terms in κψ of the sixth mode Ω6 vanish. This
mode is the counterpart of the nonhydrodynamic shear
mode in the homogeneous case (with dispersion relation
Ω ¼ −i=Rη), cf. Eq. (139a). The seventh mode Ω7, on the
other hand, has nonvanishing terms of order κ2ψ , and reads

Ωe
7 ¼

−iþ C⊥
Rη

þ i
ð1þ C2⊥ÞCη þ 6α2RηV2

η

ð1þ C2⊥Þ2
κ2ψ

−
C2⊥ð1þ C2⊥ÞCη − 3ð1 − C2⊥Þα2RηV2

η

C⊥ð1þ C2⊥Þ2
κ2ψ : ð156Þ

Therefore, one can recognize this mode as the modification
of the remaining nonhydrodynamic shear mode in the
homogeneous case (with dispersion relation Ω ¼ −i=Rη þ
iCηκ

2), cf. Eq. (139a). However, this is not the only
mode that has this homogeneous counterpart. The eighth
and ninth modes differ from the seventh only in the leading
term in the equilibrium-preserving direction ψ ,

Ωe
8;9 ¼

−i� 2C⊥
Rη

þ i
ð1þ C2⊥ÞCη þ 6α2RηV2

η

ð1þ C2⊥Þ2
κ2ψ

−
C2⊥ð1þ C2⊥ÞCη − 3ð1 − C2⊥Þα2RηV2

η

C⊥ð1þ C2⊥Þ2
κ2ψ : ð157Þ

Let us now consider the short-wavelength regime
κt ≫ 1. In this limit, similar to the previous subsection,
the symmetry of the modes is restored and we have

ReΩnonhydro ∼�κt

ffiffiffiffiffiffi
Cη

Rη

s
; ReΩsound ∼�κt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cη þ Rη

3Rη

s
:

ð158Þ
This means that the asymptotic group velocity does not
exceed the speed of light if the standard linear causality
condition, Rη > 2Cη is satisfied. At this point, we turn to
stability analysis of conformal MIS theory in inhomo-
geneous configurations. To this end, we first consider
the characteristic equation in the purely accelerating
configuration (11). In this case, the characteristic equation
decouples, as in homogeneous configurations, into two
independent parts: the shear and sound channels. There is
one nonpropagating mode, which is exactly equal to its
homogeneous counterpart, i.e., Ω ¼ −i=Rη. The remaining
shear modes are modified by acceleration and found from
the roots of

RηΩ2 þ iΩ − Cηκ
2
t þ 3iαVηκl ¼ 0: ð159Þ
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In order for ImΩ ≤ 0, Rη must be positive and

Cηκ
2 þ ðCη − 9Rηα

2V2
ηÞκ2l > 0: ð160Þ

If we restrict the momenta to the equilibrium-preserving
directions by setting κl ¼ 0, this condition is satisfied if
Cη > 0. On the other hand, for a mode with κ ¼ 0, the
condition (160) requires

α < αc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cη=Rη

j4Cη − Rηj

s
; ð161Þ

where we used Eq. (134) for Vη. For any reasonable choice
of transport coefficients, αc is very large. For example, if
we consider the parameters of Ref. [35],

Rη ¼
2 − ln 2

2π
; Cη ¼

1

4π
; ð162Þ

we find αc ≈ 5.61. This value for αc corresponds to a
macroscopic length scale a−1 that is much smaller than the
typical microscopic length scale, which for uncharged
conformal fluids is T−1. Consequently, the stability and
causality conditions for homogeneous configurations,
Rη > 2Cη > 0, guarantee the stability of the shear modes
in the purely accelerating configuration, if the condition
(114) is fulfilled.
Up to this point, every characteristic equation that we

have considered reduces to its homogeneous counter-
part in the equilibrium-preserving directions. However,
the characteristic equation of the sound channel in the
purely accelerating configuration features a novel phe-
nomenon: it is affected by acceleration even in the
equilibrium-preserving directions. This is because, in
Eq. (133), α appears not only in the coefficients of δul
but also of δuκ and δuχ . With κl ¼ 0, it reads

3Ω3ð1 − iΩRηÞ2 − Ωκ2fð1 − iΩRηÞ½1 − ið7Cη þ RηÞΩ�
− 18α2V2

ηg − iCηκ
4½1 − ið4Cη þ RηÞΩ� ¼ 0: ð163Þ

The imaginary parts of some roots of this equation can
be positive if α is larger than a critical value. As we
have already restricted the momenta to the equilibrium-
preserving directions, it might be tempting to conclude that
conformal MIS theory could become unstable in the purely
accelerating configuration. However, further inspection
shows that such a critical value of α is always larger than
one, violating the condition (114). In order for the imagi-
nary parts of the roots of the characteristic equation of the
sound channel in the equilibrium-nonpreserving l direction
to be positive, similarly large values of α are required.
We close this section by commenting on the stability

of conformal MIS theory in the rigidly rotating con-
figuration (19). In this case, the characteristic equation
remains of order nine and is thus quite complicated even
after restricting the momenta to the equilibrium-preserving

ψ direction. We insert a ¼ vφω⊥, where vφ ¼ ρΩ0, into
the characteristic equation and perform a Routh-Hurwitz
analysis. Consequently, we find that ImΩ can be positive
even with momenta restricted to the equilibrium-preserving
ψ direction, if Ω0 ≫ T0, or vφ is very close to the speed of
light. The former case violates the condition (114), while
the latter one corresponds to radii very close to the causal
boundary of the fluid. Therefore, we conclude that in the
domain of validity of MIS hydrodynamics, the stability
conditions found for homogeneous configurations extend
to accelerating and rigidly rotating configurations.

VI. CONCLUDING REMARKS

We have proposed a method to find local plane-wave
solutions to the linearized hydrodynamic equations of
motion in inhomogeneous equilibrium configurations, i.e.,
configurations with nonzero thermal vorticity. Ourmethod is
based on extending the perturbations of the conserved
currents around the equilibrium configuration to the tangent
bundle using Wigner transforms, and then Fourier trans-
forming them to the cotangent bundle. The tangent bundle
plays the role of a homogeneous equilibrium configuration
where, in an infinitesimal neighborhood, the equilibrium
quantities are constant. By Fourier transforming, we choose
the solutions to the equations of motion that are super-
positions of linear waves in this infinitesimal domain. This
procedure leads to a homogeneous system of linear equa-
tions, from which, by setting its determinant to zero, one
finds the linear modes in the inhomogeneous configurations.
Contrary to homogeneous equilibrium configurations,

a positive sign of the imaginary parts of the modes in
the inhomogeneous case does not necessarily indicate a
linear instability. This is because the frequencies of the
modes depend on the local quantities in equilibrium. In
flat space-time, the latter do not change in the directions
perpendicular to the thermal vorticity. We refer to these
directions as equilibrium-preserving directions. We showed
that these directions exist, if space-time is flat and the
kinematic vorticity is perpendicular to the acceleration.
Restricting the momenta of the modes to these equilibrium-
preserving directions, if the imaginary part of at least one
mode is positive, an instability exists. Such an instability is,
however, only physically relevant as long as the length
scale related to the thermal vorticity remains much larger
than the typical microscopic scale of the system. On the
other hand, a positive imaginary part of a mode with
nonvanishing momenta in an equilibrium-nonpreserving
direction does not necessarily prove the instability of the
system.
As an application, we considered MIS hydrodynamics.

We first studied a fluid for which the bulk viscous pre-
ssure is the only source of dissipation. We showed that
coupling between the bulk viscous pressure and the
acceleration leads to novel contributions to the dispersion
relations of the sound modes in the direction of acceleration.
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Consequently, the group velocities of the sound modes in
this direction are asymmetrically modified in the long-
wavelength regime. However, in the short-wavelength
regime, symmetry is recovered and the group velocities
remain smaller than the speed of light if the theory is linearly
causal. In the equilibrium-preserving directions, the novel
contributions vanish, and the standard stability conditions of
MIS theory for the case of bulk viscosity only are recovered.
On the other hand, in the direction of acceleration, the
imaginary part of one of themodes can become positive if the
magnitude of the acceleration is sufficiently large. However,
we have argued that the corresponding large accelerations
can neither be physically realized nor are in the domain of
validity of MIS hydrodynamics.
Finally, we have considered a conformal fluid in MIS

theory. In this case, not only is the dispersion relation of
the modes modified by the thermal vorticity, but also the
number of modes is increased to nine in the presence of
rotation. In the short-wavelength regime, the asymmetry of
the modes is eliminated and the standard condition for
linear causality is recovered. In contrast to the case of bulk
viscosity only, these modes have novel contributions even
when the momenta are restricted to the equilibrium-
preserving directions. Consequently, the imaginary parts
of at least one mode can be positive for sufficiently strong
thermal vorticities. However, such an effect, with a rea-
sonable choice of parameters, only occurs beyond the
validity of the hydrodynamic theory. This is either when
the microscopic and macroscopic scales are similar or when
boundary effects cannot be neglected. Consequently, we
conclude that MIS theory in its domain of validity remains
linearly stable in inhomogeneous configurations, with the
standard stability and causality conditions. This conclusion
agrees with Ref. [14], which uses the so-called information
current method. We note that, although this method does
not assume a homogeneous equilibrium configuration, it
neglects the existence of boundaries, which are always
present in inhomogeneous equilibrium configurations.
The methods introduced here can be applied to different

hydrodynamic theories to find linear waves in inhomo-
geneous equilibrium configurations. Hydrodynamic theories
with quantum corrections arising from acceleration and
rotation [26,36–39] and formulations of spin hydrodyna-
mics that explicitly contain the thermal vorticity [40] are of
particular interest. This work can also be extended by an
investigation of boundary and size effects on mode propa-
gation and stability in inhomogeneous equilibrium configu-
rations. The Wigner-Fourier transforms that were utilized
in this work might also be used to study hydrodynamic
fluctuations as an alternative to the method introduced
in Ref. [41].
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APPENDIX A: RIGIDLY ROTATING FLUID
IN A SCHWARZSCHILD METRIC

In this appendix, we consider a rigidly rotating fluid in
Schwarzschild metric, whose line element in spherical
coordinates ðt; r; θ;ϕÞ reads

ds2 ¼
�
1 −

rs
r

�
dt2 −

�
1 −

rs
r

�
−1
dr2 − r2dΩ2

s ; ðA1Þ

where rs ¼ 2GMr is the Schwarzschild radius and
dΩs ¼ dθ2 þ sin2θdϕ2. This configuration is found by
assuming [42]

β ¼ 1

T0

�
∂

∂t
þ Ω0

∂

∂ϕ

�
; ðA2Þ

where Ω0 is a constant of dimension energy. The above
β-vector is timelike if

1 −
rs
r
−Ω2

0r
2sin2θ > 0:

In spherical coordinates, the velocity and temperature are
given by

uμ ¼ γð1; 0; 0;Ω0Þ; T ¼ γT0;

with γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs=r −Ω2

0r
2sin2θ

p : ðA3Þ

As in the rotating equilibrium configuration (19), both
acceleration and kinematic vorticity are nonzero,

aμ ¼ −
1

2
γ2
�
0;
ðr − rsÞð2Ω2

0r
3sin2θ − rsÞ

r3
;Ω2

0 sin 2θ; 0

�
;

ðA4aÞ

ωμ ¼ γ2
�
0;
ðr − rsÞΩ0 cos θ

r
;−

ð2r − 3rsÞΩ0 sin θ
2r2

; 0

�
:

ðA4bÞ

These vectors are not orthogonal,

ω · a ¼ −γ2
rsΩ0 cos θ

2r2
: ðA5Þ

We note that even with a vanishing Ω0, the equi-
librium configuration is inhomogeneous due to gravity,
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as required by the Tolman law, i.e, T ¼ T0=
ffiffiffiffiffiffi
g00

p
. In this

limit,

uμ ¼ γð1; 0Þ; T ¼ γT0; aμ ¼
�
0;

rs
2r2

; 0; 0

�
; ðA6Þ

with γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs=r

p ¼ 1=
ffiffiffiffiffiffi
g00

p
. As expected, the

kinematic-vorticity vector vanishes in this case.

APPENDIX B: PROOF OF IDENTITIES
FOR THE TANGENT BUNDLE

In this appendix, we prove some identities regarding the
horizontal lift in the tangent bundle, including Eq. (43).
First, we realize that Dμyν ¼ 0 since

Dμyν ¼ ð∇μ − Γσ
μρyρ∂

y
σÞyν ¼ Γν

μρyρ − Γσ
μρyρδνσ ¼ 0: ðB1Þ

Furthermore, ∂y commutes with D,

½Dμ; ∂
y
ν� ¼ ½∇μ − Γα

μβðxÞyβ∂yα; ∂yν� ¼ ½∇μ; ∂
y
ν� − Γα

μβ½yβ∂yα; ∂yν�
¼ −Γα

μν∂
y
α þ Γα

μβδ
β
ν∂

y
α ¼ 0: ðB2Þ

Note that, similarly to Eq. (B1),

D̃μkν ¼ ð∇μþΓσ
μρkσ∂

ρ
kÞkν ¼−Γρ

μνkρþΓσ
μρkσδ

ρ
ν ¼ 0: ðB3Þ

Also, we have

½D̃μ;∂νk� ¼ ½∇μ þ Γα
μβðxÞkα∂βk;∂νk� ¼ ½∇μ;∂νk� þΓα

μβ½kα∂βk;∂νk�
¼ Γν

μρ∂
ρ
k − Γα

μβδ
ν
α∂

β
k ¼ 0: ðB4Þ

Using Eq. (B2), we find that commuting y ·D with ∂
y
μ

generates a horizontal lift,

½y ·D; ∂yμ� ¼ −½∂yμ; yν�Dν − yν½∂yμ;Dν� ¼ −Dμ: ðB5Þ

We define the full curvature in the tangent bundle as the
commutator of two horizontal lifts [43],

GμνK
α1���
β1���ðx; yÞ≡ ½Dμ;Dν�Kα1���

β1���ðx; yÞ; ðB6Þ

where Kα1���
β1��� is a tensor of arbitrary rank. To identify the

y-dependent part of the total curvature, we consider its
action on a scalar function Fðx; yÞ,

½Dμ;Dν�Fðx; yÞ ¼ ½∇μ − Γβ
μαyα∂

y
β;∇ν − Γσ

νρyρ∂
y
σ�Fðx; yÞ

¼ −½∂μ;Γσ
νρyρ∂

y
σ�Fðx; yÞ

− ½Γβ
μαyα∂

y
β; ∂ν�Fðx; yÞ

þ ½Γβ
μαyα∂

y
β;Γσ

νρyρ∂
y
σ�Fðx; yÞ

¼ −Rσ
ρμνyρ∂

y
σFðx; yÞ; ðB7Þ

where we have used

Rσ
ρμν ¼ 2ð∂½μΓσ

ν�ρ þ Γσ
β½μΓ

β
ν�ρÞ: ðB8Þ

For tensors of arbitrary rank, commuting ½∇μ;∇ν� gives rise
to additional curvature terms. However, the y-dependent
part is independent of the tensor rank as is the same as
in Eq. (B7).
Using Eq. (B7), we prove Eq. (43). In order to do so, we

start with [29]

½Â; eB̂� ¼ −
X∞
n¼1

1

n!
½B̂; ½B̂; ½� � � ½B̂; Â� � � ����
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n times

eB̂: ðB9Þ

This identity can be written using the so-called adjoint map
C in a compact form. The adjoint map is defined as

C½X̂�Ŷ ≡ ½X; Y�; ðB10Þ

were X̂ and Ŷ are some operators. Consequently, Eq. (B9) is
rewritten as

eB̂Â ¼ feC½B̂�ÂgeB̂: ðB11Þ

Now, let us consider acting both sides of this identity on a
scalar FðxÞ for the following operators

Â → ∂
y
μ; B̂ → y ·D;

which gives rise to

eC½y·D�
∂
y
μey·DFðxÞ ¼ ey·D∂yμFðxÞ ¼ 0:

Therefore, with Eq. (B5),

0¼ eC½y·D�
∂
y
μFðx;yÞ

¼
�
1þC½y ·D� þ

X∞
n¼2

C½y ·D�n
n!

�
∂
y
μFðx;yÞ

¼ ∂
y
μFðx;yÞ−DμFðx;yÞ

þ
X∞
n¼2

C½y ·D�n−2
n!

C½y ·D�C½y ·D�∂yμFðx;yÞ

¼ ∂
y
μFðx;yÞ−DμFðx;yÞ

−
X∞
n¼2

C½y ·D�n−2
n!

C½y ·D�DμFðx;yÞ

¼ ∂
y
μFðx;yÞ−DμFðx;yÞ− yν

X∞
n¼0

C½y ·D�n
ðnþ 2Þ! ½Dν;Dμ�Fðx;yÞ

¼ ∂
y
μFðx;yÞ−DμFðx;yÞþ yν

X∞
n¼0

C½y ·D�n
ðnþ 2Þ!GμνFðx;yÞ;

which yields Eq. (43).
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APPENDIX C: DIRECT PROOF OF EQ. (46)

The identity (46) can be directly proved as follows. Since
the y- and k-dependent part of the horizontal lifts are
independent of the index structure of a tensor, we prove the
identity for a scalar Fðx; yÞ,

DμFðx; yÞ ¼ Dμ

Z
k
e−ik·yFðx; kÞ

¼
Z
k
ð∇μ − Γρ

μνyν∂
y
ρÞ½e−ik·yFðx; kÞ�

¼
Z
k
½∇μFðx; kÞ þ iFðx; kÞΓρ

μνyνkρ�e−ik·y

¼
Z
k
½∇μFðx; kÞ − Fðx; kÞΓρ

μνkρ∂νk�e−ik·y; ðC1Þ

where in the second line we have used the invariance of
the volume element. We have also used the fact that k · y is
a scalar, and therefore ∇μðk · yÞ ¼ ∂μðk · yÞ ¼ 0. Now, by
performing an integration by parts, we find

DμFðx; yÞ ¼
Z
k
e−ik·y½∇μFðx; kÞ þ Γρ

μνkρ∂νkFðx; kÞ�

¼
Z
k
e−ik·yD̃μFðx; kÞ; ðC2Þ

which completes the proof. One can convince oneself that
this proof is independent of the rank of the tensor FðxÞ.

APPENDIX D: COVARIANT DERIVATIVE
OF THERMAL VORTICITY

To find ∇μϖαβ, we start by writing

∇μϖαβ ¼ −∇μ∇αββ; ∇αϖμβ ¼ −∇α∇μββ; ðD1Þ

where we have used the Killing condition (1) to rewrite
the thermal vorticity as a single covariant derivative.
Then, we subtract these two equations, and use the
definition of the Riemann tensor, to find

∇μϖαβ −∇αϖμβ ¼ ½∇α;∇μ�ββ ≡ Rβσαμβ
σ ¼ Rσ

βμαβσ:

ðD2Þ

Permuting the indices clockwise we obtain,

∇αϖβμ−∇βϖαμ ¼Rσ
μαββσ; ∇βϖμα−∇μϖβα ¼Rσ

αβμβσ;

ðD3Þ

Adding the three equations gives rise to

∇μϖαβ¼
1

2
ðRσ

βμα−Rσ
μαβþRσ

αβμÞβσ¼−Rσ
μαββσ¼Rαβμσβ

σ;

ðD4Þ

where we have used the cyclic property Rσ
αβμ þ Rσ

μαβ þ
Rσ

βμα ¼ 0, the symmetry relation Rσαβμ ¼ Rβμσα, and the
antisymmetry relations Rσαβμ ¼ −Rασβμ ¼ −Rσαμβ.
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