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Quantum field theories with purely virtual particles, or fakeons, require suitable modifications in one-
loop integrals. We provide the expressions for the modified scalar integrals in the case of the bubble,
triangle and box diagrams. The new functions are defined by means of their difference with the ‘t Hooft-
Veltman scalar integrals. The modifications do not affect the derivation of the Passarino-Veltman reduction
and one-loop integrals with nontrivial numerators can be decomposed in the same fashion. Therefore, the
new functions can be directly used to study the phenomenology of any models with standard particles and
fakeons. We compare our results with standard amplitudes and show that the largest differences are often
localized in relatively small energy ranges and are characterized by additional nonanalyticities. Finally, we
give explicit examples in the context of a toy model, where cross sections and decay widths of standard
particles are modified by the presence of fakeons.
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I. INTRODUCTION

Purely virtual particles, or fakeons, are a new type of
degrees of freedom that can mediate interactions without
appearing as external, on-shell states. Thanks to this
property, they contribute to renormalization as standard
particles, while they modify the behavior of observables,
such as cross sections and decay rates. The consistency of
this approach is guaranteed by a new quantization pre-
scription [1,2], which allows us to project the fakeons away
from the physical spectrum and preserves unitarity in the
projected Fock subspace. The main application of purely
virtual particles is quantum gravity [3,4]. Indeed, fakeons
are able to reconcile renormalizability and unitarity, which
has been the main issue in formulating a quantum field
theory of gravitational interactions for a long time.
However, the prescription is rather general, and it can be

applied to any quantum field theory, as long as the fakeons
are massive and nontachyonic. Therefore, it is compulsory
to study the presence of fakeons in the context of particle
physics. The reason for suggesting this approach is two-
fold. On the one hand, as observed in [5], there might
still be room for some of the particles in the Standard

Model (SM) to be purely virtual and this hypothesis
deserves to be checked against present experimental data.
On the other hand, thanks to their purely virtual nature,
fakeons are prevented from being directly detected. It
follows that if the new physics introduced in beyond the
Standard Model (BSM) models is (re)formulated to be
purely virtual it can evade many experimental constraints
which invalidate the most conventional models. Thus,
phenomenology and model building should be rethought
in light of the potential presence of purely virtual particles.
An example of this is shown in [6,7].
In high-energy physics, the study of cross sections and

amplitudes at one loop can be eased thanks to the ‘t Hooft-
Veltman (TV) functions [8] and the Passarino-Veltman
reduction [9]. The former are the one-loop integrals for
scalar theories, whose explicit expressions have been
obtained in [8] and their analytic properties studied by
several authors [10–15]. The latter is a procedure which
allows to write any one-loop integral in terms of the scalar
ones. These results, combined with the usage of softwares,
such as FeynCalc, FormCalc and LoopTools [16,17], help to
systematize the one-loop calculations in the SM and BSM
theories, which are rather cumbersome, given the amount
of diagrams that needs to be computed. Therefore, if we
want to include fakeons in the picture, it is necessary to
introduce modified TV functions that take into account the
new prescription and its effects on one-loop integrals.
Recently, a new way of introducing fakeons has been

formulated [18]. Among other things, it provides the
threshold decomposition, which allows to prove unitarity
in a more direct way by splitting the usual optical theorem
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into a set of identities that hold independently threshold by
threshold.
In this paper we make use of the threshold decompo-

sition to derive the modified TV functions and study their
behavior compared with the standard ones. In particular, we
compute the new TV functions for the bubble, triangle and
box diagrams. The new functions reduce to the standard
ones when fakeons are absent. Moreover, the Passarino-
Veltman reduction can be applied to the new functions with
no obstruction.
A crucial difference between the usual TV functions and

the modified ones is that the latter present additional
nonanalyticities, such as discontinuities and points of
nondifferentiability. From the phenomenological point of
view, it is remarkable that in a scattering cross section these
features appear in rather localized ranges of the center-of-
mass energy and their largest magnitudes are often on the
critical points, where such differences turn on. This allows
to confine the domain of the center-of-mass energy where
we might expect to experimentally detect new physical
effects. In order to illustrate these aspects of theories
with fakeons, we give some explicit examples by using
a scalar toy model, which includes all the ingredients to
appreciate the differences with standard cases. Some effects
have also been studied in the context of the inert-doublet
model [6] and the muon-g − 2 anomaly [7].
The paper is organized as follows. In Sec. II we review

the fakeon prescription and the threshold decomposition. In
Sec. III we derive the modified TV functions for the bubble,
triangle and box diagrams, describe their features and point
out the configurations in the external momenta where the
differences with the standard functions appear. In Sec. IV
we present a toy model and show the modifications in
the cross sections induced by the presence of fakeons, using
the functions obtained in Sec. III. Section V contains our
conclusions.
We use theMinkowksi metric ημν ¼ diagð1;−1;−1;−1Þ.

II. THRESHOLD DECOMPOSITION
AND FAKEON PRESCRIPTION

In this section we review unitarity in terms of the
threshold decomposition introduced in [18], which is used
to formulate the optical theorem as a set of independent
identities that hold threshold by threshold. Moreover, such
formulation manifestly shows that the optical theorem
holds when the fakeon prescription is adopted.
The unitarity condition SS† ¼ 1 on the S matrix can be

written in the form of the optical theorem,

−iðT − T†Þ ¼ TT†; S ¼ 1þ iT: ð2:1Þ

This equation can be decomposed diagrammatically in a set
of identities, known as cutting equations [19], which for a
single diagram G reads

Gþ G� þ
X
cuts

Gc ¼ 0; ð2:2Þ

whereGc are the cut diagrams. EachGc is obtained fromG
by cutting it with a continuous line in all possible ways
using the cut propagator,

1

q2 −m2 þ iϵ
→ −ið2πÞθð�q0Þδðq2 −m2Þ; ð2:3Þ

where the sign in the θ function depends on the direction of
the energy flow in the diagram. Diagrammatically, this is
represented by a shadowed region on the right (left) side of
a cut if the energy flows towards the cut from left (right) to
right (left). Vertices in the shadowed region are complex
conjugate. The sum on the right-hand side of (2.2) runs
over all possible cut diagrams that can be built. A general
scalar one-loop diagram GN with N external legs is

GN ¼
Z

dDq
ð2πÞD

YN
a¼1

1

ðqþ kaÞ2 −m2
a þ iϵa

¼
Z

dD−1q
ð2πÞD−1

�YN
a¼1

1

2ωa

�
Gs

N; ð2:4Þ

where the skeleton diagram Gs
N is defined as

Gs
N ¼

Z
dq0

2π

YN
a¼1

2ωa

ðq0 þ k0aÞ2 − ω2
a þ iϵa

;

ωa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − kaÞ2 þm2

a

q
: ð2:5Þ

The definition for L-loop diagrams is straightforward. To
write the expressions in a symmetric way, a momentum
qþ ka is associated to each internal leg, although it is
redundant. In the next sections we label the internal and
external momenta according to the LoopTools [17] conven-
tions as in Fig. 1, i.e. we set k1 ¼ 0 and kN ¼ P

N−1
i¼1 pi.

Moreover, we simplify the computations by choosing the
most convenient Lorentz frame, depending on the diagram
we are interested in (see Appendix).

FIG. 1. Momentum conventions adopted in this article.
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A diagram GN can be seen as a function of complex
external momenta which typically presents nonanalytic-
ities, such as branch cuts. Those cuts are associated with
thresholds of the form

K2 ≥
�X

i∈A

mi − λ
X
i∈B

mi

�
2

; ð2:6Þ

whereK is a combination of external momenta, A and B are
two different subsets of internal legs, and λ ¼ 0, 1. The
thresholds with λ ¼ 0 are called physical and are associated
with the production of physical particles, namely they
represent the minimum value for the invariant K2 such that
the particles in A become real. These thresholds are those
that appear in the optical theorem (see below). On the other
hand, thresholds with λ ¼ 1 are pathological, since they are
associated with instabilities. They are called pseudothres-
holds and might appear in theories where different pre-
scriptions for the propagators are adopted in a inconsistent
way. However, in the case where the fakeon prescription
and the Feynman one are used in the same theory this
problem does not occur [20].
Finally, there are other nonanalyticities associated to

thresholds, different from (2.6). They are called anomalous
thresholds [21] and they are not associated to the physical
production of particles, although they might appear in
physical amplitudes (see for example [22]).

A. Threshold decomposition and spectral identities

The skeleton diagrams satisfy the spectral optical
theorem [18]

Gs þ ðGsÞ� þ
X
cuts

Gs
c ¼ 0: ð2:7Þ

At a first look, it may seem that (2.7) is just (2.2) where
the diagrams are substituted with their skeleton version.
What makes (2.7) convenient is that the skeleton diagrams
can be further decomposed into a sum of terms which
are associated to single physical thresholds, leading to
the spectral identities. These identities are derived once
the integrals over the loop energies in the skeleton diagrams
are performed by means of the residue theorem. In this way
unitarity is proved without the need of integrating over the
space components of loop momenta.
Labeling ea ≡ k0a, the decomposition of a skeleton

diagrams is given in terms of the following quantities:

Pab ¼ P
1

ea − eb − ωa − ωb
;

Qab ¼ P
2ωb

ðea − eb − ωaÞ2 − ω2
b

;

Δab ¼ πδðea − eb − ωa − ωbÞ; ð2:8Þ

where P is the Cauchy principal value. Moreover, we
define the quantity Pn, which is a sum of the product of
n − 1 different Pab. In this paper we do not need the
explicit form of those terms and we only write them
symbolically. Their expressions in terms of Pab can be
found in [18].
The function Δab is related to the diagram where the

internal lines a and b are cut and the shadowed region is in
the direction where the momentum pa enters. Accordingly,
Δba is associated with the cut diagram with the opposite
shadowed region. As a rule of thumb, each Δab is
associated to the threshold condition p2

a > ðma þmbÞ2 if
ea > eb or p2

b > ðma þmbÞ2 if ea < eb.
In this paper we are interested in the bubble, triangle and

box diagrams. Therefore, in this section we report their
threshold decomposition, which is derived as follows:
(i) perform the integral over the loop energies by means
of the residue theorem, (ii) write the skeleton diagrams as a
sum of terms where only sum of frequencies ωi appear in
the denominators, (iii) use the relation

i
xþ iϵ

¼ P
i
x
þ πδðxÞ ð2:9Þ

everywhere, (iv) rewrite the result exclusively in terms of
the quantities in (2.8).
For example, consider the skeleton bubble diagram

Bs ≡Gs
2

¼
Z

dq0

2π

2ω1

ðq0 þ k01Þ2 − ω2
1 þ iϵ1

2ω2

ðq0 þ k02Þ2 − ω2
2 þ iϵ2

:

ð2:10Þ

After following step (i) and rescaling the epsilons we obtain

Bs ¼ −
i

e1 − e2 − ω1 − ω2 þ iϵ1 þ iϵ2

þ i
e1 − e2 þ ω1 − ω2 − iϵ1 þ iϵ2

−
i

e2 − e1 − ω2 − ω1 þ iϵ1 þ iϵ2

þ i
e2 − e1 þ ω2 − ω1 þ iϵ1 − iϵ2

: ð2:11Þ

The second and the fourth terms are ill-defined distribu-
tions containing differences of frequencies and they should
disappear. Indeed, they cancel out. Setting ϵ1 ¼ ϵ2 ¼ ϵ=2
and using (2.9), the threshold decomposition for the bubble
skeleton diagram reads

Bs ¼ −iP2 − Δ12 − Δ21; ð2:12Þ

where P2 ¼ P12 þ P21. The same procedure is applied to
derive the threshold decomposition for any other diagram
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albeit with some additional caveats [18]. To obtain the
spectral identities we need to compute also the cut skeleton
diagrams in a similar way. Once they are decomposed, it is
useful to put them in a table, together with the original
diagram and its complex conjugate, as shown in Table I. In
the columns we place the diagrams, while in the rows we
place the coefficients that multiply the terms of the threshold
decomposition. The sum of each row cancels independently.
These are the spectral identities. From this decompositionwe
see that the usual optical theorem is actually the sum of
identities that hold independently. Note that each row
(besides the first one) is associated to a different threshold.
This can be better appreciated in the decomposition of the
skeleton triangle diagram, which reads [18]

Cs ¼ −iP3 þ
X
perms

�
−ΔabQac þ i

2
ΔabðΔac þ ΔcbÞ

�
:

ð2:13Þ
From (2.13) and its cut diagrams we obtain Table II. The

termswith a singleΔ are associatedwith physical thresholds,
while those with double Δ are associated to unphysical
thresholds. Indeed, the former contribute to the optical

theorem (2.2), which states that the sum of all cut diagrams
cancel with the diagram and its conjugate, while the latter do
not. This can be seen fromTable II. In fact, the coefficients in
the rows with a single Δ cancel between diagrams and cut
diagrams.On the other hand, the coefficients in the rowswith
twoΔ cancel between cut diagrams and between the diagram
and its conjugate, independently. This shows explicitly that
those thresholds do not contribute to the optical theorem.
Finally, the threshold decomposition of the box diagram

reads [18]

Ds ¼ −iP4 þ
X
perms

�
−
1

2
ΔabQacQad

þ i
2
ΔabðΔac þ ΔcbÞQad

þ 1

6
ΔabðΔacΔad þ ΔcbΔdbÞ

�
: ð2:14Þ

Again, the terms with more than one Δ are associated with
unphysical thresholds and they do not contribute to the
optical theorem.
In general, we can always write a diagram GN as

GN ¼ −iPN þ GΔ
N; ð2:15Þ

where PN encodes the purely virtual content of the
diagram, while GΔ

N contains all the terms with at least
one Δ and gives information about the production of on-
shell physical particles. This is of particular use in the case
of the fakeon prescription.

B. The fakeon prescription

Purely virtual particles, or fakeons, are degrees of freedom
of a new type. They cannot be produced on shell, but can

TABLE II. Threshold decomposition of the triangle diagram.

Diagrams

Terms

P3 −i i 0 0 0 0 0 0
Δ12Q13 −1 −1 2 0 0 0 0 0
Δ23Q21 −1 −1 0 2 0 0 0 0
Δ31Q32 −1 −1 0 0 2 0 0 0
Δ21Q23 −1 −1 0 0 0 2 0 0
Δ32Q31 −1 −1 0 0 0 0 2 0
Δ13Q12 −1 −1 0 0 0 0 0 2
Δ12Δ13 i −i 2i 0 0 0 0 −2i
Δ23Δ21 i −i 0 2i 0 −2i 0 0
Δ31Δ32 i −i 0 0 2i 0 −2i 0
Δ21Δ31 i −i 0 0 2i −2i 0 0
Δ32Δ12 i −i 2i 0 0 0 −2i 0
Δ13Δ23 i −i 0 2i 0 0 0 −2i

TABLE I. Threshold decomposition of the bubble diagram.

Diagrams

Terms

P2 −i i 0 0
Δ12 −1 −1 2 0
Δ21 −1 −1 0 2

AURORA MELIS and MARCO PIVA PHYS. REV. D 108, 096021 (2023)

096021-4



mediate interactions as virtual particles. They are introduced
by means of a different quantization prescription, called
fakeonprescription [1,2],whichmodifies thediagrams so the
optical theorem is satisfied, once we restrict to the Fock
subspace where the fakeons are not external lines. Roughly
speaking, such modifications remove the parts of the
amplitudes that contain information about the fakeons being
on shell. As a result, every time a fakeon internal line is cut,
the associated cut diagram is zero and loop effects cannot
resuscitate the fakeons once they are removed from the
possible external lines. This prevents those type of particles
frombeing on shell at arbitrary scales,making them radically
different from resonances or unstable particles, which in
principle can be observed on shell.
In terms of the threshold decomposition, the fakeon

prescription is systematically implemented as follows.
First, evaluate the skeleton diagrams following the steps
(i) and (ii) described in the previous subsection. Then,
substitute (2.9) with

i
xþ iϵ

→ P
i
x
þ τπδðxÞ; ð2:16Þ

where τ ¼ 0 if x contains at least one fakeon frequency, and
τ ¼ 1 otherwise. Finally, to explicitly show that the optical
theorem holds, express the result in terms of the quantities
(2.8). However, for the only purpose of evaluating the
amplitudes, this final step is optional. The substitution
(2.16) with τ ¼ 0 amounts to remove all the Δs that contain
at least a fakeon frequencyω, i.e.Δab ¼ 0 if the lega and/orb
is a fakeon.
In practice, the effects of the fakeon prescription on the

diagrams are the following.
(1) At the tree level, formula (2.16) reduces to choose the

propagator

P
i

p2 −m2
ð2:17Þ

for each fakeon leg.Note that the propagator (2.17) coincides
with the Feynman-Wheeler one [23], which leads to incon-
sistencies, such as violation of the locality of counterterms
and instabilities [20], when used inside loop diagrams.
(2) At every loop order, instead of using the propagator

(2.17), a diagram G that involves a fakeon in the internal
lines becomes

G0 ¼ G − ΔfG; ð2:18Þ
where ΔfG is given by the terms in the threshold decom-
position of G that are removed by setting τ to zero. The
simplest example that shows thatG0 is not the diagram built
with (2.17) is the bubble diagram. In fact, if we use (2.17)
its imaginary part is nonvanishing, while it is set to zero
(see below) when at least one fakeon is in the loop and the
inconsistencies mentioned in point (1) do not occur, as
explained in [20].

In the case of a triangle diagram where the leg 1 is a
fakeon, Table II reduces to Table III. Note that some cut
diagrams (those where leg 1 is cut) are zero after the
reduction and do not appear in the table.
From the definition of the fakeon prescription it is easy to

see that unitarity still holds. Indeed, setting Δs to zero
removes entire rows from the tables of the threshold
decomposition. Since the single rows sum to zero independ-
ently, we obtained reduced tables that give the optical
theorem (2.2) once we project onto the subspace where
fakeons are not external states. This is why we say that
fakeons are purely virtual and cannot be produced on shell.
Therefore, the fakeon prescription must be supplemented
with a projection, for consistency. Vice versa, a projection of
the external states without a prescription that modifies loop
diagrams is inconsistent, since the states that are projected
away would be generated back by loop corrections.
Finally, fakeons have other two peculiar properties due to

their quantization prescription: the microcausality violation
and the peak uncertainty. Details about the former can be
found in Refs. [4,24]. For the purpose of this paper we only
need to keep in mind that the masses of the fakeons must be
large enough to avoid conflicts with macrocausality [25].
The latter property is related to the fakeon width Γf and it

states that it is not possible to determine the shape of the
fakeon peak with arbitrary precision. The reason is that the
new prescription violates analyticity and does not allow for a
resummation of the dressed propagator around the peak.
Such a feature can be due to ourmissing knowledge about the
nonperturbative sector of the theory, or it can be associated to
a new physical indeterminacy. The details of these peculiar
effects can be found in [26]. In this paper we concentrate on
the indirect effects of fakeons on physical observables such
as cross sections and decay rates of standard particles.
We stress that below every fakeon threshold there is no

difference between the Feynman prescription and the fakeon
one. In particular, many properties of standard quantum field
theory hold there. For example, the Appelquist-Carrazzone
decoupling theorem is still valid, since if we send all the
fakeon masses to infinity, then every threshold associated to
their production would be moved to infinity as well. In that
limit the accessible physics is always below every fakeon
threshold and therefore is not modified by the fakeon

TABLE III. Threshold decomposition of the triangle diagram
when particle 1 is a fakeon.

Diagrams

Terms

P3 −i i 0 0
Δ23Δ21 −1 −1 2 0
Δ32Δ31 −1 −1 0 2
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prescription. In other words, the low-energy expansion of a
theory with heavy fakeons or a theory with heavy standard
particles instead of fakeons is the same.
A final remark concerns the question of stability. The

presence of instabilities depends on the location of the poles
in the energy complex plane of loop integrals, which
determines whether differences of frequencies appear in
the denominators. In this respect, it is important to recall that
the first step of the fakeon prescription is to perform the
integral over the loop energies by means of the residue
theorem. Here the location of the poles is selected with the
usual Feynman prescription. Only after this theΔs are set to
zero. Therefore, instabilities cannot appear in the expres-
sions, since they do not in the standard Feynman integrals.
Indeed, the cancellation shown in (2.11) is valid for arbitrary
diagrams. This is of particular importance for the case of
ghosts (which is not discussed in this paper but it is the main
motivation for the fakeon prescription). In fact, when ghosts
are present it is often stated that the theory presents
instabilities. We want to stress that this happens when the
anti-Feynman prescription is chosen for the ghosts, while
choosing the Feynman one avoids those instabilities at the
price of explicit violation of unitarity. The latter is then
restored by proceeding with the fakeon prescription that
provides a theory that is stable and unitary.
In the next section, we use the threshold decomposition

to obtain a generalized expression for the TV functions,
which accounts for both the Feynman and the fakeon
prescriptions.

III. MODIFIED ONE-LOOP SCALAR INTEGRALS

In this section we derive how the one-loop scalar integrals
get modified when fakeons appear in the internal legs of the
bubble, triangle and box diagrams.1 These modifications are
general and can be applied to any theory. Typical scattering
processes in particle-physics experiments can be studied
straightforwardly by implementing the modifications into
softwares such as FeynCalc, FormCalc and LoopTools. Natural
applications are BSM models where the new physics can be
purely virtual. However, there is room even for the standard
model to contain fakeons [5].
In order to obtain the modified TV functions we integrate

the terms in (2.12), (2.13), and (2.14) over spatial momenta.
It is more convenient to compute the terms that need to be
removed in the fakeon case, rather than the whole modified
function. In this way we never have to compute the P
terms, since the products of Δs and Qs are enough.
Moreover, all the ultraviolet divergences that are subtracted
by means of renormalization are contained in the P terms.
We assume the dimensional regularization for those terms,
while we compute the other terms directly in four dimen-
sions, since they do not need to be regularized.

Keeping in mind that the fakeon prescription amounts to
remove all the Δs associated to fakeon frequencies, it is
practical to introduce

Δab
f ≡

�
0 if a ∧ b∈ standard particles

Δab if a∨b∈ fake particles:
ð3:1Þ

Therefore, we define the subtraction terms as follows:

ΔfA0 ¼ 0; ð3:2Þ

ΔfB0 ¼
Z

d3q
ð2πÞ3

X
perms

iΔab
f

4ωaωb
; ð3:3Þ

ΔfC0 ¼
Z

d3q
ð2πÞ3

X
perms

Δab
f

8ωaωbωc

�
iQac þ 1

2
ðΔac

f þ Δcb
f Þ

�
;

ð3:4Þ

ΔfD0 ¼
Z

d3q
ð2πÞ3

X
perms

Δab
f

16ωaωbωcωd

×

�
i
2
QacQad þ 1

2
ðΔac

f þ Δcb
f ÞQad:

−
i
6
ðΔac

f Δad
f þ Δcb

f Δdb
f Þ

�
; ð3:5Þ

where the sum is over the permutations of the indices of the
internal legs. Thus, the modified TV functions are obtained
from the standard ones by means of the subtractions

Af
0 ≡ A0; ð3:6Þ

Bf
0 ≡ B0 − ΔfB0; ð3:7Þ

Cf
0 ≡ C0 − ΔfC0; ð3:8Þ

Df
0 ≡D0 − ΔfD0: ð3:9Þ

In this way all the terms associated to thresholds that
involve at least one fakeon are removed from the original
functions. The new TV functions defined above are general
and include the standard ones as particular cases. Indeed,
when fakeons are absent ΔfB0;ΔfC0 and ΔfD0 vanish and
the modified functions coincide with the usual ones. In the
rest of this section we focus on computing the terms in
(3.2)–(3.4) and identify the configurations where they are
nonzero.

A. Bf
0 function

We start with the simplest case of the one-loop scalar
two-point function B0ðp2

1; m
2
1; m

2
2Þ associated with the

bubble diagram. The Δ term is equal to the imaginary
part of B0 and gives the well-known result

1Tadpole diagrams are not modified since they do not involve
any threshold.
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Z
d3q
ð2πÞ3

Δ12

4ω1ω2

¼ θðp2
1 − ðm1 þm2Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; m
2
1; m

2
2Þ

p
16πp2

1

;

ð3:10Þ

where θðxÞ is the Heaviside step function2 and λ is the
Källén function associated with the area of the triangle of
sides x, y, z:

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ xzþ yzÞ: ð3:11Þ

Note that the θ function ensures the positivity of
λðp2

1; m
2
1; m

2
2Þ and (3.10) is real as expected. In the case

where either m1 or m2 are fakeons, the operation in (3.7)
simply removes the imaginary part of the B0 function.
Thus, we write

Bf
0ðp2

1; m
2
1; m

2
2Þ ¼

�
B0ðp2

1; m
2
1; m

2
2Þ if m1 ∧ m2 ∈ standard particles

Re½B0ðp2
1; m

2
1; m

2
2Þ� if m1∨m2 ∈ fake particles:

ð3:12Þ

Despite its simplicity, this modification gives nontrivial con-
sequences. For example, it can change thewidth of an unstable
particle, which might even become stable if it interacts with
fakeons only.Anexplicit example is given in Sec. IV,wherewe
show how Bf

0 modifies the peak of a standard particle.
The situation is more involved in the case of the C0 and

D0 functions because of the presence of multiple thresh-
olds, which in general introduce modifications in both real
and imaginary parts of TV functions.

B. Cf
0 function

The one-loop scalar three-point function is written as
C0ðp2

1; p
2
2; p

2
3; m

2
1; m

2
2; m

2
3Þ, where pi are the momenta of

the external legs and mi are the masses of the internal legs.
Given the rotation symmetry of the triangle diagram, the C0

function is symmetric under cyclic permutations of the
indices of its arguments. Therefore, to compute ΔfC0, it is
sufficient to derive the terms

Z
d3q
ð2πÞ3

ΔabQac

8ωaωbωc
;

Z
d3q
ð2πÞ3

ΔabΔac

8ωaωbωc
; ð3:13Þ

for some of a,b and c. We compute the case ða; b; cÞ ¼
ð1; 2; 3Þ as detailed in the Appendix. Other ΔQ and ΔΔ
terms appearing in (3.3) are those with (2, 3, 1) and (3, 1, 2).
They can be easily deduced from the case (1, 2, 3) by
cyclically permuting the indices of all external momenta
and masses. In this way we obtain three over six permu-
tations that appear in (3.3). However, the remaining three
permutations and those derived as explained above are
mutually exclusive, since they are associated with cuts that
have opposite shadings. Besides this detail, the expressions
of the missing permutations are equal to those that we
derive here.
In Lorentz invariant form, the Δ12Q13 term reads

Z
d3q
ð2πÞ3

Δ12Q13

8ω1ω2ω3

¼ θðp2
1 − ðm1 þm2Þ2Þ

16π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
3Þ

p ln

���� u13 þ 1

u13 − 1

����;
ð3:14Þ

u13 ¼
p2
1ð−p2

1 þ p2
2 þ p2

3 − 2m2
3Þ þm2

1ðp2
1 þ p2

2 − p2
3Þ þm2

2ðp2
1 − p2

2 þ p2
3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðp2
1; p

2
2; p

2
3Þλðp2

1; m
2
1; m

2
2Þ

p ; ð3:15Þ

while the Δ12Δ13 term is given by

Z
d3q
ð2πÞ3

Δ12Δ13

8ω1ω2ω3

¼ θðp2
1 − ðm1 þm2Þ2; p2

3 − p2
2 −m2

1 þm2
2; 1 − ju13jÞ

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
3Þ

p : ð3:16Þ

The positivity of λðp1; m2
1; m

2
2Þ is ensured by the θ function,

while that of λðp2
1; p

2
2; p

2
3Þ is not. However, since we

are considering only situations where Cf
0 is inserted in a

one-loop amplitude, we have additional kinematical con-
straints on the Mandelstam variables, so that the case
λðp2

1; p
2
2; p

2
3Þ < 0 is excluded from the physical region.

The domains where λðp2
1; p

2
2; p

2
3Þ < 0 are considered in the

study of analytic properties of the triangle diagram and its
dispersion relations (see for example [27]). In the particular

2In case of multiple conditions we adopt the compact notation
θðx;…; yÞ≡ θðxÞ � � � θðyÞ.
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case of λðp2
1; p

2
2; p

2
3Þ ¼ 0, formula (3.16) is divergent.

This can be obtained, for example, in a t-channel diagram
where p2

1 ¼ t and p2
2 ¼ p2

3 ¼ m2. In that case the singular
term is ∝ 1=

ffiffi
t

p
. Such behavior of the real part cannot

occur in standard amplitudes, unless the particles in the
loop are massless. In this respect, it is important to highlight
that a singularity at t ¼ 0 proportional to 1=

ffiffi
t

p
induces a

long-range interaction effectively generated at one-loop
order. This is of particular importance for model building
using fakeons. In fact, models that enjoy such a feature
could induce new-physics effects that are necessarily
more constrained in order to reproduce the observed
phenomenology.

The relation between (3.14) and (3.16) is evident, being
both real functions.Theycanbewritten together as the real and
imaginary parts of a more general function, which is propor-
tional to one of the cut diagrams. This can be easily seen from
the third column of Table II.3 These kinds of relations between
the terms of the decomposition are not manifest in the case
of the box diagram (and higher-point functions) since certain
identities [18] between ΔPP and ΔΔΔ terms are used to
derive the threshold decomposition (2.14).
The conditions in the θ function on the right-hand side of

(3.16) can be written as one of the following equivalent
configurations, where the three external momenta of C0 are
constrained:

p2
1 > ðm1 þm2Þ2; p2

3 > ðm1 þm3Þ2; p2−
u2 < p2

2 < p2þ
u2 ; ð3:17Þ

p2
2 < ðm2 −m3Þ2; p2

1 > ðm2 þm1Þ2; p2−
u3 < p2

3 < p2þ
u3 ; ð3:18Þ

p2
3 > ðm3 þm1Þ2; p2

2 < ðm3 −m2Þ2; p2−
u1 < p2

1 < p2þ
u1 ; ð3:19Þ

where

p2�
u2 ¼ p2

1 þ p2
3 −

ðp2
1 −m2

2 þm2
1Þðp2

3 −m2
3 þm2

1Þ
2m2

1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; m
2
1; m

2
2Þλðp2

3; m
2
1; m

2
3Þ

p
2m2

1

; ð3:20Þ

and p2�
u3 and p2�

u1 are derived by means of the cyclic
permutations (2, 3, 1) and (3, 1, 2) of the indices of the
momenta and masses in p2�

u2 . It is interesting to note that
(3.17) implies p2

2 < ðm2 −m3Þ2, while (3.18) and (3.19)
imply p2

1 > ðm1 þm2Þ2 and p2
3 > ðm1 þm3Þ2, respec-

tively. Hence, a necessary condition for a ΔΔ term to be
nonvanishing is that two momenta be above their thresh-
olds and the third one be below. The conditions (3.17) are
more clear in this respect, since they show explicitly which
external momenta have to be above threshold, while this
information is not manifest in (3.18) and (3.19). However,
depending on the configuration, the conditions (3.18) and
(3.19) can be used to better understand which terms are
turned on (see below). The previous expressions simplify in
some particular configurations. For example, in the degen-
erate case m1 ¼ m2 ¼ m3 ¼ m we have

p2
1 > 4m2; p2

3 > 4m2; p2−
u2 < p2

2 < p2þ
u2 ; ð3:21Þ

p2�
u2 ¼ p2

1 þp2
3 −

p2
1p

2
3

2m2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1ðp2

1 − 4m2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3ðp2

3 − 4m2Þ
p

2m2
;

ð3:22Þ

in agreement with [27]. In the massless case, it further
reduces to

p2
1 > 0; p2

3 > 0; p2
2 < 0: ð3:23Þ

The last configuration can be obtained when a triangle
diagram is part of a scattering process in the t or u channel.
In Fig. 2we illustrate how the real and imaginary parts of a

C0 function are modified in the presence of a fakeon for a
specific example. We consider three particles of masses m1,
m2,m3, wherem3 can be either a standard particle or a fakeon
and compare the results. In order to obtain a configuration in
which both the ΔQ and ΔΔ terms are nonvanishing we
imposem2 > m1 þm3. For illustrative purposes, we choose
the values ðm1; m2; m3Þ ¼ ð10; 170; 80Þ GeV. Moreover,
we set two external momenta on shell, i.e. p2

2 ¼ m2
1 and

p2
3 ¼ m2

2, whilep
2
1 ¼ s is the center-of-mass energy squared.

These choices mimic a physical situation where the C0

function is inserted in a scattering amplitude. Then, the
conditions (3.19) turn into

m2
2 > ðm3 þm1Þ2; m2

1 < ðm3 −m2Þ2;

2ðm2
1 þm2

2Þ −m2
3 < s <

ðm2
2 −m2

1Þ2
m2

3

: ð3:24Þ

The first and the second conditions are always satisfied,
while the third one depends on s. From the left panel in Fig. 2

3The cut diagrams in Table II have twoΔΔ terms, one of which
is always zero, once the energy flow is fixed.
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we can see that the ΔΔ term is turned on when
ffiffiffi
s

p
reachesffiffiffiffiffiffiffiffi

p2−
u1

p
≃ 227 GeV and disappears when

ffiffiffi
s

p
reachesffiffiffiffiffiffiffiffi

p2þ
u1

q
≃ 360 GeV. Moreover, since the first condition

in (3.24) involves m2
3, there is a difference also in the

imaginary part, as depicted in the right panel in Fig. 2.
Both the real and the imaginary parts have nonanalyticities
in correspondence of p2�

u1 .
To summarize this example, in the case of standard

particles the triangle diagram has two external momenta
above threshold, hence a nonzero imaginary part. In the
case where m3 is a fakeon one of the two contributions to
the imaginary part vanishes and for every s > ðm1 þm2Þ2
there is a difference. Moreover, when s is between the
critical values p2�

u1 there is also a difference in the real part.
The new singularities cannot be physically interpreted as

it is usually done in the standard cases because of their

different nature. Typically, a physical interpretation is pro-
vided by the Coleman-Norton theorem [28], which asso-
ciates singularities of Feynman amplitudes with processes
described by the diagramswhere all the particles are on shell.
This description cannot be applied when fakeons circulate in
the loop, since they cannot be on shell by construction and,
therefore, the processes that the theorem would associate
with the singularities do not exist. The reason is that by
choosing a different prescription we violate one hypothesis
of the Coleman-Norton theorem, i.e. the assumption that the
Feynman prescription is adopted for each propagator.
Features such as those in Fig. 2 are due to the fact that

the fakeon prescription sets some cut diagrams to zero. A
single cut diagram can have singularities that cancel each
other in the sum of all the cut diagrams. If some of them are
set to zero while the others are not, additional singularities
might appear. In order to highlight this in Fig. 3 we give an

FIG. 3. Left panel: difference in the imaginary part of the modified TV function Cf
0 (filled regions) when different particles in the loop

are turned into fakeons. The exemplifying values chosen for the masses are ðm1; m2 ¼ m0
2; m3Þ ¼ ð5; 170; 80Þ GeV. Right panel:

separate ΔQ terms that contribute to the total imaginary part of a standard C0 function.

FIG. 2. Difference in the real and imaginary parts of the modified TV function Cf
0 in the case the m3 is a standard particle (black line)

or a fake particle (blue line). The values of the masses are ðm1; m2; m3Þ ¼ ð5; 170; 80Þ GeV.
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example of a triangle diagram that has a singularity in the
imaginary part already in the standard case (black line), a
so-called triangle singularity [29], see also e.g. [30].
Interestingly, the singularity is entirely removed when at
least two of the particles in the internal lines are turned into
fakeons (light-green line). In this case none of the on-shell
processes required by the Coleman-Norton theorem can
take place. More involved is the case where only particle
m2 is a fakeon (blue line), in which a new singularity
appears. Its mathematical origin is understood from the
right panel of Fig. 3 where we plot separately the real parts
of the three cut diagrams. We see that two of them (blue and
purple lines) have an opposite singularity that cancels in the
sum. Therefore, it does not appear in the standard case,
while it does when only one of the two ΔQ terms is
removed by the fakeon prescription. The new singularities
deserve a physical interpretation by means of a suitable
generalization of the Coleman-Norton theorem, where both
standard particles and fakeons are taken into account.

C. Df
0 function

The scalar four-point function is written asD0ðp2
1; p

2
2; p

2
3;

p2
4; p

2
12; p

2
23; m

2
1; m

2
2; m

2
3; m

2
4Þ, where pi are the momenta of

the external legs, p2
ij ≡ ðpi þ pjÞ2, andmi are the masses of

the internal legs. The D0 function is symmetric under cyclic
permutations of the indices of its arguments. Moreover, it is
invariant under reflections along two opposite internal lines,

such as ðp2
1 ↔ p2

4; p
2
2 ↔ p2

3; m
2
2 ↔ m2

4Þ, or twists of two
adjacent internal lines, for example ðp2

1 ↔ p2
12; p

2
3 ↔ p2

23;
m2

2 ↔ m2
3Þ, and every cyclic permutation of them. Making

use of these symmetry properties, to compute ΔfD0 it is
sufficient to derive the terms

Z
d3q
ð2πÞ3

ΔabQacQad

16ω1ω2ω3ω4

;
Z

d3q
ð2πÞ3

ΔabΔacQad

16ω1ω2ω3ω4

;

Z
d3q
ð2πÞ3

ΔabΔacΔad

16ω1ω2ω3ω4

; ð3:25Þ

for some a, b, c and d. We choose the case ða; b; c; dÞ ¼
ð1; 2; 3; 4Þ as detailed in the Appendix. In D0 there are six
nonequivalent terms of the ΔQQ type. All of them can be
easily deduced from the case (1, 2, 3, 4). In particular, (2, 3,
4, 1), (3, 4, 1, 2) and (4, 1, 2, 3) are obtained by cyclically
permuting the indices of all the momenta and masses
appearing in (3.26)–(3.32). The cases (1, 3, 2, 4) and
(4, 2, 3, 1) are obtained by means of twists of the internal
lines 2, 3 and 1, 4, respectively. As in the case of the triangle
diagram, there aremorepermutations in (3.4) but half of them
are mutually exclusive due to opposite shadings in the cut
diagrams and the permutations mentioned above are suffi-
cient to cover all the cases. Analogous considerations apply
also for the ΔΔQ and ΔΔΔ terms.
The Δ12Q13Q14 term reads

Z
d3q
ð2πÞ3

Δ12Q13Q14

16ω1ω2ω3ω4

¼ p2
1θðp2

1 − ðm1 þm2Þ2Þ
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
12Þλðp2

1; p
2
4; p

2
23Þλðp2

1; m
2
1; m

2
2Þjκðu13; u14; c24Þj

p ð3:26Þ

×

8>>><
>>>:

sgnðβþÞ ln
��� κ−αðu13−1Þþjβþj ffiffi

κ
p

δðu13−1Þ
��� − sgnðβ−Þ ln

��� κ−αðu13þ1Þþjβ−j ffiffi
κ

p
δðu13þ1Þ

��� if κ > 0

sgnðβ−Þ arcsin
h
κ−αðu13þ1Þ
δju13þ1j

i
− sgnðβþÞ arcsin

h
κ−αðu13−1Þ
δju13−1j

i
þsgnðβ−Þθðjc24j − ju14jÞπ; if κ < 0

ð3:27Þ

where we define the function

κðx; y; zÞ ¼ x2 þ y2 þ z2 þ 2xyz − 1; ð3:28Þ

and we introduce the quantities

α ¼ u13 þ u14c24; β� ¼ u14 � c24; ð3:29Þ

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u214Þð1 − c224Þ

q
; κ ¼ κðu13; u14; c24Þ ¼ α2 − δ2: ð3:30Þ

The term u13 coincides with (3.15) once we replace p3
3 → p2

12, while u14 and c24 are

u14 ¼
p2
1ð−p2

1 þ p2
23 þ p2

4 − 2m2
4Þ þm2

1ðp2
1 þ p2

23 − p2
4Þ þm2

2ðp2
1 − p2

23 þ p2
4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðp2
1; p

2
4; p

2
23Þλðp2

1; m
2
1; m

2
2Þ

p ; ð3:31Þ
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c24 ¼
p2
1ð−p2

1 þ p2
23 þ p2

4 − 2p2
3Þ þ p2

12ðp2
1 þ p2

23 − p2
4Þ þ p2

2ðp2
1 − p2

23 þ p2
4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðp2
1; p

2
4; p

2
23Þλðp2

1; p
2
2; p

2
12Þ

p ; ð3:32Þ

which again can be obtained from (3.15) with suitable substitutions. Note that c24 is the cosine of the kinematic angle
between p2 and p4 in the frame where p1 ¼ 0. Thus its expression involves the external momenta only and we always have
jc24j < 1 for physical values of pi.
The terms Δ12Δ13Q14 and Δ12Δ13Δ14 read

Z
d3q
ð2πÞ3

Δ12Δ13Q14

16ω1ω2ω3ω4

¼ p2
1θðp2

1 − ðm1 þm2Þ2; p2
12 − p2

2 −m2
1 þm2

2; 1 − ju13jÞ
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
12Þλðp2

1; p
2
4; p

2
23Þλðp2

1; m
2
1; m

2
2Þ

p sgnðu14Þθðκðu13; u14; c24ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðu13; u14; c24Þ

p : ð3:33Þ

Z
d3q
ð2πÞ3

Δ12Δ13Δ14

8ω1ω2ω3ω4

¼ p2
1θðp2

1 − ðm1 þm2Þ2; p2
12 − p2

2 −m2
1 þm2

2; 1 − ju13jÞ
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
12Þλðp2

1; p
2
4; p

2
23Þλðp2

1; m
2
1; m

2
2Þ

p θðp2
4 − p2

23 −m2
2 þm2

1;−κðu13; u14; c24ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−κðu13; u14; c24Þ

p :

ð3:34Þ

These two terms cannot appear together in the same diagram, since they require disjoint conditions to be both nonvanishing.
In particular, the sign of the function κ is opposite in the two cases. The conditions imposed by the θ functions in (3.33) and
(3.34) can be reformulated in the same fashion of (3.17) as follows. First, note that one of the two θ functions, which appears
in both terms, has the same form of that in (3.16). Therefore, it gives a set of conditions similar to those in (3.17). Then,
since ju13j < 1 and jc24j < 1, it is easy to check that κ ≶ 0 is equivalent to

ju14 þ u13c24j ≶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u213Þð1 − c224Þ

q
: ð3:35Þ

Moreover, requiring κ < 0 implies ju14j < 1, which, together with p2
4 − p2

23 −m2
2 þm2

1 > 0, gives a condition analogous to
the third one in (3.17) for p2

23 and that p2
4 be above threshold. Finally, (3.35) can be rewritten as a constraint on p2

3. To
summarize, the configurations that provide a nonvanishing Δ12Δ13Q14 are

p2
1 > ðm1 þm2Þ2; p2

12 > ðm1 þm3Þ2; p2−
u2 < p2

2 < p2þ
u2 ; p2

3 < p2−
v3∨p2

3 > p2þ
v3 ; ð3:36Þ

while those for a nonvanishing Δ12Δ13Δ14 are

p2
1 > ðm1 þm2Þ2; p2

12 > ðm1 þm3Þ2; p2
4 > ðm1 þm4Þ2;

p2−
u2 < p2

2 < p2þ
u2 ; p2−

u23 < p2
23 < p2þ

u23; p2−
v3 < p2

3 < p2þ
v3 ; ð3:37Þ

where p2�
u2 and p2�

u23 are obtained from (3.20) applying the substitutions ðp2
3 → p2

12Þ and ðp2
3 → p2

4; m
2
3 → m2

4Þ, respectively,
while p�

v3 is given by

p2�
v3 ¼ p2

12 þ p2
4 −

ðp2
12 − p2

2 þ p2
1Þðp2

4 − p2
23 þ p2

1Þ
2p2

1

þ
	
u13u14 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u213Þð1 − u214Þ

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
12Þλðp2

1; p
2
4; p

2
23Þ

p
2p2

1

:

ð3:38Þ

Again, the conditions (3.36) and (3.37) can be rewritten in
other equivalent ways. We choose to show those where it is
possible to explicitly read which momenta must be above
threshold. Note that, as in the case of Cf

0, the term with the
maximum number of Δs constrains all the six invariants in
the argument of Df

0.
Figure 4 shows the types of ΔΔQ and ΔΔΔ terms

contained in a D0 function. The full set is the collection of
all the cyclical permutations of the external momenta and

masses of those basic types. The dashed lines indicate
which threshold must be exceeded by the corresponding
invariants built with external momenta. Since the Δs
appearing in these terms share one common index, the
invariants that must be above threshold are always
associated with cuts that intersect one common line.
Graphically, this results in a “V-like shape” threshold
configuration in the case ofΔΔQ terms, and in a “arrowlike
shape” configuration in the case of ΔΔΔ terms. Other
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configurations are vanishing.4 Finally, we give a concrete
example. In Fig. 5 we show the real and imaginary parts of
a Df

0. In particular, we consider the same masses used in
Fig. 2, i.e. ðm1; m2; m3Þ ¼ ð10; 170; 80Þ GeV, and set,
p2
2 ¼ p2

4 ¼ p2
23 ¼ m2

1 and p2
12 ¼ m2

2, while p2
1 ¼ s and

p2
3 ¼ t are the Mandelstam variables. In this setting, the

ΔΔΔ term is absent, while both the ΔQQ and ΔΔQ are
nonvanishing. Hence, the modifications occur both in the
real and imaginary parts. The first three conditions in (3.36)
are the same as in the case of the triangle diagram.
Therefore, the difference is present in the same range
227 GeV≲ ffiffiffi

s
p ≲ 360 GeV. The fourth condition in (3.36)

bounds the values of t as s varies. To highlight the
dependence on t, in this example we fix t to three
representative (s-dependent) values tþ; t0; t−, obtained

from the formula that relates t with the scattering angle
θ in the center-of-mass frame

t ¼ ð3m2
1 þm2

2 − sÞ
2

þ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
1Þλðs;m2

1; m
2
2Þ

p
2s

ð3:39Þ

choosing cos θ ¼ 1; 0;−1, respectively. Finally, the ΔQQ
term is present for s > ðm1 þm2Þ2, which is always
satisfied in the range 180 GeV ≤

ffiffiffi
s

p
≤ 450 GeV that we

chose in this example. Therefore, the imaginary part is
always nonvanishing in this range and the fakeon case is
always different from the standard one, since the only
nonzero cut diagram involvesm3 in the threshold. As in the
standard TV functions, the nonanalyticities in the real part
are located at the same point of those in the imaginary part.
In Sec. IV we give an illustrative application by using a

toy model, where the modifications described above appear
in the total cross sections.

FIG. 5. Difference in the real and imaginary parts of Df
0 as a function of the center-of-mass energy

ffiffiffi
s

p
in the case where m3 is a

standard particle (black line) or a fake particle (blue line). We choose the values ðm1; m2; m3Þ ¼ ð10; 170; 80Þ GeV. The difference is
displayed for three representative values of t ¼ ðt−; t0; tþÞ to highlight the dependence on t. An offset is applied to visually separate the
three cases.

FIG. 4. Basic types of ΔΔQ and ΔΔΔ terms appearing inD0, the rest are obtained by cyclically permuting all the indices of momenta
and masses. The dotted lines indicate the thresholds that must be exceeded by the corresponding invariants built with external momenta.

4We stress that the configurations depicted in Fig. 4 are
necessary but not sufficient in order to have nonvanishing
ΔΔQ and ΔΔΔ terms.
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D. Reducible functions

The reducible functions are given by Feynman integrals
with nontrivial numerators, i.e. any tensor monomial built
with momenta and the metric. The reducible functions can
be decomposed in terms of the TV functions. For example,
the integral defined by

Bμðp2
1; m1; m2Þ

≡
Z

dDq
ð2πÞD

qμ

ðq2 −m2
1 þ iϵÞ½ðpþ qÞ2 −m2

2 þ iϵ� ð3:40Þ

can be written, by Lorentz invariance, as

Bμðp2
1; m1; m2Þ ¼ pμB1ðp2

1; m1; m2Þ: ð3:41Þ

Then, the scalar function B1 is derived in terms of the TV
functions by contracting the integral with pμ. The result
reads

B1ðp2
1; m1; m2Þ ¼ −

1

2p2
½ðp2

1 þm2
1 −m2

2ÞB0ðp2
1; m1; m2Þ

− A0ðm1Þ þ A0ðm2Þ�: ð3:42Þ

This operation is called Passarino-Veltman reduction [9].
Note that (3.42) is regular in p2 ¼ 0 and has the same
branch cut structure of B0. This is due to the fact that the
numerator in the integral (3.40) does not modify the
location of the poles of the integrand. This holds for every
Feynman integral with nontrivial numerators.
Labeling the scalar reducible functions as Br, Cr, etc.,

where r is a number that uniquely identifies the numerator
of the integrals, their Passarino-Veltman reduction can be
written as

Br ¼ gBr B0 þ
X2
i¼1

fBr;iA0ðmiÞ ð3:43Þ

Cr ¼ hCr C0 þ
X3
i;j;k¼1

gCr;ijkB0ðp2
i ; mj; mkÞ þ

X3
i¼1

fCr;iA0ðmiÞ;

ð3:44Þ

and so on, where the functions f; g; h… depend on
momenta and masses and do not introduce any new
singularities. Therefore, the reducible functions inherit
the analytic structure from the TV ones. We conclude that
the Passarino-Veltman reduction in the presence of fakeons
is the same as in the standard case with the replacements
B0 → Bf

0, C0 → Cf
0 etc.

IV. CROSS-SECTION MODIFICATIONS

In the previous section we have shown that the presence
of fakeons can affect both the real and imaginary parts of

the one-loop integrals. Nevertheless, the one-loop cross
section is given by

σ ¼
Z

dΠ½jAtreej2 þ 2ReðA�
treeA1-loopÞ�; ð4:1Þ

where dΠ is the measure of the phase space of outgoing
particles and Atree;1-loop are the tree-level and one-loop
amplitudes, respectively. Since Atree is real everywhere
but at the poles of the propagators,5 the second term in
the squared bracket can be written as 2AtreeReðA1-loopÞ
almost everywhere. Therefore, modifications of the imagi-
nary parts in A1-loop do not affect the cross section at one
loop. Thus, the differences between fakeons and standard
particles can only occur through the ΔΔ and ΔΔQ terms
coming from the triangle and box diagrams, respectively,
provided that the configurations (3.17) and (3.36) are
realized.
A special remark should be made in the case of a

scattering process mediated by an unstable particle with
mass M. We can restrict the domain of the center-of-mass
energy to a neighborhood of M, where the contribution of
the triangle and box diagrams is negligible, and resum the
self-energies into the dressed propagator. Plugging it into
the tree-level diagrams, Atree acquires an imaginary part
so the cross section becomes sensible to the modifications
of the imaginary parts of Bf

0. To quantify the difference
between the standard case and the fakeon, one we introduce
the ratio

δfσ ≡ σf − σ

σ
; ð4:2Þ

where σf denotes the one-loop total cross section in the
fakeon case where all the TV functions are replaced by
those in (3.6)–(3.9). We emphasize that, since both σ and σf
are linear in the one-loop amplitudes, in the regions away
from the poles of the propagators in Atree, only the sum of
all ReðΔfC0Þ and ReðΔfD0Þ contributes in the ratio δfσ. On
the contrary, in the proximity of the poles of Atree the main
contribution to δfσ comes from ΔfB0 in the dressed
propagator. In what follows we show two examples where
these situations can be realized by means of a toy model
equipped with the necessary features to illustrate the effects
of the modified TV functions introduced in the previous
section. In particular, we need at least three fields with a
mass hierarchy such that, given the form of the interactions,
all the possible decays of the heaviest one are allowed.
Then one of the lighter fields is a fakeon, while the other
two are standard particles. Moreover, we include a trilinear
interaction that involves all three fields in order to easily
have contributions coming from ΔΔ and ΔΔQ terms.

5Strictly speaking, Atree is a complex distribution, because of
the presence of the Feynman prescription. However, the iϵ is
unnecessary everywhere but at the poles.
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The field content of the model is given by three real
scalar fields ϕi (i ¼ 1, 2, 3). We impose a discrete Z2

symmetry under which ϕ1 → −ϕ1 and ϕ2 → −ϕ2, while ϕ3

is even. This limits the number of trilinear couplings.
Moreover, we are free to set the quartic couplings to zero,
since they are not generated by renormalization. The most
general Lagrangian reads

L ¼
X3
i¼1

�
1

2
ð∂μϕiÞ2 −

m2
i

2
ϕ2
i

�
−
λ3
3!
ϕ3
3 −

λ13
2

ϕ2
1ϕ3

−
λ23
2

ϕ2
2ϕ3 − λ123ϕ1ϕ2ϕ3: ð4:3Þ

In this framework we compute the scattering cross sections
of different processes up to one loop. Renormalization is
performed in the on-shell scheme where the mass and field
renormalization constants, δm2

i and δZi, are computed from
the unrenormalized self-energies Σi imposing the conditions
δm2

i ¼ Re½Σiðm2
i Þ� and δZi ¼ −Re½∂Σiðp2Þ=∂p2�p2¼m2

i
.

A. Modified peak for standard particles

First we show how the presence of a fakeon can affect
the peak of a standard, unstable particle. Considering ϕ2 a
fakeon, in order to obtain such a modification we assume a
mass hierarchy m3 > m1 þm2 so all the possible decays
of ϕ3 are allowed. In particular, we set ðm1; m2; m3Þ ¼
ð10; 80; 170Þ GeV. Then we compute the cross section for
the process ϕ1ϕ1 → ϕ1ϕ1 as a function of

ffiffiffi
s

p
. Being ϕ1 the

lightest particle, the configurations in (3.19) and (3.37) are
never realized because they require two momenta above
threshold and one below. So no modifications arise from
ΔfC0 and ΔfD0 at the one-loop level. However, in the
neighborhood of

ffiffiffi
s

p ¼ 170 GeV, the triangle and box
diagrams are negligible with respect to the corrections
coming from the bubble diagrams and we can resum the
self-energies. The dressed propagator reads

i
s −m2

3 − Σ3ðsÞ
; ð4:4Þ

where −iΣ3 is given by the sum of the self-energy diagrams
of Fig. 6. If ϕ2 is a fakeon, the second and third diagrams in
Fig. 6 have a vanishing imaginary part, since their cut
diagrams are identically zero due to the fakeon prescription.
This changes thewidth ofϕ3, which now can only decay into

two ϕ1 particles. Choosing for simplicity λ13 ¼ λ23 ¼
λ123 ≡ λ ¼ 60 GeV, the widths in the two cases read

Γ3 ¼ Γ11
3 þ Γ22

3 þ Γ12
3 ≃ 0.60 GeV;

Γf
3 ¼ Γ11

3 ≃ 0.21 GeV; ð4:5Þ

Γij
3 ≡ λ2

m3

Im½B0ðm2
3; m

2
i ; m

2
jÞ� ¼

λ2

16πm3
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

3; m
2
i ; m

2
jÞ

q
;

ð4:6Þ

where the superscripts ij and “f” denote the particles that
circulate in the loop and the case where ϕ2 is a fakeon,
respectively. In the top panel of Fig. 7 we display the cross
section σðϕ1ϕ1 → ϕ1ϕ1Þ around

ffiffiffi
s

p ¼ m3, where ϕ2 is
considered either as a standard particle (black line) or a
fakeon (blue line). The height of the peak is well approxi-

mated by σðfÞðm2
3Þ ≃ λ4=ð16πm4

3Γ
ðfÞ2
3 Þ and using the values

in (4.5), we find σðm2
3Þ ≃ 3.3 × 105 pb in the standard case,

while in the fakeon case σfðm2
3Þ ≃ 2.7 × 106 pb, which

FIG. 6. Self-energy diagrams of ϕ3. The dashed line identifies the fakeon. In the standard scenario the first three diagrams contribute to
the decay width of ϕ3, while in the case where ϕ2 is a fakeon only the first one gives a nonvanishing contribution to the width.

FIG. 7. Top panel: cross section of the process ϕ1ϕ1 → ϕ1ϕ1 as
a function of the center-of-mass energy

ffiffiffi
s

p
around the peak of ϕ3

in the case where ϕ2 is a standard particle (black line) or a fakeon
(blue line). In this example the Lagrangian parameters are set to
ðm1; m2; m3; λÞ ¼ ð10; 80; 170; 60Þ GeV. Bottom panel: the
quantity δfσ as a function of

ffiffiffi
s

p
. The modifications in the

imaginary part of the diagrams in Fig. 6 increase the height of
the peak of almost 1 order of magnitude.
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amounts to a difference of almost an order of magnitude
between the two scenarios as displayed in the bottompanel of
Fig. 7. This gives a concrete example where the presence of a
fakeon is experimentally detectable.We recall thatmost of the
known particles are detected indirectly sowe should question
whether their fundamental nature is standard or purely virtual.
In light of what we discuss in this paper, we should proceed
with a one-by-one exclusion analysis based on the present
experimental knowledge. For example, due to confinement,
quarks are never directly detected. However, the possibility
for the light quarks to be fakeons is already ruled out by the
precise measurement of the height of the Z peak at Large
Electron-Positron collider.We stress that the differencewould
be only in a very narrow region surrounding the peak,
similarly to what we show in Fig. 7. Another interesting
example is the Higgs boson, which will be studied in detail in
a dedicated paper [31].
Initial studies of physical consequences of these type of

modifications have been done in the context of particle
physics [6,7] and quantum gravity [4].

B. Modified cross section away from the peak

We consider a different scenario, where ϕ3 is a fakeon,
and move to a region of

ffiffiffi
s

p
where the triangle and box

diagrams cannot be neglected. In this case we assume a
mass hierarchy such that m2 > m1 þm3, so in the box
and triangle diagrams at least one external momenta
squared is always above threshold, while for another
one it depends on s. Specifically, we set ðm1; m2; m3Þ ¼
ð10; 170; 80Þ GeV and study the process ϕ1ϕ1 → ϕ1ϕ2. As
discussed above, since only real modifications affect the
cross section at this order, we are interested in the terms of
the form (3.16) and (3.33). In the case considered, the
diagrams that have the required configurations to contribute
to δfσ are shown in Fig. 8. Note that the triangle and the box
diagrams [(a) and (c)] and [(b), (d), and (e)] share the same
conditions for nonvanishing ΔfC0 and ΔfD0. In particular,
the TV functions related to the diagrams (a) and (c) coincide
with those studied in the examples of Sec. III and displayed
in Figs. 2 and 5. After integrating over the phase space
and combining the conditions (3.17) and (3.36), the
diagrams (a) and (c) give a nonvanishing δfσ in the interval
227 GeV≲ ffiffiffi

s
p ≲ 360 GeV, while the diagrams (b), (d),

and (e) contribute in a wider range 193 GeV≲ ffiffiffi
s

p ≲
1192 GeV. This is shown in the top panel of Fig. 9, where
we can see the total cross section σfðϕ1ϕ1 → ϕ1ϕ2Þ as a
function of

ffiffiffi
s

p
in the case where ϕ3 is a standard particle

(black line) or a fakeon (blue line). The corresponding
behavior of δfσ can be read from the bottom panel. The
largest differences between the two scenarios are located
at

ffiffiffi
s

p ¼ 193 and
ffiffiffi
s

p ¼ 227 GeV, where δfσ ≃ 9% and
δfσ ≃ 6%, respectively. For

ffiffiffi
s

p
> 227 GeV the ratio δfσ

rapidly decreases, dropping below 1% already at
ffiffiffi
s

p ¼
450 GeV. The nonanalyticities typical of these modifica-
tions are evident. We stress that this type of behavior is not

unusual in a cross section. Indeed, discontinuities like those
in Fig. 9 can appear in a standard cross section at two loops,
where the imaginary parts of the one-loop amplitudes must
be taken into account. Furthermore, other nonanalyticities
might also appear in a one-loop cross section, since the real
parts of a one-loop amplitude typically have points where
they are continuous but not differentiable. In standard
cases, these effects are highly suppressed and often not
visible. However, the fakeon prescription has the feature of
turning those effects on (in regions where they are usually
absent) and amplifying them, as we have shown in Sec. III.
Moreover, the largest differences are always in the neigh-
borhood of the points where the effects turn on. This is
an important phenomenological feature, since it localizes

FIG. 8. Triangle and box diagrams that develop nonvanishing
ΔΔðQÞ terms and modify the cross section of the process
ϕ1ϕ1 → ϕ1ϕ2. The dashed line identifies the fakeon.

FIG. 9. Top panel: cross section of the process ϕ1ϕ1 → ϕ1ϕ2

as a function of the center-of-mass energy
ffiffiffi
s

p
, in the case

where ϕ3 is a standard particle (black line) or a fakeon
(blue line). The modifications in the real part of the diagrams
in Fig. 8 are quantified through the quantity δσf displayed in the
bottom panel. In this example the Lagrangian parameters are set
to ðm1; m2; m3; λÞ ¼ ð10; 170; 80; 60Þ GeV.
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the effects of this type of new physics. Indeed, it is possible
to select out a relatively small range of center-of-mass
energy where to expect such behavior and suggest targeted
experiments.

V. CONCLUSIONS

We have derived explicit expressions of one-loop scalar
integrals in the case of purely virtual particles for the
bubble, triangle and box diagrams, which appear in most
applications in particle physics. The modified expressions
are written in terms of subtractions from the usual TV
functions. The Passarino-Veltman reduction applies straight-
forwardly, whichmakes the results of this paper applicable to
any quantum field theory.
The peculiarities of the fakeons prescription that defines

purely virtual particles leads to modifications in both the
real and imaginary parts of the amplitudes. In particular,
new points of nonanalyticity appear, which are not asso-
ciated to physical production of particles. However, such a
feature can be useful from the phenomenological point of
view, since it allows us to discriminate models with fakeons
from those without. We have given a concrete example by
means of a toy model, where we study different scenarios in
which differences between standard particles and fakeons
can be directly observed in cross sections.
Moreover, fakeon phenomenology can depart from

standard phenomenology even more radically. In this sense
it is important to note that fakeons could induce effective
long-range interactions at the one-loop level. The new-
physics effects offered by this possibility are worth specific
investigations.
The modified TV functions can be easily implemented in

software such as LoopTools and FormCalc and used to compute
a large amount of one-loop Feynman diagrams in theories
with fakeons. The main application is the study of fakeons
in the SM and BSM models. Our rationale is that, since
quantum field theory allows fakeons, every time the
existence of a particle is inferred from indirect detection,
further tests should be carried out in order to establish
whether such a particle is a fakeon or a standard one.
Finally, in the same fashion several BSMmodels can be (re)
formulated, in view of the fact that many experimental
constraints that rule out the most conventional models are
eluded in the case of fakeons. The functions provided in
this paper are a fundamental ingredient to pave the way to
such kind of analysis. Indeed, we believe that the concept of
purely virtual particles opens unexplored scenarios in
particle physics phenomenology, where all the experimen-
tal searches so far have not provided convincing evidence
for the existence of physics beyond the SM.

ACKNOWLEDGMENTS

We thank D. Anselmi, C. Marzo and L. Marzola for
useful discussions. This work was supported by the
Estonian Research Council Grant No. MOBTT86.

APPENDIX: COMPUTATION DETAILS
OF ONE-LOOP INTEGRALS

In this Appendix we show explicitly the steps for the
computation of the relevant integrals used in this paper.
We label the internal and external momenta according to the
LoopTools conventions in Fig. 1. We adopt spherical coor-
dinates ðqs; θ;φÞ and, to simplify the notation, we rename
ðcos θ; cosφÞ ¼ ðu; vÞ. For the examples displayed, we
work in the frame where p1 ¼ 0. For each result we show
the substitutions used to recover Lorentz invariance. The
signs of the energies p0

i are chosen consistently with the
arguments of the δ functions in the integrals.
We start with the simplest case of the bubble diagram and

compute the term Δ12:Z
d3q
ð2πÞ3

Δ12

4ω1ω2

¼
Z

∞

0

dqsq2s
2π2

πδðp0
1 − ω1 − ω2Þ
4ω1ω2

¼ θðp0
1 −m1 −m2Þqs12

8πp0
1

; ðA1Þ

where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þm2

1

p
, ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þm2

2

p
and

qs12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λððp0

1Þ2; m2
1; m

2
2Þ

4ðp0
1Þ2

s
ðA2Þ

is the zero of the argument of theΔ12. The Lorentz invariant
form of (A1) is recovered with the substitution p0

1 ¼
ffiffiffiffiffi
p2
1

p
;

this gives the result in (3.10) of Sec. III A.
In the case of the triangle diagram we compute the

integrals of Δ12Q13 and Δ12Δ13 since all the others are
derived by means of cyclic permutations of the indices
(1, 2, 3).We haveω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þm2

1

p
,ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þm2

2

p
,ω3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2s þ p2
s3 − 2qsps3uþm2

3

p
.

The integral of the ΔQ type is given byZ
d3q
ð2πÞ3

Δ12Q13

8ω1ω2ω3

¼
Z

∞

0

dqsq2s
ð2πÞ2

Z
1

−1
du

πδðp0
1 − ω1 − ω2Þ
8ω1ω2ω3

× P
2ω3

ðp0
3 þ ω1Þ2 − ω2

3

¼ θðp0
1 −m1 −m2Þqs12

16πp0
1

×
Z

1

−1
duP

1

ðp0
3 þ ω̄1Þ2 − ω̄2

3

¼ θðp0
1 −m1 −m2Þ
32πp0

1ps3
ln

���� u13 þ 1

u13 − 1

����; ðA3Þ

where in the second step of (A3) we used the result of (A1)
to perform the integration in qs, and

u13 ¼
ðp0

3Þ2 − p2
s3 þ 2p0

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s12 þm2

1

p þm2
1 −m2

3

2ps3qs12
ðA4Þ

is the zero of the argument of the Δ13.
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The integral of the ΔΔ type isZ
d3q
ð2πÞ3

Δ12Δ13

8ω1ω2ω3

¼
Z

∞

0

dqsq2s
ð2πÞ2

Z
1

−1
du

π2δðp0
1 − ω1 − ω2Þδðp0

3 þ ω1 þ ω3Þ
8ω1ω2ω3

¼ θðp0
1 −m1 −m2Þqs12

32p0
1

Z
1

−1
du

δðp0
3 þ ω̄1 þ ω̄3Þ

ω̄3

¼ θðp0
1 −m1 −m2; m2

2 −m2
1 − p0

1ðp0
1 þ 2p0

3Þ; 1 − ju13jÞ
32p0

1ps3
; ðA5Þ

where, by definition, u13 is given by (A4). In order to recast the expressions above in an explicit Lorentz invariant form we
apply the substitutions

p0
1 ¼

ffiffiffiffiffi
p2
1

q
; p0

3 ¼ −
p2
3 − p2

2 þ p2
1

2
ffiffiffiffiffi
p2
1

p ; ps3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
3Þ

4p2
1

s
: ðA6Þ

The final results are given in (3.14) and (3.16) of Sec. III B.
In the case of the box diagram we compute the integrals of Δ12Q13Q14, Δ12Δ13Q14 and Δ12Δ13Δ14, all the others are

derived by means of permutations of the indices (1, 2, 3, 4). We have ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þm2

1

p
, ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þm2

2

p
, ω3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2s þ p2
s2 þ 2qsps2uþm2

3

p
and ω4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þ p2

s4 − 2qsps4ðs24
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
vþ c24uÞ þm2

4

q
, s24 and c24 being the sine and

cosine of the angle between p2 and p4, respectively.
The integral of the ΔQQ type isZ

d3q
ð2πÞ3

Δ12Q13Q14

16ω1ω2ω3ω4

¼
Z

∞

0

dqsq2s
ð2πÞ3

Z
1

−1
du

Z
2π

0

dφ
πδðp0

1 − ω1 − ω2Þ
16ω1ω2ω3ω4

P
2ω3

ðp0
1 − ω1Þ2 − ω2

3

P
2ω4

ðp0
4 þ ω1Þ2 − ω2

4

¼ θðp0
1 −m1 −m2Þ
32π2p0

1

Z
1

−1
du

Z
2π

0

dφP
1

ðp0
1 − ω̄1Þ2 − ω̄2

3

P
1

ðp0
4 þ ω̄1Þ2 − ω̄2

4

ðA7Þ

¼ θðp0
1 −m1 −m2Þ

32πp0
1ps2ps4qs12

Z
1

−1
duP

sgnðu14 þ c24uÞθ
	��� u14þc24u

s24
ffiffiffiffiffiffiffiffi
1−u2

p
��� − 1



ðu13 − uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c224Þð1 − u2Þ

h	
u14þc24u
s24

ffiffiffiffiffiffiffiffi
1−u2

p


2
− 1

ir

¼ θðp0
1 −m1 −m2Þ

32πp0
1ps2ps4qs12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c224Þð1 − u213Þjv214 − 1j

p

×

8>>>>>><
>>>>>>:

sgnðu14 þ c24uÞ ln
���� κ−ðu13þu14c24Þðu13−uÞþju14þc24uj

ffiffi
κ

p

ðu13−uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−u2

14
Þð1−c2

24
Þ

p
����u¼1

u¼−1
if jv14j > 1

sgnðu14 þ c24uÞ arcsin
h

κ−ðu13þu14c24Þðu13−uÞ
ju13−uj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−u2

14
Þð1−c2

24
Þ

p
i
u¼1

u¼uþ

þsgnðu14 þ c24uÞ arcsin
h

κ−ðu13þu14c24Þðu13−uÞ
ju13−uj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−u2

14
Þð1−c2

24
Þ

p
i
u¼u−

u¼−1
; if jv14j < 1

ðA8Þ

where κ ≡ ð1 − c224Þð1 − u213Þðv214 − 1Þ ¼ u213 þ u214 þ c224 þ 2u13u14c24 − 1, symmetric under the exchange of its argu-
ments, u� ≡ −u14c24 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u214Þð1 − c224Þ

p
are the zeros of the argument of the θ function in the third line of (A7), and

v14, u13, u14, c24 are

v14 ¼
u14 þ c24u13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − c224Þð1 − u213Þ
p ; c24 ¼

p0
2p

0
4 − p2 · p4

ps2ps4

u13 ¼
ðp0

12Þ2 − p2
s2 − 2p0

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s12 þm2

1

p þm2
1 −m2

3

2ps2qs12
;

u14 ¼
ðp0

4Þ2 − p2
s4 þ 2p0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s12 þm2

1

p
þm2

1 −m2
4

2ps4qs12
; ðA9Þ
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where u13 and v14 are the zeros of the arguments of the Δ13 and Δ14, respectively.
The integral of the ΔΔQ type is

Z
d3q
ð2πÞ3

Δ12Δ13Q14

16ω1ω2ω3ω4

¼
Z

∞

0

dqsq2s
ð2πÞ3

Z
1

−1
du

Z
2π

0

dφ
π2δðp0

1 − ω1 − ω2Þδðp0
12 − ω1 − ω3Þ

16ω1ω2ω3ω4

P
2ω4

ðp0
4 þ ω1Þ2 − ω2

4

¼ θðp0
1 −m1 −m2; m2

2 −m2
1 − p0

1ðp0
1 þ 2p0

12Þ; 1 − ju13jÞ
64πp0

1ps2

Z
2π

0

dφP
1

ðp0
4 þ ω̄1Þ2 − ω̄2

4

¼ sgnðv14Þθðp0
1 −m1 −m2; m2

2 −m2
1 − p0

1ðp0
1 þ 2p0

13Þ; 1 − ju13j; jv14j − 1Þ
64p0

1ps2ps4qs12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − c224Þð1 − u213Þðv214 − 1Þp : ðA10Þ

The integral of the ΔΔΔ type is

Z
d3q
ð2πÞ3

Δ12Δ13Δ14

16ω1ω2ω3ω4

¼
Z

∞

0

dqsq2s
ð2πÞ3

Z
1

−1
du

Z
2π

0

dφ
π3δðp0

1 − ω1 − ω2Þδðp0
12 − ω1 − ω3Þδðp0

4 þ ω1 þ ω4Þ
16ω1ω2ω3ω4

¼ θðp0
1 −m1 −m2; m2

2 −m2
1 − p0

1ðp0
1 þ 2p0

12Þ; 1 − ju13jÞ
128p0

1ps2

Z
2π

0

dφ
δðp0

4 þ ω̄1 þ ω̄4Þ
ω̄4

¼ θðp0
1 −m1 −m2; m2

2 −m2
1 − p0

1ðp0
1 þ 2p0

12Þ; 1 − ju13j; m2
2 −m2

1 − p0
1ðp0

1 − 2p0
4Þ; 1 − jv14jÞ

64p0
1ps2ps4qs12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − c224Þð1 − u213Þð1 − v214Þ
p :

ðA11Þ

All of the expressions above are recast into a Lorentz invariant form through the substitutions

p0
1 ¼

ffiffiffiffiffi
p2
1

q
; p0

12 ¼
p2
12 − p2

2 þ p2
1

2
ffiffiffiffiffi
p2
1

p ; p0
4 ¼ −

p2
4 − p2

23 þ p2
1

2
ffiffiffiffiffi
p2
1

p ; qs12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; m
2
1; m

2
2Þ

4p2
1

s
;

ps2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
2; p

2
12Þ

4p2
1

s
; ps4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2

1; p
2
4; p

2
23Þ

4p2
1

s
; p2 · p4 ¼

p2
1 þ p2

3 − p2
12 − p2

23

2
: ðA12Þ

The Lorentz invariant results are given in (3.26), (3.33) and (3.34) of Sec. III C.
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