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We propose a novel method to find local plane-wave solutions of the linearized equations of motion
of relativistic hydrodynamics in inhomogeneous equilibrium configurations, i.e., when a fluid in
equilibrium is rigidly moving with nonzero thermal vorticity. Our method is based on extending the
conserved currents to the tangent bundle, using a type of Wigner transformation. The Wigner-
transformed conserved currents can then be Fourier-transformed into the cotangent bundle to obtain the
dispersion relations for the space-time dependent eigenfrequencies. We show that the connection
between the stability of hydrodynamics and the evolution of plane waves is not as straightforward as in
the homogeneous case, namely, it is restricted to the equilibrium-preserving directions in the cotangent
bundle. We apply this method to Miiller-Israel-Stewart (MIS) theory and show that the interplay
between the bulk viscous pressure and the shear-stress tensor with acceleration and rotation leads to
novel modes, as well as modifications of the already known ones. We conclude that, within the domain
of applicability, i.e., when boundary effects are negligible and the vorticity is not too large, MIS theory
is stable and causal, with the same stability and causality conditions as for homogeneous equilibrium

configurations.
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I. INTRODUCTION

Hydrodynamics is a theory that describes the long-
wavelength behavior of fluids near local thermodynamical
equilibrium [1,2]. Its equations of motion comprise the
conservation of various currents, most importantly the
energy-momentum tensor, as well as those of conserved
charges in the system. More often than not, the form of the
conserved currents is only rigorously known in equilibrium.
In such a state, the conserved currents are expressed in terms
of hydrodynamic fields, such as the fluid four-velocity and
temperature. For perfect fluids, knowing the equilibrium
forms of the conserved currents is sufficient. However, real-
world fluids experience dissipation. To describe them, we
need to identify the relevant out-of-equilibrium contributions
to the conserved currents. There are different ways to
construct such terms. As is expected on physical grounds,
some of these terms contain derivatives of the hydrodynamic
fields, which gives rise to the so-called gradient expansion.
One starts by assuming that, near equilibrium, the gradients
of the fields are smaller than the fields themselves. Therefore,
the additional terms in the conserved currents must comprise
these gradients multiplied by parameters, the so-called
transport coefficients, which define the responses of the
fluids to these gradients. These coefficients can be deter-
mined from an underlying theory that determines the micro-
scopic dynamics of the system under consideration. At first
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order in derivatives, the gradient expansion yields Navier-
Stokes theory [3,4].

It is legitimate to ask if the equilibrium state has
maximum entropy in a hydrodynamic theory arising from
the gradient expansion [5]. This question is synonymous
to the stability of hydrodynamics. It can be addressed by
assuming an equilibrium state and asking if small pertur-
bations remain small with increasing time. In this spirit
that Hiscock and Lindblom (HL) assumed plane-wave
perturbations around a homogeneous equilibrium state
and showed that such a state is indeed unstable in Navier-
Stokes theory [6]. Also, it is well known that the equations
of motion of Navier-Stokes theory are parabolic; therefore,
they allow for the propagation of signals outside the causal
light cone. In the plane-wave analysis of HL, which we will
refer to as linear stability analysis, this fact is exhibited in
the existence of waves that, for short wavelengths, travel
faster than light. They also found that some modes, which
are damped in the frame of a comoving observer, are
unstable in the frame of another observer, which is moving
uniformly with a finite speed with respect to the fluid. This
connection between stability and causality was also inves-
tigated in Refs. [7,8], and was finally settled in Ref. [9],
where it was found that, in the linear regime, for a causal
theory of hydrodynamics, damped modes remain damped
in any inertial frame.

© 2023 American Physical Society
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The instability of Navier-Stokes theory, which cannot
be cured by including higher-order terms in the gradient
expansion, was one of the main factors in the development
of causal and stable theories of hydrodynamics. In particular,
Miiller-Israel-Stewart (MIS) [10-12] theory emerged as an
answer to this problem. The stability of this theory, under
certain conditions, was investigated both by linear stability
analysis [13] and also by a method relying on Gibbs’ stability
criteria [14,15], which was recently put into a systematic
form in Ref. [16]. Following this reference, we will call this
method the information-current method. On the other hand,
using kinetic theory, so-called Denicol-Niemi-Molnar-
Rischke (DNMR) theory [17] was developed, which in
the linear regime is similar to MIS theory. Recently, it was
discovered that a first-order stable and causal theory of
hydrodynamics indeed exists if one does not use the standard
matching conditions according to Landau [3] or Eckart [4].
Such an improved gradient expansion gives rise to so-called
Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory of first-
order hydrodynamics [18-22].

The linear stability analysis not only enables us to
understand the stability of hydrodynamics but also reveals
the nature of the waves arising from perturbing the
equilibrium state. However, unlike the information-current
method, it requires the existence of a homogeneous
equilibrium configuration, i.e., a state where the hydro-
dynamic fields do not depend on space-time. On the other
hand, the information-current method does not give us
any information on the propagation of linear waves and is
only applicable to theories for which the second law of
thermodynamics holds exactly. This shortcoming is, in
particular, relevant for BDNK theory, because its entropy
current does not contain terms that ensure causality [21].
Furthermore, inhomogeneous equilibrium configurations,
e.g., rigidly rotating fluids, always feature a length scale
arising from the existence of a boundary, which is neglected
in the information-current method.

It is known that the equilibrium configuration of an
uncharged fluid is fully determined by a timelike Killing
vector, which we refer to as f-vector (see, for example,
Ref. [23] and references therein). With the p-vector
being fixed, the hydrodynamic variables, such as the four-
velocity and temperature, are unambiguously determined.
In a sense, one might say that geometry dictates the
possible equilibrium configurations. Even in flat space-
time, it is possible to have inhomogeneous equilibrium
configurations. This, for example, includes the case of
rigidly rotating fluids in equilibrium. Such equilibrium
conditions have attracted attention in recent years in the
context of heavy-ion physics, mainly due to the increasing
interest in understanding the process of conversion of the
orbital angular momentum in noncentral collisions into the
polarization of observed particles [24].

Naturally, one may inquire if linear waves can also
be found in an inhomogeneous equilibrium configuration.

If yes, what can we then learn from them about the stability
of the theory? In the current work, we will answer these
questions. This paper is organized as follows: In Sec. II, we
review possible equilibrium configurations and the linear
stability analysis. Then, in Sec. III, we develop the tools
necessary to solve the linearized hydrodynamic equations
of motion in inhomogeneous equilibrium configurations, at
hand of the example of a simple wave equation. Namely,
we extend the wave equation to the tangent bundle,
using a kind of Wigner transformation. The solution of
this extended wave equation is then Fourier-transformed
into the cotangent bundle to find the dispersion relations for
the space-time dependent eigenfrequencies. We show that
the connection between the stability of the solutions and the
imaginary parts of the eigenfrequencies is restricted to
the equilibrium-preserving directions in the cotangent
bundle. In Sec. IV we apply these ideas to hydrodynamics
in general. Subsequently, in Sec. V, we determine the
modes of MIS hydrodynamics in inhomogeneous equilib-
rium configurations and investigate the interplay between
dissipative fluxes, acceleration, and rotation. Section VI
concludes this paper with a summary of our results and an
outlook. Details of our calculations are delegated to several
appendices.

Notations and conventions We use natural units 7 =
¢ = k = 1. Euclidean three-vectors are denoted with bold-
face letters, such as y, in contrast to four-vectors, like y.
The index-free notation is often used for four-vectors, for
example, u = u"d,. We use the dot notation for scalar
products, both between four and three-vectors, i.e., a- b =
a'b, and a-b. The covariant and Lie derivatives are
denoted by V and L, respectively. We denote the hori-
zontally lifted covariant derivative with D in the tangent
bundle and D in the cotangent one. The metric signature is
mostly minus, ie., 7, = diag(l,—1,~1,~1). Our con-
vention for the totally antisymmetric tensor e*“* is such
that in Minkowskian coordinates €% = —g;,; = 1. We
use the standard symmetrization and antisymmetrization
notations, A, =5(A,, +A4,,) and Ay, =3(A, —A,,),
respectively. The covariant projector A* = g — u'u”,
with u* being the fluid four-velocity, projects every vector
A* onto the three-space orthogonal to u¥, ie., AW =
A A,. The symmetric, traceless projector of rank four
is Al =3 (ARAYG + AGAY) —FA™A,,, the application of
which onto a rank-2 tensor A* is denoted by AW =
Aﬁ;A“ﬁ . The convention that we use for the Riemann tensor

3 o — ' c /j
is R, = 2(0,I7), + 17, ).

II. PRELIMINARIES

In this section, we briefly review the concepts required
for the remainder of this work. Let us consider a fluid
described by a set of conserved currents {Q}"", 05", ... }.
We refer to the conservation equations satisfied by these

096029-2



LINEAR STABILITY ANALYSIS IN INHOMOGENEOUS ...

PHYS. REV. D 108, 096029 (2023)

currents, i.e., V,0/" =0, with i = 1,2, ..., as equations
of motion (EOM). Although the system in consideration
may possess multiple conserved currents, for the following
we assume a neutral simple fluid that only has the energy-
momentum tensor 7 as conserved current.

In global equilibrium, there exists a timelike Killing
vector f* (see, e.g., Ref. [23] for a review), i.e.,

Lsgw =V, p,+V,p, =0, and p-p>0. (1)

from which the fluid’s four-velocity and temperature can be
computed as

A fluid in global equilibrium does not necessarily move
with a uniform velocity, in fact, it can be subject to global
rotation and/or acceleration. Such nontrivial kinematics can
be encoded in an antisymmetric rank-2 tensor, which is
referred to as the thermal vorticity,

Wy, = _v[/lﬂl/] (3)

As an antisymmetric rank-2 tensor field, w,, can be
decomposed as

2 1
@, = ?a[ﬂup] + Teﬂmﬁa)“u/}, (4)
where a, = Tw,u" is the electric part of the thermal
vorticity and @* = —1Te"u,w,; is the magnetic part.

Using Eqgs. (1) and (2) one finds that both temperature
and four-velocity commute with p#, i.e., their Lie deriva-
tives with respect to £ vanish. This is in fact a general
result: any physical quantity described by a tensor X*** of
arbitrary rank commutes with f# in global equilibrium,
namely, [23]

LyXm =0, (5)

Using L4T =0, we find that a, = u-Vu, is the four-
acceleration of the fluid, while @* is usually referred
to as the kinematic vorticity four-vector. Note that @ =
2y, Q 5, where Q5 = (V oy uy — V5 u,) is the rank-
2 fluid vorticity tensor. Moreover, the acceleration and the
gradient of temperature are related through

Ta,=V,T. (6)

The hydrodynamic fields that arise from Eqgs. (2) and (5),
with p* being a Killing vector, satisfy the perfect-
fluid EOM, ie., V,T¢q =0. Furthermore, dissipative
currents must be constructed such that they vanish in
global equilibrium regardless of the relevant transport

coefficients. Thus, the conserved currents reduce to their
perfect-fluid counterparts, and the EOM are guaranteed to
be satisfied in equilibrium.'

A. Homogeneous and inhomogeneous
equilibrium configurations

At this stage, let us review some features of possible
equilibrium configurations, and categorize them. In
Minkowski space-time, the vector

1o

ﬁ:T_()E’

(7)

with a positive constant T, is a timelike Killing vector.
Using ff = f - 0, this -vector corresponds to a fluid at rest
with a global constant temperature,

w = (1,0), T(t,x) =Ty, (8)
i.e., the fluid is in hydrostatic equilibrium.

Adding a Killing vector to a Killing vector yields by
definition another Killing vector. If the sum is timelike, it
can be regarded as the pf-vector for another possible
equilibrium configuration. In general, Minkowski space-
time possesses ten independent Killing vectors, corre-
sponding to the generators of the Poincaré algebra, i.e.,
in addition to %, the generators of the three spatial trans-
lations, %, the three spatial rotations, €'/*x/ %, and the
three Lorentz boosts, x' 2 + t%, where i, j, k=1, 2, 3.
Therefore, adding 75'v'-% to Eq. (7) results in a time-
like Killing vector if the modulus of the coefficient v’

fulfills |v'| < 1,
1 [0 .0
= (L4 v 2. 9
P=17, <az+” 0x’> ©)

Summing over i, we obtain a Killing vector if
3 (v")? < 1. With the definitions (2), one then obtains

w' =y(Lv),  T=yT,, (10)

i.e., v’ are the components of the three-velocity v, with

y = 1/V1 — v* being the Lorentz factor. Configurations (7)
and (9) are related through a global, i.e., space-time-
independent, boost. In all these cases, physical quantities
are constant in space-time. Thus, we refer to such con-
figurations as homogeneous equilibrium configurations.

n the case of nonvanishing curvature, a derivative expansion
of the conserved currents also features terms which contain
derivatives of the metric. These curvature-induced terms do not
vanish in equilibrium and are thus not of dissipative nature.
Nevertheless, an equilibrium configuration defined via a timelike
Killing vector remains a solution to the EOM [25].
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However, even in flat space-time, inhomogeneous equi-
librium configurations are possible, for which the hydro-
dynamic quantities are not constant in space and time. These
are found by adding the generators of boosts and rotations
to the hydrostatic p-vector (7). For example, by adding
the generator of a boost along the z-direction, multiplied
with a coefficient a, /T, where qaj is a positive constant of
dimension energy, the -vector assumes the form [26]

ﬂZTiO[%—FaO(z%—l-ta%)]. (11)

For f to be timelike, it is required that
|1+ agz| > |aot|. (12)
Itis simpler to express this configuration in so-called Rindler

coordinates (7, x,y,£), which are related to Minkowski
coordinates through

T = 71 10g |:1 + aO(Z + [):| B
2a 1+ ag(z—1)
1
¢ = L log[(1 +age)? - @3r). (13)

2(10
The line element in the above coordinates reads
ds? = e0f(d7? — d&?) — dx? — dy?. (14)

Using the coordinate transformations (13), the f-vector

has the simple form Ti”%, and the four-velocity (in Rindler

coordinates) and temperature are obtained from Eq. (2) as
ut = e~%%(1,0), T = e~%¢T,. (15)

We note that in Minkowski coordinates the four-velocity
reads

w =y(t,z)(1,v(1,2)),
v = tanh(a(7)Z. (16)

with y = cosh(ag7),

This configuration has a nonzero acceleration, which reads in
Rindler coordinates

a* = aye2%<(0,0,0,1). (17)
The acceleration introduces a specific spacelike direction in

equilibrium, which may be identified with the unit vector (in
Rindler coordinates)

1
= gl — 6—6405((),()7()7 1)’ (18)
a

where a = y/—a - a. We note that due to Eq. (6) the hyper-
surfaces perpendicular to ## are hypersurfaces of constant

temperature. One convinces oneself that, for the configura-
tion (11), the thermal vorticity does not have a magnetic,
i.e., rotational, part. Therefore, we refer to this configuration
as an accelerating configuration. More general accelerating
configurations can be found by adding the boost generators
in x- and y-directions, multiplied with appropriate con-
stant factors, to Eq. (11), respecting the restriction that the
resulting f-vector is timelike.

Another inhomogeneous equilibrium configuration can
be obtained by adding a generator of a rotation, multiplied
with a coefficient Q,/T,, where Q, is a positive con-
stant with dimension energy, to the hydrostatic f-vector (7).
For instance, for a rotation around the z-axis, we then
obtain [26,27]

1|0 0 0
=—|=—4+Q(x——y=—]]|. 19
’=1, [aﬁ °<"ay yaxﬂ 9)
This p-vector is timelike if
Qi(x*+y?) < 1. (20)

This equilibrium configuration corresponds to a rigid
rotation around the z-axis, wherefore we call it a rotating
configuration. It can be expressed in a simpler way in

cylindrical coordinates (t,p, @, z), where p = \/x* + y?,
@ = arctan(y/x), where the line element is

ds? = dr? — dp® — p>dg? — dz2. (21)

Using Eq. (2), the four-velocity (in cylindrical coordinates)
and the temperature are obtained as

u' =y(p)(1,0,9,0), T =y(p)To.
1

with SN —
1) === e

In this case, the thermal vorticity has both electric and
magnetic parts, encoded in the acceleration and kinematic
vorticity, which in cylindrical coordinates read

(22)

a" = -2 (p)pQ§(0.1,0,0), @ =y*(p)Qy(0,0,0,1),

(23)

respectively. Although these vectors are orthogonal in this
case, this is not a general result for all rotating configu-
rations, see Appendix A.

As will become clear later, in the rotating case it is
advantageous to define a tetrad of orthogonal four-vectors.
Obviously, u* is orthogonal to both ¢* and *, but the latter
two are not necessarily orthogonal to each other. Therefore,
we decompose @* into directions parallel and orthogonal to
the normalized acceleration £*,

ot = a)ff” +G)J_l//”, (24)
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2

with w,=-¢C-0, 0, = /-0 -w—-w; and y'=

(0" — wy*)/w, . Note that w* is only well defined
when @, # 0, which is always fulfilled for the rotating
configuration. Then we define

$y = €apu” ™yl (25)

For the rotation around the z-axis {* reads in cylindrical
coordinates

o = _%f)(pmo,o, 1,0). (26)

The set of vectors (u,Z,w,{) then forms a tetrad of
orthonormal four-vectors.

We can combine the rotating and accelerating cases
with each other or with the homogeneous case to find
more complicated global-equilibrium configurations. Also,
rotations may occur around different axes. One may also
assume a curved background. An example is given in
Appendix A.

B. Linear stability of homogeneous
equilibrium configurations

As mentioned in the Introduction, our goal is to general-
ize the linear stability analysis of hydrodynamic theories to
inhomogeneous equilibrium configurations. It is therefore
useful to first remind ourselves of the standard linear
stability analysis in homogeneous equilibrium configura-
tions [6]. For a homogeneous equilibrium configuration,
the fluid moves with a four-velocity corresponding to the
p-vector (9) in an observer’s frame. The four-velocity of
this observer defines a timelike vector n*. In the observer’s
rest frame, n* = (1,0) is the normal vector on a spacelike
hypersurface X(¢) with volume element d*x, where ¢ is the
time coordinate in the observer’s frame. The energy-
momentum tensor 7 is then perturbed with respect to
its equilibrium value. The perturbation 67* is assumed to
be small, such that the EOM can be linearized to first order
in 6T

In the following, we denote the components of 67+ as
5X4(t,x), with A being the component index. Inserting
5XA(t,x) into the linearized EOM and solving the latter in
Fourier space gives rise to a set of homogeneous linear
equations for the Fourier components 56X (w, k),

M8 (0, k)6X5 (0, K) = 0. (27)

This system has nontrivial solutions if the determinant of
M(w, k) vanishes. The (in general complex) roots of the
characteristic equation det M (w, k) = 0 give the dispersion
relations of the normal modes of the system

0, = w,(K). (28)

where a labels the various modes. A mode becomes
unstable if (in our convention for the Fourier transforma-
tion) Imw, (k) > 0 in some domain Dy of the space of
three-momenta k. One can show that if at least one mode is
unstable, the L? norm

I5XA (1|2 = / &
(1)

2
/Z 5Xg(k)€_iw“(k)t+ikx . (29)
L

on spatial surfaces X(¢) diverges as t — co. Here

=

Vice versa, the equilibrium configuration is linearly stable
if Imw, (k) <0 for all modes and all values of k.

C. Wave equation as an example

In this subsection, we want to elucidate the concepts of
the previous subsection at hand of a simple example: a
relativistic wave equation of the form [28]

(O=fB-V+m?)gp(x) =0, (30)

where [1=V - V is the d’Alembert operator, f and m are
some coefficients, and p* is a timelike Killing vector. A
homogeneous equilibrium configuration corresponds to the
condition that f and m are constants and space-time is flat,
while in an inhomogeneous equilibrium configuration, f
and m are functions of space-time and/or space-time has a
nontrivial curvature.

In Minkowskian space-time, after Fourier transformation
of Eq. (30), we find the following characteristic equation
in some observer’s frame

o* —iff’o+iff -k —k>—m?> =0, (31)

where we have used that ## = (°, B). The two roots of this
equation w, (k) determine the dispersion relations, and the
solution of the wave equation (30) is

¢(l‘, X) — / [¢+(k)e—iw+(k)t+ik-x + ¢_(k)e—iw_(k)t+ik-x]‘
k
(32)
If f > 0, then the imaginary part of one of the roots, say
o, (K), is positive in a subdomain Dy of the space of three-
momenta k. For example, if m = 0, there are two roots for

k =0, ,.(0) =iffy, w_(0) = 0. Following Ref. [6], we
can then show that the L2 norm satisfies

2

9’

llp(0)]|> > e2AtAED 1 (K) + ¢p_(k)esr+Resa(k):

(33)
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where A is the minimum value of Imw, (k) on Dy,
Aw(k) = 0w, (k) —w_(k), and ¢ is the maximum value
of ImAw(k) on Dy. This inequality shows that the norm is
growing unboundedly with time.

Now, let us assume an inhomogeneous equilibrium
configuration, for which m and f are only constant on
integral curves of the Killing vector ##, namely where

Now we repeat the same procedure as above, i.e., we
perform a Fourier transformation of Eq. (30). However,
now m and f are in general not constant on X(¢) [apart from
the lower-dimensional manifold defined by Eq. (34)], and
the characteristic equation (31), and thus the dispersion
relations, will also be coordinate-dependent. This is incon-
sistent with replacing derivatives 9, by —ik,, even in flat
space-time, and the wave equation (30) cannot be solved by
Fourier transformation. In the following section, we pro-
pose an approach to handle this problem at least in flat
space-time.

III. EXTENSION TO THE TANGENT BUNDLE

In this section, we propose a procedure that can be used
for the linear stability analysis in an inhomogeneous
equilibrium configuration in flat space-time. Inspired by
quantum transport theory in curved space-time [29], we
extend the perturbations to the tangent bundle using a
so-called Wigner transform. We then study the wave
equation (30) in tangent space. Analyzing the stability of
its solutions requires a restriction of the norm to the
equilibrium-preserving directions in tangent space. We
first define the latter and then apply this concept to the
definition of the norm.

A. The Wigner transform and its properties

Let F',2 be a tensor field of arbitrary rank defined in
some arbitrary Lorentzian space-time manifold M, and y a
tangent vector at a point P € M with coordinates x. Then,
following Ref. [29], we call the following construction the
Wigner transform of FJ!727,

FU(x,y) = e PR (x), (35)

where D, =V, —19,y°0; is the horizontal lift in the
tangent bundle T.M. Note that the explicit form of the
covariant derivative V in D depends on the tensor rank of
F, but the second part of D, does not. To recover the base
tensor F' ’,fl‘,’fzz (x) from its Wigner transform, one only needs
to evaluate the latter at y = 0, i.e.,

it () = / ARy, (36)

where T .M denotes the tangent space at point P. Since the
tangent space is Minkowskian, we may Fourier-transform
the Dirac delta function to obtain

A
R = [ ay [ SSen R ). (7

where k, is an element of the cotangent space *T,M, and
hence k -y is a scalar under coordinate transformations.
The above relation implies the following definition of the
Fourier transform of Fy!02.(x,y),

FUli(x, k) = / Md“y./—geik'yF’,fl',’J‘zz.'.'.' (x,y), (38)

X

and its inverse,

FU (x y) = l cIYFET (K (39)

where

J EAM%’ “0)

and where the square root of the metric determinant /=g
in Egs. (38) and (40) is required to render the integra-
tion measures scalars under coordinate transformations.
Inserting Eq. (39) into Eq. (36) implies that

P = [ PR, (41)
k

The covariant derivative of the base tensor field is
related to the y-derivative of the Wigner transform in the
following way,

v, F (x) = / d )P (x)

x

_ / Ey POt (x )54 y).  (42)
M

The first line can be proven using the definition (35) of
the Wigner transform under the integral on the right-hand
side and employing the fact that, on account of the delta-
function, only the term linear in y of the Taylor expansion
of P survives. In the first line of Eq. (42), one can replace
the y-derivative with the horizontal lift in TM using an
important identity, which is proven in Appendix B,

. Cly- D)
ey _ MK Y
%Fylyzzu. (x, y) = DMFI/IL/ZZ-.A (X7 y) y ; (l T 2)'

X Gy (x,y)FUl2 0 (x, ). (43)
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Here, C[A]B = [A, B] is the adjoint map and
G/w (X, y) = _R;J;ﬂyy/)at};" (44)

On the other hand, one can use the Fourier representation
of the delta-function in the second line of Eqs. (42) and (38)
to obtain

Y, Fl (x) = —i / LS (k). (45)
k

We also need to exgmine the horizontal lift in the
cotangent bundle, i.e., D, = Vﬂ +Fﬁ,,k,,a‘k’. To this end,
we start with

D, (x,y) = / D, Fe (v k). (46)

which can be verified by noticing that the right-hand side
subtracted from the left-hand side is a tensor that vani-
shes in the locally flat neighborhood of P [29]. Fourier-
transforming this equation and employing Eq. (43), an
integration by parts, and then Eq. (38), we obtain

@MF’J;’JZZ.'.'.' (x, k) = =ik, F} 17" (x, k) 4 curvature terms.

(47)

The curvature terms can be derived using

G (. ) P (1, y) = / G (e, K P (2, ).
k
(48)

with G, (x, k) = R, k,d;. Equation (48) can be proved
using Eqgs. (38) and (44) and replacing d; — iy’ and
k, — ioy.

B. The wave equation in tangent space

Let us now consider the wave equation (30) at some
point P with coordinates x. We then use Egs. (36)
and (42) (applied twice for the d’Alembert operator in
the wave equation) to convert the wave equation into
tangent space T,M,

(Dg —fp- 0, + m*)p(x,y) =0 at y* =0. (49)

We then extend the validity of this equation to the whole
tangent space T,M, but keeping the coefficients m, f,
and f, fixed at P,

[0} = f(x)B(x) - 0, + m*(x)]d(x.y) = 0. (50)

The inverse Wigner transform ¢(x), cf. Eq. (36), of the
solution ¢(x, y) to this equation is a solution of the original

wave equation (30) at point P. As a linear partial differ-
ential equation with constant coefficients, Eq. (50) can be
solved via Fourier transformation to the cotangent bundle,

Hy) = [ el (51)
cf. Eq. (39), which then implies
kK —if(x)p(x) -k —m?(x) = 0. (52)

The solutions of this equation define the dispersion
relations of ¢(x,y). In order to solve Eq. (50) in similar
way as in Sec. Il C, we need a foliation of tangent space in
terms of spacelike hypersurfaces (with timelike normal
vectors).

Let n#(x) be a timelike vector field, which at point P
maps to a vector in tangent space and is normalized as
n(x) - n(x) = 1. We assume that this vector points into the
future direction. At point P, there exists an inertial frame
which moves with a four-velocity n*(x). We refer to this
frame as the frame of the local inertial observer. The vector
n*(x) defines a foliation of tangent space T,M in terms of
spacelike hypersurfaces, all with the same normal vector
n*(x). The timelike component of an element y* of tangent
space T,M is then n - y. Thus any element y* of a spacelike
hypersurface in tangent space fulfills n - y = 0. The cotan-
gent space *T,M is foliated accordingly, with n - k being
the timelike component of a covector k,. If we choose
n*(x) = u*(x), the local inertial observer’s frame corre-
sponds to the local rest frame (LRF) of the fluid at each
point P. On the other hand, we might choose a vector field
such that at every point P we have n*(x) = (1,0) in local
Minkowski coordinates. This choice is the local analog of
the usual global noncomoving frame, in which a linear
stability analysis for homogeneous equilibrium configura-
tions is performed. Note, however, that in the case of
inhomogeneous equilibrium configurations there is no such
global frame, which necessitates the generalization to a
space-time dependent n#(x) and the extension to the
tangent space in order to perform the linear stability
analysis. For further use, we call this choice the coordinate
frame (CF). Any other choice for n#(x) is, of course, also
possible.

With the above considerations, we find from Eq. (52),
similarly as from Eq. (31), the dispersion relations
w. (x, k), with k| = (¢ — n*n")k, being the components
of k* orthogonal to n”. Since the characteristic equations are
covariant, one might solve them for u - k, and then perform a
Lorentz boost at P, to find @ = n - k, if required. Summing
over the two modes arising from the roots of Eq. (52), and
integrating over k, we obtain the Wigner transform ¢(x, y) of
the solution ¢(x) to the wave equation as

lx.y) = A 3 ule ot k=)o (53
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According to Eq. (41), the solution ¢(x) to the original wave
equation arises from Eq. (53) as

Equation (53) implies that ¢(x,y) = >, ¢.(x,y), where
¢.(x,y) is the Wigner transform of ¢,(x). Therefore,

¢.(x,k)8(n - k —w,), which according to Eq. (53) is the
d(x) = A 24511(357 K)6(n -k —w,). (54) Fourier transform of ¢, (x,y), fulfills Eq. (47)
- Dyl K)3(n - k= w,)) = =ik, (x. K)3(n - k = w,).
Note that there is no longer an exponential factor which can (55)
tell us whether a mode w, (x, k| ) is exponentially growing
or not. Nevertheless, this information is still contained in
Eq. (54), as we will show next.

where curvature terms are neglected. We can rewrite
Eq. (55) as

[Dya(x.6)]8(n -k —w,) = = (x.k)D,(n -k = w,)n - 0:5(n -k — w,) — ik, (x.k)3(n - k — w,)
=n- o, (x, k)f)ﬂ(n k—w,)]é(n-k—w,) - ikﬂgba(x, k)o(n-k—w,), (56)
where we have performed an integration by parts from the first to the second line, using the fact that n - d; corresponds
to d/dk, under the integral. Using [f)ﬂ, ] =0, cf. Eq. (B4), and n’“f?ﬂnv = n*V,n, = 0, we expand the first term on the
right-hand side to obtain

[T)ﬂ¢a(x’ k)]5(l’l k— wa) [I’l : ak¢a(x’ k)]ﬁ

={ 3
= {[n : ak¢a(xv k)]f) (n k- wa) + ¢a(x’ k) [azwa}bﬂnv -

"

(n-k-w,) - ¢, (x. k)n,D,tw, — ikp,(x.k)}(n-k—w,)
iky¢a (x’ k)}é(ﬂ k- a)a)’ (57)

where we have used the fact that w, depends only on x* and the projection of k* orthogonal to n*, i.e., n - d,@, = 0. Finally,
we use D,k, = 0, cf. Eq. (B3), to find

[f)ﬂd’a (x’ k)]é(n k- a)a) = {[n ! 0k¢a (x7 k)]("pf)ﬂnp - f)ﬂwa> + ¢a (x’ k) [dllgwa]f)ﬂnu - ikﬂ¢d (x7 k) }5(11 k- wa)' (58)
Let us now consider a curve C passing through P, of which n#(x) is the tangent vector and which is parameterized with

the affine parameter 8, with 8 = 0 at P. An infinitesimal change in this parameter is given by d8 = n,dx*. At each point, 8
can be chosen to coincide with the corresponding local inertial observer’s proper time. Since the derivative of a quantity

with respect to 8 is the component of the gradient of that quantity in n”-direction,

d —_—
s
we obtain from Eq. (58) by contraction with n*
dep,(x, k) dn do,
—Fa\ ) k= — . O k- — —
ds 5(” k (l)a) {[” ak¢a(x7 )]( ds ds

The right-hand side of Eq. (60) shows that, along the curve C,
the evolution of ¢, (x, k) is only partially governed by the
local frequency w,(x, k| ), as there are additional nontrivial
contributions. In the LRF, where n#(x) = u#(x), there is a
term proportional to dn*/d3 = a*, i.e., the acceleration
of the fluid along C. On the other hand, in the CF frame,
where n* = (1,0), the acceleration vanishes, but the fre-
quency still changes along C, and there is a term proportional
to —dw,/ds.
We now define the norm

w@wzé@&MMR (61)

(x) - D, (59)

dn
ds

)+%wm—med%mmmkmw—%» (60)

I

where  d, = €,4,sn"dx’dx’dx® is the infinitesimal
3-dimensional volume element on a spacelike hypersurface
%(8) with timelike normal vector n*(x). As we will show
below, this norm will grow beyond bounds as 8 — oo if
there is an instability. We can convince ourselves that this
works in the case of a homogeneous equilibrium configu-
ration and n* = (1,0). Then, T)ﬂ in Eq. (58) reduces to 9, in
Minkowski coordinates, 3 = ¢ up to some arbitrary con-
stant, and the first two terms on the right-hand side of
Eq. (58) vanish since n* and w, are constant in space-time.
The solution of Eq. (58) is then simply given by

pa(x. k) = eGP, (0, k), (62)
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where ¢,(0,k) is determined by the initial condition.
Inserting this into Eq. (54) and the result into Eq. (61),
we obtain after repeating similar steps as in Sec. II B an
expression analogous to Eq. (33).

On the other hand, if the configuration is inhomo-
geneous, the solution of Eq. (58) is not just a simple
exponential factor, due to the additional terms on the right-
hand side. However, there might still exist directions in
space-time for which such a solution arises. In the next
subsection, we identify these directions, which we refer
to as equilibrium-preserving directions. After that, in
Sec. III D, we argue that, in the short-wavelength regime,
ifImw, (x, k) > 0in asubdomain of equilibrium-preserving
components of k,, the theory becomes linearly unstable.

C. Equilibrium-preserving directions in tangent space

The Wigner transform of the f-vector reads

Bulx.y) = &P, (x). (63)

Expanding the exponential, the next-to-leading order in
the above equation features y*V,f, = y*w,,, where we
used the Killing condition (1). The next-to-next-to-leading
order is then proportional to y’ly”Vﬂwﬂ,, = y’*y”RMM,,ﬂ",
cf. Appendix D, which vanishes in flat space-time.
The same is true for all higher orders, therefore, in flat
space-time

Bu(x,y) = Bu(x) + y'm,,(x). (64)

If we compare the above with the standard relation for the
p-vector in terms of the thermal vorticity in Minkowski
space-time, see, e.g., Ref. [30],

pu(x) = b, + x'w@,,, (65)

and setting b, = f3,(0), we find that the Wigner transform
(63) translates the p-vector by y* in flat space-time,

Pu(x +y) = Pu(x.y). (66)

The directions in T,M for which the Wigner transform
does not modify the f-vector, the so-called equilibrium-
preserving directions in T,M, are now given by the
condition

Bu(x.ye) = DB, (x) = B,(x), (67)

where the subscript “e” denotes “equilibrium-preserving.”
Comparing Egs. (64) and (67) the equilibrium-preserving
directions y, in flat space-time are given by the condition

!

Yew,,(x) =0. (68)

In the accelerating configuration (without rotation, " = 0),
this requires that y.-u =y, -¢ =0, cf. Eq. (4). Con-
sequently, y: has only two independent components.
From Egs. (15) and (18) we then deduce that (in Rindler
coordinates)

ye = (0.y',y%,0), (69)

i.e., the independent components are the x- and y-coordinates
transverse to the direction of acceleration.
In the rotating configuration we expand y% in the tetrad

(u,?,y.0),
Ve = YUt + ye O 4yt 4 yeLF, (70)
as well as w

w according to Eq. (4), and insert this into
Eq. (68). With @* = a* and Egs. (24) and (25), this results in

ayeu, + (ayu - wj_yé)fu + Yewey,
+ (ywa_ - yl//wf)é:v =0. (71)

Since a # 0, | # 0 [otherwise we could not have defined
the tetrad (u, Z, v, {)], we immediately deduce from Eq. (71)
that for w, # 0 all components of y4 must vanish, or in other
words, an equilibrium-preserving subspace of T,M exists
only if w, = 0. Consequently, for w, = 0 we deduce from
Eq. (71) that y, = 0 and

a
Ve = YU + y, ' +—y, -, (72)
w |

i.e., we again have only two independent components. With
Egs. (22)—(24) and (26) we then deduce that (in cylindrical
coordinates)

ye = (°,0,0.y?), (73)

i.e., the independent coordinates are the time coordinate and
the coordinate along the direction of the rotation vector o*.

In the above, we restricted the discussion to flat
space-time. In this case, the base manifold has the same
equilibrium-preserving directions as the tangent space.
Assuming Minkowski coordinates, the components of y*
can be considered as the coordinates of a coordinate
system with origin in x. In what follows, we use the terms
“equilibrium-preserving directions” and “‘equilibrium-non-
preserving directions” both in the base manifold and in
tangent space.

D. Linear-stability analysis
in equilibrium-preserving directions

Now we are in a position to understand the relation-
ship between the dispersion relations and linear sta-
bility in inhomogeneous equilibrium configurations for
which equilibrium-preserving directions exist. As above,
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the equilibrium-preserving directions will be denoted by an
index “e”, while the equilibrium-nonpreserving directions
will carry an index “ne”, such that x, = xj, + x,°.

We now study the solutions of Eq. (60), which also
fulfill Eq. (58). Note that it is the former equation whose
solution is constrained by the dispersion relations arising
from the wave equation (30). Let us now consider Eq. (60)
in the LRF, ie., for n* = u#, with the following ansatz
for ¢,

Dalx.K) = SRSy (3,05 1), (74)

where k¢ , is found from the condition
k@, =0, (75)

and
|

dy,(8,x"%, k)

i3 5(n~k—a)a):{n~0ky/a(§ xL,k)<k

Here, the part of the ansatz (74) ~e*1*1 factors out
immediately, since its momentum dependence is orthogonal
to n¥. Furthermore, the term ~ — iw,¢,(x, k) cancels be-
tween left- and right-hand sides. Finally, I', (8, X", k, ) does
not depend on the components of k* in the direction of n*.

We note that the terms on the right-hand side of
Eq. (78) arise from terms in Eq. (58) which are propor-
tional to D n, = V,u, ~ Tw,,. We remind ourselves of the
dlscussmn in Sec. IIA namely that in an inhomogene-
ous equilibrium configuration, the requirement - > 0
demands the existence of some boundary condition,
which then introduces a characteristic length scale £,
for the system. For the pure accelerating configuration (11),
this scale is 1/ag, while for the rigidly rotating configu-

ration (19) it is 1/Q; and in both cases Tw,, ~ fvoln
Consequently, we find
dy, (3, x"F, e
Q fvortl//a(g’xj_’k)' (79)

ds

Next, we insert the ansatz (74) into Eq. (54) and trivially
perform the integration over #n - k using the delta-function.
Then, we decompose k, = kS + k¢, formally Taylor-
expand I', (8, X'\, k l) in k'°, and absorb any term beyond
k' = 0into (8, X'\, w,, k). After taking the integration
over k° in Eq. (54), we find

ddke ne € €
P(x) = /( JZ T (8.X1° kS ) =ik x5 @ J(8.x™ k), (80)

where d is the number of spacelike equilibrium-preserving
directions, and we defined

dn
ds  ds

3
T, (8, X% k) = —i / 48w, (8,5, k). (76)
0

In the equilibrium-preserving directions x9 of flat space-
time, we have x - Dn, = 0 = x° - Dw,. The first equality
can be shown by using n, = u, = TS, and the fact that f,
is a Killing vector. The second equality arises because
the only dependence of w, on an equilibrium-preserving
direction can be through 8, which is, however, orthogonal
to x9 . Thus, Eq. (58) reduces to

aﬁ(ﬁu(x, k) = _ikzd)a(x’ k) (77)
Projecting this equation onto the spacelike directions
orthogonal to n#, we find that the ansatz (74) fulfills this
equation. Plugging the ansatz (74) into Eq. (60), we find
with Eq. (76)

Da ) + (8, xpk)j -0, }S(H-k—wa)- (78)

d3 —d kne

mlﬂa(é xlva)avkl) (81)

‘Pa(é,x‘f,k‘i)z/(z

Note that, on account of Eq. (79), we also have

AW, (8, x™, k° )

= W80 (82)

~C \701n

Plugging Eq. (80) into the wave equation (30) and
using the characteristic equation (52) for k}° =0, we
find a differential equation that can be solved to
find W,(8,x"°, k7). However, the functional form of
¥, (8,x°, k%) is irrelevant for the following discus-
sion; we only demand that ¢(x) is square-integrable at
some initial 8 =0 on X,

lp(0)I* < (83)

where ||¢(s)||? is defined in Eq. (61).

Now, we assume that there exists a subdomain Dy for
which Imw, > 0 for any x. Then, according to Eq. (76)
there exists a positive real-valued number A such that

Rel (8,x1°,k7) > A8 >0, for ki €Dyc. (84)
The integration in Eq. (61) over x9 yields a delta function
which puts the kS of ¢(x) and the corresponding ¢ of
¢*(x) on the same value, and since we have eliminated the

k'c-dependence in I',(8,x", k), after similar steps as in
Sec. II B this gives rise to
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14(8)]2 > 2 / dZFF(a. ), (85)

where dX7° is the (3 —d)-dimensional hypersurface
element in the equilibrium-nonpreserving directions of
the 3-dimensional hypersurface element d¥,, and

F(8.2) = / ¥, (8.2, 19)
kiEDki
+WP_(8,x7, kS )e MK 12 (86)

Here, AI'=1", —I'_, where we have ordered the solutions
. such that ReAT" > 0 on Dye . If F(8, x'[°) remains finite,

the norm grows with 8. This is sufficient for the existence of
an instability.

As mentioned before, for the wave equation (30), if
f >0, then Imw, > 0 for some subdomain Dj. . If f is
only determined by equilibrium quantities, such as the
temperature, then its sign is independent of 3, and the
condition (84) is fulfilled.

In our argument, we have also assumed that F(x"°) in
Eq. (86) remains finite on the timescale 1/A, such that
the exponential factor e?** dominates Eq. (85). In other
words, the exponential factor ~e'«(#X1k1) gives the leading
behavior in Eq. (74). This is evidently the case in the short-
wavelength regime k — oo because the wavelength can be
arbitrarily small, while 7, is fixed. Consequently, the
asymptotic group velocities of waves are unaffected by a
nonvanishing thermal vorticity, and therefore a theory
found causal in homogeneous equilibrium configurations
is also causal in inhomogeneous ones. On the other hand,
linear instabilities commonly occur in the long-wavelength
regime, i.e., k — 0. According to Egs. (82) and (86), the
exponential factor ¢*** dominates if

A> 7k (87)

One can argue that in known applications in hydrody-
namics the value of A, which arises from so-called non-
hydrodynamic modes, is proportional to the inverse of the
characteristic microscopic length scale ¢ ;... Therefore, if
an instability occurs, it will survive if

fvort > fmicro- (88)

Since 7, is proportional to the size of the system, this
condition is always fulfilled in the hydrodynamic regime.

IV. APPLICATION TO HYDRODYNAMICS

In this section, we apply the ideas developed above
to hydrodynamics. We first consider the general tensor
decomposition of the energy-momentum tensor with res-
pect to the fluid four-velocity #* and then extend this into

the cotangent space. We note that the extension of the
energy-momentum tensor into cotangent space does not
commute with the tensor decomposition. We then study as
examples a perfect fluid and a dissipative fluid. The actual
stability analysis of the latter is deferred to Sec. V.

A. Tensor decomposition in base manifold
and cotangent space

The tensor decomposition of the energy-momentum
tensor with respect to the fluid four-velocity u# reads

™" = Eu'u? — PAY + QFu¥ + QYuf + 7, (89)
where the components are

1

E = u"ulT, P = —§Aa/;Taﬂ,

O = NPT 4, o = AZZT“/} . (90)

Following the standard procedure, we assume 7+ to be in a
state slightly out of equilibrium, 7# = Ttq + 5T with
the equilibrium energy-momentum tensor 7%, having the
perfect-fluid form,

Teq(x) = £aq(¥)tteq(x)uq () = Peq (¥)Aeq(x),  (91)

with e.4(x) and peq(x) being the energy density and pre-
ssure in equilibrium, respectively, and Afq(x)= ¢"'—
Ueq(x)uky (x). Evidently, Q% and 7eq vanish in equilibrium.
Consequently, up to first order in deviations from equilib-
rium we find
8TH (x) = 6E(x)ueq(x)uky(x) — 5P(x)Alq (x)

+ hoq (x) [ueq (x)6u* (x) + uky (x)Sut (x)]

+ 6Q (x)ugy (x) + 6Q (x)utq (x) + 67+ (x),

(92)

where /14 (x) = €cq(X) 4 peq(x) is the enthalpy density and

6E(x) = ug’q(x)ugq(x)éTaﬂ(x),
1

8P(x) = =3 AL ()T oy (),
8 (x) = AL (x)1uly (¥)OT g (x) = g ()30 (x),
o1 (x) = A ()T (x). (93)

where A{ (x) has the same form as the rank-four

projection operator A}, but with the four-velocity u
replaced by ueq

Since V,, T% = 0, energy-momentum conservation reads
V,6T" = 0. We now extend this equation to the tangent
bundle, similar to Sec. III, to obtain

096029-11



MASOUD SHOKRI and DIRK H. RISCHKE

PHYS. REV. D 108, 096029 (2023)

30T (x,y) = 0, (94)
where
ST (x,y) = e PsTH (x). (95)

This is then Fourier-transformed as

ST (x,y) = /6T”’“(x, k)e=ik, (96)
k
with the EOM in the tangent bundle (94) giving rise to
k,6T* (x, k) = 0. (97)

In order to solve this equation, similar to the wave equa-
tion in the previous section, we consider a normalized
timelike vector field »#(x) and find the characteristic
equation, the roots of which determine the dispersion
relations w,(x,k,;) = n-k of the modes in terms of x
and k. We always work in the LRF, where n* = u’e‘q. We
decompose 6T#*(x, k) using the equilibrium four-velocity
ubq(x) as
ST (x, k) = 6E(x, k)ueq (x)uty(x) — 5P(x, k) Alg (x)

+ heq (x)[ueq (x)6u” (x, k) + uby(x)6u* (x, k)]

5O (x, k)it () + 5 (x, k)it ()

+ 6 (x, k), (98)

where
SE(x, k) = uly (x)uby(X)ST 4y (x, k),
1 g
SP(x.k) = —gAeg(x)éTaﬁ(x, k),

5O (x, k) = Ak (x) b (x)8T gy (x, k) — hrog (x)Su* (x, k),

S (x, k) = Al 15 (x)5T (x, k). (99)

Inserting Eq. (98) into Eq. (97), we find

0 = 6E(x, k)uty(x)k - ueq(x) — 6P(x, k) Alq (x)k,
+ heq (x)[0u” (x, k)k - e (x) + gq(x)k - Su(x, k)]
+ ug(x)k - 6Q(x, k) + 6Q (x, k)k - ey (x)

+ k, 67" (x, k). (100)

Let us denote the components in Eq. (93) by 6X“ (x) and the
ones in Eq. (99) by 6X*(x, k), where A is the component
index. As in homogeneous equilibrium configurations,
Eq. (100) yields a set of homogeneous linear equations
of the form

MAB(x, k)6XB(x, k) = 0, (101)

which has a nontrivial solution if detM = 0. This gives
rise to a characteristic equation whose solutions are
the dispersion relations @, = w,(x,k, ). Consequently,
according to Eq. (53) the solution of Eq. (94) in the tangent
space is found to be

ST (x,y) = A D 8T (x.k)o(n - k= w,)e™*¥. (102)

The energy-momentum tensor in the base manifold is then
found as

ST (x) = A > 8T (x,k)o(n - k — w,), (103)

cf. Eq. (54). We note that Egs. (98) and (99) look similar as
Egs. (92) and (93). However, integrating the quantities
5X4(x, k) over the cotangent space * T, M does not yield the
Wigner transform of the corresponding quantity 56X (x).
As an example, let us consider 5€(x). By taking the integral
over *T,M and using Eq. (96), we find

5E(x,y) - K SE(x. K)e Y = YD luy (x)uty (55T ()]

- ugq(x)ugq(x)éTyu (x’ y)9
(104)

which is of order O(y) and only vanishes if y* is
in the equilibrium-preserving directions, because then
exp(ye - D)ubq(x) = ubq(x) exp(y. - D). Consequently, only
the solution §7#*(x) has the form given in Eq. (103), but not
the individual components §X* (x), and there is an inherent
freedom in defining the latter. We will use this freedom to
extend the relations between the components §X* (x) in the
base manifold to corresponding relations of the compo-
nents 6X“(x, k) in *T,M. The procedure is similar to the
extension of quantities in the base manifold to the tangent
bundle. This will be demonstrated in the following at
hand of the examples of a perfect and a dissipative fluid,
respectively.

B. Perfect fluid

Let us first consider a perfect fluid, for which only the
components 6, 6P, and du# appear in the EOM (100). In
the base manifold, we have 5P(x) = v?(x)5€(x), where

0
2 =2

L= 105
=2 (105)

is the speed of sound in equilibrium. Using Egs. (93), (99),
and (103), this implies that

A S[BP(x k) — 12 (x)5E (x, K)]6(n - k — w,) = 0. (106)
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An obvious solution to this equation is &P(x,k) =
v2(x)8E(x, k). We use the freedom in defining the compo-
nents of the energy-momentum tensor in cotangent space
by demanding that this relations holds everywhere in that
space. We then insert this relation into Eq. (100) and obtain

[0, (x, k1 )BE(x, k) = heq(x)k b1y (x, k)]ugy(x)
+ [heq () @y (x, k) Su¥ (x, k) — v (x)SE(x, k)k* ] = 0,
(107)

where u(x, k) = —k - du(x,k)/ky, k, = \/—k{k, 4 and
K| = ALq(x)k,. Projecting Eq. (107) onto ueq,(x) and k ,
results in a system of two equations of the form (101).
The characteristic equation det M48(x,k) =0 leads to
the well-known dispersion relations of the sound modes,
wi(x,ky) = xo,(x)ky.

C. Dissipative fluid
As a next step, we consider a dissipative fluid. As will
become clear in the next section, we will require deriva-
tives of the components (93) of the energy-momentum
tensor. These are computed as follows. Instead of §Q(x)
and §Q(x, k) it is advantageous to introduce

SO (x) = AL (x)OT 5 (x) o (x) = 5Q (x) + heq (x)8u¥ (),

(108a)

5O (x, k) = ALY (x)ST g (x, k) by (x)

= 0QH(x, k) + heq(x)ou* (x, k). (108b)

We then take the derivative on both sides of the
definitions (93), (108) and use Egs. (45), (98), and (99),
to obtain

V68 (x /Z —ik, 6 (x, k) = 2T o (x) 7, (x)5Q" (x, k)](n - k — w,), (109a)
V,07() = [ 3[R0 ) =3 T (952 50|30 =), (109b)
V,5Q,(x / 2 (K80, (3:) - Tog (06) 7, (x) 47 (0000 (5. ) = 8, . )]

o+ [Teq (¥) 0 (x) = a, (2)u5 () [OE (x. k) + SP(x. W)]}3(n - k = ), (109¢)
v, om (x / Z{‘lkp«w”(x K) o 2T eq () ()07 (. K)ukg () + 2[T g () (x) = () s ()] 52 (. k)

2
3

where we have used ﬁeq_y(x)éQ”(x, k) = 0. Higher-order
derivatives can be computed following a similar strategy.

D. Linear-stability analysis
in equilibrium-preserving directions

As mentioned before, the approach developed here yields
the modes of the energy-momentum tensor, which are not
necessarily the modes of its components (90). However, as
discussed in Sec. III D, when the momenta are restricted by
Eq. (75), the modes of the energy-momentum tensor will still
provide information about whether the system is linearly
stable or not. As in Eq. (80), we make the ansatz

d9ke ne pe\_ige e
T(x) = [ Gy S e (5. k),
a

(110)

T (x)Aé’g(x)wpa(x)éQ“(x, k) }5(11 k—w,),

(109d)

l
Furthermore, considering the components of the deri-
vatives in Egs. (109) in the equilibrium-preserving direc-
tions, we find that, because of Eq. (75) and a,(x) =
Teq(xX) () g (x),
%1 ”6XA

/Z —iks X4 (x. k). (111)

Therefore, the components (93) can be written as

ddke ne pe \_iLe €
oXA) = / (271)%1 za:erﬂ(ﬁ"‘ K=K 5XA (8, X7, K ),
(112)
where, similar to Sec. IIID we have absorbed all

dependence from the equilibrium-nonpreserving direc-
tions into 5X% (8, X', kS ). We then define the norm of the
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components (93) on spacelike hypersurfaces X, (8) orthogo-
nal to n#(x) similar to Eq. (61) as

x> =3 / X

which grows with 8 if Imw, > 0 for atleast one of the modes,
provided that

2. (113)

fvon > fmicro- (1 14)

V. MODES OF THE MIS THEORY
IN INHOMOGENEOUS EQUILIBRIUM
CONFIGURATIONS

In this section, we apply the approach developed in the
previous section to MIS theory [10-12]. We work in the
Landau frame, where §Q =0. The dissipative correc-
tion (92) to the energy-momentum tensor thus reads with
6P = v26E + 41,

ST = 5Eubquty — (V36 + STT) ALy

+ hoq(teqdu” + utyou') + 6. (115)
We note that the above form is valid both in the base-
manifold form of Eq. (92), where both equilibrium quan-
tities and perturbations are functions of x, as well as in
the cotangent-bundle form of Eq. (98), where equilibrium
quantities are functions of x and perturbations are functions
of x and k.

The evolution of the perturbation SI1(x) of the bulk
viscous pressure in the base manifold is given by the
linearized MIS equation [2]

Trileq + VOII + 611 + ¢V - 6u = 0, (116)
where 7y is the bulk relaxation time. The linearized MIS
EOM for the shear-stress tensor §z#Y(x) in the base
manifold reads [2]

T AL oty - VR — 26000 + s — 2n60™ = 0,
(117)

where 7, is the shear relaxation time and # is the shear
viscosity coefficient, while Qb5 =1 (V® Uy — V¥ uby)

2
and o' = A% Vul. Note that A Veul, =0 on

eq,aﬂ eq,aﬁ
account of the Killing condition (1). Translating Eqs. (116)

and (117) into cotangent space, the resulting equations,
together with the energy-momentum conservation equa-
tion (97), comprise a closed system that can be solved to
obtain solutions of the form (103). In the following, we will
explicitly demonstrate how this works.

It is advantageous to work with dimensionless quantities,
i.e., we divide perturbations of the energy density o€, the

bulk viscous pressure SI1, and the shear-stress tensor oz#*
by the enthalpy density in equilibrium, A,

6E=6E/h SIL=611/heq,  S7" = 61" [ hey.

eq? eq’ (118)

Next, we generalize the method proposed in Ref. [31] for
the covariant decomposition of vectors and tensors into
the directions of w#, ##, and directions transverse to the
latter two. To this end, it is useful to define a tetrad of
four orthonormal vectors, which is different from the one
defined in Sec. I A. The first two elements of the tetrad are
Ueq and . To obtain the third one, we decompose the four-
momentum k* as

k= Teq(Quibq + ko + k), (119)
where Q =k ue/Teq is the frequency scaled by the
temperature in the LRF, x, = —k - £/T,y, and

K =—FMk,, with ZW =A% 4o (120)

1
Teq
Consequently, & =«*/k, with x =./—k -k, which is
orthogonal to both u., and 7, is the third element of the

tetrad. Since we assume that # is nonzero, the fourth
element of the tetrad is found to be

=Pt k. (121)

Tensors of arbitrary rank can be decomposed in terms of the
tetrad {ueq, ¢,k,y}. To begin, éu* is decomposed as

out = Sup " + Su k' + Su,pt, (122)

where

Suy = —¢-6u, Oou, =—Kk-ou, ou,=—y-ou. (123)
There is no component in the direction of u., since ou* is
orthogonal to utq. Then, using 67" = 67, 6" iteq, = 0,
and 6ﬁ”ﬂ =0, we decompose the dimensionless shear-

stress tensor O7** as

ST = 61pp (O — yHy¥) + 267 L HFRY)
+ 201, £ + Smo (RARY — yiy¥) + 207, RUyY),
(124)

where

57l'ff = fﬂfl,éﬁ'ﬂy, 571'f,< = fﬂkyéﬁﬂb, 5”@( = ZxﬂM){yéﬁ'ﬂy,

O = R R,07", 07y, = Ry, 07", (125)
Now, following the procedure explained in the previous

section, we insert 57**(x, k) in the decomposed form of
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Eq. (115) into the EOM (97) in the cotangent space, use
Egs. (118), (119), (122), and (124), and contract it with
successive elements of the set {ueq, ¢,k,x} to find

Qéu, — k(v26E + 611 + 6m) — kpbmp =0, (126¢)

Qdu, — ky06n, — ko1, = 0. (1264d)

QSE — (k,0uy + kbu,) =0, (126a) Next, we turn to the EOM (116) for the bulk viscous

_ ~ pressure. To obtain the derivative of oI, we set oP =
Qbu, — kp(V36E + Il + 67pp) — K67mp =0, (126b)  25€ + 811 in Eq. (109b), and use Eq. (109a) to find
|

V,oll(x) = Z —ik,o1(x, k) + |2v3(x) _2 Toq(x)heq(x)@,, (x)0u" (x, k)
k 3
T (%) %aﬂ (¥)5€ (x, k) }5(71 —a,). (127)

Furthermore, from Eq. (109¢) we find using SO" = heqéu” and the definitions (118)
V,6u,(x) = /k Z{—ikﬂéu,,(x, k) + Teq ()@, () [ (x)6u” (x, k) — 67, (x, k)]

+ [Teg ()@, (x) = a, (x)us* (x)][6 (x, k) + 6P (x, k)] — [1 + %(x)} a,(x)ou,(x, k)}é(n k—w,).  (128)

Contracting the indices, we obtain

V- bu(x) = A za:{—ik - Su(x, k) — [2 + v%(x)} a(x) - bu(x, k)}é(n k= w,). (129)

Finally, we insert Eqs. (127) and (129) into Eq. (116) and demand that the integrand vanishes on the whole cotangent space.
Using Eqgs. (118), (119), and (122), this gives rise to

(1= iRQ)SM + (aV; + iCrkyp)Suy + iCrxdu, = 0, (130)
where we defined the quantities
a T..C 1 2
aET—, R =T, C,= heq , Ve= <2+F)C§—§(1—31}?)R§. (131)
eq eq s

We note that only the acceleration (via @) appears in Eq. (130), but not the kinematic vorticity. In other words, the bulk
viscous pressure couples only to the acceleration and not directly to the rotation, as expected.
The EOM (117) for the shear-stress tensor requires a similar treatment. Using Eq. (109d), we find

A’C’s’aﬂ(x)ueq(x) Vo (x) = IEY) /( [—ik - teq(x)57% (x, k) — 2heq(x)a®(x)SuP (x, k). (132)

From Eq. (128) one readily computes do** = A’;g,aﬁvaauﬂ . Plugging the result and Eq. (132) into Eq. (117), and using

Egs. (119) and (122), as well as a = a/Teq, we obtain

1
0= (1 — iR, Q)67 + 2iC, {K,fz,ﬂ(ﬂau”) + xlsur) + 3 (kK 8uyp + Kdu,) Aoy

LRt

1 .
+ 6aV), (Nauv) - 55qu’3§> 57, Q" (133)

€q

where
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T.n 1 1
_ _ 1 _
R,7 = Tequrv C',7 —h—eq, V’? —g |:(1 +1)_§>C’7_Rn:| (134)
Finally, we use Eq. (125) to decompose Eq. (133) into five independent equations,
2 4 2w, (C, +R
0= (1= iR Qo — S iCyxdu, +3 (iCyk + 30V, )ou, - W (kO + K, O, (1352)
eq
C,+R C,+R
0 = (1= iR, Q)87 + iCyduy + (iCykp + 3aV, )5, — W ke (g — 740) + K, O7y) + W 51z,
K eq eq
(135b)
o, (C,+R ws(C, + R
0 = (] — iR"Q)&th + (l.C"Kf + SaV”)éuX - % [KC(S”K)( - K,,,(25ﬂ” + 5”1(1()] - wéﬂﬁ(, (135C)
eq €q
4 2 2w, (C, + R 20,(C, + R
0 = (1 = iR, Q). + % iCy xSy — 2 (iCyp + 3V, )y + 2l T R) o 20 Gt R (135d)
3 3 kT T,
C,+R C,+R
0= (1-iR,Q)dn,, + iC,xbu, + m (ke0mpy + K07 p) — M (6mpp + 26m,), (135e)
KT g Tey
where (1 —iRQ)SII + iCrxdu, = 0, (138d)
Ky = —K-C, Ky = —K-y. (136) : 4.
(1—iR,Q)bm,, + glcnk&ik =0, (138e)
_ 22 :
Note that k = Kz + Ky In order to derive Egs. (135), we (1- iRﬂQ)éﬂK)( +iCyKbu, = 0, (138f)

have in particular used Egs. (24), (25), and (121) to obtain

_ k¢

137
o, - (137)

K-W=® K- Y.

‘We note that both acceleration (in terms of @) and kinematic
vorticity (in terms of @, and w ) appear in Egs. (135).
To recover the characteristic equation in the limit of
a homogeneous equilibrium configuration, we first set x,,
a, wy, and w,; to zero in Egs. (126), (130), and (135).
Consequently, Eq. (135c¢) yields 6z, = 0. This is because,
by taking the homogeneous limit, the rotation symmetry
with respect to « is restored and the equations are symmetric
under £ < y. Using this symmetry, the fact that 67** is
traceless gives the condition oz, = — % 07, which renders
the equation for o7, identical to that for 6z,,.. Ultimately, the
system of equations is reduced to six equations for the six

variables {55’ O, Oy, OI1, 67, 67, )

Q6E —kdu, =0,  (138a)
Qéu, — k(v26€ + 61 + 67, ) =0,  (138b)
Qdu, — kém,, =0, (138¢)

Writing the above in the form (27) and setting detM = 0,
we find that, as is well known, the characteristic equation
decomposes into the characteristic equations for the so-called
shear and sound channels, which read

(1-iR,Q)Q+ iCx* =0, (139a)
(1-iR:Q)(1 —iR,Q)(Q* — vk?)
4
+iQk* | C;(1— iR, Q) +§C,7(1 —iRQ)| =0. (139b)

The imaginary parts ImQ,, of the roots of Eq. (139a) are < 0,
provided the relaxation time R, > 0, thus implying linear
stability. Using the Routh-Hurwitz criterion, we find that
the imaginary parts ImQ,, of the roots of Eq. (139b) are < O if
R,, C,, R;, and C; are positive. These are the well-known
conditions for linear stability of MIS theory in the LRF.
Taking the limit k — oo and demanding that the asymptotic
group velocity does not exceed the speed of light, we find the
linear causality conditions [8]

4c, C
B IR O e

: 140
T 3R, R (140)
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One can show that these conditions, together with the
stability conditions in the LRF, lead to linear stability in
any frame [9].

In inhomogeneous equilibrium configurations, Egs. (126),
(130), and (135) comprise a set of linear equations of
the form (101), which, by setting detM = 0, yields the
dispersion relations. Calculating the determinant of the
(10 x 10) matrix M is cumbersome. The reason is that
the rotational symmetry is broken and therefore one can no
longer decompose the characteristic equation into shear and
sound channels. In the following, we restrict our attention to
certain special cases.

A. Nonzero bulk viscous pressure,
zero shear-stress tensor

Let us first consider the case that the bulk viscous
pressure is the only source of dissipation. Consequently, the
system of linearized EOMs is constituted by Egs. (126),
where 67, = 0, as well as Eq. (130). From Eq. (126d) we
then find 6u,, = 0, similar as for homogeneous equilibrium
configurations, i.e., there is no mode transverse to both
and k. The remaining four equations for the four variables
{6E, Suy,, Su,, ST1} give rise to a fourth-order characteristic
equation. One solution is Q = 0, while the other three are
given by the roots of

(1 - iRQ)[Q? — v?(K* + Kk2)]

+ QaVik, + iCe(k* + k2)] = 0. (141)
The equilibrium-preserving directions can be identified via
Eq. (75). With Eqgs. (4), (24), (25), (119), (121), (136), and
(137), we obtain

0 = akouy! + w kel + (W kg + ek, )E) — OpKeW,,.
(142)

Since {ueq, ¢,{,w} form an orthogonal basis, we have to
demand that all coefficients vanish, leading to the require-
ment w, = k; = k, =0, i.e., the equilibrium-preserving
direction is the y direction, as k, can be nonzero. Using
this in Eq. (141), the latter reduces to its homogeneous
counterpart (139b) (for R, = C, = 0). Therefore, the sta-
bility conditions found in the homogeneous equilibrium
configuration in the LRF, ie., R, > 0, C; > 0, extend to
inhomogeneous equilibrium configurations. However, the
imaginary parts of the roots of Eq. (141) can become positive
in the equilibrium-nonpreserving direction ¢, as we will
show now.

By performing a Routh-Hurwitz analysis [32] on
Eq. (141) we find that ImQ, < 0 for all values of x and
ke only if R, > 0, and

Cex® 4 (C = Re@® Vi) > 0, (143a)

Ci® + [C2 = (C; + iR )Ra* Vi > 0. (143b)
Therefore, for k = 0, we must have
C4 = CC - RéaZV% > 0,
Co = C} — (C¢ + viR;)Ra*VE > 0. (144)

Setting C4 = 0, we find that for any set {v,, C¢, R;}, there

exists a critical value
C
ay = —Cz,
R:V;

such that for a > aj, C, is negative and therefore ImQ, > 0
for at least one of the modes. A similar critical value

c = G
6= 2 2
VRAVEC 4+ 02R;)

(145)

, (146)

a

exists, such that for a > ag, Cg is negative. For positive
values of C; and R, ag < aj. Therefore ImQ2, < 0 if and
only if a < ag.

Now, let us consider the following parametrization of the
bulk transport coefficients which ensures linear causality
for v2 < 1/3 [33],

9
(1=302)71

= 147
107 (147)

Cév:;—”(l - 302), R;
In the range 0 < v2 < 1/3, the coefficient Ve, cf. Eq. (131),
is a function of v, that, as can be seen in Fig. 1, becomes
very large for smaller values of »2. Consequently, the lower
bounds afw become small, as illustrated in Fig. 2.

In order to estimate the typical magnitude of a in
applications to heavy-ion collisions, let us imagine a
cylinder of QGP, which is rigidly rotating according to

200 ———
150
N 100}

50

ol ]

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ve?

FIG. 1. V, as a function of v?, with the parametrization
of Eq. (147). For v? > 0.31, V, <0, which is not visible in
this figure.
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VS
FIG.2. The critical parameters (145) and (146) as a function of v2.

the configuration (19), and let us take 7)) = 200 MeV and
Qqy = 6 MeV. The latter number corresponds to the order
of magnitude of angular velocities reported in heavy-ion
collisions, i.e., ~10%? s~! [34]. Inserting these numbers
into Eq. (23) and using a = /—a - a/T,, we find a as a
function that monotonously increases with radial distance
p. For example, it assumes the concrete values a(1 fm) ~
0.01, and a(5 fm) ~ 0.04. In order to estimate the critical
values (145) and (146), we assume that v> = 0.2, which
is reasonable at T, = 200 MeV. From Fig. 2 one then
reads off that the values of a are much smaller than the
critical ones for the violation of the conditions (144),
i.e., ag ~0.34. Thus, for these assumptions, there is no
instability. Nevertheless, even if the conditions (144) are
violated, it does not necessarily mean that there is an
instability the amplitude of which grows without bounds,
because the momenta of the corresponding modes point
into the equilibrium-nonpreserving directions (in our case
the direction of acceleration #) which were absorbed into
SX4(x™, k%) in the linear-stability argument of Sec. IV D.

It is illuminating to investigate the modes arising from
the roots of Eq. (141) in the long- and short-wavelength
regimes. Let us first consider the former, for which

K = /K> —|—K§ < 1. We then expand Eq. (141) in terms

of k,, with k. /k, being an arbitrary number between —1 and
+1. Solving the resulting equation order by order, we
obtain two hydrodynamic sound modes and one nonhy-
drodynamic mode,

/ 1
Qo = £/ V267 +~ a2V§Kf - EaVCKf

i aVé'Kf

1+
2 \/ 43Kt + a?Vik;
2 ! ? 3
— v2K? + a*V? Kf :FEaVCKf + O(x7),

(148a)

{Cgkt + R, |:U K7

i .
Qnonhydro = _R_g—i_ avé‘Kf + l(CCKtZ 2R§V§Kf> + O(Kt)

(148b)

This expansion reveals the significance of V. Letting
k=0 in Eq. (148a) we find the group velocity of the
sound mode in the direction of acceleration to be

aRes}sound

/ 1 1
: — 2 212
o, =4 ’US‘FZG VC—EGVQ"""‘

Assuming a < 1, the leading term in the group velocity
is v, — %av,;, i.e., that velocity is modified in the direc-
tion of acceleration. While the absolute value of the
group velocity increases for the mode originally moving
with —v,, it decreases for the other one. Thus, a nonzero
acceleration breaks the symmetry of the sound waves
moving in opposite directions relative to the acceleration.

Next, let us assume the short-wavelength regime, i.e.,
k, > 1. In this limit, we find

ReQ ~ + 24 ¢
(&} ~ —_—.
Kt R

This means that the asymptotic group velocity is indepen-
dent of k,/x and remains smaller than the speed of light,
with the same conditions that are found for the homo-
geneous case (140). Furthermore, Eq. (150) shows that, in
the short-wavelength regime, the symmetry of the sound
modes traveling in opposite directions is recovered.

(149)

(150)

B. Conformal MIS theory

Let us now consider a conformal fluid, for which »? =
1/3 and 6I1 = 0. Inserting this into Egs. (126) and (135),
we find a system of nine equations for nine variables. The
characteristic equation of this system of equations is a
polynomial of order nine, which can in general not be
further decomposed due to the lack of rotational symmetry
in the direction orthogonal to the momentum. The general
characteristic equation is not shown here since it is too
complicated, but we comment on some aspects.

Let us first consider the characteristic equation in the
long-wavelength regime. Similarly to the previous sub-
section, we expand the characteristic equation in terms
of k,, keeping the ratios k;/x;, k,,/x;, and k,/x, arbitrary
numbers between —1 and +1 (but respecting the constraints
K* = KkZ 4 Ky, and k7 = K7 + k%). At zeroth order in k,, the
characteristic equation has four roots with € ,34 = 0 and
five other roots solving

(1-iQR,)[(1 - iQR,)* +
+4(C2+C3)H =0,

5(C2+C3)(1 - iQR,)?
(151)
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where

R, +C
C,=—1 Loy, CL Ei]T !

w,.  (152)
eq

Consequently, the roots of Eq. (151) are five nonhydrody-
namic modes, which are distinct only if the kinematic
vorticity does not vanish,

; —i+t./C2+C2
95:—7 96,7:—

R, R, ’
—i£2,/C2+C}
Qg = B . (153)

n

We note that these modes differ only in their real parts. It is
interesting to note that the last four modes have a nonzero
real part even for vanishing momentum. We attribute this to
the Coriolis force introduced by a nonvanishing rotation.

For the hydrodynamic modes €i,34, i.e., the ones
which vanish for zero momentum, the calculation of the
term which is of first order in momentum is cumbersome.
Therefore, we restrict ourselves to the equilibrium-preserv-
ing y direction in the rigidly rotating configuration. After
setting w, = k; = k, = 0, cf. discussion after Eq. (142), in
the first-order term of the expansion of the characteristic
equation, we find two vanishing roots €;, = 0 and two
nonvanishing roots, which correspond to the sound modes

and read
. 1 92V
Q3y4zi §_1+Ci’<”/

One notices that, in contrast to the case with bulk viscosity
only, the group velocity is modified in the equilibrium-
preserving y direction. The other two hydrodynamic modes
are modifications of the shear modes in the homogeneous
case (with dispersion relation Q = —iCnKZ), cf. Eq. (139a),
which in the equilibrium-preserving y direction have a
contribution of the form —iC,k;,.

Let us now turn to the nonhydrodynamic modes (153).
For the fifth mode, up to first order in «,, we find

(154)

i 3w, < 3w’ ) ]
Q= yay, [22P (1422 e,
TR ”Lo%wi" wp+ar )

(155)

The term in brackets vanishes in the equilibrium-preserving
y direction, because there w, =k, = 0. Furthermore,
the term of second order in momentum in this direction
reads %iC,ﬂci. This indicates that Qs is the counterpart of
the nonhydrodynamic sound mode in the homogeneous

case (with dispersion relation Q = —i/R, +4iC,x*/3),
cf. Eq. (139b).

For the other nonhydrodynamic modes, the terms of
first order in momentum look more complicated, and we
restrict our attention to their forms in the equilibrium-
preserving y direction. In this direction, the first- and
second-order terms in k,, of the sixth mode ¢ vanish. This
mode is the counterpart of the nonhydrodynamic shear
mode in the homogeneous case (with dispersion relation
Q = —i/R,), cf. Eq. (139a). The seventh mode Q;, on the

other hand, has nonvanishing terms of order Kﬁ,, and reads
(1+C1)C, +6a’R,V;
R, (1+c2) W
(1 +)C, =3(1=-CF)’RV; 2. (156)
CL(1+C3)? v

Therefore, one can recognize this mode as the modification
of the remaining nonhydrodynamic shear mode in the
homogeneous case (with dispersion relation = —i/R, +
iC,71<2), cf. Eq. (139a). However, this is not the only
mode that has this homogeneous counterpart. The eighth
and ninth modes differ from the seventh only in the leading
term in the equilibrium-preserving direction v,

—i+£2C, .(14C1)C,+6a’R,V;
Qo = ! 732 Ky
’ R, (1+C7)
_CL(1+C)C, =3(1=C)’R)Y; (157)
C.(1+C2)? v

Let us now consider the short-wavelength regime
k, > 1. In this limit, similar to the previous subsection,
the symmetry of the modes is restored and we have

G, 4C, + R,
ReQnonhydro ~ tK, R_7 Regsound ~ tK, T
n n

(158)

This means that the asymptotic group velocity does not
exceed the speed of light if the standard linear causality
condition, R,7 > 2C,7 is satisfied. At this point, we turn to
stability analysis of conformal MIS theory in inhomo-
geneous configurations. To this end, we first consider
the characteristic equation in the purely accelerating
configuration (11). In this case, the characteristic equation
decouples, as in homogeneous configurations, into two
independent parts: the shear and sound channels. There is
one nonpropagating mode, which is exactly equal to its
homogeneous counterpart, i.e., Q = —i/R,. The remaining
shear modes are modified by acceleration and found from
the roots of

R,Q* +iQ — Cyx7 + 3iaV,k, = 0. (159)
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In order for ImQ <0, R, must be positive and

C,k* + (C, — IR, a*V2)K% > 0. (160)

If we restrict the momenta to the equilibrium-preserving
directions by setting x, = 0, this condition is satisfied if
C,7 > 0. On the other hand, for a mode with x = 0O, the
condition (160) requires

C,/R,
a<a.=\ltm—sn
|4C,7 —R,,|

where we used Eq. (134) for V,. For any reasonable choice
of transport coefficients, a, is very large. For example, if
we consider the parameters of Ref. [35],

(161)

o _2-m2 1
2 A’

(162)

we find a, ~ 5.61. This value for a, corresponds to a
macroscopic length scale a~! that is much smaller than the
typical microscopic length scale, which for uncharged
conformal fluids is 7~'. Consequently, the stability and
causality conditions for homogeneous configurations,
R, > 2C, > 0, guarantee the stability of the shear modes
in the purely accelerating configuration, if the condition
(114) is fulfilled.

Up to this point, every characteristic equation that we
have considered reduces to its homogeneous counter-
part in the equilibrium-preserving directions. However,
the characteristic equation of the sound channel in the
purely accelerating configuration features a novel phe-
nomenon: it is affected by acceleration even in the
equilibrium-preserving directions. This is because, in
Eq. (133), a appears not only in the coefficients of Su,
but also of du, and 6ux. With «, = 0, it reads

3Q°(1 —iQR,)* — Q*{(1 —iQR,)[1 —i(7C, + R,)<]
— 18a?V2} — iCk*[1 — i(4C, + R,)Q] = 0. (163)

The imaginary parts of some roots of this equation can
be positive if a is larger than a critical value. As we
have already restricted the momenta to the equilibrium-
preserving directions, it might be tempting to conclude that
conformal MIS theory could become unstable in the purely
accelerating configuration. However, further inspection
shows that such a critical value of « is always larger than
one, violating the condition (114). In order for the imagi-
nary parts of the roots of the characteristic equation of the
sound channel in the equilibrium-nonpreserving ¢ direction
to be positive, similarly large values of a are required.
We close this section by commenting on the stability
of conformal MIS theory in the rigidly rotating con-
figuration (19). In this case, the characteristic equation
remains of order nine and is thus quite complicated even
after restricting the momenta to the equilibrium-preserving

w direction. We insert a = v,w,, where v, = pLY, into
the characteristic equation and perform a Routh-Hurwitz
analysis. Consequently, we find that ImQ can be positive
even with momenta restricted to the equilibrium-preserving
y direction, if Qy > T\, or v,, is very close to the speed of
light. The former case violates the condition (114), while
the latter one corresponds to radii very close to the causal
boundary of the fluid. Therefore, we conclude that in the
domain of validity of MIS hydrodynamics, the stability
conditions found for homogeneous configurations extend
to accelerating and rigidly rotating configurations.

VI. CONCLUDING REMARKS

We have proposed a method to find local plane-wave
solutions to the linearized hydrodynamic equations of
motion in inhomogeneous equilibrium configurations, i.e.,
configurations with nonzero thermal vorticity. Our method is
based on extending the perturbations of the conserved
currents around the equilibrium configuration to the tangent
bundle using Wigner transforms, and then Fourier trans-
forming them to the cotangent bundle. The tangent bundle
plays the role of a homogeneous equilibrium configuration
where, in an infinitesimal neighborhood, the equilibrium
quantities are constant. By Fourier transforming, we choose
the solutions to the equations of motion that are super-
positions of linear waves in this infinitesimal domain. This
procedure leads to a homogeneous system of linear equa-
tions, from which, by setting its determinant to zero, one
finds the linear modes in the inhomogeneous configurations.

Contrary to homogeneous equilibrium configurations,
a positive sign of the imaginary parts of the modes in
the inhomogeneous case does not necessarily indicate a
linear instability. This is because the frequencies of the
modes depend on the local quantities in equilibrium. In
flat space-time, the latter do not change in the directions
perpendicular to the thermal vorticity. We refer to these
directions as equilibrium-preserving directions. We showed
that these directions exist, if space-time is flat and the
kinematic vorticity is perpendicular to the acceleration.
Restricting the momenta of the modes to these equilibrium-
preserving directions, if the imaginary part of at least one
mode is positive, an instability exists. Such an instability is,
however, only physically relevant as long as the length
scale related to the thermal vorticity remains much larger
than the typical microscopic scale of the system. On the
other hand, a positive imaginary part of a mode with
nonvanishing momenta in an equilibrium-nonpreserving
direction does not necessarily prove the instability of the
system.

As an application, we considered MIS hydrodynamics.
We first studied a fluid for which the bulk viscous pre-
ssure is the only source of dissipation. We showed that
coupling between the bulk viscous pressure and the
acceleration leads to novel contributions to the dispersion
relations of the sound modes in the direction of acceleration.
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Consequently, the group velocities of the sound modes in
this direction are asymmetrically modified in the long-
wavelength regime. However, in the short-wavelength
regime, symmetry is recovered and the group velocities
remain smaller than the speed of light if the theory is linearly
causal. In the equilibrium-preserving directions, the novel
contributions vanish, and the standard stability conditions of
MIS theory for the case of bulk viscosity only are recovered.
On the other hand, in the direction of acceleration, the
imaginary part of one of the modes can become positive if the
magnitude of the acceleration is sufficiently large. However,
we have argued that the corresponding large accelerations
can neither be physically realized nor are in the domain of
validity of MIS hydrodynamics.

Finally, we have considered a conformal fluid in MIS
theory. In this case, not only is the dispersion relation of
the modes modified by the thermal vorticity, but also the
number of modes is increased to nine in the presence of
rotation. In the short-wavelength regime, the asymmetry of
the modes is eliminated and the standard condition for
linear causality is recovered. In contrast to the case of bulk
viscosity only, these modes have novel contributions even
when the momenta are restricted to the equilibrium-
preserving directions. Consequently, the imaginary parts
of at least one mode can be positive for sufficiently strong
thermal vorticities. However, such an effect, with a rea-
sonable choice of parameters, only occurs beyond the
validity of the hydrodynamic theory. This is either when
the microscopic and macroscopic scales are similar or when
boundary effects cannot be neglected. Consequently, we
conclude that MIS theory in its domain of validity remains
linearly stable in inhomogeneous configurations, with the
standard stability and causality conditions. This conclusion
agrees with Ref. [14], which uses the so-called information
current method. We note that, although this method does
not assume a homogeneous equilibrium configuration, it
neglects the existence of boundaries, which are always
present in inhomogeneous equilibrium configurations.

The methods introduced here can be applied to different
hydrodynamic theories to find linear waves in inhomo-
geneous equilibrium configurations. Hydrodynamic theories
with quantum corrections arising from acceleration and
rotation [26,36-39] and formulations of spin hydrodyna-
mics that explicitly contain the thermal vorticity [40] are of
particular interest. This work can also be extended by an
investigation of boundary and size effects on mode propa-
gation and stability in inhomogeneous equilibrium configu-
rations. The Wigner-Fourier transforms that were utilized
in this work might also be used to study hydrodynamic
fluctuations as an alternative to the method introduced
in Ref. [41].
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APPENDIX A: RIGIDLY ROTATING FLUID
IN A SCHWARZSCHILD METRIC

In this appendix, we consider a rigidly rotating fluid in
Schwarzschild metric, whose line element in spherical
coordinates (z,r,@, ¢) reads

-1
ds? = <1 - 5) dr? - (1 - ﬁ) dr? — r2dQ?, (Al)
r r

where r, =2GMr is the Schwarzschild radius and
dQ, = d#? + sin’0d¢>. This configuration is found by

assuming [42]
1 /o 0
= — —_ Q — 1,
b T, <az+ °a¢>>

where € is a constant of dimension energy. The above
p-vector is timelike if

(A2)

ry .
1 == —Q2r%sin’0 > 0.
r

In spherical coordinates, the velocity and temperature are
given by

ut :}/(I,0,0,Qo), T:]/T(),
1

V1=r/r—Qr%sin?0

with y =

(A3)

As in the rotating equilibrium configuration (19), both
acceleration and kinematic vorticity are nonzero,

1 —r,)(2Q2r*sin%0 — r,
a,l:_i},Z(O’(r r.\)( O; sin r‘\)’g(z)sinzg’o)’
r
(Ada)
—r,)Q 0  (2r —3r,)Qysind
a)”:yz(O,(r rS)VOCOS ,_( r ;sr)z o sin ,O).
(Adb)
These vectors are not orthogonal,
r,Lqcosd
w-a=-— 27 (AS)

We note that even with a vanishing €Q), the equi-
librium configuration is inhomogeneous due to gravity,
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as required by the Tolman law, i.e, T = Ty/+/goo- In this
limit,

:y(l,()), T =yTy, d" = (O > 2,O 0) (A6)

with y=1/y/1—-r,/r=1//goo- As expected, the

kinematic-vorticity vector vanishes in this case.

APPENDIX B: PROOF OF IDENTITIES
FOR THE TANGENT BUNDLE

In this appendix, we prove some identities regarding the
horizontal lift in the tangent bundle, including Eq. (43).
First, we realize that D,y” = 0 since
Dy = (V, =T}y00)y" =T}, —

Iy,yé, =0. (Bl)

Furthermore, ¢ commutes with D,

D, 8] = [V, = T2 (x)y#0%. %] = [V,,. ] = T [y 0%, 0]
= —T%,0% + %80 = 0. (B2)

Note that, similarly to Eq. (B1),

Dk, = (V,+T5,k, )k, =Tk, +T5,k, 5, =0. (B3)

Also, we have

[Dus 8] = [V + T (x)kad)s 0] = [V, 0] + T ka0 0]
=1%,0, -89, =0. (B4)

Using Eq. (B2), we find that commuting y - D with d,
generates a horizontal lift,

[v-D.a] = =[0.y"]D, — y*[0s.D,] = =D

.. (BS)

We define the full curvature in the tangent bundle as the
commutator of two horizontal lifts [43],

G Ky (x.y) =[D,. DKy "(x,y).  (B6)

where ICZ:,':: is a tensor of arbitrary rank. To identify the

y-dependent part of the total curvature, we consider its
action on a scalar function F(x,y),

[D,.D,]F(x.y) = [V,, — Thay?d). V, = T0, 4] F(x. y)
—[0,. T3,y 93] F (x,y)
—[Fffay Jy. 0,)F (x, y)
+ [[hayd). 19,y 5] F(x. y)

= _R;)T;wy %F()C, y)’ <B7)

where we have used

=2(,I° (B8)

g
T+ Do)
For tensors of arbitrary rank, commuting [V, V| gives rise
to additional curvature terms. However, the y-dependent
part is independent of the tensor rank as is the same as
in Eq. (B7).

Using Eq. (B7), we prove Eq. (43). In order to do so, we
start with [29]

ntimes

BA]-- e,

w

N R
Z;BB (B9)

n=1

This identity can be written using the so-called adjoint map
C in a compact form. The adjoint map is defined as

CIXY = X, 7], (B10)

were X and ¥ are some operators. Consequently, Eq. (B9) is
rewritten as
eBA = {C1BIA} B, (B11)

Now, let us consider acting both sides of this identity on a
scalar F(x) for the following operators

A - a9, B—y-D,
which gives rise to

e0Plg,e"PF(x) = e"PaF(x) = 0.
Therefore, with Eq. (BYS),
0= e PloF(x,y)

[1+Cy D+Z Cly- D] }%F(x,y)

n=2
-D F(x y)

= aﬁF(x,y) _D;tF(x7y

which yields Eq. (43).

096029-22



LINEAR STABILITY ANALYSIS IN INHOMOGENEOUS ...

PHYS. REV. D 108, 096029 (2023)

APPENDIX C: DIRECT PROOF OF EQ. (46)

The identity (46) can be directly proved as follows. Since
the y- and k-dependent part of the horizontal lifts are
independent of the index structure of a tensor, we prove the
identity for a scalar F(x,y),

D,F(x,y) =D, / e kYF(x, k)
k
- / (V, = Thuy'}) e F (x. k)]

= / [V F(x, k) + iF (x, k), y7k, e
k

—A[V”F(x,k)—F(x,k)Fﬁykpaz]e‘ik'y, (C1)

where in the second line we have used the invariance of
the volume element. We have also used the fact that k - y is
a scalar, and therefore V,(k - y) = d,(k - y) = 0. Now, by
performing an integration by parts, we find

D,F(x.y) = A IV F(x k) + Dk F(x, k)]

= / e~ D, F(x, k), (C2)
k

which completes the proof. One can convince oneself that
this proof is independent of the rank of the tensor F(x).

APPENDIX D: COVARIANT DERIVATIVE
OF THERMAL VORTICITY

To find V,@,4, we start by writing
V@, ==V, Vb Veo,3 ==V, V,ps  (DI1)

where we have used the Killing condition (1) to rewrite
the thermal vorticity as a single covariant derivative.
Then, we subtract these two equations, and use the
definition of the Riemann tensor, to find

vywaﬂ - vawﬂ = [vw vﬂ]ﬂﬂ = Rﬂoaﬂﬂg = Rgﬁﬂaﬁa'
(D2)

Permuting the indices clockwise we obtain,

v(lwﬂﬂ - vﬂw(lﬂ = Rﬂ;m/}ﬁm v[)’w;m - vﬂwﬁ(l = R(;a/}/,tﬁm
(D3)

Adding the three equations gives rise to

1
vﬂw(lﬂ = 5 (Ra/i;m - ngaﬂ + Rgaﬂﬂ )ﬂo’ = _Rauaﬁﬁa = Ra/i/mﬁa >

(D4)

where we have used the cyclic property R? .5, + R 45 +
R°p,q = 0, the symmetry relation R,,5, = Rg,sq> and the

antisymmetry relations R,,5, = —Rysp, = —Roaup-
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