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The properties of the pion quasiparticle in hot and dense isospin medium, including the screening mass,
pole mass, and thermal width, as well as their relationships with the pion superfluid phase transition, are
investigated in the framework of two-flavor (Nf ¼ 2) soft-wall AdS=QCD models. We extract the
screening mass of the pion from the pole of the spatial two-point retarded correlation function. The
screening masses of both neutral and charged pions increase monotonously with the increasing of
temperature. However, the isospin chemical potential μI would depress the screening masses of the charged
pions, mπ�;scr. With the increasing of μI , mπ�;scr monotonically decrease to zero on the boundary between
the normal phase and the pion superfluid phase, while the screening mass of the neutral pion, mπ0;scr,
remains almost unchanged. We also extracted the pole massmpole and thermal width Γ of the pion from the
pole of temporal two-point retarded correlation function, i.e., the corresponding quasinormal frequencies,
ω ¼ mpole − iΓ=2. The pole masses of the three modes (π0; πþ; π−) are splitting at finite μI . The thermal
widths of the three modes increase with temperature. Furthermore, the pole mass and thermal width of πþ

decrease almost monotonically with the increasing of μI , reaching zero at μI ¼ μcI , simultaneously. It
indicates that πþ becomes a massless Goldstone boson as a result of the pion superfluid phase transition.
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I. INTRODUCTION

The fundamental theory of the strong interaction is
quantum chromodynamics (QCD) and the strongly inter-
acting matter possesses rich phase structure in the condition
of finite temperature and density. By creating the circum-
stance of high temperature and high density from the
Relativistic Heavy Ion Collision (RHIC) experiments,
one can investigate the QCD phase transitions which are
not only important to realize the QCD phase structure, but
also are critical to understand the evolution of the early
Universe and the internal structure of quark stars [1–4]. At
low temperature and density, the strongly interacting matter
is in the hadronic phase. The transition from hadronic phase
to quark-gluon plasma (QGP) phase, namely the deconfine-
ment transition, takes place with the increasing of temper-
ature and chemical potential. Besides, the transition from
the chiral symmetry breaking phase to the chiral symmetry
restoration phase occurs with the rise of temperature and
chemical potential.

Since the created fireballs in RHICs last for very short
time, the detection of the properties of the hot and dense
medium is mainly based on the detection of the final
particles, among which the hadrons play important roles.
In order tomake a good explanation to the experimental data
fromRHICs, it is essential to study the in-mediumproperties
of hadrons which might have significant impacts on their
final distribution [5]. Furthermore, understanding the prop-
erties of hadrons under the extreme conditions is of scientific
merit to reveal the phase structure of strong interaction.
One of the most important quantities to characterize the

properties of meson is the meson mass, the thermal and
dense behaviors of which are of significance to understand
the properties of hot and dense nuclear matter. Due to the
breaking of the Lorentz symmetry at finite temperature, one
can define two different kinds of meson mass in medium,
namely, screening mass and pole mass.
Defined as the exponential decay of the spatial correlator,

the screening mass encodes the information of spatial corre-
lation function of meson field. Quantitatively, the screening
mass is defined by the pole of spatial correlation func-
tion in momentum space, i.e., G−1ðpÞjp2¼−m2

scr
¼ 0 [6–8].

Physically, the inverse of screening mass, a characteristic
spatial distance, can describe the screening effect that a test
hadron put inside the hot medium can be effectively screened
beyond this spatial distance [8].
The pole mass is defined by the real part of the pole of

the temporal correlator GðωÞ in the frequency space.
Physically, the pole mass depicts the natural oscillation
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frequency of a particle. At T ¼ 0, the screening mass is
equal to the pole mass because of the Lorentz invariance
of the system. However, the screening mass and the
pole mass are different at T > 0 because the Lorentz
invariance is broken by the existence of a heat bath
reference frame [9–11].
Apart from the masses mentioned above, the thermal

width, which is defined by the imaginary part of the pole of
the temporal correlator GðωÞ and interpreted as resonance
absorption in hot and dense nuclear matter, is also an
important quantity to characterize the properties of meson
in-medium. The thermal width of meson has an important
effect in RHICs. For example, the temperature dependence
of the thermal width of the ρ meson is of significance
to measure the dilepton production in the heavy ion
collision [12]. Besides, a monotonically increasing mesonic
width with increasing T can be related to a signal of
deconfinement transition [13,14].
Among the light mesons, of particular interest is the

pion, known as the lightest meson as well as pseudo-
Goldstone boson, which has attracted many attentions in
recent years. There are several reasons to investigate the in-
medium properties of pion. First, it is the lightest meson so
that it can reach thermal equilibrium with the medium
easily. Furthermore, pion has a close relationship with
chiral phase transition. For example, in chiral limit, the
mass of pion vanishes but that of scalar meson does not
below the chiral phase transition temperature Tc. However,
above Tc, the mass of pion becomes finite and gets
degenerate with scalar meson as temperature rises, which
indicates the transition from the chiral symmetry breaking
phase to the chiral symmetry restoration phase. What is
more, at hadronic spectrum level, pion in isospin medium is
also a probe for pion superfluid phase transition. When the
isospin chemical potential μI grows to mπ at zero temper-
ature, the U(1) symmetry is broken spontaneously and the
pion superfluid phase occurs [15]. The study of the isospin
behavior of pion remains an interesting topic in hadronic
physics. On the one hand, the isospin density effect can
be verified directly by the lattice simulation without
serious technical problems [16,17]. On the other hand,
the Goldstone mode corresponding to the global isospin
symmetry breaking plays a leading role on the dynamic and
thermal properties of the pion superfluidity [18].
The physics of the pion at finite temperature and isospin

density, however, is nonperturbative. Thus, the develop-
ment of nonperturbative methods is necessary. Lattice QCD
(LQCD) simulation [6,19,20], as a first-principle calcula-
tion, can work very well at finite temperature. But LQCD is
complicated at finite chemical potential due to the sign
problem of the fermion determinant [21]. Other low
energy effective models are constructed to describe the
properties of pion, such as the chiral perturbation theory
(χPT) [22,23], the functional renormalization group
(FRG) [24,25], the Dyson-Schwinger equation (DSE) [26,27]

and the Nambu-Jona-Lasinio model (NJL) [28–35]. Different
methods lead to the same conclusion that the pion masses
increasewith the increasing of temperature above the chiral
transition temperature Tc. However, the temperature
behavior of the pion pole mass with physical quark mass
below Tc is still controversial now. Son and Stephanov
argue that mπ;pole decreases with the increasing of temper-
ature below Tc [22,23]. This argument is supported by the
LQCD [19,20] and theNJLmodelwith gluon condensation
[28]. However, other methods including FRG [24], NJL
models [31], LQCD [6], and DSEs [27] obtain an opposite
result that mpole;π increases with the increasing of temper-
ature below Tc. Therefore, it is necessary to use other
methods to study this problem.
Developed from the anti-de Sitter/conformal field theory

(AdS=CFT) correspondence [36–38], fortunately, holo-
graphic method provide an alternative robust approach to
deal with the strong coupling problem of QCD [39]. There
are lots of useful models in the framework of bottom-up
approach, such as the hard-wall model [40], the soft-wall
model [41], the light-front holographic QCD [42] and the
Einstein-Maxwell-Dilaton model [43–47]. Among these
models, the soft-wall AdS=QCD model and its extended
models give a good description of the chiral phase
transition [48–59]. These models can also describe the
glueball and hadron spectra well [60–73]. Consequently,
we would like to investigate the pion spectra in the
framework of soft-wall AdS=QCD model.
There are many efforts have been made to investigate the

isospin behavior of pion in the hard-wall model [74–78]
and the soft-wall model [79,80]. However, most of these
literatures consider temperature and isospin density effect
separately. It is meaningful to consider both of them at the
same time and study the mutual effects for the pion spectra.
Based on the soft-wall AdS=QCD model, there are some
investigations on the pion pole mass, screening mass and
their thermal properties at finite temperature and isospin
chemical potential [67,68] through the spectral function
method.1 As temperature rises, however, the resonance
peak of the spectrum function gets inconspicuous and it is
difficult to determine its location. Therefore, in this paper,
we resort to another method by calculating the quasi-
normal frequency of the quasi-normal mode(QNM), the
real and imaginary part of which denote the pole mass and
the thermal width, respectively [86,87]. Through the QNM
method, we extend the study [68] to finite μI to investigate
the isospin behavior of screening mass as well as the
relationship between the pion spectra and the pion super-
fluid phase transition.

1The spectral function method has been widely used in the
studies in holographic QCD models [81–84]. Furthermore, the
spectral function can also extracted from the lattice data from
the spatial correlator [85].
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The paper is organized as follows. In Sec. II, we will give
a brief review of the soft-wall AdS=QCDmodel. In Sec. III,
we will extract the screening masses of pion quasiparticles
by calculating the poles of the spatial correlation functions
at finite temperature and isospin chemical potential. We
will also study the temporal correlation functions and
extract the pole masses and thermal widths from QNMs.
In Sec. IV we will give our conclusion and summary.

II. SOFT-WALLAdS=QCDMODELSWITH FINITE
ISOSPIN CHEMICAL POTENTIAL

In the bottom-up approach, the soft-wall AdS=QCD
model [41] can describe both spontaneously chiral sym-
metry breaking and linear confinement in the vacuum
qualitatively. Here, we review the soft-wall AdS=QCD
model briefly.
The action of Nf ¼ 2 soft-wall AdS=QCD model con-

structed with the SUð2ÞL × SUð2ÞR gauge symmetry under
the dual 5D geometry [41] takes the following form

S ¼
Z

d4x
Z

dz
ffiffiffi
g

p
e−ΦTr

�
jDMXj2 − VðjXjÞ

−
1

4g25
ðF2

L þ F2
RÞ
�
; ð1Þ

where g is the determinant of the metric gMN . ΦðzÞ ¼ μ2gz2

is the quadratic dilaton field which depends on the fifth
dimension z [41]. When the number of colors is Nc ¼ 3,
the gauge coupling constant g5 equals 2π by comparing the
vector current two-point function in large-momentum
expansion to the large-Nc QCD perturbative result [40].
We will take Nc ¼ 3 in the following calculation. X is the
matrix-valued bulk scalar field, and the covariant derivative
DMX with M ¼ ðx; zÞ is defined as

DMX ¼ ∂MX − iLMX þ iXRM; ð2Þ

where LM and RM are the chiral gauge fields,

LM ¼ La
Mt

a; RM ¼ Ra
Mt

a: ð3Þ

ta ¼ σa=2 (a ¼ 1; 2; 3) are the generators of SU(2). The
potential term takes

VðjXjÞ ¼ m2
5jXj2 þ λjXj4; ð4Þ

with the modified 5D massm2
5ðzÞ [55] and a free parameter

λ. FL=R
MN are the field strength tensors of the corresponding

chiral gauge fields, which are defined by

FL
MN ¼ ∂MLN − ∂NLM − i½LM; LN �; ð5aÞ

FR
MN ¼ ∂MRN − ∂NRM − i½RM; RN �: ð5bÞ

For convenience, we can redefine the chiral gauge fields as
the vector gauge field and the axial-vector gauge field

VM ¼ LM þ RM

2
; ð6aÞ

AM ¼ LM − RM

2
; ð6bÞ

where the vector field VM and the axial-vector field AM are
dual to the vector current JVμ and axial-vector current JAμ ,
respectively. For example, the isospin current q̄γμt3q is dual
to V3

μ. After the transformation in Eq. (6), we obtain the
gauge field strengths

FV
MN ¼ ∂MVN − ∂NVM − i½VM; VN � − i½AM; AN �; ð7aÞ

FA
MN ¼ ∂MAN − ∂NAM − i½VM; AN � − i½AM; VN �; ð7bÞ

and the covariant derivative

DMX ¼ ∂MX − i½VM; X� − ifAM; Xg: ð8Þ

We consider the temperature as well as the isospin
chemical potential effect and take the following metric
ansatz

ds2 ¼ e2AðzÞ
�
fðzÞdt2 − dx2 −

1

fðzÞ dz
2

�
: ð9Þ

If there is a horizon z ¼ zh where fðzÞ ¼ 0, one can define
the temperature by the following formula

T ¼ jf0ðzhÞj
4π

: ð10Þ

According to the holographic dictionary, the conserved
current is dual to the gauge field defined by Eq. (6a). In
general, AðzÞ and fðzÞ should be solved from a certain kind
of gravity system which is coupled with the soft-wall
AdS=QCDmodel action. For simplicity, we calculate in the
sense of probe limit. We consider the anti–de Sitter-
Reissner-Nordstrom (AdS-RN) metric solution with finite
isospin chemical potential

AðzÞ ¼ − lnðzÞ; ð11Þ

fðzÞ ¼ 1 − ð1þ μ2I z
2
hÞ
z4

z4h
þ μ2I

z6

z4h
ð12Þ

with the isospin chemical potential μI . V3
0 satisfies the

following formula

V3
0ðzÞ ¼ μI

�
1 −

z2

z2h

�
: ð13Þ
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For convenience, we denote V3
0ðzÞ by νðzÞ. From Eqs. (10)

and (12), we can obtain the temperature as follows

T ¼ 2 − μ2I z
2
h

2πzh
: ð14Þ

In this work, we only consider two lightest flavors of
quarks, namely up (u) quark and down (d) quark, with the
same physical mass mu ¼ md ≡mq. Then we get the
matrix-valued scalar field

X ¼ χ

2
I: ð15Þ

Here, I is the two-dimensional identity matrix. Inserting
Eqs. (9) and (15) into the 5D action Eq. (1), we can obtain
the equation of motion (EOM) of χ as follows

χ00 þ
�
3A0 −Φ0 þ f0

f

�
χ0 −

e2A

f

�
m2

5χ þ
λχ3

2

�
¼ 0: ð16Þ

By solving the EOM of χ, one can obtain the temperature
and isospin chemical potential dependence of chiral con-
densate. However, it is a second-order nonlinear ordinary
differential equation and it is hard to obtain the analytical
solution. Therefore, we must resort to the numerical
solution.
To obtain general features of the soft-wall AdS=QCD

models, herein, we consider two kinds of soft-wall
AdS=QCD models with different modified 5D masses
m2

5ðzÞ which are introduced to obtain a good description
of both spontaneous chiral symmetry breaking and meson
spectrum. The modified forms of m2

5ðzÞ are shown in
Table I. Model I is introduced in Ref. [55]. In model II, we
consider the modification of m2

5ðzÞ as the coupling to the
dilaton ΦðzÞ.
For model I, one can obtain the asymptotic expansion of

χ at the UV boundary (z ¼ 0) and the horizon (z ¼ zh)

χðz → 0Þ ¼ mqζzþ
σ

ζ
z3 þmqζ

4
ð−2μ2c

þ 4μ2g þm2
qζ

2λÞz3 lnðzÞ þOðz4Þ ð17aÞ

χðz → zhÞ ¼ c0 þ
c0ð2μ2cz2h − c20λþ 6Þ

8zh − 4z3hμ
2
I

ðz − zhÞ

þO½ðz − zhÞ2� ð17bÞ

where the two independent integral constants mq and σ at
the UV boundary are dual to quark mass and chiral
condensate σ ≡ hq̄qi, respectively, according to the holo-
graphic dictionary. Here, ζ is a normalization constant
which equals

ffiffiffiffiffiffi
Nc

p
=2π, by matching the correlation of q̄q

operator to 4D result [48]. Furthermore, c0 is a integration
constant generating a regular solution at the horizon. For
model II, we can also obtain the asymptotic series at the UV
boundary (z ¼ 0) and the horizon (z ¼ zh)

χðz → 0Þ ¼ mqζzþ
σ

ζ
z3 þ 1

4
½mqð4 − 6γκÞμ2gζ

þm3
qλζ

3�z3 lnðzÞ þOðz4Þ ð18aÞ

χðz → zhÞ ¼ c0 þ
c0½6 − c20λþ 6γ tanhðz2hκμ2gÞ�

8zh − 4z3hμ
2
I

× ðz − zhÞ þO½ðz − zhÞ2� ð18bÞ

The parameters of model I, as are shown in Table II, are
taken from Ref. [55]. For model II, we adopt the parameters
shown in Table III. These parameters can be determined as
follows. First, for convenience, we set κ ¼ 1. Second,
following Ref. [88], we fix the parameter μg, which is
connected to the Regge behavior of the meson spectrum, to
μg ¼ 0.43 GeV. Third, the parameters λ andmq are account
for the values of pion mass mπ and chiral condensation σ.
On the one hand, chiral condensation σ decreases as λ
increases. On the other hand, pion massmπ increases asmq

increases. We aimed to fitmπ to about 139.6 MeV [89] and
σ to about 0.0240 GeV3 [63]. We obtained λ ¼ 14.7 and
mq ¼ 3.58 MeV. Under these fitted parameters, the cor-
responding values of mπ and σ are about 139.7 MeV and
0.0239 GeV3, respectively. Finally, the parameter γ is
related to the chiral phase transition temperature Tc, which
is roughly between 150 and 160 MeV. We obtain γ ¼ 3.7
and the corresponding transition temperature is about
153 MeV. Furthermore, we can get the pion decay constant

fπ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mqσ=m2

π

q
≈ 0.094 GeV through the Gell-Mann-

Oakes-Renner (GOR) relation with the fitted parameters,
which is consistent with the experiment data [89].

TABLE I. Two kinds of soft-wall AdS=QCD models with
different 5D masses m2

5ðzÞ.
Model I II

m2
5ðzÞ −3 − μ2cz2 −3½1þ γ tanhðκΦÞ�

TABLE II. Parameters in model I [55].

Parameters mq (GeV) μg (GeV) μc (GeV) λ

Value 3.22 × 10−3 0.44 1.45 80

TABLE III. Parameters in model II.

Parameters mq (GeV) μg (GeV) γ λ κ

Value 3.58 × 10−3 0.43 3.7 14.7 1
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With the boundary conditions Eqs. (17) and (18), we can
solve Eq. (16) by “shooting method” [90] and extract the
chiral condensate σ as a function of temperature T or
isospin chemical potential μI. The relevant numerical
results are presented in Fig. 1.
In model I, the result shows that the chiral condensate σ

decreases monotonously with the increasing of temperature
in chiral limit and with physical quark mass. In chiral limit,
σ vanishes at the critical temperature Tc (at μI ¼ 0,
Tc ≈ 0.163 GeV). With finite physical quark mass
(mq ¼ 3.22 MeV) and zero isospin chemical potential,
however, the second-order phase transition becomes a cross-
over with the pseudocritical temperature Tcp ≈ 0.164 GeV.2

Inmodel II, the critical temperature Tc approximately equals
0.1532 GeV in chiral limit. The pseudocritical temperature
Tcp approximately equals 0.1537 GeV at μI ¼ 0 with
physical quark mass mq ¼ 3.58 MeV. We find that with
the increasing of μI, the curve of σ shifts toward the sigma
axis, which suggests the fact that isospin chemical potential
tends to destroy the chiral symmetry.

III. CORRELATION FUNCTIONS AND MASS
OF PIONS AT FINITE TEMPERATURE

AND ISOSPIN DENSITY

In the previous section, we have briefly reviewed the
soft-wall AdS=QCD model and obtained the temperature
dependent behavior of chiral condensate at different μI. In
this section, we will calculate screening masses and pole
masses, as well as thermal widths of pions at finite isospin
density and temperature, from which one can obtain the
information of pion superfluid phase transition at finite
temperature.

The screening mass mscr is defined as the exponential
decay of spatial correlator, i.e., the inverse of the correlation
length ξ ∼ 1=mscr. In momentum space, it corresponds to
the pole of the retarded correlator,

GðpÞ ∼ 1

p2 þm2
scr

; ð19Þ

with the frequency ω ¼ 0. As for the pole mass mpole and
the thermal width Γ, they are the real and imaginary part of
frequency (ω0 ¼ mpole − iΓ=2) of the corresponding QNM,
which is the pole of the temporal retarded correlator in
frequency space,

GðωÞ ∼ 1

ω − ðmpole − iΓ=2Þ ; ð20Þ

with the momentum p ¼ 0.
Holographic approach, connecting the 4D operator ÔðxÞ

and 5D field ϕðx; zÞ through the equivalence of the partition
functions, provides a powerful tool to calculate the strong
coupling correlation function, namely

hei
R

d4xϕ0ðxÞÔðxÞi ¼ eiS5D½ϕ�jϕðx;z¼0Þ¼ϕ0ðxÞ; ð21Þ

where ϕ is the classical solution of the 5D action S5D and its
boundary value ϕðx; z ¼ 0Þ equals the 4D external source
ϕ0ðxÞ [36–38]. By taking second derivative of the action
S5D with respect to the source ϕ0, one can obtain the
correlator hÔðxÞÔð0Þi [91].

A. Pseudoscalar channel

In this part, we will derive the spatial correlation
functions as well as the temporal correlation functions
for the pseudoscalar mesons. In 4D quantum field theory,
particles are recognized as the excitation modes of the

(a) (b)

FIG. 1. (a) The chiral condensate σ of model I as a function of temperature T with different isospin chemical potential μI in chiral limit
(mq ¼ 0) and with physical quark mass (mq ¼ 3.22 MeV), respectively. In chiral limit, σ vanishes at the critical temperature Tc

(at μI ¼ 0, Tc ≈ 0.1633 GeV). With finite physical quark mass, however, the second-order phase transition becomes a crossover
with the pseudocritical temperature Tcp ≈ 0.1639 GeV at μI ¼ 0 (As shown by the red dots). (b) The chiral condensate σ of model II
as a function of temperature T with different isospin chemical potential μI in chiral limit (mq ¼ 0) and with physical quark
mass (mq ¼ 3.58 MeV). The red points in (b) stand for the critical temperature Tc ≈ 0.1532 GeV and the pseudocritical temperature
Tcp ≈ 0.1537 GeV at μI ¼ 0, respectively.

2The pseudocritical temperature Tcp is defined by
d2σðTÞ=dT2jT¼Tcp

¼ 0.
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vacuum, while they are the perturbations on the back-
ground fields in the dual 5D gravity theory. For the pions,
we have

X ¼ I
2
χe2iπ

ata ; ð22Þ

where I is a two-dimensional identity matrix and πa (a ¼ 1,
2, 3) is the pion perturbation. Here, we have neglected other
channel perturbations which do not affect our discussion.
Substituting Eq. (22) into Eq. (1) and keeping the quadratic
terms, together with the gauge condition Az ¼ 0, one can
obtain the action of pseudoscalar part as

SPS ¼
Z

d4x
Z

zh

0

dz
ffiffiffi
g

p
e−Φ
�
1

2
ðM2

AÞab½gzz∂zπa∂zπb

þ gμν∂μπa∂νπb − 2gμν∂μπaAb
ν þ gμνAa

μAb
ν �

þ gtt
�
1

2
νðzÞ2ðM2

DÞabπaπb þ νðzÞðM2
I Þabðπb∂tπa

þ πaAb
t Þ
�
−

1

2g25
gzzgμν∂zAa

μ∂zAa
ν −

1

2g25
gttgii

× ð∂tAa
i − ∂iAa

t Þ2
�
; ð23Þ

where ðM2
AÞab, ðM2

I Þab, and ðM2
DÞab are 3 × 3 matrices

defined as follows,

ðM2
AÞab ¼

0
B@

χ2 0 0

0 χ2 0

0 0 χ2

1
CA; ð24aÞ

ðM2
I Þab ¼

0
B@

0 −χ2 0

χ2 0 0

0 0 0

1
CA; ð24bÞ

ðM2
DÞab ¼

0
B@

χ2 0 0

0 χ2 0

0 0 0

1
CA; ð24cÞ

with a, b the generator indexes of SU(2). Here, πa and Aa
μ

are functions of the coordinates x ¼ ðt;−xÞ and z. By
taking the Fourier transformations,

πaðx; zÞ ¼ 1

ð2πÞ4
Z

d4keikxπaðk; zÞ; ð25aÞ

Aa
μðx; zÞ ¼

1

ð2πÞ4
Z

d4keikxAa
μðk; zÞ; ð25bÞ

one can solve the equation of motions in momentum space
k ¼ ðω;−pÞ. Without losing generality and for simplicity,
we assign p along the x1-direction, i.e., p ¼ ðp; 0; 0Þ. Due

to the isospin symmetry breaking at finite isospin chemical
potential, the neutral pion π3 and the charged pions π1;2 will
no longer be degenerate. Thus, we have to take the isospin
index (a ¼ 1, 2, 3) into account. For convenience, we
define π3 ¼ π0, and take a rotation in isospin space,

�
π1

π2

�
¼
 1ffiffi

2
p 1ffiffi

2
p

iffiffi
2

p − iffiffi
2

p

!�
πþ

π−

�
; ð26aÞ

�
A1
t

A2
t

�
¼
 1ffiffi

2
p 1ffiffi

2
p

iffiffi
2

p − iffiffi
2

p

!�
Aþ
t

A−
t

�
: ð26bÞ

From the action in Eq. (23), the EOMs of π0; A0
t , and A0

i are
derived as

π000 þ
�
3A0 −Φ0 þ f0

f
þ 2

χ0

χ

�
π00

þ
�
ω2

f2
−
p2

f

�
π0 −

iω
f2

A0
t −

ip
f
A0
i ¼ 0; ð27aÞ

A000
t þ ðA0 −Φ0ÞA00

t −
g25e

2Aχ2iω
f

π0

−
p2 þ g25e

2Aχ2

f
A0
t −

ωp
f

A0
i ¼ 0; ð27bÞ

A000
i þ

�
A0 −Φ0 þ f0

f

�
A00
i þ g25e

2Aχ2ip
f

π0

þ ω2 − fg25e
2Aχ2

f2
A0
i þ

ωp
f2

A0
t ¼ 0; ð27cÞ

and the EOMs of π�; A�
t , and A�

i are derived as

π�00 þ
�
3A0 −Φ0 þ f0

f
þ 2

χ0

χ

�
π�0 þ ðω� νÞ2 − fp2

f2
π�

−
iðω� νÞ

f2
A�
t −

ip
f
A�
i ¼ 0; ð28aÞ

A�00
t þ ðA0 −Φ0ÞA�0

t −
g25e

2Aχ2iðω� νÞ
f

π�

−
p2 þ g25e

2Aχ2

f
A�
t −

ωp
f

A�
i ¼ 0; ð28bÞ

A�00
i þ

�
A0 −Φ0 þ f0

f

�
A�0
i þ g25e

2Aχ2ip
f

π�

þ ω2 − fg25e
2Aχ2

f2
A�
i þ ωp

f2
A�
t ¼ 0; ð28cÞ

where the prime represents the derivative with respect to z.
Note that the EOMs are coupled linear second-order

differential equations with double singularities. The ana-
lytical solutions are almost impossible to get. Therefore, we
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have to solve them numerically. Since the structure of the
asymptotic expansion solutions and the relative numerical
algorithm are the same for solving the EOMs of pions in
these two soft-wall AdS=QCD models, we only give the
numerical details for model I in this subsection. We can get
the asymptotic expansions of π0, A0

t , and A0
i at the UV

boundary,3

π0ðz → 0Þ ¼ π0 þ
1

2
½π0ðp2 − ω2Þ þ iðφ0pþ a0ωÞ�

× z2 lnðzÞ þ π2z2 þOðz3Þ; ð29aÞ

A0
t ðz → 0Þ ¼ a0 þ

1

2
½a0ðp2 þ g25m

2
qζ

2Þ þ φ0pω

þ ig25m
2
qζ

2π0ω�z2 lnðzÞ þ a2z2 þOðz3Þ;
ð29bÞ

A0
i ðz→ 0Þ ¼ φ0 þ

1

2
½pð−ig25m2

qζ
2π0 − a0ωÞ

þφ0ðg25m2
qζ

2 −ω2Þ�z2 lnðzÞ þφ2z2 þOðz3Þ;
ð29cÞ

where π0, π2, a0, a2, φ0, φ2 are free undetermined
integration constants. According to the holographic dic-
tionary, π0, a0, φ0 correspond to the external sources Jπ ,
JAt

, and JAi
, respectively. At the horizon, we can also get

the asymptotic expansions as4

π0ðz → zhÞ ¼ ðzh − zÞ
iωzh

2μ2
I
z2
h
−4fπh0 þ πh1ðz − zhÞ

þO½ðz − zhÞ2�g þ bh0

þ ibh1z2hωðz − zhÞ
16þ 4z4hμ

4
I þ z2hð−16μ2I þ ω2Þ

þO½ðz − zhÞ2�; ð30aÞ

A0
t ðz → zhÞ ¼ ðzh − zÞ

iωzh
2μ2

I
z2
h
−4fah1ðz − zhÞ þO½ðz − zhÞ2�g

− ibh0ωþ bh1ðz − zhÞ þO½ðz − zhÞ2�;
ð30bÞ

A0
i ðz → zhÞ ¼ ðzh − zÞ

iωzh
2μ2

I
z2
h
−4

�
−i
�
2πh0c20g

2
5ð−2þ z2hμ

2
I Þ

2pz2hð−2þ z2hμ
2
I Þ

þ ah1z2hð4 − 2z2hμ
2
I − izhωÞ

2pz2hð−2þ z2hμ
2
I Þ

�

þ φh1ðz − zhÞ þO½ðz − zhÞ2�
�
þ ibh0p

−
bh1pz2hωðz − zhÞ

16þ 4z4hμ
4
I þ z2hð−16μ2I þ ω2Þ

þO½ðz − zhÞ2� ð30cÞ
with coefficients of first order in Eq. (31),

πh1 ¼ f−2ah1z2hð−2þ z2hμ
2
I Þ2 þ πh0c20ð−2þ z2hμ

2
I Þ

× ½2g25ð−2þ z2hμ
2
I Þ − izhλω�

þ πh0z2hf2p2ð−2þ z2hμ
2
I Þ2 þ iω½4z5hμ2gμ4I

þ z3hμ
2
I ð2μ2c − 16μ2g − 3μ2I Þ þ zhð−4μ2c

þ 16μ2g þ 6μ2I Þ þ 6iω − 9iz2hμIω�gg=½4zhð−2
þ z2hμ

2
I Þ2ð−2þ z2hμ

2
I þ izhωÞ�; ð31aÞ

φh1 ¼ if−4πh0c20g25p2z2hð−2þ z2hμ
2
I Þ3 þ 2iah1p2z5hð−2

þ z2hμ
2
I Þ2ωþ ½−2πh0c20g25ð−2þ z2hμ

2
I Þ þ ah1z2hð−4

þ 2z2hμ
2
I þ izhωÞ�½2c20g25ð−2þ z2hμ

2
I Þ2 þ izhωð−4

þ 4z6hμ
2
gμ

4
I þ 16z2hðμ2g þ μ2I Þ − z4hð16μ2gμ2I þ 7μ4I Þ

þ 6izhω − 9iz3hμ
2
IωÞ�g=

�
8z3hð−2þ z3hμ

2
I Þ4

×

�
pþ ipzhω

−2þ z2hμ
2
I

��
; ð31bÞ

where πh0, ah1, bh0, and bh1 are independent integration
constants. As for the EOMs of π�, A�

t and A�
i , i.e.,

Eqs. (28a)–(28c), we can also obtain the UV boundary
asymptotic expansions as

π�ðz → 0Þ ¼ π�0 þ 1

2
fiφ�

0 pþ ia�0 ðω� μIÞ
þ π�0 ðp2 − ðω� μIÞ2Þgz2 lnðzÞ
þ π�2 z

2 þOðz3Þ; ð32aÞ

A�
t ðz → 0Þ ¼ a�0 þ 1

2
fa�0 ðp2 þ g25m

2
qζ

2Þ
þ φ�

0 pωþ ig25m
2
qζ

2π�0 ðω� μIÞg
× z2 lnðzÞ þ a�2 z

2 þOðz3Þ; ð32bÞ

A�
i ðz → 0Þ ¼ φ�

0 þ 1

2
fφ�

0 g
2
5m

2
qζ

2 − ig25m
2
qpζ2π�0

− a�0 pω − φ�
0 ω

2gz2 lnðzÞ þ φ�
2 z

2 þOðz3Þ;
ð32cÞ

3These are generalized regular series expansions and what we
just require is that π0, A0

t , and A0
i are not divergent at z → 0. The

same regular conditions must also be met in the following series
expansions.

4Here, we take the incoming wave solution and neglect the
outgoing one.
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where π�0 , π
�
2 , a

�
0 , a

�
2 , φ

�
0 , φ

�
2 are independent integration

constants. Similarly, the horizon asymptotic expansions
read

π�ðz → zhÞ ¼ ðzh − zÞ
iωzh

2μ2
I
z2
h
−4fπ�h0 þ π�h1ðz − zhÞ

þO½ðz − zhÞ2�g þ b�h0

þ ðz − zhÞzhðib�h1zh � 2b�h0μIÞω
16þ 4z4hμ

4
I þ z2hð−16μ2I þ ω2Þ

þO½ðz − zhÞ2�; ð33aÞ

A�
t ðz → zhÞ ¼ ðzh − zÞ

iωzh
2μ2

I
z2
h
−4fa�h1ðz − zhÞ þO½ðz − zhÞ2�g

− ib�h0ωþ b�h1ðz − zhÞ þO½ðz − zhÞ2�;
ð33bÞ

A�
i ðz → zhÞ ¼ ðzh − zÞ

iωzh
2μ2

I
z2
h
−4

�
−i
�
2π�h0c

2
0g

2
5ð−2þ z2hμ

2
I Þ

2pz2hð−2þ z2hμ
2
I Þ

þ a�h1z
2
hð4 − 2z2hμ

2
I − izhωÞ

2pz2hð−2þ z2hμ
2
I Þ

�

þ φ�
h1ðz − zhÞ þO½ðz − zhÞ2�

�

þ ib�h0p −
b�h1pz

2
hωðz − zhÞ

16þ 4z4hμ
4
I þ z2hð−16μ2I þ ω2Þ

þO½ðz − zhÞ2� ð33cÞ

with coefficients of first order in Eq. (34),

π�h1 ¼ f−2a�h1z2hð−2þ z2hμ
2
I Þ2 þ π�h0c

2
0ð−2þ z2hμ

2
I Þ

× ½2g25ð−2þ z2hμ
2
I Þ − izhλω�

þ π�h0z
2
hf2p2ð−2þ z2hμ

2
I Þ2 þ iω½4z5hμ2gμ4I

þ z3hμ
2
I ð2μ2c − 16μ2g − 3μ2I Þ þ zhð−4μ2c þ 16μ2g

þ 6μ2I Þ þ 2ið4μI þ 3ωÞ − iz2hμ
2
I ð4μI þ 9ωÞ�gg

=½4zhð−2þ z2hμ
2
I Þ2ð−2þ z2hμ

2
I þ izhωÞ�; ð34aÞ

φ�
h1 ¼ if−4π�h0c20g25p2z2hð−2þ z2hμ

2
I Þ3 þ 2ia�h1p

2z5hð−2
þ z2hμ

2
I Þ2ωþ ½−2π�h0c20g25ð−2þ z2hμ

2
I Þ þ a�h1z

2
hð−4

þ 2z2hμ
2
I þ izhωÞ�½2c20g25ð−2þ z2hμ

2
I Þ2 þ izhωð−4

þ 4z6hμ
2
gμ

4
I þ 16z2hðμ2g þ μ2I Þ − z4hð16μ2gμ2I þ 7μ4I Þ

þ 6izhω − 9iz3hμ
2
IωÞ�g=

�
8z3hð−2þ z3hμ

2
I Þ4

×

�
pþ ipzhω

−2þ z2hμ
2
I

��
; ð34bÞ

where the independent integration constants are π�h0, a
�
h1,

b�h0, and b�h1.

The on-shell action of pion is

Sonπ ¼ 1

2g25

Z
d4k

X3
a¼1

feA−Φ½Aa
t ð−k; zÞ∂zAa

t ðk; zÞ

− fAa
i ð−k; zÞ∂zAa

i ðk; zÞ�
− e3A−Φg25fχ

2πað−k; zÞ∂zπaðk; zÞgjz¼zh
z¼ϵ : ð35Þ

Substituting the Eqs. (29)–(33) into Eq. (35) and taking
derivative with respect to the source Jπ , we can obtain the
on-shell action and the retarded correlator of π0 as follows

Son
π0

¼ 1

g25

Z
d4kfa0ð−kÞa2ðkÞ − φ0ð−kÞφ2ðkÞ

− g25m
2
qζ

2π0ð−kÞπ2ðkÞ þ � � �g; ð36Þ

Gπ0ðkÞ ¼
δ2Son

π0

δJ�
π0
δJπ0

¼ −m2
qζ

2
π2ðkÞ
π0ðkÞ

þ � � � ; ð37Þ

where the symbol � � � represents for some pole-irrelevant
terms. From the explicit formation of retarded correlator
of π0 in Eq. (37), it is obvious that the value of the correlator
at k is only dependent on the integration constants of
the asymptotic expansions in Eq. (29). In principle, these
integration constants can be obtained by numerically solving
the EOM of π0 in Eq. (27) with the boundary conditions in
Eq. (29)–(31) through the “Shooting” method.
The on-shell action and the retarded correlator of π� read

Son
π� ¼ 1

g25

Z
d4kfa�0 ðkÞ�a�2 ðkÞ − φ�

0 ðkÞ�φ�
2 ðkÞ

− g25m
2
qζ

2π�0 ðkÞ�π�2 ðkÞ þ � � �g; ð38Þ

Gπ�ðkÞ ¼
δ2Son

π�

δJ�
π�δJπ�

¼ −m2
qζ

2
π�2 ðkÞ
π�0 ðkÞ

þ � � �; ð39Þ

where the symbol � � � represents for some pole-irrelevant
terms. Similar to the retarded correlator of π0 in Eq. (37),
the retarded correlators of π�, Gπ� in Eq. (39), are only
dependent on the integration constants of the asymptotic
expansions in Eq. (32).

B. Screening masses of pions

In this section, we will numerically solve the EOMs of
pions numerically and extract screening masses from the
pole of the spatial correlation functions in two different
soft-wall AdS=QCD models. Then we will investigate the
temperature as well as the isospin chemical potential
dependence of screening masses. In this paper, we will
mainly focus on the temperature region below Tcp. Not
only does the pion condensate occur below the chiral
transition temperature, but also the particles of pions are not
well-defined degrees of freedom at high temperature.
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For the screening mass corresponds the pole of the
spatial correlator, one can let the frequency ω ¼ 0 in the
EOMs, the boundary asymptotic expansions and the
retarded correlators in Eqs. (27)–(39). For the neutral pion,
Eqs. (27), (29)–(31) and (35)–(37), in order to obtain the
pole of its spatial correlator, the corresponding integration
constants in the UV asymptotic expansions in Eq. (29)
should take the following conditions,5

π0ðp2Þ ¼ 0; a0ðp2Þ ¼ 0; φ0ðp2Þ ¼ 0: ð40Þ

When one solves the EOMs in Eq. (27), the lowest state
of p2 satisfying Eq. (40) corresponds to screening mass of
the neutral pion, i.e., m2

scr ¼ −p2. To accomplish the
numerical solving, constrains on the horizon are also
essential. On the horizon, since the equations for π0, A0

t ,
and A0

i [Eqs. (27a)–(27c)] are linear differential equations,
we can set the integration constant πh0 to be unity (πh0 ¼ 1)
without shifting the mass spectra. The integration constant
bh1 should be set to zero (bh1 ¼ 0) which insure the on-
shell action Sonπ is independent of horizon terms [91].6

Finally, the remain undetermined integration constants,
bh0 and ah1, and the target momentum p2 (i.e. the screening
mass), can be determined by “shooting method” [90].
The same prescription can be also applied to the EOMs

of charged pions in Eqs. (28a)–(28c). On the horizon,
one can take π�h0 ¼ 1, while b�h0, a�h1 and p2 can be
determined by “shooting method” when the following
conditions for the integration constants in the UV boundary
asymptotic expansion solutions in Eq. (32) are simulta-
neously satisfied,

π�0 ðp2Þ ¼ 0; a�0 ðp2Þ ¼ 0; φ�
0 ðp2Þ ¼ 0: ð41Þ

They lead to the pole of the correlator in Eq. (39). However,
there are some differences from the case of π0, which relate
to the integration constant b�h1 on the horizon at finite
isospin chemical potential. We find that only the condition
∂zπ

�ðz → zhÞ ¼ 0, i.e., b�h1 ¼ �2ib�h0μI=zh predicts appro-
priate spectra of charged pions. When μI ¼ 0, b�h1 reduces
to zero, which is consistent with the previous discussions.
Considering the boundary conditions and the physical
constrains, we can also solve the EOMs and extract the
screening masses of the charged pions.

1. The temperature effect

The numerical results of screening masses, varying with
temperature, are presented in Fig. 2. Qualitatively, one can
find that these two soft-wall AdS=QCD models share the
same features in predicting the temperature behavior of
screening masses of pions. For π0, the numerical results are
shown in Figs. 2(a) and (b). We find that the screening mass
of neutral pion at very low temperature is almost indepen-
dent on T. The value of mscr;π0=mπ

7 gets closed to 1, which
implies that the screening mass of π0 at low temperature
almost remains mπ . As the rising of T, mscr;π0 grows slowly
first and then enhances quickly when T is close to the
pseudocritical temperature TcpðμIÞ.8 What is more, it is
noteworthy that mscr;π0 at different μI have almost the same
value. It is because that π0 does not carry isospin charge.
Consequently, the isospin chemical potential has little
impact on mscr;π0 .
For the screening masses of charged pions π�, the

numerical results at different μI are shown in Figs. 2(c)
and (d). At finite isospin chemical potential, we find that
the screening masses of πþ and π− are degenerate, which is
in agreement with the NJL model results in Ref. [30]. From
the NJL studies in Refs. [29,30], it can be seen that the
charged pions share the same isospin chemical potential
dependence in the mesoic propagator when ω ¼ 0, i.e., the
charged pions feel the same spatial effect of the medium,
which leads to the degenerate of the screening masses of the
charged pions. In our holographic models, when one lets
the frequency ω ¼ 0 in the EOMs of charged pions, in
Eq. (28), it is obviously that the EOMs reduce to the same.
Therefore, screening masses of charged pions are degen-
erate. With the increasing of temperature, the screening
masses increase. However, with the increasing of isospin
chemical potential, the screening masses decrease. For
example, we can see in both models that at fixed temper-
ature T=TcpðμIÞ ¼ 0.4,

mscr;π�ðμI ¼ 0.01 GeVÞ ≈mπ;

mscr;π�ðμI ¼ 0.05 GeVÞ ≈ 0.95mπ;

mscr;π�ðμI ¼ 0.10 GeVÞ ≈ 0.8mπ:

Furthermore, in the high temperature region, the effect of μI
is much weaker than the temperature effect. Therefore, the
curves become degenerate when T closes to Tcp.
To compare the screening masses between the neutral

and charged pions, we show the temperature dependence of
the screening masses at fixed isospin chemical potential5As a result of the coupling between the pion and the axial

vector meson, Eq. (27) is not only the EOMs for the pion but also
for the axial vector meson, the degree of freedoms of the pion and
the axial vector meson are both encode in these coupled
equations. To obtain the pole of the correlator of the axial vector
meson, it requires the integration constants a0 ¼ 0 and φ0 ¼ 0,
but π0 undetermined.

6On the horizon, as to the pole of the axial vector meson, one
should let πh0 ¼ 1, bh0 ¼ 0, bh1 ¼ 0.

7Here, mπ ≈ 0.13971136 GeV, which is the pion mass at
T ¼ 0, μI ¼ 0 in model I [55], and mπ ≈ 0.13971648 GeV in
model II.

8From the discussion in Sec. II, it can be seen that Tcp is
affected by μI. It is found that TcpðμIÞ will decrease as the rising
of μI .
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μI ¼ 0.10 GeV in Figs. 3. In both models, the screening
mass of π0 gets close tomπ, while π� is about 0.8mπ at low
temperature. However, they become degenerate at rela-
tively high temperatures, which implies that the effect of
isospin chemical potential can be neglected.

2. The isospin density effect

After considering the temperature dependence of the
screening masses at fixed isospin chemical potential, we
will discuss the effect of isospin chemical potential on
screening masses at fixed temperatures in this subsection.
Due to the qualitative consistency of the conclusions
obtained at different temperatures, we only choose the

fixed temperature T ¼ 0.10 GeV for the discussion without
loss of generality. The numerical results of the isospin
chemical potential dependence of the screening masses
in both models are presented in Fig. 4. Both of these
models exhibit the same behaviors. In the normal phase,
i.e., μI < μcI , mscr;π0 and mscr;π� are splitting. It may be
reasonable that the EOMs, in Eq. (28), of charged pions
depend on isospin density, but the neutral ones, in Eq. (27),
do not. The neutral pion π0 almost keeps unchanged with
the increasing of isospin chemical potential. This is con-
sistent with the previous discussion since π0 does not carry
isospin charge. What is more, mscr;π� decrease monoton-
ically and vanish at a critical chemical potential μcI , where

(a) (b)

(c) (d)

FIG. 2. Screening masses as functions of T for π0 in (a) model I and (b) model II. The red, green, blue, and orange solid lines stand for
the results below Tcp, at μI ¼ 0, 0.01, 0.05, 0.10 GeV, respectively. Screening masses as functions of T for charged pions π� in (c) model
I and (d) model II. The red, green,and blue solid lines stand for the results below Tcp, at μI ¼ 0.01, 0.05, 0.10 GeV, respectively.

(a) (b)

FIG. 3. Screening masses as functions of T for π0 as well as π� in (a) model I and (b) model II at fixed isospin chemical potential
μI ¼ 0.10 GeV.
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the pion superfluid phase transition occurs. For the chosen
temperature T ¼ 0.10 GeV, the critical isospin chemical
potential μcI in model I is about 1.49mπ ≈ 0.208 GeV. For
model II, it is 1.31mπ ≈ 0.183 GeV. When the chemical
potential is beyond μcI , the pion condensation will happen.
The discussions of pions’ properties in the pion superfluid
phase will be left to our future works.
Qualitatively, both of these two different soft-wall

AdS=QCD models possess the same behaviors of the
screening masses. Furthermore, these behaviors are well
consistent with the results of the NJL model in Ref. [30].

C. Pole masses of pions

In the framework of holographic approach, one can
obtain the pole masses of pions from the peaks of spectral
functions which are related to the imaginary part of the
two-point retarded correlation functions. However, as
pointed out by our previous works [67,68], the thermal
widths of quasiparticle pions will also increase with
the increasing temperature, which leads to inconspicuous
resonance peaks of the spectral functions. A more straight-
forward and effective approach is to define the effective
masses of the pions through the corresponding QNM. The
quasinormal frequency ω0 corresponds to the pole of the
temporal retarded correlator GðωÞ. Its real and imaginary
parts correspond to the meson’s pole massmpole and thermal
width Γ, respectively, by the relation ω0 ¼ mpole − iΓ=2.
We will numerically calculate the QNM frequencies

in two different soft-wall AdS=QCD models. Herein, we
just focus on the temporal retarded correlators. One can
let p ¼ 0, i.e. k ¼ ðω; 0; 0; 0Þ, in the EOMs of pion in
Eqs. (27) and (28) and boundary conditions in Eqs. (29)–
(34). Note that the equations of Aa

i are decoupled from πa

and Aa
t at p ¼ 0. Therefore, we can neglect the equations of

Aa
i and solve the ones of πa and Aa

t only. In order to
determine the particular QNM frequency, ω ¼ ω0, which

corresponds to the pole of the retarded correlator, Eqs. (37)
and (39), the integration constants in Eqs. (29) and (33)
should satisfy the following conditions,

π0ðω ¼ ω0Þ ¼ a0ðω ¼ ω0Þ ¼ 0 ð42Þ

for the neutral pion, and

π�0 ðω ¼ ω0Þ ¼ a�0 ðω ¼ ω0Þ ¼ 0 ð43Þ

for the charged pions. At the horizon, the conditions of
integration constants of the asymptotic expansion solutions
are similar to our previous discussions for the screening
mass in Sec. III B, one has

πh0 ¼ 1; bh1 ¼ 0 ð44Þ

for the neutral pion, and

π�h0 ¼ 1; b�h1 ¼ �2ib�h0μI=zh ð45Þ

for the charged pions. With these constrain conditions for
the integration constants of the asymptotic expansion
solutions, one can numerically solve the EOMs and obtain
the QNM through “shooting method.”

1. The temperature effect

To investigate the temperature dependence of pole
masses and thermal widths of π0, πþ, and π− in two
models, we fix isospin chemical potential and vary tem-
perature. As illustrated in Sec. III B, we just pay close
attention to the pole masses of pions in the normal phase
at the temperature T < Tcp. We consider the cases at
fixed isospin chemical potential μI ¼ 0, 0.01, 0.05, and
0.10 GeV, respectively. The corresponding numerical
results are shown in Fig. 5. In Fig. 5(a), the pole masses
mpole decrease monotonously with the increasing of tem-
perature. We have

Model I mpole;π0ðT ¼ TcpÞ ≈ 40%mπ;

Model II mpole;π0ðT ¼ TcpÞ ≈ 70%mπ;

where mπ is the model dependent pole mass with μI ¼ 0
and T ¼ 0. Qualitatively, the decreasing behavior around
the pseudocritical temperature in both soft-wall AdS=QCD
models, are consistent with T. D. Son et al.’s analytical
analysis through the chiral perturbation theory in
Refs. [22,23]. In Fig. 5(b), the thermal widths Γ increase
monotonously with the increasing of temperature. One can
see that the results for π0 are almost not affected by μI,
because it does not carry isospin charge.
The results for πþ at different fixed isospin chemical

potential, are shown in Figs. 5(c) and (d). From Fig. 5(c),
we find that μI depresses the pole mass of πþ, i.e., the larger

FIG. 4. Screening masses as functions of isospin chemical
potential μI at fixed temperature T ¼ 0.10 GeV in model I (solid
lines) and model II (dashed lines). The red and blue lines stand for
π0 and π�, respectively. Screening masses of charged pions mscr
vanish at 1.49 mπ ≈ 0.208 GeV in model I and 1.32 mπ ≈
0.184 GeV in model II, as shown by the red dots.
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μI the lower mpole;πþ. For example, at T=Tcp ¼ 0.4, the
reductions of mpole;πþ at μI ¼ 0.05 GeV and 0.10 GeV are
about 30% and 60%, respectively. This result may be
reasonable since one might expect the gathering of positive
isospin charge would make it easier to excite a πþ. When μI
is small, such as μI ¼ 0.01 GeV, mpole;πþ decreases mono-
tonously with the increasing of temperature. However,
when μI getting larger, such as μI ¼ 0.10 GeV, mpole;πþ

increases first at low temperature and decreases when
temperature is close to TcpðμIÞ. In Fig. 5(d), the thermal
widths of πþ at different fixed μI increase very slowly and
the effect of μI is not obvious at low temperature. When T
gets close to Tcp, it increases quickly.
As for the negative charged pions π−, the numerical

results of the pole masses mpole;π− and thermal widths Γπ−

are presented in Figs. 5(e) and (f). From the results, we
can find that mpole;π− decreases monotonously with the
increasing of temperature. At a fixed temperature, mpole;π−

is enhanced by μI. For example, at T=Tcp ¼ 0.4 GeV and
μI ¼ 0.10 GeV, mpole;π− is increased by about 55% mπ in
model I and 60% mπ in model II, respectively. While the
thermal width increases with the increasing of temperature.
We show the pole masses and thermal widths of

π0; πþ; π− at fixed μI ¼ 0.10 GeV in Fig. 6. At finite
isospin chemical potential, the SUIð2Þ symmetry is explic-
itly broken leading to the splitting of pole masses
(mpole;π− >mpole;π0 >mpole;πþ).

9 As the temperature reaches

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Pole masses and thermal widths as functions of T for (a), (b) π0; (c), (d) πþ, and (e), (f) π−. In (a) and (b), the red, green, blue
and orange lines stand for results at μI ¼ 0, 0.01, 0.05, and 0.10 GeV, respectively. In (c),(d),(e) and (f), the red, green and blue lines
represent results at μI ¼ 0.01, 0.05 and 0.10 GeV, respectively. Model I and II are labeled by the solid and dashed lines respectively.

9From the NJL studies in Refs. [29,30], the frequency ω in the
propagator for charged pions is coupled with isospin chemical
potential μI as ðω� μIÞ2. The different signs would lead to
different pole masses. It is interesting that the 5D holographic
model can directly derive similar conclusions. From Eq. (28), one
can find coupled term ω� ν with ν ¼ μIðz − z2=z2hÞ, in the
EOMs of charged pions. Therefore, charged pions have different
pole masses at finite μI .
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Tcp, the pole masses decrease and tend to be degenerate
due to the restoration of the chiral symmetry. It can also be
seen that the thermal widths increase with the increasing
of temperature.

2. The isospin density effect

In this subsection, we will study the isospin chemical
potential effects on pole masses and thermal widths of
pions. As shown in Figs. 7(a) and (b), both models have the

(a) (b)

FIG. 6. (a) Pole masses and (b) thermal widths as function of T at μI ¼ 0.10 GeV. The blue, red and green lines represent results for
π−; π0; πþ, respectively. The solid lines stand for results in model I and dashed lines stand for results in model II.

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Pole masses and thermal widths as functions of μI for (a),(b) π0; (c),(d) πþ and (e),(f) π−. The red, green and blue lines stand
for results at T ¼ 0.08, 0.10, 0.12 GeV, respectively. The solid and dashed lines represent results in model I and II, respectively.mpole;πþ

and Γπþ vanish at μI=mπ ¼ 1.32, 1.49 and 1.82, respectively, in model I, and at μI=mπ ¼ 1.24, 1.31 and 1.49, respectively, in model II,
as shown by the red dots.
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same trend thatmpole;π0 and Γπ0 vary monotonously with the
increasing of μI. We find that isospin chemical potential μI
has little impact on mpole;π0 and Γπ0 at low temperature,
which is consistent with the analysis in Ref. [67]. This
result may be reasonable since π0 has no isospin charge and
is almost independent on μI. The slight influence of isospin
on π0 mainly comes from the gravity background metric
[See Eq. (9) and (12)].
As for πþ, the numerical results are shown in Figs. 7(c)

and (d). We find that mpole;πþ decreases almost linearly to
zero with the increasing of μI . At the same time, the thermal
width Γπþ also decreases to zero with the increasing of μI .
In model I, both mpole;πþ and Γπþ vanish when μI reaches
μcI ¼ 0.184 GeV with the fixed temperature T ¼ 0.08 GeV.
This implies the instability of the system and the emergence
of pion superfluid phase transition. As the matter of fact,
the points at which πþ becomes a massless boson are
exactly on the boundary between the pion condensed phase
and the normal phase. In addition, we have the critical
isospin chemical potential as

T=ðGeVÞ ¼ 0.08 0.10 and 0.12;

Model I : μcI =mπ ¼ 1.32 1.49 and 1.82;

Model II : μcI =mπ ¼ 1.24 1.31 and 1.49:

Above μcI , the UIð1Þ symmetry, which is a subgroup of
isospin SUð2ÞI , is broken and leads to the massless
Goldstone boson mpole;πþ ¼ 0. This result is consistent
with the NJL model [30]. However, since we do not take
back reaction of the pion condensate into account, the study
of the masses at μI > μcI will be left for our future work.
The numerical results for π− are shown in Figs. 7(e)

and (f). We find that mpole;π− increases monotonously with
the increasing of μI at a fixed temperature. The thermal
width Γπ− also increases monotonously with the increasing
of μI in both models at low temperature. However, at high

temperature, such as T ¼ 0.12 GeV, the thermal width first
increases and then decreases with the increasing of μI in
model II.
Finally, we show the isospin chemical potential depend-

ence of pole masses for the three modes together in Fig. 8
at fixed temperature T ¼ 0.10 GeV. The qualitative behav-
iors are the same in both models. As a result of the explicit
SUIð2Þ symmetry breaking, the pole masses split at finite
isospin chemical potential. It can be seen that mpole;πþ

vanishes at the critical isospin chemical potential μcI ,
and mpole;π0 almost keeps invariant, while mpole;π− increases
with the increasing of μI . These results are consis-
tent with the study in the hard-wall model [74], the NJL
model [31] and our previous study by the spectral functions
method [67].

IV. CONCLUSION

In this work, we investigate the temperature and isospin
chemical potential dependence of the pion quasiparticle
masses (screening mass, pole mass and thermal width) in
the chiral symmetry breaking phase (T < Tcp) and normal
phase (μI < mπ) in the soft-wall AdS=QCD models.
Furthermore, we also investigate the relation between the
pion mass spectra and the pion superfluid phase transition.
A comparative study on the two kinds of soft-wall models
are shown. Both models provide consistent conclusions,
which qualitatively reveals some common behaviors shared
by the soft-wall AdS=QCD models.
On the one hand, we study the temperature dependence

of the screening masses at fixed isospin chemical poten-
tials. The results show that mscr;π0 and mscr;π� will split at
finite μI, but mscr;π� are degenerate in the normal phase. In
this case, the screening masses of charged pions are lower
than the neutral one at the same temperature. Both mscr;π0

and mscr;π� increase monotonously with the increasing
of the temperature, and the difference between them
decreases when T gets close to Tcp. Since π0 carries no
isospin charge, μI has little impact on mscr;π0 which keeps
unchanged with the increasing of μI. However, mscr;π�

decrease with the increased μI, and vanish at the critical
isospin chemical potential μcI , which implies the emergence
of the pion superfluid phase transition. On the boundary
between the normal phase and the pion superfluid phase,
the UIð1Þ symmetry is spontaneously broken, which leads
to the appearance of the massless Goldstone boson πþ.
On the other hand, we also investigate the pole masses

and thermal widths at finite temperature and isospin
chemical potential, which are extracted from the corre-
sponding QNMs. The results suggest that the pole masses
and thermal widths of π0; πþ; π− will split at finite μI .
We find that mpole;π0 depends very weakly on μI, since it
carries no isospin charge. However, mpole;πþ decreases
almost linearly with the increasing of μI and vanishes at
the critical chemical potential μcI , where πþ becomes a

FIG. 8. Pole masses as functions of μI for the three modes
π0; πþ; π− at T ¼ 0.10 GeV in model I (represented by solid
lines) and model II (represented by dashed lines). mpole vanishes
at μcI ¼ 1.49mπ for model I and 1.32 mπ for model II, as shown
by the red dots.
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massless Goldstone boson and pion superfluid phase
transition take places. At low temperature region,
mpole;π− increases almost linearly with the increasing of
μI . However, at high temperature region, mpole;π− first
increases and then decreases with the rise of μI. As for
the temperature effect, both mpole;π0 and mpole;π− decrease
monotonously with the increasing of T. As for πþ, when μI
is small, mpole;πþ also decreases monotonously with the
increasing of T. However, when μI gets larger, mpole;πþ first
increases to a certain maximum and then decreases with
the rise of T. The thermal widths of the three modes
increase with temperature. In this work, however, we do not
consider the pion masses in the high-temperature phase
above Tcp as well as in the pion superfluid phase, which
will be left for future work.
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APPENDIX: COMPARISON WITH SPECTRAL
FUNCTION METHOD

The pole mass results of model I, extracted from the
QNMs, are almost in agreement with Ref. [67], in which

model I is adopted, at low temperature. As shown in Fig. 9,
we compare the isospin chemical potential dependence of
pions obtained through QNM in this work with those of
Ref. [67] atT ¼ 0.06 GeV. The solid lines represent the pole
masses of pions from QNMs. The dashed lines represent the
pole masses of pions from spectral functions, taken from
Ref. [67]. The results obtained by these two methods are in
good agreement. However, one can see that there is a slight
difference in the results obtained by these two methods.
When extracting the polemasses from the pole of the spectral
functions, due to the extraction and the availability of the
Breit-Winger formula [68], slight differences arise and
increase with the increasing temperature.
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