
Variational formalism for the Klein-Gordon oscillon

I. V. Barashenkov 1,2,* and N. V. Alexeeva1
1Centre for Theoretical and Mathematical Physics, University of Cape Town,

Rondebosch 7701, South Africa
2Joint Institute for Nuclear Research, Dubna 141980, Russia

(Received 22 August 2023; accepted 30 October 2023; published 21 November 2023)

The variational method employing the amplitude and width as collective coordinates of the Klein-
Gordon oscillon leads to a dynamical system with unstable periodic orbits that blow up when perturbed.
We propose a multiscale variational approach free from the blowup singularities. An essential feature of
the proposed trial function is the inclusion of the third collective variable: a correction for the nonuniform
phase growth. In addition to determining the parameters of the oscillon, our approach detects the onset of
its instability.
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I. INTRODUCTION

Oscillon is a classical solution describing a long-lived
localized pulsating structure of finite amplitude. Oscillons
play a role in the dynamics of inflationary reheating,
symmetry-breaking phase transitions, and false vacuum
decay [1–18]. They occur in the Einstein-Klein-Gordon
equations [19–24], axion models [25–30], string phenom-
enology [31–33], and bosonic sector of the standard
model [34–37]. The (2þ 1)-dimensional oscillons have
been studied in the context of the planar Abelian Higgs
theory [38,39].
Oscillons were discovered [40–43] in the (3þ 1)-

dimensional Φ4 model,

Φtt − ΔΦ −ΦþΦ3 ¼ 0: ð1Þ

The model, together with its (1þ 1)-dimensional counter-
part, remains a workhorse of quantum field theory [44–53]
and cosmology [54]. Despite the apparent simplicity of
Eq. (1), many properties of its oscillon solution have still
not been fully understood [55].
Most of the mathematical analysis of oscillons has been

carried out using asymptotic [55–57] and numerical tech-
niques [1,42,43,55,58–61] while qualitative insights called
on variational arguments. In Ref. [1], the Φ4 oscillon was
approximated by a localized waveform

Φ ¼ 1þ Ae−ðr=bÞ2 ; ð2Þ

where AðtÞ is an unknown oscillating amplitude and b is an
arbitrarily chosen value of the width. (Reference [62]
followed a similar strategy when dealing with the two-
dimensional sine-Gordon equation.) Once the ansatz (2) has
been substituted in the Lagrangian and the r-dependence
integrated away, the variation of action produces a second-
order equation for AðtÞ.
The variational method does not suggest any optimiza-

tion strategies for b. Making bðtÞ another collective
coordinate—as it is done in the studies of the nonlinear
Schrödinger solitons [63,64]—gives rise to an ill-posed
dynamical system not amenable to numerical simulations.
(See Sec. II below.)
With an obstacle encountered in (3þ 1) dimensions,

one turns to a (1þ 1)-dimensional version of the model
for guidance. The analysis can be further simplified by
considering oscillons approaching a symmetric vacuum as
x → �∞. A physically relevant model of this kind was
considered by Kosevich and Kovalev [65]:

ϕtt − ϕxx þ 4ϕ − 2ϕ3 ¼ 0: ð3Þ

Unlike its Φ4 counterpart, the oscillon in the Kosevich-
Kovalev model satisfies ϕ → 0 as x → �∞ and oscillates,
symmetrically, between positive and negative values. The
asymptotic representation of this solution is

ϕ ¼ 2ϵffiffiffi
3

p cosðωtÞ sechðϵxÞ

−
ϵ3

24
ffiffiffi
3

p cosð3ωtÞsech3ðϵxÞ þOðϵ5Þ; ð4Þ
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where ω2 ¼ 4 − ϵ2 and ϵ → 0 [65]. Despite their difference
in the vacuum symmetry, Eqs. (1) and (3) belong to the
same, Klein-Gordon, variety and share a number of
analytical properties.
The purpose of the present study is to identify a set of

collective coordinates and formulate a variational description
of the Klein-Gordon oscillon. A consistent variational for-
mulation would determine the stability range of the oscillon,
uncover its instability mechanism, and explain some of its
properties such as the amplitude-frequency relationship.
Using the (1þ 1)-dimensional Kosevich-Kovalev equa-
tion (3) as a prototype system, we transplant the idea of
multiple timescales to the collective-coordinate Lagrangian
method. With some modifications, our approach should
remain applicable to oscillons in the (3þ 1)-dimensional
Φ4 theory and other Klein-Gordon models.
Before outlining the paper, three remarks are in order.
First, Eq. (3) can be seen as a truncation of the sine-Gordon

model. The fundamental difference between the Kosevich-
Kovalev oscillon and the sine-Gordon breather is that the
latter solution is exactly periodic while the amplitude of the
former one decreases due to the third-harmonic radiation.
(When the amplitude of the oscillations is small, the radiation
is exponentially weak though; hence the decay is slow).
Second, it is appropriate to mention an alternative

variational procedure [66] where one not only chooses
the spatial part but also imposes the time dependence of the
trial function. For instance, one may set

ϕ ¼ A0 cosðωtÞe−ðr=bÞ2 :

For a fixed ω, the action becomes a function of two time-
independent parameters, A0 and b. The shortcoming of this
technique is that it does not allow one to examine the
stability of the Klein-Gordon oscillon. Neither would it
capture a slow modulation of the oscillation frequency—
such as the one observed in numerical simulations of the
Φ4 model [42,58,60].
Our last remark concerns a closely related system,

the nonlinear Schrödinger equation. The variational
method has been highly successful in the studies of the
Schrödinger solitons—scalar and vector ones, with a
variety of nonlinearities and perturbations, and in various
dimensions [63]. Several sets of collective coordinates
for the Schrödinger solitons have been identified. It is
the remarkable simplicity and versatility of the variational
method demonstrated in the nonlinear Schrödinger domain
that motivate our search for its Klein-Gordon counterpart.
The outline of the paper is as follows. In the next section

we show that choosing the collective coordinates similar
to the way they are chosen for the nonlinear Schrödinger
soliton leads to singular finite-dimensional dynamics.
A consistent variational procedure involving fast and slow
temporal scales is formulated in Sec. III. We assess the
approximation by comparing the variational solution to

the “true” oscillon obtained numerically. Section IV adds
remarks on the role of the third collective coordinate
and the choice of the trial function, while an explicit
construction of the oscillon with adiabatically changing
parameters has been relegated to Appendix. Finally, Sec. V
summarizes conclusions of this study.

II. SINGULAR AMPLITUDE-WIDTH DYNAMICS

A. Two-mode variational approximation

The variational approach to Eq. (3) makes use of its
Lagrangian,

L ¼ 1

2

Z
ðϕ2

t − ϕ2
x − 4ϕ2 þ ϕ4Þdx: ð5Þ

Modeling on the nonlinear Schrödinger construction [63,64],
we choose the amplitude and width of the oscillon as two
collective variables:

ϕ ¼ A sech

�
x
b

�
: ð6Þ

The amplitude AðtÞ is expected to oscillate between positive
and negative values while the width (“breadth”) bðtÞ should
remain positive at all times. Substituting the ansatz (6) in (5)
gives the Lagrangian of a system with two degrees of
freedom:

L ¼ Ȧ2bþ
�
1

3
þ π2

36

�
ḃ2A2

b
þ Ȧ ḃ A −

A2

3b

þ b

�
2

3
A4 − 4A2

�
: ð7Þ

In (7), the overdot stands for the derivative with respect to t.
The equations of motion are

Äþ 4A −
�
1

3
þ π2

36

�
ḃ2

b2
A ¼

�
2σ þ 4

3

�
A3 −

�
2σ þ 1

3

�
A
b2

ð8aÞ
and

b̈þ 2
Ȧ
A
ḃ ¼ 4σ

�
1

b2
− A2

�
b; ð8bÞ

where we have introduced a shorthand notation for a
numerical factor

σ ¼ 1

1þ π2=3
:

B. Asymptotic solution

The system (8) has a family of periodic solutions.
For reasons that will become clear in what follows, these
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solutions are difficult to obtain by means of numerical
simulations of Eqs. (8). However, the family can be
constructed as a multiscale perturbation expansion—in
the limit of small A and large b.
To this end, we let

A ¼ ϵA1 þ ϵ3A3 þ � � � ; b ¼ 1

ϵ
þ ϵb1 þ � � � ; ð9Þ

where A1; A3;… and b1; b3;… are functions of a sequence
of temporal variables T 0; T 2;…, with T 2n ¼ ϵ2nt and
ϵ → 0. Writing d=dt ¼ ∂=∂T 0 þ ϵ2∂T 2 þ � � � and substi-
tuting the expansions (9) in (8a), we set coefficients of like
powers of ϵ to zero.
The order ϵ1 gives a linear equation

∂
2A1

∂T 0
2
þ 4A1 ¼ 0:

Without loss of generality we can take a solution in the form

A1 ¼ ψe2iT 0 þ c:c: ¼ 2jψ j cos 2ðT 0 − θÞ; ð10Þ

where ψ ¼ ψðT 2;…Þ ¼ jψ je−2iθ is a complex-valued func-
tion of “slow” variables. The next order, ϵ3, gives

∂
2A3

∂T 0
2
þ 4A3 ¼ −2

∂
2A1

∂T 0∂T 2

−
�
2σþ 1

3

�
A1 þ

�
2σþ 4

3

�
A3
1:

ð11Þ

Substituting forA1 from (10) and imposing the nonsecularity
condition

4i
∂ψ

∂T 2

þ
�
2σ þ 1

3

�
ψ − ð6σ þ 4Þψ jψ j2 ¼ 0; ð12Þ

we determine a solution of (11):

A3 ¼ −
1

8

�
σ þ 2

3

�
jψ j3 cos 6ðT 0 − θÞ: ð13Þ

Turning to Eq. (8b), the leading order in its expansion is

∂
2b1

∂T 0
2
þ 2

A1

∂A1

∂T 0

∂b1
∂T 0

¼ σð1 − A2
1Þ: ð14Þ

The general solution of this linear equation is given by

b1 ¼
σ

4
ð1 − 3jψ j2Þτ tan 2τ þ σ

16
jψ j2 cos 4τ þ C1

2
tan 2τ;

ð15Þ

where τ ¼ T 0 − θ and C1 is an arbitrary constant in front
of a homogeneous solution. [The second homogeneous

solution was absorbed in the term 1=ϵ in the expansion (9).]
Letting C1 ¼ 0 and imposing the constraint

1 − 3jψ j2 ¼ 0 ð16Þ

selects a regular solution:

b1 ¼
σ

48
cos 4τ: ð17Þ

Finally, the phase of the complex variable ψ is deter-
mined by Eq. (12). Substituting jψ j from (16) we obtain

θ ¼ 1

8
T 2:

Thus, the asymptotic solution of Eqs. (8) has the form

A ¼ 2ffiffiffi
3

p ϵ cos ωt −
3σ þ 2

72
ffiffiffi
3

p ϵ3 cos 3ωtþOðϵ5Þ; ð18aÞ

b ¼ 1

ϵ
þ σ

48
ϵ cos 2ωtþOðϵ3Þ; ð18bÞ

where ϵ → 0 and

ω ¼ 2 − ϵ2=4þOðϵ4Þ:

This solution describes a closed orbit in the phase space of
the system (8). See Fig. 1.

C. Singular dynamics

It is not difficult to realize that the asymptotic solution (18)
is unstable. Indeed, the bounded solution (17) of Eq. (14) is
selected by the initial condition ∂b1=∂T 0 ¼ 0 at T 0 ¼ θ.
If we, instead, let ∂b1=∂T 0 ¼ δ with a small δ, the tan 2τ
componentwill be turnedon in the expression (15) andb1will
blowupatT 0 ¼ θ þ π=4. Figure 1 illustrates the evolution of
a small perturbation of the periodic orbit.
The numerical analysis of the system (8) indicates

that periodic solutions with AðtÞ oscillating about zero
are unstable for any value of the oscillation amplitude—and
not only in the small-A asymptotic regime. The instability
originates from the topology of the four-dimensional phase
space of the system that features a singularity at A ¼ 0.
Indeed, had the system not had a singularity and had the

periodic orbit been stable, a small perturbation about it
would have been oscillating, quasiperiodically, between
positive and negative A. The corresponding trajectory
would be winding on a torus in the four-dimensional phase
space, with the points where the trajectory passes through
A ¼ 0 filling a finite interval on the ḃ axis. In the presence
of the singularity, however, such a torus cannot form
because any trajectory crossing through A ¼ 0 at time t�
has to satisfy ḃ ¼ 0 at the same time.
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Trajectories that do not pass through the plane A¼ ḃ¼0
follow one of two scenarios. In the “spreading” scenario,
the width bðtÞ escapes to infinity [Fig. 2(a)]. The corre-
sponding AðtÞ approaches zero but remains on one side of it
at all times. In the alternative scenario, the amplitude AðtÞ
blows up while the width shrinks to zero [Fig. 2(b)].
Because of the singularity of solutions emerging from

generic initial conditions, the system (8) is not amenable
to the numerical analysis beyond a few oscillation cycles.
What is even more important, the all-ω universal instability
of periodic solutions of this four-dimensional system does
not match up with the behavior of the oscillon solutions
of the full partial differential equation (3). Simulations of
Eq. (3) demonstrate that, contrary to the predictions of the
two-mode approximation, the nearly periodic oscillons
with frequencies in the range

ffiffiffi
2

p ≲ ω < 2 are stable.
The amplitude and frequency of such oscillons do change
due to the third-harmonic radiation; however, these changes
are slow and may only be noticeable over long temporal
intervals. [See Fig. 3(a).]
We note that an ill-posed system similar to (8) was

encountered in the variational studies of the sine-Gordon
breathers [67].
The spurious instability of periodic trajectories of the

system (8) disqualifies the two-variable ansatz (6) and
prompts one to look for suitable alternatives.

III. MULTISCALE VARIATIONAL METHOD

A. Amplitude, width, and phase correction

To rectify the flaws of the “naive” variational algorithm,
we consider ϕ to be a function of two time variables,
T 0 ¼ t and T 1 ¼ ϵt. The rate of change is assumed to be
Oð1Þ on either scale: ∂ϕ=∂T 0; ∂ϕ=∂T 1 ∼ 1. We require ϕ
to be periodic in T 0, with a period of T:

ϕðT 0 þ T; T 1Þ ¼ ϕðT 0; T 1Þ:

As ϵ → 0, the variables T 0 and T 1 become independent
and the Lagrangian (5) transforms to

L ¼
Z ��

∂ϕ

∂T 0

þ ϵ
∂ϕ

∂T 1

�
2

− ϕ2
x − 4ϕ2 þ ϕ4

�
dx: ð19Þ

The action
R
Ldt is replaced with

S ¼
Z

T

0

dT 0

Z
dT 1L

�
ϕ;

∂ϕ

∂T 0

;
∂ϕ

∂T 1

�
: ð20Þ

We choose the trial function in the form

ϕ ¼ A cosðωT 0 þ θÞsech
�
x
b

�
; ð21Þ

where A, b, and θ are functions of the “slow” time variable
T 1 while ω ¼ 2π=T. (Note that ϕ does not have to be
assumed small.) The interpretation of the width b is the
same as in the ansatz (6) while A represents the maximum
of the oscillon’s amplitude rather than the amplitude itself.
Unlike the previous trial function (6), the variable A in (21)
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FIG. 2. Two types of unstable evolution in equations (8).
(a) AðtÞ approaches zero while bðtÞ grows exponentially.
(b) AðtÞ grows to infinity (negative infinity in this simulation)
while bðtÞ shrinks to zero.

-0.1 0 0.1
A
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-4
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4
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/d
t

10-3

FIG. 1. Trajectories of the four-dimensional system (8)
projected on the ðA; ḃÞ plane. The ∞-shaped curve describes
the periodic solution (18) with ϵ ¼ 0.1. The magenta curve
depicts a solution evolving from the initial conditions taken
slightly off the periodic trajectory. The initial values Að0Þ, bð0Þ,
and Ȧð0Þ for this perturbation are given by the first two terms in
Eqs. (18a) and (18b), with ϵ ¼ 0.1 and t ¼ t0 ¼ 0.55π=ω. The
initial condition for ḃ is ḃð0Þ ¼ − σ

24
ϵω sinð2ωt0Þ þ 10−4, with

the same ϵ, ω and t0.
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is assumed to remain positive at all times. The phase
correction θ is a new addition to the set of collective
coordinates; its significance will be elucidated later
(Sec. IVA). The choice of the spatial part of the ansatz
will also be discussed below (Sec. IV B).
Once the explicit dependence on x and T 0 has been

integrated away, Eqs. (19) and (20) give an effective action

S ¼ T
Z

dT 1L

with

L ¼ ðDAÞ2bþ
�
1

3
þ π2

36

� ðDbÞ2A2

b
þ ADADb

þ ðωþDθÞ2bA2 −
A2

3b
− 4bA2 þ 1

2
bA4 ð22Þ

and D ¼ ϵ ∂

∂T 1
. Two Euler-Lagrange equations are

D2Aþ 4A − ðωþDθÞ2A −
�
1

3
þ π2

36

� ðDbÞ2
b2

A

¼
�
1þ 3

2
σ

�
A3 −

�
2σ þ 1

3

�
A
b2

ð23Þ

and

D½ðωþDθÞbA2� ¼ 0:

The last equation can be integrated to give

ðωþDθÞbA2 ¼ l; ð24Þ

where l is a constant of integration. Eliminating the cyclic
variable θ between (23) and (24) we arrive at

D2A −
�
1

3
þ π2

36

� ðDbÞ2
b2

Aþ 4A −
l2

b2A3

¼
�
1þ 3

2
σ

�
A3 −

�
2σ þ 1

3

�
A
b2

: ð25aÞ

The third Euler-Lagrange equation for the
Lagrangian (22) does not involve θ:

D2bþ 2
DA
A

Db ¼ 4σ

�
1

b2
−
3

4
A2

�
b: ð25bÞ

Equations (25) constitute a four-dimensional conservative
system with a single control parameter l2.

B. Slow dynamics and stationary points

The oscillon corresponds to a fixed-point solution of the
system (25). There are two coexisting fixed points for each
l2 in the interval ð0; 64

9
Þ. We denote their components by

ðAþ; bþÞ and ðA−; b−Þ, respectively. Here

A2
� ¼ 8

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64

9
− l2

r
; b2� ¼ 4

3

1

A2
�
: ð26Þ

Turning to the stability of these, we note that all
derivatives in Eqs. (25) carry a small factor ϵ.
Accordingly, most of the time-dependent solutions of that
system evolve on a short scale T 1 ∼ ϵ. This is inconsistent
with our original assumption that ∂ϕ=∂T 1 ¼ Oð1Þ. There
is, however, a particular l-regime where solutions change
slowly and the system (25) is consistent. Specifically,
slowly evolving nonstationary solutions can be explicitly
constructed in the vicinity of the value l2

c ¼ 64
9
; see

Appendix. This value proves to be a saddle-center bifur-
cation point separating a branch of stable equilibria, namely
ðA−; b−Þ, from an unstable branch, ðAþ; bþÞ.

FIG. 3. (a): the Kosevich-Kovalev oscillon with ω ¼ 1.06ωc

(where ωc ¼
ffiffiffi
2

p
). The oscillon is stable: despite the energy

loss to radiation waves, any changes in its period and amplitude
are hardly visible. This figure is obtained by the numerical
simulation of Eq. (3). (b): the variational approximation (21)
with the matching ω. Here A and b are as in (27) with
ω ¼ 1.06ωc, and θ ¼ 0. Except for the absence of the radiation
waves, the variational pattern is seen to be a good fit for the
true oscillon.

VARIATIONAL FORMALISM FOR THE KLEIN-GORDON … PHYS. REV. D 108, 096022 (2023)

096022-5



Since the asymptotic construction presented in the
Appendix is limited to the neighborhood of the bifurcation
value lc, we do not have access to the oscillon perturba-
tions outside that parameter region. Nevertheless, it is not
difficult to realize that the two fixed points maintain their
stability properties over their entire domain of existence,
0 ≤ l2 < l2

c. Indeed, the stability may only change as l
passes through the value l0 given by a root of detM ¼ 0,
where M is the linearization matrix. [The evolution is slow
and the system (25) is consistent in the vicinity of that
point.] There happens to be only one such root and it is
given exactly by lc; see Appendix.
To compare the variational results to conclusions of the

direct numerical simulations of Eq. (3), we return to the
oscillon ansatz (21). Switching from the parametrization
by l to the frequency parameter ω, two branches of fixed
points (26) can be characterized in a uniform way:

A ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ω2

p
; b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − ω2
p : ð27Þ

[The relations (27) result by letting l ¼ ωbA2 in (26).] The
frequencies ωc ≤ ω < 2 correspond to stable oscillons and
those in the interval 0 ≤ ω < ωc to unstable ones. Here

ωc ¼
ffiffiffi
2

p
: ð28Þ

The third collective coordinate in (21)—the phase correc-
tion θ—can be assigned an arbitrary constant value.
Note that the expressions (27) agree with the asymptotic

result (4) in the A; b−1 → 0 limit.

C. Numerical verification

We simulated the partial differential equation (3) using
a pseudospectral numerical scheme with 213 Fourier
modes. The scheme imposes periodic boundary conditions
ϕðLÞ ¼ ϕð−LÞ and ϕxðLÞ ¼ ϕxð−LÞ, where the interval
should be chosen long enough to prevent any radiation
reentry. (Our L was pegged to the estimated width of the
oscillon, varying between L ¼ 20 and L ¼ 100.)
Using the initial data in the form

ϕðx; 0Þ ¼ A0sech

�
x
b0

�
; ϕtðx; 0Þ ¼ 0

with b0 ¼ ð2= ffiffiffi
3

p ÞA−1
0 and varied A0, we were able to

create stable oscillons with frequencies ranging from
ω ¼ 1.03ωc to ω ¼ 2. (Here ω ¼ 2π=T, where T is the
observed period of the localized periodic solution.) This
“experimental” stability domain is in good agreement with
the variational result ωc ≤ ω < 2.
The 3% discrepancy between two lower threshold values

can be attributed to the emission of radiation and the
oscillon’s core deformation due to the third harmonic
excitation. [The presence of the third harmonic in the

oscillon’s core is manifest already in the asymptotic
solution (4).] The radiation intensifies and deformation
becomes more significant as the oscillon’s amplitude grows
[Fig. 3(a)]; yet the variational approximation disregards
both effects [see Fig. 3(b)].
Once the evolution has settled to an oscillon with a

period T, we would measure its amplitude

A ¼ max
T

jϕðx; tÞjx¼0 ð29Þ

and evaluate its width which we define by

b ¼ 1

2A2
max
T

Z
L

−L
ϕ2ðx; tÞdx: ð30Þ

In (29) and (30), the maximum is evaluated over the time
interval t0 ≤ t < t0 þ T, where t0 was typically chosen as
the position of the third peak of ϕð0; tÞ.
Figure 4 compares the amplitude and width of the

numerically generated oscillon with their variational
approximations (27). The difference between the numerical
and variational results grows as ω approaches 1.03ωc—yet
the relative error in the amplitude remains below 8% and
the error in the width does not exceed 12.5%.

IV. TWO REMARKS ON THE METHOD

A. Modulation, instability, and significance of θ

The inclusion of the cyclic coordinate θðT1Þ is crucial for
our variational approach. To show that, we compare the

1.5 1.6 1.7 1.8 1.9 2
0

0.4

0.8

1.2

1.6

0

4

8

12

A( )

b( )

FIG. 4. The amplitude and width of the oscillon as functions of
its frequency. The solid curves depict results of the numerical
simulations of the partial differential equation (3). The blue curve
traces the amplitude-frequency and the brown one gives the
width-frequency dependence. The nearby dashed lines describe
the corresponding variational approximations (27).
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system (25) incorporating, implicitly, 3 degrees of freedom
with its 2-degree (A and b) counterpart.
Linearizing Eqs. (25) about the fixed point (27) and

considering small perturbations with the time dependence
eðλ=ϵÞT1 , we obtain a characteristic equation

λ4 þ ð16 − 5A2 þ 3σA2Þλ2 − 18σA2

�
A2 −

8

3

�
¼ 0: ð31Þ

When A2 is away from 0 or 8=3, all eigenvalues λ are of
order 1. This means that contrary to the assumption under
which the system (25) was derived, small perturbations
evolve on a short scale T1 ∼ ϵ rather than T1 ∼ 1. The
variational method cannot provide trustworthy information
on the stability or modulation frequency of the oscillons
with those A.
There are two regions where a pair of OðϵÞ eigenvalues

occurs and, consequently, our approach is consistent. One
region consists of small A ∼ ϵ; this range accounts for the
asymptotic regime (4). The second region is defined by
jA2 − 8=3j ¼ Oðϵ2Þ or, equivalently, by jω − ωcj ∼ ϵ2. As
ω is reduced through ωc, a pair of opposite imaginary
eigenvalues converges at the origin and moves onto the
positive and negative real axis:

λ2 ¼ −
16

ffiffiffi
2

p
σ

σ þ 1=3
ðω − ωcÞ þOððω − ωcÞ2Þ:

At this point, a slow modulation of the principal harmonic
cosðωctÞ with the modulation frequency ∼ðω − ωcÞ1=2
gives way to an exponential growth of the perturbation.
[For an explicit construction of the time-dependent sol-
utions of the system (25), see Appendix.]
Had we not included θðT1Þ in our trial function—that is,

had we set θ ¼ 0 in Eq. (21)—we would have ended up
with the same fixed point (27) but a different characteristic
equation:

λ4 þ ð3σ − 2ÞA2λ2 − 9σA4 ¼ 0: ð32Þ
Equation (32) does not have roots of order ϵ outside the
asymptotic domain A ∼ ϵ. Therefore, the multiscale varia-
tional ansatz excluding the cyclic variable θðT1Þ is incon-
sistent with the slow evolution of the collective coordinates
AðT1Þ and bðT1Þ.

B. Insensitivity to spatial shape variations

The x part of the trial function (21) was chosen so as to
reproduce the asymptotic representation (4) and match
the amplitude-frequency relationship as ω → 2. As for the
global behavior of the AðωÞ curve, the variation of the
spatial profile of the trial function has little effect on it—as
long as the function remains localized.
To exemplify this insensitivity to the ansatz variations,

we replace the exponentially localized trial function (21)
with a Gaussian:

ϕ ¼ A cosðωT 0 þ θÞe−ðx=bÞ2 : ð33Þ

As in (21), the amplitude A, width b, and phase shift θ are
assumed to be functions of the slow time variable T 1 ¼ ϵt.
Substituting in (20) gives an effective action with the
Lagrangian

L ¼ ðDAÞ2bþ 3

4

ðDbÞ2A2

b
þ ADADbþ ðωþDθÞ2bA2

−
A2

b
− 4bA2 þ 3

ffiffiffi
2

p

8
bA4: ð34Þ

(Here, as before, D ¼ ϵ∂=∂T1.) Equation (34) has the same
form as (22) with the only difference residing in the value
of some of the coefficients.
The Euler-Lagrange equations resulting from (34) have a

fixed-point solution

A ¼ 27=4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ω2

p
; b ¼ 1ffiffiffi

3
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − ω2
p : ð35Þ

Note that the Gaussian amplitude and width are related to ω
by exactly the same laws as the amplitude and width of the
secant-shaped approximation [Eqs. (27)]. If Ag stands for
the amplitude (35) and As for the secant-based result (27),
the ratio AgðωÞ=AsðωÞ is given by

ffiffiffiffiffiffiffiffi
8=94

p
≈ 0.971. Thus the

Gaussian-based amplitude-frequency curve reproduces the
qualitative behavior of the curve (27), with the Gaussian
amplitude being only 3% different from the amplitude of
the secant-shaped variational oscillon.
Linearizing the Euler-Lagrange equations about the fixed

point (35) we obtain a Gaussian analog of the characteristic
equation (31):

λ4þ
�
16−

27
ffiffiffi
2

p

8
A2

�
λ2−

27

8
A2

�
A2−

32

9
ffiffiffi
2

p
�
¼0: ð36Þ

The critical value of A2 above which a pair of opposite
eigenvalues moves onto the real axis is 32=9

ffiffiffi
2

p
.

Remarkably, the corresponding threshold frequency
ωc ¼

ffiffiffi
2

p
coincides with the value (28) afforded by the

secant ansatz.

V. CONCLUSIONS

This study was motivated by the numerous links and
similarities between the Klein-Gordon oscillons and sol-
itons of the nonlinear Schrödinger equations. A simple yet
powerful approach to the Schrödinger solitons exploits the
variation of action. By contrast, the variational analysis
of the Klein-Gordon oscillons has not been nearly as
successful.
One obstacle to the straightforward (“naive”) variational

treatment of the oscillon is that its width proves to be
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unsuitable as a collective coordinate in that approach. The
soliton’s amplitude and width comprise a standard choice
of variables in the Schrödinger domain, but making a
similar choice in the Klein-Gordon Lagrangian results in a
singular four-dimensional system.
This paper presents a variational method free from

singularities. The method aims at determining the oscillon’s
parameters, domain of existence, and stability-instability
transition points. The proposed formulation is based on a
fast harmonic ansatz supplemented by the adiabatic
evolution of the oscillon’s collective coordinates. An
essential component of the set of collective coordinates
is the “lazy phase”: a cyclic variable accounting for
nonuniform phase acquisitions.
We employed the Kosevich-Kovalev model as a proto-

type equation exhibiting oscillon solutions. Our variational
method establishes the oscillon’s domain of existence
(0 < ω < 2) and identifies the frequency ωc at which
the oscillon loses its stability (ωc ¼

ffiffiffi
2

p
). The predicted

stability domain is in good agreement with numerical
simulations of the partial differential equation (3) which
yield stable oscillons with frequencies 1.03ωc ≤ ω < 2.
The variational amplitude-frequency and width-frequency
curves are consistent with the characteristics of the numeri-
cal solutions.
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APPENDIX: SLOW EVOLUTION NEAR THE
ONSET OF INSTABILITY

The aim of this appendix is to construct a slowly
changing solution of the system (25) consistent with the
assumption used in the derivation of that system. The
construction is carried out in the vicinity of the parameter
value signifying the onset of instability of the fixed point.
We let

l2 ¼ l2
0 − ϵ4; ðA1Þ

where l0 is the parameter value to be determined. The
unknowns are expanded as

A ¼ A0 þ ϵ2A1 þ ϵ4A2 þ � � � ;
b ¼ b0 þ ϵ2b1 þ ϵ4b2 þ � � � : ðA2Þ

Here ðA0; b0Þ is either of the two fixed points (26)
corresponding to l ¼ l0. Substituting (A1) and (A2)
in (25) we equate coefficients of like powers of ϵ.

The order ϵ2 gives

MY⃗1 ¼ 0;

where the matrix M has the form

0
B@ 4þ 9l2

0

4A2
0

− 11þ12σ
4

A2
0

h
3
2

l2
0

A2
0

− 1þ6σ
2

A2
0

i
A0

b0

6σA0b0 6σA2
0

1
CA ðA3Þ

and the vector Y⃗1 consists of the linearized perturbations of
the fixed point:

Y⃗1 ¼
�
A1

b1

�
:

Setting detM ¼ 0 determines the value of l2
0. This value

turns out to coincide with l2
c, the end point of the interval of

existence of the fixed points:

l2
0 ¼ l2

c ¼
64

9
: ðA4Þ

As l approaches lc, the fixed points ðAþ; bþÞ and ðA−; b−Þ
join to become ðAc; BcÞ. Here

Ac ¼
ffiffiffi
8

3

r
; bc ¼

1ffiffiffi
2

p : ðA5Þ

The components of the null eigenvector Y⃗1 are readily
identified:

A1 ¼ Acy; b1 ¼ −bcy:

Here y ¼ yðT 1Þ is an arbitrary scalar function that will be
determined at the next order of the expansion.
At the order ϵ4 we obtain

MY⃗2 ¼ F⃗2; ðA6Þ

where

F⃗2 ¼
�
f2
g2

�

with

f2 ¼ −Ac∂
2
1yþ 8Ac

�
4

3
− σ

�
y2 −

1

A3
cb2c

;

g2 ¼ bc∂21yþ 16σbcy2:
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The solvability condition for Eq. (A6) is

Z⃗ · F⃗2 ¼ 0; ðA7Þ

where

Z⃗ ¼
 

Acbc
4
3

�
1 − 1

3σ

�!

is the adjoint null eigenvector of the matrixM. Substituting
for Ac and bc from (A5), Eq. (A7) yields�

1þ 1

3σ

�
∂
2
1y ¼ 16y2 −

9

16
: ðA8Þ

The amplitude equation (A8) has the form of the second
Newton’s law for a classical particle moving in the potential

UðyÞ ¼ 9

16
y −

16

3
y3:

The potential has two equilibria: a minimum at y− ¼ − 3
16

and a maximum at yþ ¼ 3
16
. These correspond to the two

fixed points of the system (25): the minimum pertains to
ðA−; b−Þ and the maximum to ðAþ; bþÞ. Accordingly, the
point ðA−; b−Þ is stable and ðAþ; bþÞ unstable.
The stable fixed point is surrounded by a family of

closed orbits. The corresponding periodic solutions of
Eq. (A8) are expressible in Jacobi functions:

yðT 1Þ ¼ −
k2 þ 1

3
μþ k2μ sn2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8σμ

1þ 3σ

r
T 1; k

�
;

where

μ ¼ 9

16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

k6 þ 1

s
:

The elliptic modulus k, 0 ≤ k ≤ 1, serves as the parameter
of the family.
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