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We extend the previously developed small-x parton shower algorithm to include the kinematic constraint
effect and kt resummation effect. This work enables the Monte Carlo generator to simultaneously resum
large-kt and small-x logarithms in the saturation regime for the first time. It is an important step towards
simulating processes involving multiple well separated hard scales, such as dijet production in eA collisions
at the EIC.
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I. INTRODUCTION

The study of dense gluonic matter at small x inside a
large nucleus and nucleon has been and continues to be an
important frontier of high-energy nuclear physics. It is also
one of the main objectives of the physics program of
the future Electron-Ion Collider (EIC) [1,2]. Tremendous
theoretical efforts have been made to search for smoking
gun evidence of saturation. To this end, hard scattering
processes in eA collisions at the EIC are expected to deliver
crucial messages about how saturation emerges from
strongly interacting gluonic matter. A Monte Carlo event
generator that incorporates saturation effects could play an
essential role in fully harnessing the potential of future
experimental data taken from EIC.
As the core of general purpose Monte Carlo event

generators, parton showers describe successive radiations
from highly energetic partons that participate in the hard-
scattering process. While most parton branching algorithms
[3–6] are based on the soft and collinear approximation
which effectively resums the Dokshitzer-Gribov-Levin-
Altarelli- Parisi (DGLAP)-like logarithm [7] to all orders,
only a few parton shower generators [8–18] have been
developed to describe small-x processes by simulating
semihard emissions which give rise to the logarithm of
the type lnð1=xÞ [19,20]. Among these generators, the
Cascade [10,11] that is built on the Catani-Ciafaloni-
Fiorani-Marchesini (CCFM) evolution equation [21–24]
is the most widely used in the phenomenology studies
(see for recent examples [25,26]). However, none of the

aforementioned parton showers takes into account the
gluon recombination process occurs in the dense target.
The first attempt to include saturation effect in the parton

shower is presented in Ref. [27] where both the forward
and the backward evolution schemes have been presented.
The underlying parton branching equation employed in
our formulation is the folded Gribov-Levin-Ryskin (GLR)
equation [28]. Although the GLR equation is somewhat
outdated compared to modern treatments of small-x evo-
lution [29–34], it is sufficient for simulating events in eA
collisions at EIC energy. This is because the gluon density
probed at EIC is not high enough for the triple Pomeron
vertex to dominate the gluon fusion process. In the previous
work [27], we performed a consistent check by comparing
the transverse momentum distribution of exchanged gluons
reconstructed from the parton shower generator with
numerical solutions of the GLR equation. A full agreement
between these two resultswas reached.The running coupling
effect was also implemented in our Monte Carlo simulation.
In the present work, we improve this parton branching

algorithm by imposing the kinematic constraint arising
from the requirement that the off-shellenss of the t-channel
gluon should be dominated by its transverse momentum
squared [35–37]. Though it is formally a subleading
logarithm contribution, the kinematic constraint effect is
known to significantly slow down the evolution speed. It is
thus a necessary component of the Monte Carlo generator
for any practical phenomenological studies. Actually, the
angular ordering of soft emissions is automatically imposed
once the kinematic constraint is applied since the angular
ordering constraint is weaker than the latter [35] in the
small-x limit. The coherent branching effect is thus
effectively included in the parton shower. On the other
hand, for the case of hard scattering processes involving
multiple well-separated hard scales, like dijet production
in eA collisions, the transverse momentumn-dependent
(TMD)-type large logarithm αs ln2 ðQ2=k2⊥Þ and small-x
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logarithm αs ln ð1=xÞ need to be simultaneously resummed.
Such a joint resummation formalism has been established
in a series of publications [38–40]. Another main objective
of this work is to implement the joint resummation in the
Monte Carlo simulation.
The rest of the paper is organized as follows. In Sec. II,

we discuss how to integrate the kinematic constraint effect
into the parton shower algorithm. The formulations of both
forward and backward evolution are presented. In Sec. III,
the implementation of the joint resummation in the algo-
rithm is discussed. Our starting point is the Sudakov factor
derived from a folded version of the Collins-Soper (CS) and
the renormalization group equation. It is shown that the k⊥
distribution reconstructed from the parton shower is iden-
tical to the numerical and analytical results obtained from
the CS equation and renormalization group equation. The
paper is summarized in Sec. IV.

II. THE KINEMATIC CONSTRAINT

In our previous work [27], we developed a Monte Carlo
method to simulate the parton shower at small x based on
the GLR evolution equation [28]. Our formulation only
takes into account the summation of the leading-logarithm
ln ð1=xÞ contribution which is known to result in too rapid
growth of gluon number density towards the small-x region.
From a phenomenological point of view, it is crucial to go
beyond the leading-logarithm accuracy and include the
various subleading logarithm contributions [35–37,41–48],
among which the kinematic constraint effect [35–37,41] is a
particularly interesting one. The kinematic constraint is
required for the validity of the BFKL/GLR equation at small
x. The constraint is needed to ensure that the virtuality of the
gluons along the chain is controlled by the transverse
momenta. The implementation of the kinematic constraint
can significantly slow down the small-x evolution and thus
lead to a better description of relevant phenomenology. Note
that the angular ordering of the gluon emissions is auto-
matically satisfied once the kinematic constraint is imposed
in the small-x limit. The coherent branching effect is thus
effectively achieved following the steps outlined below.
The starting point of the Monte Carlo implementation

for such an effect is the folded GLR equation with the
kinematic constraint. Following the arguments made in
Refs. [35,37], the transverse momentum square of the
radiated gluon l2⊥ must be smaller than 1−z

z k2⊥ where k⊥ and
z are the transverse momentum and longitudinal momen-
tum fraction carried by the daughter gluon, respectively.
The inclusion of the kinematic constraint leads to a
modified GLR equation,

∂Nðη; k⊥Þ
∂η

¼ ᾱs
π

Z
d2l⊥
l2⊥

N

�
ηþ ln

�
k2⊥

k2⊥ þ l2⊥

�
; l⊥ þ k⊥

�

−
ᾱs
π

Z
k⊥

0

d2l⊥
l2⊥

Nðη; k⊥Þ − ᾱsN2ðη; k⊥Þ; ð1Þ

with ᾱs ¼ αsNc=π, η ¼ lnðx0=xÞ, and x0 ¼ 0.01. The
function Nðη; k⊥Þ is related to the normal TMD gluon

distribution Gðη; k⊥Þ through Nðη; k⊥Þ ¼ 2αsπ
3

NcS⊥ Gðη; k⊥Þ
with S⊥ being the transverse area of nucleon/nucleus.
Converting the above equation to the folded form of the
GLR equation, it reads,

∂

∂η

Nðx; k⊥Þ
Δnsðη; k⊥Þ

¼ ᾱs
π

Z
Λcut

d2l⊥
l2⊥

Nðηþ ln½ k2⊥
k2⊥þl2⊥

�; l⊥ þ k⊥Þ
Δnsðη; k⊥Þ

:

ð2Þ

where Δnsðη; k⊥Þ represents the probability of evol-
ving from η0 to η without resolvable branching. It is
given by

Δnsðη; k⊥Þ ¼ exp

�
−ᾱs

Z
η

η0

dη0
�
ln

k2⊥
Λ2
cut

þ Nðη0; k⊥Þ
��

;

ð3Þ

where the infrared cutoff Λcut is the matter of choice about
what we classify as a resolvable emission. Emitted gluons
with transverse momentum l⊥ < Λcut are considered as the
unresolvable ones, and their contribution has been com-
bined with the virtual correction to cancel the infrared
divergence. The resolvable branchings are defined as
emissions above this range. All-order contributions from
the virtual correction and the unresolvable real emission are
resummed into Δnsðη; k⊥Þ which reduces to the non-
Sudakov form factor [35] in the dilute limit by neglecting
the saturation term. Equation (2) can be converted into an
integral form,

Nðη; k⊥Þ ¼ Nðη0; k⊥ÞΔnsðη; k⊥Þ þ
ᾱs
π

Z
η

η0

dη0
Δnsðη; k⊥Þ
Δnsðη0; k⊥Þ

×
Z
Λcut

d2l⊥
l2⊥

N

�
η0 þ ln

�
k2⊥

k2⊥ þ l2⊥

�
; l⊥ þ k⊥

�
:

ð4Þ

It is evident that the kinematic constrained small-x equation
is no longer a local equation. Namely, the increase of gluon
number density at rapidity η is driven by the gluon

distribution at rapidity ηþ ln½ k2⊥
k2⊥þl2⊥

� rather than that at

the same rapidity η. The corresponding weighting factor
needs to be modified dramatically for the nonlocal case as
shown below.

A. Forward evolution

With these derived folded evolution equations, we
are now ready to introduce the Monte Carlo algorithm
starting with the forward evolution case. For a given initial
condition Nðηi; k⊥;iÞ, the first quantity to be generated by
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the algorithm is the value of ηiþ1. As has been done in [27],
this task can be achieved by solving the equation,

R ¼ exp

�
−ᾱs

Z
ηiþ1

ηi

dη0
�
ln
k2⊥;i

Λ2
cut

þ Nðη0; k⊥;iÞ
��

; ð5Þ

where R is a random number distributed uniformly in the
interval [0,1]. Throughout this paper, we always use R to
denote such a random number. Nðη0; k⊥;iÞ is pregenerated
by numerically solving the GLR equation with the kin-
ematic constraint.
In contrast to the DGLAP evolution, the unitarity is

not preserved during the course of the small-x evolution.
The number of gluons increases after each step of parton
branching. The generated cascade thus needs to be
reweighted. For instance, if one neglects the saturation
effect and kinematic constraint effect, the number of gluons

which vanish due to the virtual correction and the unre-

solved branching is proportional to ᾱs
R k⊥;i
Λcut

dl2⊥
l2⊥
, while the

number of gluons produced via the real correction is

proportional to ᾱs
R P⊥
Λcut

d2l⊥
l2⊥

where P⊥ is the UV cutoff,

in the same rapidity interval. The weighting function
is given by the ratio of these two contributions

Wðk⊥;iÞ ¼ lnðP2⊥
Λ2
cut
Þ= lnðk

2⊥;i

Λ2
cut
Þ.

It is nontrivial to work out the correct weighting factor
when the kinematic constraint is implemented in the parton
branching algorithm. Let us first discuss the derivation of
the weighting factor for the case of the fixed boundary
prescription in which Nðη < 0; k⊥Þ ¼ 0. To work out the
correct weighting coefficient, we first write down the
expression for the fraction of gluons at ½ηiþ1; ηiþ1 þ δη�
that come form the branching between ηiþ1 and ηi,

δη
∂

∂ηiþ1

�
ᾱs
π

Z
ηiþ1

ηi

dη0
Z
Λcut

d2l⊥
l2⊥

exp

�
−ᾱs

Z
η0

ηi

dη

�
ln
k2⊥;i

Λ2
cut

þ Nðη; k⊥;iÞ
��

θ

�
1 − z0

z0
ðk⊥;i − l⊥Þ2 − l2⊥

��

¼ δη
ᾱs
π

Z
min ½P⊥;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥;i−l⊥Þ21−zz

p
�

Λcut

d2l⊥
l2⊥

exp

�
−ᾱs

Z
ηiþ1þln

ðk⊥;i−l⊥Þ2
ðk⊥;i−l⊥Þ2þl2⊥

ηi

dη

�
ln
k2⊥;i

Λ2
cut

þ Nðη; k⊥;iÞ
��

; ð6Þ

with z0 ¼ xiþ1=x0 ¼ exp½η0 − ηiþ1�. The kinematic constraint is imposed by the θ function which leads to a new integration
upper limit shown in the second line. Note that the term originating from the derivative acting on the integral boundary is
equal to 0. The entire contribution comes from the derivative acting on the θ function. Meanwhile, the fraction of gluons that
leave from the rapidity interval [ηiþ1; ηiþ1 þ δη] due to the virtual correction is

δη
∂e

−ᾱs
R

ηiþ1

ηi
dη

h
ln

k2⊥;i
Λ2cut

þNðη;k⊥;iÞ
i

∂ηiþ1

¼ −δηᾱs
�
ln
k2⊥;i

Λ2
cut

þ Nðηiþ1; k⊥;iÞ
�
e
−ᾱs

R
ηiþ1

ηi
dη

h
ln

k2⊥;i
Λ2cut

þNðη;k⊥;iÞ
i
: ð7Þ

For the nonlocal small-x evolution, one also needs the input for gluon distribution beyond the small-x boundary
x0 ¼ 0.01. There are two common choices for the boundary conditions: (i) the fixed boundary prescription,
Nðη < 0; k⊥Þ ¼ 0; (ii) the frozen boundary prescription, Nðη < 0; k⊥Þ ¼ Nðη ¼ 0; k⊥Þ. The weighting functions are
thus different for different rapidity boundary prescriptions.
For the fixed boundary prescription, the reweighting function is given by

Wkc;1ðηi; ηiþ1; k⊥;iÞ ¼
ðηiþ1 − ηiÞ

Rmin ½P⊥;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−z
z ðk⊥;i−l⊥Þ2

p
�

Λcut

d2l⊥
l2⊥

e
−ᾱs

R ηiþ1þln
ðk⊥;i−l⊥Þ2

ðk⊥;i−l⊥Þ2þl2⊥
ηiþ1

dη

h
ln

k2⊥;i
Λ2cut

þNðη;k⊥;iÞ
i

ðηiþ1 − ηiÞ ln k2⊥;i

Λ2
cut
þ R

ηiþ1
ηi

dηNðη; k⊥;iÞ
: ð8Þ

Here, the values of jl⊥j and ϕl can be generated by solving the following equation

R ¼ 1

C
ᾱs
π

Z
l⊥

Λcut

d2l0⊥
l2⊥0

exp

�
−ᾱs

Z
ηiþ1þln

ðk⊥;i−l
0⊥Þ2

ðk⊥;i−l
0⊥Þ2þl02⊥

ηi

dη

�
ln
k2⊥;i

Λ2
cut

þ Nðη; k⊥;iÞ
��

; ð9Þ

C ¼ ᾱs
π

Z
min½P⊥;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥;i−l0⊥Þ21−zz

p
�

Λcut

d2l0⊥
l02⊥

exp

�
−ᾱs

Z
ηiþ1þln

ðk⊥;i−l
0⊥Þ2

ðk⊥;i−l
0⊥Þ2þl02⊥

ηi

dη

�
ln
k2⊥;i

Λ2
cut

þ Nðη; k⊥;iÞ
��

; ð10Þ
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where R again is a random number and C is the normali-
zation factor ensuring that the rhs of Eq. (9) resides in the
region of [0, 1]. In the practical Monte Carlo implementa-
tion, a veto algorithm is used to be more efficient. Once jl⊥j
and ϕl are generated, l and k⊥;iþ1 then can be reconstructed
subsequently. We repeat the procedure outlined above until
ηiþ1 reach a minimal cutoff value ηmin. Once the whole
cascade is generated, we are able to reconstruct the gluon
k⊥ distribution at arbitrary rapidity.
For the frozen boundary case, the weighting factor has to

be modified to

Wkc;2ðηi; ηiþ1; k⊥;i; k⊥;iþ1Þ

¼
ðηiþ1 − ηiÞ ln P2⊥

Λ2
cut

ðηiþ1 − ηiÞ ln k2⊥;i

Λ2
cut
þ R

ηiþ1
ηi

dηNðη; k⊥;iÞ

×
N
	
ηi þ ln

h
k2⊥;iþ1

k2⊥;iþ1
þl2⊥

i
; k⊥;i




Nðηi; k⊥;iÞ
; ð11Þ

and the radiated gluon transverse momentum l⊥ is sampled
solving the following equation:

R ¼ 1

C
ᾱs
π

Z
l⊥

Λcut

d2l0⊥
l02⊥

; ð12Þ

where the normalization factor for this case is given by

C ¼ ᾱs
π

R P⊥
Λcut

d2l0⊥
l02⊥
. The k⊥ distribution of the exchanged

gluons that directly attaches to the hard part can be
reconstructed from the forward evolution algorithm
described above.
Using the recipes described above, we are now ready to

generate parton cascade. Following the conventional
choice, we use the MV model [49,50] result as the initial
condition at rapidity η0 ¼ 0. Since we are interested in
simulating events such as dijet production in eA collisions,

it is suitable to utilize the Weiszäke-Williams (WW) gluon
distribution as the initial condition [51]. It is given by

Nðη0; k⊥Þ ¼
Z

d2r⊥
2π

e−ik⊥·r⊥
1

r2⊥

×

�
1 − exp

�
−
1

4
Q2

s0r
2⊥ ln

�
eþ 1

Λr⊥

���
;

ð13Þ
with Q2

s0 ¼ 1 GeV2 and Λ ¼ 0.24 GeV. We explored the
behavior of the parton cascade with the both fixed boun-
dary prescription and frozen boundary prescription. From
Fig. 1, one can see that the k⊥ distribution obtained from
the forward approach is in perfect agreement with the
numerical solutions of the kinematic constrained GLR
equation for both boundary conditions.

B. Backward evolution

We now turn to discuss how to implement the kinematic
constraint in the backward evolution which is far more
efficient in generating initial state parton shower as com-
pared to the forward approach. The rapidity ηiþ1 of gluon
participating hard scattering is fixed by external kinematics.
k⊥;iþ1 at the rapidity ηiþ1 can be sampled with the
distribution Nðηiþ1; k⊥;iþ1Þ, which has to be determined
beforehand by numerically solving the evolution equation.
The next step is to generate ηi using a modified non-
Sudakov form factor.
The modified non-Sudakov form factor, Πns, can be

related to the forward non-Sudakov form factor Δns and the
gluon distribution N as

Πnsðηiþ1;ηi;k⊥;iþ1Þ¼
Δnsðηiþ1;k⊥;iþ1ÞNðηi;k⊥;iþ1Þ
Δnsðηi;k⊥;iþ1ÞNðηiþ1;k⊥;iþ1Þ

; ð14Þ

which looks similar to that derived in our previous
work [27]. However, one has to keep in mind that the

FIG. 1. Comparison of the gluon k⊥ distributions reconstructed from the forward evolution approach with the numerical solutions of
the kinematic constrained GLR equation at different rapidities. The results obtained with the frozen boundary prescription and the fixed
boundary prescription are shown in the left and right plots, respectively (Color online).
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gluon distributions appearing in the above formula
are obtained by solving the GLR equation with the
kinematic constraint.
On the other hand, the non-Sudakov factor can also be

expressed as [27]

Πnsðηiþ1; ηi; k⊥;iþ1Þ ¼ exp

2
64− ᾱs

π

Z
ηiþ1

ηi

dη
Z

P⊥

Λcut

d2l⊥
l2⊥

×
Nðηþ ln

h
k2⊥;iþ1

k2⊥;iþ1
þl2⊥

i
; k⊥;iþ1 þ l⊥Þ

Nðη; k⊥;iþ1Þ

3
75:

ð15Þ

Both non-Sudakov form factors can be equally well used
to generate ηi for a given ηiþ1 by solving the following
equation:

R ¼ Πnsðηiþ1; ηi; k⊥;iþ1Þ: ð16Þ

The transverse momentum of the radiated gluon l⊥ can be
generated according to

R¼ 1

C
ᾱs
π

Z
l⊥

Λcut

d2l0⊥
l02⊥

N
�
ηiþ1þ ln

�
k2⊥;iþ1

k2⊥;iþ1þ l02⊥

�
;k⊥;iþ1þ l0⊥

�
;

ð17Þ

C ¼ ᾱs
π

Z
P⊥

Λcut

d2l0⊥
l02⊥

N

�
ηiþ1 þ ln

�
k2⊥;iþ1

k2⊥;iþ1 þ l02⊥

�
; k⊥;iþ1 þ l0⊥

�
:

ð18Þ

Once again, R is a random number, C is the normali-
zation factor and a veto algorithm is employed in our
practical implementation to make this sampling pro-
cedure more efficient. Similar to the forward evolution
case, the generated event has to be reweighted after each
branching in the backward evolution method as well. It
is important to notice that the GLR equation with the
kinematic constraint is a nonlocal evolution equation
when deriving the weighting factor. The weighting
factor associated with backward evolution is the ratio
of the fraction of gluons that appear from branching at

the rapidity ηi þ ln
k2⊥;iþ1

k2⊥;iþ1
þl2⊥

and the fraction of gluons

that vanish at the rapidity ηi due to the virtual correction
and the fusion process. It reads,

Wkc;backðηiþ1; ηi; k⊥;iþ1Þ

¼
ðηiþ1 − ηiÞ ln k2⊥;i

Λ2
cut
þ R

ηiþ1
ηi

dηNðη; k⊥;iÞ
ðηiþ1 − ηiÞ ln P2⊥

Λ2
cut

×
Nðηi; k⊥;iÞ

N
	
ηi þ ln

h
k2⊥;iþ1

k2⊥;iþ1
þl2⊥

i
; k⊥;i


 : ð19Þ

The procedure outlined above is repeated until ηi is smaller
than η0. The last step of the simulation is to construct four
momenta of the radiated gluons. Note that the minus
component of the t-channel gluon’s four momentum can
only be reconstructed after the full cascade has been
generated. By going from the last t-channel gluon (closest
to the nucleus), which has the vanishing minus component,
forward in the cascade to the hard scattering process, the
true minus component of the t-channel gluons are con-
structed. In Fig. 2, we compare gluon k⊥ distribution at
different rapidities generated from backward evolution to
the numerical solutions of the GLR equation with the
kinematic constraint. The perfect match between gluon
k⊥ distributions obtained from the backward approach and
by numerically solving the kinematic constrained GLR has
been found.

III. kt RESUMMATION IN THE SMALL-x LIMIT

Our ultimate goal is to build a parton shower generator
for simulating events in eA collisions at EIC. The hard-
scattering processes occurring in eA collisions often
involve multiple scales. For instance, loosely speaking,
there are three well-separated scales in the back-to-back
dijet production: the center of mass energy

ffiffiffi
s

p
, the invariant

mass of the dijet Q, and the total transverse momentum
of the dijet system k⊥. To improve the convergence of
the pertubative series, the two large-type logarithms,
αs ln ðs=Q2Þ and αs ln2 ðQ2=k2⊥Þ, which arise in the

FIG. 2. Comparison of the gluon k⊥ distributions obtained from
the backward approach with the numerical solutions of the GLR
equation at different rapidities (Color online).
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high-order calculations of the dijet-production cross section
have to be summed to all orders. The summation of the
logarithm contribution αs ln ðs=Q2Þ is achieved by solving
the small-x evolution equation, while the logarithm con-
tribution αs ln2 ðQ2=k2⊥Þ can be resummed by means of the
CS equation. A unified framework that allows us to resum
both large logarithms simultaneously in a consistent way
have been developed in a sequence of papers [38–40]. The
evolved small-x gluon TMD can be expressed as the
convolution of the Sudakov form factor and the renormal-
ized dipole amplitudes. It has been stressed in Refs. [39,40]
that at small x, gluon TMDs only can be matched onto
dipole scattering amplitudes rather than the normal gluon
PDFs in the collinear factorization. We notice that such a
joint resummation formalism has been studied in the
various different contexts [52–73].
To simulate hard-scattering processes involving multiple

scales in a parton shower generator, it is necessary to
develop a Monte Carlo branching algorithm to effectively
resum both types of logarithms through an iteration pro-
cedure. The essential observation that enables the computer
implementation of the joint resummation is described as the
following. In the backward approach, the evolution starts
from the final t-channel gluon with the most negative
virtual mass squared, which participates in the hard
process. As a parton cascade develops towards the back-
ward direction, the virtual mass of the t-channel gluon
decreases by radiating soft gluons with the longitudinal
momentum fraction 1 − z → 0. This first stage of the
evolution is described by the CS equation and the renorm-
alization group equation which resum the double-leading kt
logarithm and the single-leading kt logarithm respectively.
When the virtual mass of the t-channel gluon goes down
to the scale which is of the order of saturation scale, we
should perform the small-x evolution. The precise value of
this scale should be fixed by fitting the output of the
cascade to the experimental data. During the course of the
small-x evolution, the virtual mass of the t-channel gluon
stops monotonously decreasing, whereas its longitudinal
momentum fraction increases rapidly until the small-x
evolution initial boundary is reached. In this second stage
of the evolution, the development of the parton cascade is
mainly driven by the radiated gluons that carry the large
longitudinal momentum fraction 1 − z → 1. Therefore, the
Monte Carlo algorithm based on the GLR equation should
be applied to generate the parton branching at this stage.
To simulate the first stage of the evolution, our primary

task is to derive a folded version of the CS equation and the
renormalization group equation. To this end, we write down
the CS equation in the momentum space,

∂Nðμ2; ζ2; η; k⊥Þ
∂ ln ζ2

¼ ᾱs
2π

Z
ζ

0

d2l⊥
l2⊥

½Nðμ2; ζ2; η; k⊥ þ l⊥Þ

− Nðμ2; ζ2; η; k⊥Þ�; ð20Þ

which can be converted into the conventional expression
of the CS equation [74] after making the Fourier trans-
form up to the leading-logarithm accuracy. Here, μ is the
factorization scale and ζ is a scale introduced to
regularize the light cone divergence. The factorization
scale dependence of the gluon TMD in the saturation
regime is described by the normal renormalization group
equation [39],

∂Nðμ2; ζ2;η; k⊥Þ
∂ lnμ2

¼ ᾱs

�
β0 −

1

2
ln
ζ2

μ2

�
Nðμ2; ζ2;η; k⊥Þ; ð21Þ

with β0 ¼ 11
12
− Nf

6Nc
and Nf ¼ 3 in this work. By choosing

the factorization scale μ to be ζ, one can combine the CS
equation and the renormalization group equation together.
The combined evolution equation reads,

∂NðQ2; η; k⊥Þ
∂ lnQ2

¼ ᾱs
2π

Z
Q

0

d2l⊥
l2⊥

½NðQ2; η; k⊥ þ l⊥Þ

− NðQ2; η; k⊥Þ� þ ᾱsβ0NðQ2; η; k⊥Þ;
ð22Þ

where NðQ2; η; k⊥Þ≡ Nðμ2 ¼ Q2; ζ2 ¼ Q2; η; k⊥Þ. Fol-
lowing the standard procedure, the above evolution
equation can be cast into a folded equation,

∂

∂ lnQ2

NðQ2; η; k⊥Þ
ΔsðQ2Þ ¼ ᾱs

2π

Z
Q

Λcut

d2l⊥
l2⊥

NðQ2; η; k⊥ þ l⊥Þ
ΔsðQ2Þ ;

ð23Þ

with the Sudakov form factor being given by

ΔsðQ2Þ ¼ exp

�
−
Z

Q2

Q2
0

dt
t
ᾱsðtÞ
2

�
ln

t
Λ2
cut

− 2β0

��
: ð24Þ

The Sudakov form factor is simply the probability of
evolving from Q0 to Q without branching. Equation (23)
can be integrated to give an integral equation for
NðQ2; η; k⊥Þ in terms of the gluon TMD at the initial
scale Q0,

NðQ2; η; k⊥Þ ¼ NðQ2
0; η; k⊥ÞΔsðQ2Þ

þ
Z

Q2

Q2
0

dt
t
ΔsðQ2Þ
ΔsðtÞ

ᾱsðtÞ
2π

×
Z

Q

Λcut

d2l⊥
l2⊥

Nðt; η; k⊥ þ l⊥Þ: ð25Þ

With the derived folded CS and renormalization group
equation, we are ready to introduce the Monte Carlo
implementation of the kt resummation formulated in the
framework of the CGC effective theory.
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A. Forward evolution

To have a consistency check, we first present the
formulation of the forward evolution scheme. The com-
bined CS and renormalization group equation can be solved
using the forward evolution approach. We lay out the main
procedures in the following.
For a given virtuality scale Qi, either after several steps

of evolution or at the initial condition, we first generate the
value of a higher virtuality scale Qiþ1, where the next
branching occurs. Following the conventional method, this
can be achieved by solving the following equation:

R ¼ exp

�
−
Z

Q2
iþ1

Q2
i

dt
t
ᾱsðtÞ

�
1

2
ln

t
Λ2
cut

− β0

��
: ð26Þ

where the argument of the running coupling αs is simply
chosen to be the virtual mass squared.
OnceQiþ1 is generated, the transverse momentum of the

radiated gluon, l⊥;iþ1, can be determined according to the
following equation:

R ¼ 1

C

Z
l⊥;iþ1

Λcut

d2l0⊥
l02⊥

; ð27Þ

where the normalization factor reads C ¼ RQiþ1

Λcut

d2l0⊥
l02⊥

. The

four momenta of the radiated gluon and the t-channel gluon
can be determined from the momentum conservation and
the on-shell condition. Wewill discuss the reconstruction of
kinematics in more detail in the next subsection.
The generated cascade needs to be reweighted. This is

because that the unitarity is no longer preserved beyond
the leading double-logarithm approximation. We have
included the leading single-logarithm contribution in the
algorithm employed here, which leads to the increase of
gluon number density after each splitting. The weighting
factor is given by

WCSðQ2
iþ1; Q

2
i Þ ¼

RQ2
iþ1

Q2
i

dt
t αsðtÞ ln t

Λ2
cutRQ2

iþ1

Q2
i

dt
t αsðtÞ½ln t

Λ2
cut
− 2β0�

: ð28Þ

If the single logarithm contribution associated with the β0
term in the denominator is neglected, the weighting factor
reduces to 1. With these reweighted parton cascades,
one can reconstruct the t-channel gluon k⊥ distribution
at different scales and compare it with the analytical and
numerical solutions of Eq. (22).
It is straightforward to numerically solve Eq. (22), while

the analytical solution of Eq. (22) can also be easily
obtained in the impact parameter space. After Fourier
transforming back to the momentum space, the evolved
gluon TMD distribution reads,

NðQ2; η; k⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

ik⊥·b⊥e−Sðμ
2
b;Q

2Þ

×
Z

d2l⊥e−il⊥·b⊥Nðη; l⊥Þ; ð29Þ

where Nðη; l⊥Þ is the gluon distribution evolved with the
GLR equation, or the initial condition computed in the MV
model. The Sudakov factor at one loop level in the impact
parameter (b⊥) space consists of a perturbative part and a
nonperturbative part. It is given by

Sðμ2b;Q2Þ ¼ Spertðμ2b�; Q2Þ þ SNPðb2⊥; Q2Þ: ð30Þ

The perturbative Sudakov factor reads

Spertðμ2b�; Q2Þ ¼ Nc

2π

Z
Q2

μ2b�

dμ2

μ2
αsðμÞ

�
ln
Q2

μ2
− 2β0

�
; ð31Þ

where μ2b� is defined as μ2b� ¼ 4e−2γE=b2⊥�, with b⊥� ¼
b⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þb2⊥=b2max

p and bmax ¼ 1.5 GeV−1. To compare it with the

Monte Carlo result on the same footing, we simply neg-
lect the nonperturbative Sudakov factor SNP in the numeri-
cal calculation. The behavior at large b⊥ is regulated by
Nðη; b⊥Þ which is the Fourier transform of Nðη; l⊥Þ. In this
work, we use the one-loop running coupling which reads

αsðμ2Þ ¼
1

β0
Nc
π lnðμ2=Λ2

QCDÞ
; ð32Þ

with Λ2
QCD ¼ 0.0578 GeV2.

We present the t-channel gluon k⊥ distribution con-
structed from the generated parton cascade and compare it
with the numerical solution of the CS-renormalization
group equation for the fixed coupling case in the left panel
of Fig. 3. In our estimation, the MV model is employed
to provide with the gluon distribution at the initial scale
Q0 ¼ 3 GeV. In the formulation of TMD evolution, all
soft-radiated gluons carry exactly a zero-longitudinal
momentum fraction. In contrast, all radiated soft gluons
carry a finite-longitudinal momentum fraction in the parton
branching algorithm. This presents an important advantage
of the Monte Carlo method comparing it with the conven-
tional analytical approach. Keeping the longitudinal
momentum conservation exactly in the parton splitting
process is often crucial to correctly account for phenom-
enology near the threshold region [41]. However, to make
the comparisons in a consistent way, we did not change the
longitudinal momentum fraction of the t-channel gluon
after each branching in our algorithm. In the right panel of
Fig. 3, we compare the Monte Carlo simulation result with
both the numerical solution of the CS-renormalization
equation and the analytical solution for the running
coupling case at the scale Q ¼ 13 GeV. It is clear to see
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from the right panel of Fig. 3 that our algorithm yields the
same k⊥ distribution as the numerical result. On the other
hand, it differs from the analytical approach result. Such
discrepancy is expected because the nonperturbative part of
the CS kernel is treated differently in the analytical
approach. In addition, the argument of the running coupling
used in the parton branching algorithm and the numerical
solution is the hard scale Q, whereas the scale of running
coupling is μb in the analytical approach. Since the
analytical result can describe the relevant phenomenology
very well, one should use it as guidance to model the
nonperturbative part of the Sudakov factor which will be
introduced in the Monte Carlo algorithm in future work.
Alternatively, one could also use a relatively large infrared
cutoff value Λcut to mimic the effect of the nonperturbative
Sudakov factor. We leave this for a future study.

B. Backward evolution

In this subsection, we will outline the essential steps of
Monte Carlo implementation for the backward evolution
based on the folded CS-renormalization group evolution
equation. Unlike the forward evolution which can be
considered as a way of solving the evolution equation,
the evolved parton distributions have to be pregenerated
and are used to guide the backward evolution. In the most
parton branching algorithm, the kt resummation is achieved
by using the modified Sudakov factor incorporating the
collinear parton distributions functions (PDFs). However,
in the saturation regime, the kt resummation has to be
formulated in terms of the unintegrated gluon distribution.
The main procedures are summarized as follows.
The modified Sudakov factor in the backward evolution

approach is different from that in the forward evolution
approach. It reads

ΠsðQiþ1; Qi; k⊥;iþ1Þ ¼
ΔsðQ2

iþ1ÞNðQ2
i ; η; k⊥;iþ1Þ

ΔsðQ2
i ÞNðQ2

iþ1; η; k⊥;iþ1Þ
: ð33Þ

An alternative way to compute the modified Sudakov factor
is given by

ΠsðQiþ1; Qi; k⊥;iþ1Þ

¼ exp

�
−
Z

Q2
iþ1

Q2
i

dt
t
ᾱsðtÞ
2π

Z ffiffi
t

p

Λcut

d2l⊥
l2⊥

Nðt; η; k⊥;iþ1 þ l⊥Þ
Nðt; η; k⊥;iþ1Þ

�
:

ð34Þ

It describes the probability for gluon evolving back-
ward from Qiþ1 to Qi without branching. The transverse
momentum-dependent gluon distribution appearing in
Eq. (33) and Eq. (34) has to be pregenerated by numerically
solving the combined CS-renormalization group equation.
The backward evolution starts from the t-channel gluon

with the highest virtualityQi. The hard scale of the partonic
scattering process is denoted as Qiþ1. We first have to
sample k⊥;iþ1 according to the following distribution

R ¼ 1

C

Z
k⊥;iþ1

Λcut

d2k0⊥NðQ2
iþ1; η; k

0⊥Þ; ð35Þ

with C ¼ RQiþ1

Λcut
d2k0⊥NðQ2

iþ1; η; k
0⊥Þ being the normaliza-

tion factor. The rapidity η is fixed by external kinematics.
The next quantity to be generated by the parton cascade
algorithm is the value of virtuality Qi.
Following the standard backward evolution strategy, Qi

is obtained using the backward-type Sudakov factor. We
can sample a Qi by solving the following equation:

R ¼ ΠsðQiþ1; Qi; k⊥;iþ1Þ: ð36Þ

As the virtual mass of (iþ 1)th t-channel gluon, Qi also
serves as the hard probe scale at which the ith t-channel
gluon’s transverse momentum is measured. The transverse
momentum of the radiated gluon l⊥;i is thus sampled
according to the distribution,

FIG. 3. Comparison of the gluon k⊥ distributions obtained from the forward evolution approach with the numerical solutions of the
combined CS-renormalization group equation at different scales(Color online). Left panel: The fixed coupling case. Right panel: The
running coupling case (Color online).
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d2l0⊥
l02⊥

NðQ2
i ; η; k⊥;iþ1 þ l0⊥Þ: ð37Þ

More specifically, we construct a test function which
satisfies the condition N̂ðl0⊥; k⊥;iþ1Þ ¼ c20=ðjk2⊥;iþ1 − l0⊥2jþ
c21Þ > NðQ2

i ; η; k⊥;iþ1 þ l0⊥Þ by choosing an appropriate c0
and c1. We first generate l⊥;i by solving the following
equations:

R1 ¼
1

C

Z
l⊥;i

Λcut

d2l0⊥
l02⊥

N̂ðl0⊥; k⊥;iþ1Þ; ð38Þ

C ¼
Z

Qi

Λcut

d2l0⊥
l02⊥

N̂ðl0⊥; k⊥;iþ1Þ: ð39Þ

The azimuthal angle of l⊥ is determined via the equation
ϕl ¼ 2πR2. We then generate a new random numberR3. If
R3 > NðQ2

i ; η; k⊥;iþ1 þ l⊥Þ=N̂ðl⊥; k⊥;iþ1Þ, the generated
l⊥;i and ϕl is accepted. If the condition is not satisfied,
we return to Eq. (38) to to regenerate l⊥;i, and repeat the rest
procedure once again. The longitudinal momentum fraction
of the radiated gluon is determined through the on shell
condition,

jQ2
i j ≈

zil2⊥;i

1 − zi
þ jk2⊥;iþ1j; ð40Þ

which is valid in the strong-ordering region jQ2
i−1j ≪

jQ2
i j ≪ jQ2

iþ1j. The minus component of the emitted gluon
can be fixed accordingly. The ith t-channel gluon’s trans-
verse momentum is trivially obtained; k⊥;i ¼ k⊥;iþ1 − l⊥;i.
The virtual mass Qi−1 of the ith t-channel gluon is
computed with Eq. (36). However, the t-channel gluons’
four momenta can be determined only after the whole
cascade is generated. The minus component of the
t-channel gluon that is directly attached to nuclear target
is set to be 0. From this initial condition, the four momenta

of t-channel gluons are retrospectively reconstructed by
momentum conservation.
As argued in the previous subsection, the generated event

has to be reweighted after each branching since the unitary
is not preserved in the single leading-logarithm accuracy
level. In the backward evolution approach, the reweighting
function reads

WCS;backðQ2
iþ1; Q

2
i Þ ¼

RQ2
iþ1

Q2
i

dt
t αsðtÞ½ln t

Λ2
cut
− 2β0�RQ2

iþ1

Q2
i

dt
t αsðtÞ ln t

Λ2
cut

: ð41Þ

We repeat the procedure outlined above until Q2
i reach a

minimal cutoff scale at which TMD evolution stops. The
TMD evolution is driven by the soft gluon radiations which
carry the vanishing longitudinal momentum fraction
1 − zi → 0. In the practical Monte Carlo implementation,
the cutoff is chosen to be jQ2

i j > jl2⊥;ij þ jk2⊥;iþ1j, or
equivalently zi > 0.5. Meanwhile, jQ2

i j is also required
to be larger than the saturation scale Q2

s . If these two
conditions cannot be met simultaneously, we terminate the
TMD evolution, and start the backward small-x evolution.
We test the backward evolution algorithm against the

numerical method as shown in Fig. 4. The MVmodel result
is applied at the initial scale Q0 ¼ 3 GeV. The gluon k⊥
distribution at high scale Q ¼ 13 GeV is obtained by
numerically solving the combined CS-renormalization
group equation. The cascade is generated starting from
the scale Q ¼ 13 GeV and evolve down to the initial scale
with the backward approach. The t-channel gluon k⊥
distribution reconstructed from the cascade is compared
with the numerical results at different scales. Gluon k⊥
distributions are presented in the left panel of Fig. 4 for the
fixed coupling case, and in the right panel of Fig. 4 for the
running coupling case. It is evident that the k⊥ distributions
obtained from the Monte Carlo method is the same as the
numerical results. We conclude that the backward evolution
algorithm pass this consistency check as expected.

FIG. 4. Comparison of the gluon k⊥ distributions obtained from the backward approach with the numerical solutions of the CS-
renormalzation group equation at different scales (Color online).
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IV. CONCLUSION

In this work, we extended the small-x initial-state parton
branching algorithm developed in the previous paper to
include the kinematic constraint effect. In the small-x limit,
the kinematic constraint leads to stronger suppression of
soft gluon emissions than that caused by the angular
ordering along the chain. The coherent branching effect
is thus effectively implemented in the parton branching
algorithm once the kinematic constraint is imposed. This is
a nontrivial extension in the sense that the weighting factor
and the way of sampling radiated gluon’s transverse
momenta are drastically altered. The t-channel gluon k⊥
distributions constructed from both the forward scheme and
the backward scheme are shown to reproduce the numerical
solutions of the kinematic constrained GLR equation.
We also formulated a parton branching algorithm

that enables us to resum large kt logarithms at small-x
logarithms following a two-step evolution picture. The
cascade first develops by radiating soft gluons that carry
vanishing longitudinal momentum fractions in the back-
ward approach description. At this first stage of the
evolution, the parton branching is simulated with the
Sudakov factor which we obtained from the folded CS
equation and the renormalization group equation. The
transverse momentum-dependent gluon distribution instead
of gluon PDF is used to guide the evolution path toward the
most populated regions of ðQ2; k⊥Þ. When the virtual mass
of the t-channel gluon is dominated by its transverse

momentum or is of the order of saturation scale, the parton
branching starts being generated according to the non-
Sudakov form factor derived from the small-x evolution
equation. The joint kt and small-x resummation thus has
been achieved in the Monte Carlo simulation by
implementing such two-step evolution. Our study rep-
resents an important step towards practical applications
of the parton shower generator in simulating scattering
processes that involve multiple well-separated hard
scales, such as dijet production in eA collisions at
the EIC. The next step is to construct a full hadron-
level Monte Carlo generator with the hadronization
being performed using multipurpose generators such
as PYTHIA [75]. We also plan to integrate the algo-
rithm into eHIJING framework [76] aiming at the
simulation of events in eA collisions for the whole x
range accessible at the EIC in the future.
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