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We investigate the interactions of the χc1ð4274Þ state with light mesons in the hot hadron gas formed in
heavy-ion collisions. The vacuum and thermally averaged cross sections of production of χc1ð4274Þ
accompanied by light pseudoscalar and light vector mesons as well as the corresponding inverse processes
are estimated within the context of an effective Lagrangian approach. The results suggest non-negligible
thermal cross sections, with larger magnitudes for most of the suppression reactions than those for
production. This might be a relevant feature to be considered in the analysis of future data collected in
heavy-ion collisions.
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I. INTRODUCTION

A few years ago, the LHCb Collaboration reported the
observation of a charmoniumlike state named χc1ð4274Þ in
the amplitude analysis of the decay Bþ → J=ψϕKþ. Its
quantum numbers have been established to be IGðJPCÞ ¼
0þð1þþÞ with statistical significance of 6.0σ, and its
measured mass and width [1,2]

m ¼ 4273.3� 8.3þ17.2
−3.6 MeV;

Γ ¼ 56� 118.0−11 MeV; ð1Þ

at 5.8σ significance. These values of mass and width are
consistent with a previous measurement claimed by the
CDF Collaboration [3]. In the words of the PDG [4], which

expresses the consensus in the field: “this state shows
properties different from a conventional qq̄ state and is a
candidate for an exotic structure.” In this work, we will
follow some recent papers in which the χc1ð4274Þ has been
treated as a meson molecule. However, it is still possible to
interpret it as a conventional cc̄ state (for a discussion,
see [5]).
A great deal of effort has been made by the community

in order to describe the properties and intrinsic quark
configuration of the χc1ð4274Þ. We will briefly highlight
some of the proposals. In Refs. [6,7], it was considered as a
s-wave css̄ c̄ tetraquark state within the framework of
QCD sum rules, and in [8,9] using the compact tetraquark
model. Interestingly, in Ref. [10], the authors showed that
the relativized quark model proposed by Godfrey and Isgur
cannot account for the compact tetraquark configuration
but for the conventional χc1ð33P1Þ state. On the other hand,
the excited charmonium state configuration cannot be
accommodated in the context of the 3P0 model, as suggested
in Ref. [11].
The color triplet and sextet diquark-antidiquark configu-

ration was also employed by [12]. Contrasting with exper-
imental results, Ref. [13] proposed that the χc1ð4274Þwould
correspond rather to two, almost degenerate, unresolved
lines with JPC ¼ 0þþ; 2þþ.
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From another interesting perspective, an analysis of the
χc1ð4274Þ as a p-wave bound state of DsDs0ð2317Þ was
performed in a quasipotential Bethe-Salpeter equation
approach, with a partial wave decomposition on spin
parity [14]. This comes from the fact that the χc1ð4274Þ
mass is just 12 MeV below the DsD̄s0ð2317Þ threshold.
And since the quantum numbers ofDs and D̄s0 [henceforth
we denote D̄s0ð2317Þ simply by D̄s0] are 0− and 0þ, the
binding mechanism between these two mesons must be in
p wave and strong to form a bound state. However, via an
effective approach, Ref. [15] argued that the partial decay
widths of the χc1ð4274Þ do not favor the p-wave bound
state interpretation but indicates the possibility of a new
state so-called Y 0ð4274Þ, which might be found in experi-
ments such as Belle and Belle II. In the end, the intrinsic
nature and the properties of the χc1ð4274Þ are still a matter
of debate, and more experimental and theoretical studies
are really needed.
We believe that heavy-ion collisions provide a promising

scenario to investigate the properties of exotic states [16].
As discussed in precedent works, at the end of the quark-
gluon plasma phase, quarks coalesce to form all types of
hadronic states. The exotic states are then formed and can
interact with other light hadrons during the hadron gas
phase [17–25]. Their final multiplicities will depend on the
interaction cross sections, which, in turn, depend on the
spatial configuration of the quarks. Meson molecules are
larger and, therefore, have greater cross sections, which
means that they will have a more prominent interaction with
the hadronic medium than compact tetraquarks.
In this work, we investigate the interactions of the

χc1ð4274Þ state with light mesons within the context of
an effective Lagrangian approach. The vacuum and ther-
mally averaged cross sections of reactions involving the
production of χc1ð4274Þ accompanied by pseudoscalar
mesons π, K, and η and vector mesons ρ, K�, and ω as
well as the corresponding inverse processes are estimated.
We would like to emphasize the following.

(i) The hadron gas formed in heavy-ion collisions lives
for ≃10 fm, and the timescale of strong interactions
is ≃1 fm. Therefore, the multiquark states (tetra-
quarks or molecules) will inevitably interact with the
light hadrons of the medium.

(ii) The careful study of the ratio χc1ð3872Þ=ψð2SÞ as a
function of the system size published in [26] made
even more clear that the final state interactions (i.e.,
interactions within the hadron gas) are crucial to
understand the data [27] giving extra support to
statement (i).

(iii) Simplifying assumptions concerning these inter-
actions such as the use of constant matrix elements
or the use of geometrical arguments to estimate
the cross sections are not sufficient. The collision
energies are of the order of the temperature, i.e.,
≃100–200 MeV. In this energy range, the cross

sections are still sensitive to resonance formation
and other details of the interactions.

In view of these considerations, we will keep, as in
previous works, trying to describe the multiquark inter-
actions within the hadron gas with effective Lagrangians.
In the next section, we will briefly describe the formalism
employed in this work. In Sec. III, we calculate the
interaction cross sections; in Sec. IV, we present the
thermally averaged cross sections (called from now on
simply thermal cross sections), which are the really
relevant quantities for transport model calculations.
Finally, in Sec. V, we present some conclusions.

II. FORMALISM

In this section, we will investigate the interactions of
the χc1ð4274Þ state with the lightest pseudoscalar mesons
(π, K, and η) and with the lightest vector mesons
(ρ, ω, and K�). We will study the reactions χc1ð4274Þ þ
ðπ; K; η; ρ; K�;ωÞ → ðD̄sDð�Þ; Ds0D

ð�Þ
s ; Ds0Ds0Þ, as well as

the inverse processes. The lowest-order Born diagrams that
contribute to the processes of our interest are shown in
Figs. 1 and 2. To calculate their respective amplitudes, we
use an effective theory formalism in which the vector
mesons are interpreted as dynamical gauge bosons of the
hidden UðNÞV local symmetry (see Refs. [18–21] for a
more detailed discussion). In particular, the following
effective Lagrangians involving the light and charmed
mesons are employed:

LPPV ¼ −igPPVhVμ½P; ∂μP�i; ð2Þ

LVVP ¼ gVVPffiffiffi
2

p εμναβh∂μVν∂αVβPi; ð3Þ

where P and V are the matrices in Uð4Þ flavor space
containing the pseudoscalar and vector meson fields in the
physical basis:

P¼

0
BBBBBBB@

π0ffiffi
2

p þ η0ffiffi
6

p þ ηffiffi
3

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ η0ffiffi
6

p þ ηffiffi
3

p K0 D−

K− K̄0 2η0ffiffi
6

p − ηffiffi
3

p D−
s

D0 Dþ Dþ
s ηc

1
CCCCCCCA
; ð4Þ

V¼

0
BBBBBBB@

ρ0ffiffi
2

p þ ϕffiffi
6

p þ ωffiffi
3

p ρþ K�þ D̄�0

ρ− − ρ0ffiffi
2

p þ ϕffiffi
6

p þ ωffiffi
3

p K�0 D�−

K�− K̄�0 2ϕffiffi
6

p − ωffiffi
3

p D�−
s

D�0 D�þ D�þ
s J=Ψ

1
CCCCCCCA

μ

: ð5Þ
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The construction of these physical states in terms of quarks
is done using the parametrization discussed in Ref. [28]
(see [29] for an interesting discussion on this subject) and
also included in Appendix A. It is important to emphasize
that the processes depicted in Figs. 1 and 2 include η, ρ, ω,
and K� but do not involve η0, ηc, ϕ, or J=ψ. These particles
appear in the Lagrangians (2) and (3), but they have large
masses. Since their abundances in the hadron gas are
inversely proportional to their masses, they will be rare
and will not contribute significantly to change the χc1ð4274Þ
multiplicity. For this reason, J=ψ and ϕ are not included in
the calculations of Aþ B → CþD scatterings. However,

they must be included in the computation of the time
evolution of the χc1ð4274Þ multiplicity, because this state
decays in the channel Y → J=ψϕ. This decay can be studied
with a specific Lagrangian, and, since we have experimental
data, we can extract the YJ=ψϕ coupling constant. So far,
the only χc1ð4274Þ decay channel that has been seen is
J=ψϕ. However, once one has a model of this state, it is
possible to study theoretically other decay channels. In
Ref. [15], using a molecular model of the χc1ð4274Þ, the
authors calculated the decay width in the channels J=ψϕ,
χc0η, χc1η, D̄sD�

s , DD̄�, KK̄�, and ϕϕ. These decays might
be relevant to the calculation of the time evolution of the
χc1ð4274Þ multiplicity. This study is being performed and
will appear in a forthcoming publication, where we use all
the material presented here and, adding the information on
the Y → J=ψϕ decay, we solve the rate equation and
calculate the time evolution of the χc1ð4274Þ multiplicity.
The coupling constants are given by

gPPV ¼ mV

2fπ

mD�

mK�
;

gVVP ¼ 3m2
V

16π2f3π
; ð6Þ

FIG. 1. Born diagrams describing the production of the
χc1ð4274Þ (denoted by χc1) and a light pseudoscalar meson
(without specification of the charges of the particles).

FIG. 2. Born diagrams describing the production of the
χc1ð4274Þ (denoted by χc1) and a light vector meson (without
specification of the charges of the particles).
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with mV being the mass of the vector meson; we take it as
the mass of the ρ meson, and fπ is the pion decay constant.
As pointed in Ref. [18], the factormD�=mK� in the coupling
gPPV is introduced in order to reproduce the experimental
decay width found for the process D� → Dπ and comes
from heavy-quark symmetry considerations.
Let us now introduce the vertex associated to the

χc1ð4274Þ state. The quantum numbers of χc1ð4274Þ are
IðJPCÞ ¼ 0ð1þþÞ, and those ofDs andDs0 are JP ¼ 0− and
JP ¼ 0þ, respectively. Hence, for parity reasons, the vertex
χc1DsDs0 must be in relative P wave. This can be
implemented by a term with a derivative coupling in the
Lagrangian. The appropriate effective Lagrangian is then
given by [15]

Lχc1 ¼
1ffiffiffi
2

p gχc1DsD̄s0
χμc1

h
Dþ

s ∂

↔

μD−
s0 −D−

s ∂
↔

μD
þ
s0

i
; ð7Þ

where χμc1 stands for the field associated to the χc1ð4274Þ
state. The effective coupling constant gχc1DsD̄s0

was taken
from Ref. [15], in which the approach used was the
compositeness condition. It is based on the idea that the
renormalization constants of a composite particle wave
function should be zero. By its turn, these renormalization
constants carry on the self-energy of the χc1ð4274Þ state,
which naturally is written in terms of the coupling
gχc1DsD̄s0

. Then, since the self-energy depends on a cutoff
ðqmaxÞ, gχc1DsD̄s0

was computed taking qmax in the range
0.9–1.1 GeV. This resulted in gχc1DsD̄s0

¼ 13.34þ1.11
−0.89 ,

where the central value corresponds to its value at
qmax ¼ 1.0 GeV, and the errors to the variation of qmax
from 0.9 to 1.1 GeV.
Other couplings involving the Ds0 state, charmed mes-

ons, and light mesons present in the processes depicted in
Figs. 1 and 2 are also needed. In the case of the light
pseudoscalar mesons (in Fig. 1), the relevant three-body
Lagrangians are [15] (we have used the same notation as in
this reference)

LKDDs0
¼ gKDDs0

KDDs0;

Lπ0DsDs0
¼ gπ0DsDs0

π0DsDs0;

LηDsDs0
¼ gηDsDs0

ηDsDs0; ð8Þ

where the coupling constants are gKDDs0
¼ 10.21�

1.13 GeV, gηDsDs0
¼ 6.40� 1.15 GeV, and gπ0DsDs0

¼
1.3124þ0.000

−0.1385 GeV. The central values of gKDDs0
and

gηDsDs0
were taken from the unitarized coupled-channel

approach summarized in [30]; to take into account their
uncertainties, we evaluated the difference between the
values in the mentioned framework and their central
values from a phenomenological model quoted in Table IX
of [30]. gπ0DsDs0

was calculated using the upper limit of the
Ds0 width [15] and its uncertainty estimated from the upper

and lower limits of the absolute branching fraction of the
decay ΓðD�

s0 → π0D�
s Þ reported in [4].

For the three-body vertices involving the Ds0 state,
charmed mesons, and light vector mesons (in Fig. 2), we
employ the following Lagrangians [31]:

LVDs0Ds0
¼ −igVDs0Ds0

VμD−
s0 ∂

↔

μD
þ
s0;

LVDs0D�
s
¼ gVDs0D�

s
½D−

s0D
�þ
sμν −Dþ

s0D
�−
sμν�Vμν; ð9Þ

where Vμν ¼ ∂μVν − ∂νVμ. The coupling constants gVDs0Ds0

and gVDs0D�
s
are estimated through the vector dominance

(VMD) model [31]. Accordingly, the virtual photon in the
Dþ

s0e
− → Dþ

s0e
− scattering is coupled to the vector meson

via the photon-vector-meson mixing term [31]

LγV ¼ γVVμAμ; ð10Þ

where Aμ is the photon field; γV is the photon-vector-meson
mixing amplitude. We remark that the form of the inter-
action in Eq. (10) does not preserve electromagnetic gauge
invariance, and, because of this, the photon would acquire a
mass unless we add a proper photon mass counterterm to
the Lagrangian [32–34]. Besides, considering the example
of the ρ0 − γ transition for the process γ → πþπ−, the pion
form factor Fπðq2Þ calculated with Eq. (10) will satisfy the
condition of electromagnetic current conservation,
Fπð0Þ ¼ 1, only if the so-called universality condition is
fulfilled, i.e., by demanding complete ρ dominance: gρππ ¼
gρNN ¼ � � � ¼ gρ [32–34]. Actually, the Uð1ÞEM invariance
is directly satisfied when we consider a different and more
elegant version of the VMD Lagrangian, written as LγV ∼
VμνFμν (Fμν being the electromagnetic tensor); it is also in
consonance with the current conservation condition with-
out any assumption concerning the universality condition.
For a more detailed discussion, we refer the reader to
Refs. [32–34]. However, for our purposes, we proceed as
usually done in the phenomenological approaches: The
coupling in Eq. (10) is treated effectively, and γV is
determined from the width of the vector-to-electron-
positron decay:

ΓV ¼ αemγ
2
V

3m3
V

; ð11Þ

where αem is the electromagnetic fine-structure constant
andmV is the vector mass. For the ω and ρmesons we have
Γω ¼ 0.60� 0.02 keV and Γρ ¼ 7.04� 0.06 keV, respec-
tively [4]. These values yield the following mixing ampli-
tudes: γω ¼ 0.011 GeV2 and γρ ¼ 0.037 GeV2.
Next, the coupling constants gωDs0Ds0

and gρ0Ds0Ds0
can be

estimated with the following expression:
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γVgVDs0Ds0

m2
V

¼ 1

3
e; ð12Þ

which gives gωDs0Ds0
¼ 5.50 and gρ0Ds0Ds0

¼ 1.66. To obtain
gVDs0D�

s
, we make use of an extension of Eq. (12), i.e.,

γVgVDs0D�
s

m2
V

¼ 1

3
egγDs0D�

s
; ð13Þ

where gγDs0D�
s

is the coupling constant of the vertex
involving the photon, Ds0, and D�

s , which from theoretical
estimates is gγDs0D�

s
≥ 3.02 × 10−2 GeV [31,35]. Therefore,

we can write

gVDs0D�
s
¼ gVDs0Ds0

× gγDs0D�
s
: ð14Þ

Taking the smallest value of gγDs0D�
s
, we obtain gωDs0D�

s
¼

0.17 GeV and gρDs0D�
s
¼ 0.050 GeV. Then, the effective

model above allows us to write the amplitudes correspond-
ing to the diagrams depicted in Figs. 1 and 2 as

MDsDs→χc1π ¼ MðaÞ þMðbÞ;

MDs0Ds0→χc1π ¼ MðcÞ þMðdÞ;

MDsDs→χc1η ¼ MðeÞ þMðfÞ;

MDs0Ds0→χc1η ¼ MðgÞ þMðhÞ;

MDs0D�
s→χc1η ¼ MðiÞ;

MDs0D�→χc1K ¼ MðjÞ;

MDsD→χc1K→ ¼ MðkÞ;

MDsDs0→χc1ρ ¼ MðlÞ;

MDsD�
s→χc1ρ ¼ MðmÞ;

MDs0D→χc1K� ¼ MðnÞ;

MDs0D�→χc1K� ¼ MðoÞ;

MDs0Ds→χc1ω ¼ MðpÞ þMðqÞ;

MDsD�
s→χc1ω ¼ MðrÞ;

MDs0D�
s→χc1ω ¼ MðsÞ: ð15Þ

The explicit expressions are described in Appendix B.

III. CROSS SECTIONS

We define the isospin-spin-averaged cross section in the
center-of-mass (c.m.) frame for a given reaction ab → cd
in Eq. (15) as

σab→cd ¼
1

64π2s
jp⃗cdj
jp⃗abj

1

gagb

Z
dΩ

X
S;I

jMab→cdj2; ð16Þ

where ga;b ¼ ð2Ia;b þ 1Þð2Sa;b þ 1Þ is the degeneracy
factor of the particles in the initial state; s is the squared
center-of-mass energy; jp⃗abj and jp⃗cdj are the moduli of the
three-momenta in the c.m. frame of the initial and final
particles, respectively. The summation is performed over
the spin and isospin of the initial and final states, with the
latter being rewritten in terms of the particle basis with the
explicit charges of the particles in the initial state, i.e.,

X
I

jMab→cdj2 →
X
Qa;Qb

jMðQ1;Q2Þ
ab→cd j2: ð17Þ

The cross sections of the corresponding inverse reactions
are evaluated by means of the detailed balance relation:

gagbjp⃗abj2σab→cd ¼ gcgdjp⃗cdj2σcd→ab: ð18Þ

Furthermore, to take into account the finite size of the
hadrons and to suppress the artificial growth of the cross
sections at large momenta, we make use of a monopolelike
form factor:

Fðq⃗Þ ¼ Λ2

Λ2 þ q⃗2
; ð19Þ

where q⃗ is the transferred three-momentum in tðuÞ channel
and Λ is the cutoff, which we choose to be Λ ¼ 2.0 GeV.
This type of form factor has been extensively employed in
the literature, and a detailed discussion on its role is found
in Ref. [23].
The calculations are done with the isospin-averaged

masses reported in the PDG [4]. Besides, to take into
account the uncertainties in the coupling constant gχc1DsDs0

,
the results are presented in terms of bands associated to the
smallest and largest possible values of gχc1DsDs0

.
The cross sections for the processes discussed in

previous section are plotted in Figs. 3 and 4 as functions
of the c.m. energy

ffiffiffi
s

p
, as well as those for the corre-

sponding inverse reactions. In the case of χc1ð4274Þ
production, all cross sections are endothermic, showing
a fast growth in the region very close to the threshold, with
the exception of the channel Ds0Ds0 → χc1π. Considering
the region up to 400 MeV above the corresponding
thresholds, the different channels present a wide range
of magnitudes ∼10−6 − 100 mb. In particular, for the
χc1ð4274Þ production accompanied by pion and ηmesons,
the channel with initial state D0

sD̄0
s yields the dominant

contributions, while the other cases are at least one order
of magnitude smaller. We also remark that the channels
involving the kaon or K� mesons give contributions of
similar order. Besides, the reactions involving the ρ0

mesons with the initial or final state DsD̄�
s present the

smallest cross sections due to the smaller coupling
constant of the ρDs0D�

s interaction.
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Let us now look at the χc1ð4274Þ-suppression processes
in Figs. 3 and 4. As expected, only the process χc1π →
Ds0Ds0 is endothermic; the other absorption cross sections
are exothermic, becoming very large at the threshold. Above
the threshold, these cross sections have very distinct mag-
nitudes. Most importantly, when we compare χc1ð4274Þ
absorption and production by comoving light mesons in
the relevant region of energies for heavy-ion collisions
(

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p

< 0.6 GeV), in general, the absorption cross
sections are greater than the production ones. This feature

reflects the differences of these reactions concerning the
phase space as well as the degeneracy factors encoded
in Eq. (18).

IV. THERMAL CROSS SECTIONS

The findings of the previous sections allow us to go ahead
and use them as input in the analysis of the χc1ð4274Þ
production and suppression in a heavy-ion collision
environment, in which the medium effects become relevant.

FIG. 4. Top: cross sections for the production processes χc1ð4274Þρ (left), χc1ð4274ÞK� (center), and χc1ð4274Þω (right), as functions
of

ffiffiffi
s

p
. Bottom: cross sections for the corresponding inverse reactions. In the process X → χc1K�, the curves are slightly overlapped.

FIG. 3. Top: cross sections for the production processes χc1ð4274Þπ (left), χc1ð4274Þη (center), and χc1ð4274ÞK (right), as functions offfiffiffi
s

p
. Bottom: cross sections for the corresponding inverse reactions.
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The collision energy is related to the temperature of the
hadronic medium, and, hence, we need to evaluate the
thermally averaged cross sections, which are defined as
the cross sections averaged over the thermal distributions of
the particles participating in the reactions. For the process
ab → cd, they are given by the convolution of vacuum
cross sections and the momentum distributions:

hσab→cdvabi ¼
R
d3pad3pbfaðpaÞfbðpbÞσab→cdvabR

d3pad3pbfaðpaÞfbðpbÞ
¼ 1

4β2aK2ðβaÞβ2bK2ðβbÞ
×
Z

∞

z0

dzK1ðzÞσðs ¼ z2T2Þ

× ½z2 − ðβa þ βbÞ2�½z2 − ðβa − βbÞ2�; ð20Þ

where fðpÞ is the Bose-Einstein distribution; vab is the
relative velocity of the two initial particles a and b;
βi ¼ mi=T, where T is the temperature; z0 ¼ maxðβaþ
βb; βc þ βdÞ; and K1 and K2 are the modified Bessel
functions of the second kind. In Figs. 5 and 6, we plot
the thermal cross section as functions of the temperature.
The suppression processes have a weaker dependence
with the temperature than those for χc1ð4274Þ production.
Comparing all the cross sections shown in the figures, the

striking conclusion is that (unlike the case of most of the
other exotic states) the most important process is χc1ð4274Þ
production through the reactionDs0D̄s0 → χc1ð4274Þπ. The
dominant absorption reaction is χc1ð4274Þη → Ds0D̄s0.
In a hot hadron gas, the abundance of η is larger than
the abundances of Ds0 and D̄s0. This may compensate
the difference in the cross sections, but at this point we

cannot say that there will be a χc1ð4274Þ suppression due to
hadronic medium effects. To know what really happens, we
must solve the rate equations with the above cross sections.
This will be addressed in a forthcoming publication.

V. CONCLUSIONS

In this work, we have studied the interactions of the
χc1ð4274Þ state with light mesons, which are the most
abundant particles in the hot hadron gas formed in the
late stage of heavy-ion collisions. Using an effective
Lagrangian approach, we computed the vacuum and
thermal cross sections of χc1ð4274Þ production (accom-
panied by light pseudoscalar and vector mesons) and the
corresponding inverse processes. The coupling constants
involving the Ds0 meson were calculated through the
VMD model. The results show that the thermal cross
sections are sizable. In almost all the cases, the absorption
cross sections are larger than the production ones.
However, the largest cross section is for χc1ð4274Þ pro-
duction through the reaction Ds0D̄s0 → χc1ð4274Þπ. Our
study strongly motivates the use of the obtained cross
sections as input to the rate equations, which yield the
χc1ð4274Þ multiplicity during the time evolution of a hot
hadron gas. Work along this line is in progress.
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APPENDIX A: THE η − η0 − ηc AND ω−ϕ− J=ψ
MIXING PATTERNS

Here, we discuss the parametrization for the matrices P
and V given in Eq. (5), η − η0 − ηc and ω − ϕ − J=ψ
mixing patterns. Starting with the pseudoscalar mesons,
the matrix P is defined in Uð4Þ flavor space by (see, for
example, [30])

P ¼
X15
i¼0

ϕiffiffiffi
2

p λi; ðA1Þ

where λaða ¼ 1;…; 15Þ’s are the SUð4Þ generators;
λ0 ¼ diagð1; 1; 1; 1Þ; and the components ϕi are associated
to the pseudoscalar states but are not necessarily the
observed states. To construct the physical states, one can
look into the quark content of each state. In the case of π,K,
K̄, D, and D̄ mesons, we use the standard relationship
between the physical states and the quark content; there-
fore, Eq. (A1) reads

P ¼

0
BBBBBBB@

π0ffiffi
2

p þ ϕ0

2
þ ϕ8ffiffi

6
p þ ϕ15ffiffiffiffi

12
p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ϕ0

2
þ ϕ8ffiffi

6
p þ ϕ15ffiffiffiffi

12
p K0 D−

K− K̄0 ϕ0

2
− 2ϕ8ffiffi

6
p þ ϕ15ffiffiffiffi

12
p D−

s

D0 Dþ Dþ
s

ϕ0

2
− 3ϕ15ffiffiffiffi

12
p

1
CCCCCCCA
: ðA2Þ

Then, choosing ϕ0, ϕ8, and ϕ15 as orthonormal states in the
quark-antiquark basis according to the scenario in Ref. [30],

ϕ0 ¼
1

2
ðuūþ dd̄þ ss̄þ cc̄Þ;

ϕ8 ¼
1ffiffiffi
6

p ðuūþ dd̄ − 2ss̄Þ;

ϕ15 ¼
1ffiffiffiffiffi
12

p ðuūþ dd̄þ ss̄ − 3cc̄Þ; ðA3Þ

we get a null trace for the sum of fields associated to the

SUð4Þ generators, TrðP15
j¼1

ϕjffiffi
2

p λjÞ ¼ 0, as expected.

In the scenario of Ref. [30], this mixing was not taken
into account, and the physical states are just described by
their most important components. However, experimental
observations indicate the necessity of a mixing among the
mathematical states ϕ8 and ϕ15 belonging to SUð4Þ and the
singlet ϕ0 in order to form the physical states η, η0, and ηc.
See, for example, Refs. [36,37] for a discussion on the η − η0

�

FIG. 6. Top: thermal cross sections for the production processes χc1ð4274Þρ (left), χc1ð4274ÞK� (center), and χc1ð4274Þω (right), as
functions of the temperature. Bottom: cross sections for the corresponding inverse reactions.
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mixing in η=η0 → γγ and other decays and Refs. [38,39] for
the η0 − ηc mixing. In this sense, one can work in a more
general framework and write the relationship between the
physical states and mathematical states as

0
B@

η

η0

ηc

1
CA ¼

0
B@

cos θP − sin θP 0

sin θP cos θP 0

0 0 1

1
CA

×

0
B@

1 0 0

0 cos θC sin θC
0 sin θC − cos θC

1
CA
0
B@

ϕ8

ϕ0

ϕ15

1
CA; ðA4Þ

where θP and θC are the pseudoscalar mixing angles. Taking
the considerations on the angle θP from Ref. [36], we fix
θP ¼ −20o, which gives cos θP ≈ 2

ffiffiffi
2

p
=3, sin θP ≈ −1=3.

Also, assuming that η and η0 have a small contribution of the
intrinsic charm content [38,39], we choose θC ¼ 30°; then
we have

η ¼ 2
ffiffiffi
2

p

3
ϕ8 þ

1

2
ffiffiffi
3

p ϕ0 þ
1

6
ϕ15;

η0 ¼ −
1

3
ϕ8 þ

ffiffiffi
2

3

r
ϕ0 þ

ffiffiffi
2

p

3
ϕ15;

ηc ¼
1

2
ϕ0 −

ffiffiffi
3

p

2
ϕ15: ðA5Þ

As a consequence, using Eq. (A3) in (A5), we obtain the
physical states in terms of the quark-antiquark basis:

η ¼ 1ffiffiffi
3

p ðuūþ dd̄ − ss̄Þ;

η0 ¼ 1ffiffiffi
6

p ðuūþ dd̄þ 2ss̄Þ;

ηc ¼ cc̄: ðA6Þ

Hence, from Eq. (A5), the final form for the relations
between the mathematical and physical bases reads

ϕ0

2
þ ϕ8ffiffiffi

6
p þ ϕ15ffiffiffiffiffi

12
p ¼ ηffiffiffi

3
p þ η0ffiffiffi

6
p ;

ϕ0

2
−
2ϕ8ffiffiffi
6

p þ ϕ15ffiffiffiffiffi
12

p ¼ −
ηffiffiffi
3

p þ 2η0ffiffiffi
6

p ;

1

2
ϕ0 −

3ffiffiffiffiffi
12

p ϕ15 ¼ ηc; ðA7Þ

which allows one to rewrite the field P in Eq. (A1) in the
physical basis as in Eq. (5).
The same considerations above can be made for the

matrix of vector mesons, Vμ, given in Eq. (5). The
pseudoscalar fields ϕi in Eq. (A1) should be replaced by

the vector fields ωi, the physical pseudoscalar states in
Eq. (A4) by the physical vector statesω, ϕ, and J=ψ and the
mixing angle θP by θV. Assuming that ω acquires a small
strange and charm content and that ϕ has a dominant
strangeonium contribution [40], we fix θV ≈ −55° (giving
cos θV ≈ 1=

ffiffiffi
3

p
, sin θV ≈

ffiffiffiffiffiffiffiffi
2=3

p
), and obtain

ω ¼ 1ffiffiffi
3

p ω8 þ
1ffiffiffi
2

p ω0 þ
1ffiffiffi
6

p ω15;

ϕ ¼ −
ffiffiffi
2

3

r
ω8 þ

1

2
ω0 þ

1ffiffiffiffiffi
12

p ω15;

J=ψ ¼ 1

2
ω0 −

ffiffiffi
3

p

2
ω15: ðA8Þ

Thus, with the employment of similar relations as those in
Eq. (A3) for the fields ωa, the physical vector states in
terms of the quark-antiquark basis read

ω ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ;

ϕ ¼ ss̄;

J=ψ ¼ cc̄; ðA9Þ

and accordingly we obtain the final relationships
which generate the matrix V in Eq. (5) in terms of the
physical states:

ω0

2
þ ω8ffiffiffi

6
p þ ω15ffiffiffiffiffi

12
p ¼ ωffiffiffi

3
p þ ϕffiffiffi

6
p ;

ω0

2
−
2ω8ffiffiffi
6

p þ ω15ffiffiffiffiffi
12

p ¼ −
ωffiffiffi
3

p þ 2ϕffiffiffi
6

p ;

1

2
ω0 −

3ffiffiffiffiffi
12

p ω15 ¼ J=ψ : ðA10Þ

APPENDIX B: AMPLITUDES

The explicit expressions of the amplitudes for the
processes represented in Fig. 1 are

MðaÞ ¼ −
gπ0DsDs0

gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p1Þμ
1

t −m2
Ds0

;

MðbÞ ¼ gπ0DsDs0
gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p2Þμ
1

u −m2
Ds0

;

MðcÞ ¼ −
gπ0DsDs0

gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p1Þμ
1

t −m2
Ds

;

MðdÞ ¼ gπ0DsDs0
gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p2Þμ
1

u −m2
Ds

;
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MðeÞ ¼ −
gηDsDs0

gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p1Þμ
1

t −m2
Ds0

;

MðfÞ ¼ gηDsDs0
gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p2Þμ
1

u −m2
Ds0

;

MðgÞ ¼ −
gηDsDs0

gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p1Þμ
1

t −m2
Ds

;

MðhÞ ¼ gηDsDs0
gχc1DsD̄s0ffiffiffi
2

p ϵμðp3Þðp3 − 2p2Þμ
1

u −m2
Ds

;

MðiÞ ¼ gPPVgχc1DsD̄s0ffiffiffi
3

p ϵ�μðp2Þϵνðp3Þ

× ðp2 − 2p4Þμðp3 − 2p1Þν
1

t −m2
Ds0

;

MðjÞ ¼ gPPVgχc1DsD̄s0ffiffiffi
2

p ϵ�μðp2Þϵνðp3Þ

× ð−p2 þ 2p4Þμð2p1 − p3Þν
1

t −m2
Ds

;

MðkÞ ¼ −
gKDDs0

gχc1DsD̄s0

2
ϵμðp3Þð−p3 þ 2p1Þμ

×
1

t −m2
Ds0

and for those depicted in Fig. 2 are

MðlÞ ¼ −
gχc1DsD̄s0

gρDs0Ds0ffiffiffi
2

p ϵðp3Þνϵðp4Þμ

× ð−2p1 þ p4Þμðp3 − 2p2Þν
1

u −m2
Ds0

;

MðmÞ ¼ gρDs0D�
s
gχc1DsD̄s0ffiffiffi
2

p ðp4μϵ
�
νðp2Þ − p4νϵ

�
μðp2ÞÞ

× ðpν
2ϵ

μðp4Þ − pμ
4ϵ

νðp4ÞÞð2p1 − p3Þρϵρðp3Þ

×
1

t −m2
Ds0

;

MðnÞ ¼ gPPVgχc1DsD̄s0ffiffiffi
2

p ϵμðp4Þϵνðp3Þ

× ðp4 − 2p2Þμð2p1 − p3Þν
1

t −m2
Ds

;

MðoÞ ¼ gVVPgχc1DsDs0

2
ϵμναβερðp3Þεβðp4Þενðp2Þ

× ðp4Þαðp2Þμð2p1 − p3Þρ
1

t −m2
Ds

;

MðpÞ ¼ −
gPPVgχc1DsD̄s0ffiffiffi

3
p ϵðp3Þνϵðp4Þμ

× ð2p2 − p4Þμð2p1 − p3Þν
1

t −m2
Ds

;

MðqÞ ¼ gχc1DsD̄s0
gωDs0Dsffiffiffi
2

p ϵðp3Þνϵðp4Þμ

× ðp4 − 2p1Þμðp3 − 2p2Þν
1

u −m2
Ds0

;

MðrÞ ¼ gωDs0D�
s
gχc1DsD̄s0ffiffiffi
2

p ðp4μϵ
�
νðp2Þ − p4νϵ

�
μðp2ÞÞ

× ðpν
2ϵ

μðp4Þ − pμ
4ϵ

νðp4ÞÞ½ð2p1 − p3Þρ�ϵρðp3Þ

×
1

t −m2
Ds0

;

MðsÞ ¼ gVVPgχc1DsD̄s0ffiffiffi
6

p ϵμναβερðp3Þενðp4Þε�βðp2Þ

× ðp4Þμðp2Þαð−2p1 þ p3Þρ
1

t −m2
Ds

:

In these expressions, p1 and p2 are the momenta of the
initial states, and p3 and p4 are the momenta of the final
states. The εμðpiÞ is the polarization of vector states with
momenta pi; u and t are the Mandelstam variables, which
jointly with s are defined as follows: s ¼ ðp1 þ p2Þ2,
u ¼ ðp1 − p4Þ2, and t ¼ ðp1 − p3Þ2.
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