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Oscillons are localized field configurations oscillating in time with lifetimes orders of magnitude longer
than their oscillation period. In this paper, we simulate nontraveling oscillons produced by deforming the
breather solutions of the sine-Gordon model. Such a deformation treats the dimensionality of the model as a
real parameter to produce spherically symmetric oscillons. After considering the post-transient oscillation
frequency as a control parameter, we probe the initial parameter space to continuously connect breathers
and oscillons at various dimensionalities. For sufficiently small dimensional deformations, we find that
oscillons can be treated as perturbatively deformed breathers. In D ≳ 2 spatial dimensions, we observe
solutions undergoing intermittent phases of contraction and expansion in their cores. Knowing that stable
and unstable configurations can be mapped to disjoint regions of the breather parameter space, we find that
amplitude modulated solutions are located in the middle of both stability regimes. These solutions display
the dynamics of critical behavior around the stability limit.
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I. INTRODUCTION

Oscillons [1] are a remarkable set of long-lived localized
states that oscillate in time, which emerge as solutions of
nonlinear field theories. In this context, long-lived means
that these have lifetimes orders of magnitude longer than
their oscillation period. They are held together by a delicate
balance between attractive forces and dispersion preventing
them from dilution or collapse. In early universe cosmology,
oscillons may have been produced at the end of inflation [2],
leading to a number of potentially interesting consequences,
including possible connections to dark matter [3,4] and a
variety of effects after their interactions with primordial
scalar and tensor gravitational modes [5–8].
Despite a significant body of existing work [4,9–15],

oscillon longevity is not fully understood. However, a
similar class of objects, known as breathers, exist in the
sine-Gordon model. Breathers can be interpreted as an
infinitely long-lived dynamical bound state of a kink-
antikink pair. Visually, they take the form of either a
spatially localized field profile that oscillates in time (for
the tightly bound case) or a kink-antikink pair repeatedly
colliding and moving away from each other, before turning

around then colliding again (for the weakly bound case). In
particular, in the tightly bound limit, the breathers have the
same basic structural properties as an oscillon. However,
unlike oscillons, breathers do not decay and have infinite
lifetimes [16]. Given their structural similarity, it is natural
to look for a connection between oscillons and breathers.
Even when this is not within the scope of this exploration,
infinite lifetime of the breathers may descend from inte-
grability properties of the sine-Gordon equations. Such a
connection could potentially provide an explanation for the
longevity of the oscillons in terms of a weak breaking of
integrability.
The primary focus of this paper is to provide an explicit

connection between spherically symmetric oscillons and
one-dimensional sine-Gordon breathers. To make the con-
nection most transparent, we primarily focus on the sine-
Gordon model in spatial dimensions D > 1; however, we
briefly extend our approach to oscillons in monodromy
models to illustrate the generality of the approach. As is
well known, these higher-dimensional sine-Gordon theo-
ries are no longer integrable and thus, do not possess
infinitely long-lived spatially localized soliton solutions.1

However, at least in low-dimensions (D ¼ 2 and D ¼ 3),
the sine-Gordon model supports oscillon solutions. Further,
these oscillons tend to be spherically symmetric. A natural
conjecture is that these oscillons descend from the breathers
upon breaking the integrability of the one-dimensional
sine-Gordon equations. To make this connection explicit,
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1Of course, partially localized planar symmetric breather
solutions continue to exist.
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here we explore spherically symmetric oscillonlike solu-
tions to the sine-Gordon model in dimensions D ≠ 1.
This implies modifying the one-dimensional sine-Gordon
equation by adding a first-order derivative term propor-
tional to ε≡D − 1. Moreover, it is important to notice that
one-dimensional breathers and oscillons have the same
boundary condition at the origin. We can thus interpret the
equation for the radial profile as a deformation of the one-
dimensional sine-Gordon equation. In order to smoothly
connect to the one-dimensional breather solutions, we
allow ε (and thus the spatial dimension) to be a real, rather
than integer, parameter. When ε ≪ 1, the deformation
to the equations of motion is small, and we therefore
expect breathers to be approximate solutions to the higher-
dimensional sine-Gordon equation.
Motivated by this, we evolve a family of initial radial

breather profiles under the D-dimensional spherically
symmetric sine-Gordon equations for a range of choices
of D. As expected, for ε ≪ 1, the entire family of initial
breather profiles evolve into oscillons (i.e., long-lived
spatially-localized oscillating structures). This provides
an explicit link between oscillons in the sine-Gordon
model and breathers, as anticipated above. In this limit,
the oscillons are very long-lived and do not decay for the
duration of our simulations (∼1000 oscillations). The use of
standard perturbative methods is not sufficient to approxi-
mate the oscillons produced when ε≳ 1. Is in this regime
where the use of the numerical renormalization (NDRG)
[17] may be useful to build renormalized oscillons using a
breatherlike parametrization. The derivation of a semi-
analytical formula to predict oscillon lifetimes in D ≠ 1
dimensions may be possible after combining results from
the perturbative and nonperturbative regimes. We will leave
these tasks for a future project.
There are a myriad of measurable (and sensible) param-

eters to determine the dynamical state of the oscillons
produced in this way, such as the curvature at the origin,
emitted energy measured at the tails, average radius, width,
damping rate, etc. In this study, we choose (i) the amplitude
and (ii) oscillation frequency at the origin, as well as (iii) the
energy of the solution as diagnostic parameters to provide a
reduced description of the solution’s state.With respect to the
amplitude and oscillation frequency, we explicitly show that
attractor behavior [18–20] appears as breathers deform into
oscillons. The oscillons produced by breather deformation
have a range of energies and oscillation frequencies. Within
that range, we find a relation coupling the oscillation
frequency and the energy, which is consistent with what is
known for the breathers’ energy as a function of its frequency
in the limit ε ≪ 1. The same relation allows us to learn about
(a) the existence of oscillons with maximum energy/mini-
mum frequency; and (b) signs of a minimum energy/
maximum frequency cutoff for ε ∼Oð1Þ. A continuum of
oscillons, bound by maximum and minimum energy con-
figurations, collapses to essentially form a single oscillon
when ε ∼ 2. The collapse of states shows how critical
behavior manifests in oscillon formation.

The connection between breathers and oscillons reveals a
preference to form oscillons from breathers with more
potential than kinetic energy. As an experiment, we
modified the equations of motion to show that such a
preference is due to the instantaneity of the dimensional
transition. The same language of continuous deformations
can be used to modify the potential and possibly extend
these results to other types of deformations. Concretely, we
deform the positive sinusoidal potential into the axion
monodromy potential [21–24], which is known to support
oscillons.
The remainder of this manuscript is organized as follows.

In Sec. II, we quickly revise the sine-Gordon model,
presenting the breather solution and its properties. We
introduce the dimensionally deformed sine-Gordon model
to produce spherically symmetric oscillons using breathers
as initial conditions. In Sec. III, we show the spatial
structure and evolution of stable and decayed solutions
of the dimensionally-deformed sine-Gordon equations. We
outline our method to measure oscillation frequencies,
which we treat as a control parameter to compare breathers
with oscillons. We show explicitly the presence of attrac-
tors in parameter space. In Sec. IV, we sample both the
oscillation frequencies and energies of the oscillons pro-
duced by a range of dimensional deformations. After
sampling over a span of 2500 initial breather profiles,
we find oscillons undergoing periodic phases of contraction
and expansion of their cores. Oscillons are well approxi-
mated by breathers in the limit ε ≪ 1, but the connection
between them is more subtle in D≳ 2 spatial dimensions.
From the results in Sec. IV, we show how the features of the
oscillon attractor vary with the dimensionality. The collapse
of minimal and maximal energy oscillons to yield a single
state leads us to discuss the presence of critical behavior in
Sec. V. In Sec. VI, we show the results of an implementa-
tion considering time-dependent dimensional transitions.
We investigate how different durations affect the oscillation
frequency of oscillons and validate the frequency extraction
procedure presented in Sec. III. Section VII extends our
framework to potential deformations by introducing a
tunable model to deform the sine-Gordon potential into
the axion monodromy potential. As the model deforms,
solutions accumulate to yield maximum energy/minimum
frequency oscillons as in the case of potential deformations.
We present in the Appendix the pseudospectral method
used to produce stable numerical solutions and to process
data. Finally, in Sec. VIII, we discuss and conclude.

II. DEFINING SINE-GORDON BREATHERS
AND OSCILLONS

Our goal in this paper is to relate oscillons appearing in
relativistic field theories to breathers, which are a special
class of solutions of the one-dimensional sine-Gordon
equations. In this Section, we present some important
background material and describe the framework we will
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use to establish the connection. We first review some
relevant properties of the one-dimensional sine-Gordon
equation and breathers. We then present the dynamical
equation governing spherically symmetric solutions to
the D-dimensional sine-Gordon model, including an
interpretation of the equation as a deformation from the
one-dimensional equation. This motivates us to lift the one-
dimensional breather profiles to D-dimensional radial
profiles for use as initial conditions, with the expectation
that they dynamically relax into an oscillon state.

A. Breathers and the 1D sine-Gordon model

The sine-Gordon model is the theory of a relativistic
scalar field evolving in a cosine potential

VSG ¼ μ2ϕ2
⋆

�
1 − cos

�
ϕ

ϕ⋆

��
; ð1Þ

where ϕ⋆ and μ are parameters setting the characteristic
field and mass scales of the potential. It is also convenient
to introduce the typical energy density scale V0 ≡ μ2ϕ2

⋆.
In one spatial dimension, the corresponding equations of

motion are

dϕ
dt

¼ Π ð2aÞ

dΠ
dt

¼ ∂
2ϕ

∂x2
− μ2ϕ⋆ sin

�
ϕ

ϕ⋆

�
: ð2bÞ

To fix terminology, we refer to these equations as either
the one-dimensional sine-Gordon equations or the one-
dimensional sine-Gordon model. The one-dimensional
sine-Gordon equation possesses a number of very special
and closely related properties: integrability, the existence of
an infinite hierarchy of conserved charges [25–28], and
exact solutions via an inverse scattering transform.
For our purposes, the most important property is the

existence of a family of spatially localized solutions with
exact temporal periodicity—the breathers. In particular,
breathers have an infinite lifetime, which is intimately tied
to the integrability of (2). It is convenient to parametrize a
breather located at the origin by its frequency ωB and initial
phase θ0

RðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

B

p
ωB

sech
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − ω2
B

q
x
�

ð3aÞ

Ψðx; tÞ ¼ RðxÞ cos ðωBt − θ0Þ ð3bÞ

ϕB

ϕ⋆
¼ 4 tan−1ðΨÞ ð3cÞ

ΠB

μϕ⋆
¼ −4

ωB

μ

R
1þΨ2

sin ðωBt − θ0Þ: ð3dÞ

We must have ωB < μ. This reflects the intuitive fact that
the breather is a bound state of a kink-antikink (KK̄) pair
and should have frequency less than that of a freely
propagating wave.
Figure 1 illustrates the breather profiles for a few values

of ωB. For reasons that will become clear momentarily, we
plot the profiles in terms of the one-dimensional radius
r ¼ jxj. Since each breather solution has even symmetry
about the origin, no information is lost in this change of
coordinates. There are two distinct asymptotic regimes for
breathers. When ωB ∼ 1, the KK̄ pair are tightly bound, and
the breather takes the form of a localized field configuration
undergoing nearly harmonic oscillations. Meanwhile, when
ωB ≪ 1, the breathers represent a very weakly bound KK̄
pair undergoing repeated collisions. Between collisions, the
kink and the antikink become well separated from each
other. Since these weakly bound breathers do not resemble
oscillons, they are not of direct interest to us here.
The oscillation frequency (i.e., inverse period) also fixes

other structural properties of the breather, including the
peak amplitude of oscillation at the origin. Having the
analytic solution given by Eq. (3), we can compute the peak
amplitude at the origin ðAÞ

A
ϕ⋆

¼ 4 tan−1
 

μ

ωB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
B

μ2

s !
; ð4Þ

the energy

FIG. 1. Radial breather profiles (3) for several choices of the
parameter ωB describing the breather’s frequency. For
0 < μ − ωB ≪ 1, the profiles have small amplitude at the origin
and damp slowly as μr → ∞. As ωB is increased, the breathers
become more peaked at the origin and damp more rapidly at large
radii. We explicitly illustrate the breathers that just probe the
inflection point of the potential (ωB ¼ 0.92μ) and the nearest
maximum of the potential (ωB ¼ 0.71μ). For reference, we also
plot the minimum (ωB ¼ 10−1μ) and maximum (ωB ¼ 0.95μ)
frequency breathers used as initial conditions for our simulations.

DIMENSIONAL DEFORMATION OF SINE-GORDON BREATHERS … PHYS. REV. D 108, 096017 (2023)

096017-3



EB

μϕ2
⋆
¼ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
B

μ2

s
; ð5Þ

and the damping rate of the amplitude envelope

lim
μr→∞

1

μr
ln
�
A
ϕ⋆

�
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
B

μ2

s
: ð6Þ

B. Dimensional deformations:
The radial sine-Gordon equation

We now consider the sine-Gordon model in D > 1
dimensions. An interesting type of localized object, called
an oscillon, has been observed in this model for D ¼ 2 and
D ¼ 3 [29,30]. In addition to the sine-Gordon model, they
have been observed in a wide variety of nonlinear field
theories. As mentioned previously, oscillons are spatially
localized structures that oscillate in time. Oscillons thus
share several key structural features with breathers.
However, unlike breathers, oscillons have a finite lifetime.
Although, there are cases where lifetimes can be so long
that it is hard to be precise about the exact instant where
these decay. Most oscillons dynamically relax to a spheri-
cally symmetric state. It is therefore sufficient to consider
their radial profiles, which we will do here.
Restricting to spherically symmetric solutions, the radial

profile in D dimensions satisfies

dϕ
dt

¼ Π ð7aÞ

dΠ
dt

¼
�
∂
2

∂r2
þ ε

r
∂

∂r

�
ϕ − μ2ϕ⋆ sin

�
ϕ

ϕ⋆

�
; ð7bÞ

where we have introduced ε≡D − 1. Even when the study
of shape asymmetries in oscillons [31,32] is a valid
extension of our work, we leave the perturbative treatment
of eccentricity for future research. To distinguish it from the
one-dimensional (ε ¼ 0) case, we will refer to (7) as either
the dimensionally deformed sine-Gordon equation or the
D-dimensional sine-Gordon model. Comparing to (2), we
interpret the term proportional to ε as a perturbation to the
one-dimensional sine-Gordon equation. Therefore, to
smoothly connect to (2), we will take ε to be a positive
real parameter, rather than restricting to integer dimensions.
This provides a tunable way to control the breaking of key
properties of the one-dimensional sine-Gordon equation,
such as integrability and the presence of an infinite tower of
conserved charges.
With this view of (7) as a deformation away from the

one-dimensional sine-Gordon equation, we want to under-
stand the fate of the breathers for ε > 0. Motivated by this,
we will consider initial conditions

ϕðr; t ¼ 0Þ ¼ ϕBðr; t ¼ 0jωB ¼ ωiniÞ; ð8aÞ

Πðr; t ¼ 0Þ ¼ ΠBðr; t ¼ 0jωB ¼ ωiniÞ; ð8bÞ

where we defined ωini to be value of the breather frequency
ωB used in the initial condition profile. Since the breather
solutions (3) have even symmetry about the origin, the
corresponding εþ 1-dimensional profiles do not have any
singularities as μr → 0. With ε ¼ 0, we obtain breathers as
the solutions to the differential equation. For ε ≪ 1, we
expect that dynamical evolution will result in a field
configuration that is similar to a breather. In particular,
for ωini ∼ 1, we expect to obtain spatially localized sol-
utions that oscillate in time. However, setting ε ≠ 0 breaks
the integrability of the original one-dimensional sine-
Gordon model, and we expect that the resulting solutions
will have a finite (although long) lifetime. In other words,
we expect to obtain spherically symmetric oscillon sol-
utions. Setting the initial oscillon frequency ωini to be the
breather frequency ωB means a major simplification when
studying the system, since it is well known that this
parameter is sufficient to fix all the properties of the initial
profile. This also implies that the evolution of the oscil-
lation frequency provides (at least partial) knowledge of the
other features of the solutions. To set our conventions, we
will refer to the stable, localized solutions of Eqs. (7) as
spherically symmetric oscillons in D ≠ 1 dimensions,
obtained after the deformation of sine-Gordon breathers.
Once the object of study has been defined, we can obtain

some analytic insight into the deformation of the solutions
at large radius. Assume that the solution takes the form

ϕ ≈ AðrÞ cosðωtþ ΘÞ; ð9Þ

and consider the limit r → ∞. Since we are interested in
localized solutions, we require A ≪ 1 as μr → ∞, so that

AðrÞ ∼ r−ε=2 exp
�
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q �
∼ exp

�
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q ��
1 −

ε

2
ln rþOðε2Þ

�
; ð10Þ

in this limit. Assuming that a long-lived solution with this
frequency ω exists, we see that the ε deformation induces a
corresponding deformation to the r → ∞ asymptotic of the
breather with the same oscillation frequency given in (6).
Once again, we see that only states with ω < μ describe
localized solutions.
Detailed understanding of the ultimate fate of the

breather initial conditions under the dimensionally
deformed sine-Gordon equation requires numerical solu-
tions. This includes determining the values of ω for which
long-lived solutions exist, which is not captured by
the asymptotic estimate above. We make use of a eight
order Gauss-Legendre method for the time evolution.
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Oscillons evolving for long time intervals require resolving
propagating radiative modes toward large radii. This
requires an enormous amount of grid points, which make
the computational task infeasible. The addition of perfectly
matched layers (PMLs) allows us to only require sufficient
resolution inside the boundary layers. Details of the setup
and appropriate dimensionless units are presented in the
Appendix.
In what remains of this paper, we will use the setup

described to understand how breather solutions are modified
as we deform away from the one-dimensional sine-Gordon
equation. We will primarily focus on the dimensional
deformation outlined in this Section. While our main focus
will be on time-independent deformation parameter ε, we
briefly consider time-dependent ε in Sec.VI. Finally, to show
the generality of our results, we briefly extend our approach
to potential deformations in Sec. VII.

III. ANATOMY OF THE DEFORMED SOLUTIONS
AND DIAGNOSTIC PARAMETERS

Ultimately, we want to understand the fate of initial
breather profiles as the initial condition parameters ωini and
θ0 are varied. Additionally, we want to understand this
dependence as we adjust the deformation parameter ε.

Efficiently comparing solutions in these scans requires us
to encode the properties of the resulting solutions (oscillons
or otherwise) in a few key parameters. This is analogous to
the encoding of the breather properties in the single
parameter ωB. To set the stage for an initial condition
scan, in this section, we first look at the detailed evolution
from a few fiducial choices of ωini, θ0, and ε. As expected,
we find oscillons that form from the breather initial
conditions. We also introduce a convenient set of reduced
parameters, which we will use to describe the resulting
evolution.
In the left two panels of Fig. 2, we illustrate two

prototypical field evolutions starting from breather initial
conditions. The left panel shows an initial condition that
settles down into an oscillating long-lived spatially local-
ized state—an oscillon. A more detailed look at the
spatiotemporal structure of the solution reveals small
dissipative effects (i.e., changes to the core and tails of
the radial profile) associated with the emission of classical
radation. Meanwhile, in the center panel, we see an
example where the field quickly decays and no oscillon
is formed. In order to set nomenclature for the remainder of
the paper, we will refer to these as oscillons and decayed
solutions, respectively.

FIG. 2. Showing the spatial structure, time evolution of oscillon cores and determination of the oscillation frequency (ωosc) for
ε ¼ 0.75. Left panel: Typical evolution of the radial profile for a long-lived oscillon, deformed from a SG breather with initial frequency
0.3μ and no phase. Middle panel: Radial profile of a decaying oscillon (observe the time axis in logarithmic scale). Right panel (top):
Time evolution of the oscillon evaluated at r ¼ 0 to determine the dominant frequency and the amplitudeA. Right panel (bottom): From
the temporal power spectrum Pω of the top panel, we determine ωosc=μ to be the angular frequency with the highest peak (marked by the
red dot) in power.
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Since we want to connect the properties of the oscillons
to properties of the breathers, it is convenient to parametrize
the oscillons in terms of a few key structural properties.
There are a plethora of reasonable quantities we could
choose, such as the width of peak, the damping rate at
infinity, oscillation frequencies, energy-weighted average
radius, curvature at the center, etc. As we will be scanning
over initial conditions, we want quantities that can be
robustly measured using automated procedures. With this
in mind, we now discuss the reduced parameters we will
use to describe the field solutions. We focus on quantities
that are useful to describe the oscillons, rather than decayed
solutions. This parametrization is not meant to be a
“complete” description of the oscillon dynamics but rather
a convenient reduction of the dimensionality of the con-
figuration space.
One simplification is to consider the evolution at a single

point, with a convenient choice being the origin r ¼ 0. The
top right panel of Fig. 2 shows the corresponding evolution
at r ¼ 0 for the oscillon illustrated in the left panel. We see
that the evolution is characterized by a damped oscillation

ϕðr ¼ 0; tÞ ≈AðtÞ sinðωosctþ φ0Þ; ð11Þ

where φ0 is an arbitrary initial phase. From the left panel of
Fig. 2, we see that a similar decomposition with the same
ωosc holds for other radii near the core of the oscillon. The
existence of a single envelope function A (rather than
separate functions describing the upper and lower enve-
lopes) is consistent with the even symmetry of the potential.
This general behavior is quite common, although we
will find interesting oscillonlike solutions where the
profileA develops an additional low frequency modulation
ωmod < ωosc. Therefore, rather than consider the full time
stream, we further compress the information into a (time-
dependent) amplitude A and oscillation frequency ωosc. A
nice benefit of this approach is that we are directly using the
oscillation frequency of the breather as a parameter in our

initial conditions. Finally, we empirically observe a slowing
of the parameter flow once the solutions reach the attractor,
such as the logarithmic dependence on time shown in
Fig. 3. This will motivate an approximate treatment of the
parameters as constant in future sections.
We now outline our method to extract A and ωosc from

simulation data. The peak amplitude A is extracted directly
from the time stream. In order to have reasonable resolution
of the temporal peak locations, we choose the output time
step dtout to sample around 20 points per oscillation.
The peaks in the sampled timestream are then tagged
using the find_peaks function of scipy.signal
[33]. In most cases, we then use a cubic spline fit using
UnivariateSpline in SciPy. The only exception to this
occurs in scenarios where the initial transient phase causes a
rapid change in the amplitude. In this case, we instead use a
10th order polynomial fit based on POLYFIT in NumPy, which
provides a better global fit. The late time evolution of the
amplitude is insensitive to these two choices. As a test of
robustness, we repeated the above procedure retaining only a
subset of the peaks and found the amplitude flow was
insensitive to the details of this subsetting procedure, as
long as the peaks continued to sample the full timestream.An
example amplitude fit is shown in the top right panel ofFig. 2.
For the oscillation frequency ωosc, it is more convenient

to work in Fourier space

ϕ̃ðωÞ ¼
X
ti

eiωtiϕðr ¼ 0; tiÞ; ð12Þ

and then compute the power spectral density

Pω ≡ jϕ̃ðωÞj2 þ jϕ̃ð−ωÞj2; ð13Þ

as a function of temporal frequency ω. We then identify
ωosc as the frequency for which Pω has maximal power

FIG. 3. Parameter flow at ε ¼ 0.5 for four initial breather frequencies. In the first two panels, we show the evolution ofA (i.e., the red
envelope in Fig. 2) and the oscillon’s frequency ωosc as functions of time. We observe that both parameters evolve very quickly toward
an attractor. Once the convergence occurs, the flows slow down but do not stop. In the last panel, we see that the flow in parameter space
collapses into a line, aligned along the breather flow line (in orange, dubbed as ε ¼ 0) given by Eq. (4). The arrows only represent the
direction of time, since the speed can be inferred from the first two panels of this figure.
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ωosc ¼ argmax
ω∈ ½0;μ�

ðPωÞ; ð14Þ

here, the constraint ω ≤ μ restricts us to consideration of
oscillations associated with a bound state. An illustration of
Pω and the extracted ωosc is shown in the bottom right
panel of Fig. 2. The low frequency power below ωosc is
primarily due to the nonperiodicity of the signal and
implicit windowing effects. Higher-order spectral peaks
may also appear, but they tend to be subdominant. To study
the time dependence of ωosc, we instead compute the short
time Fourier transform with signal.stft from SciPy,
using the default smoothed Hann window to smooth. The
window size is chosen to capture around 80 oscillations of
the field, yielding a frequency resolution of Oð1%Þ. We
then determine ωoscðtÞ separately for each of the windowed
transforms.
Fig. 3 shows the evolution ofA and ωosc for four choices

of ωini with ε ¼ 0.5. From the left two panels, we see that
both parameters rapidly settle onto an attractor solution.
Further, once they reach the attractor, the parameters evolve
very slowly. These observations will be important in the
next section. The attractor is further illustrated in the right
panel, where we show the parameter flow in the ðA;ωoscÞ
plane. For comparison, we also include the corresponding
relationship for the breather solutions (ε ¼ 0)

ωosc

μ
¼ cos

�
A
4ϕ⋆

�
: ð15Þ

We note that (at least for these parameters) the oscillon
parameter flow is approximately aligned with the breather
relationship, although there is of course no flow of these
parameters when ε ¼ 0. The existence of oscillon attractors
is consistent with existing intuition in the literature [18,19].
Although it is not shown here, we observe that not all of the
solutions converge toward the oscillon attractors: As the
modulation frequency ωmod of amplitude modulated solu-
tions starts to reduce, parameter flows branch off the
attractors.
While studying the time dependence of the solution at

the origin is extremely useful, there is additional informa-
tion stored in the full radial profile. There are again many
parameters that one could extract, but here we will focus on
the energy of the field configuration. Ideally, we would
separate the bound oscillon component of the field from the
propagating radiation. Unfortunately, since the oscillon
solutions tend to continuously radiate energy, this separa-
tion is somewhat poorly defined. However, while the
oscillon profile remains localized near the origin, the
radiation propagates to large radii, where it is damped
away by our absorbing layer. Since the oscillons are slowly
radiating, we therefore take the energy in our simulation
volume as a proxy for the energy of the oscillon. Given the
(pointwise) energy density

ρðr; tÞ ¼ 1

2

�
∂ϕ

∂t

�
2

þ 1

2

�
∂ϕ

∂r

�
2

þ μ2ϕ2
⋆

�
1 − cos

�
ϕ

ϕ⋆

��
; ð16Þ

we can compute the total energy of our D ¼ εþ 1 dimen-
sional solutions

E ¼ 2π
εþ1
2

Γ½εþ1
2
�
Z

Rmax

0

dr rερðr; tÞ: ð17Þ

As explained in the Appendix, we compute this integral
using numerical quadrature, and since our basis functions
live on the semi-infinite interval, we have Rmax ¼ ∞.

IV. GENERATION OF OSCILLONS FROM
DIMENSIONAL DEFORMATIONS

The previous sections showed that oscillons can form
from breather initial conditions in the dimensionally
deformed sine-Gordon model while also demonstrating
the existence of an attractor solution in field configuration
space. In this section, we will explore how oscillon
properties change as we scan over the parameters (encoded
in ωini and θ0) of the initial breather profiles. This provides
an explicit connection between the breathers of the one-
dimensional sine-Gordon model and the oscillons of the
higher dimensional sine-Gordon model. For ε ≪ 1, the
dimensionally deformed sine-Gordon equation represents a
small perturbation on the one-dimensional version, and we
expect that the resulting oscillons properties will closely
resemble the breathers. Of course, as we increase ε, we
expect that the oscillons (if they form) may deviate
significantly from the initial breather solutions. With this
in mind, we divide our results into the ε≲ 1 and ε≳ 1
cases, which we refer to as the perturbative and non-
perturbative regimes, respectively. Since the gradual
increase in the dimensionality is important in our discus-
sions, there will be instances (in our figures) where we
combine results from both regimes.2

A. Case ε≲ 1: Oscillons from perturbative
deformations

We now make an explicit connection between breather
solutions of the one-dimensional sine-Gordon model (2)
and oscillon solutions of the dimensionally deformed sine-
Gordon model (7). In this subsection, we focus on the case
of small deformation parameter ε≲ 1 and explore the
impact of progressive growth in the dimensionality. In
particular, we investigate the oscillon frequency ωosc and

2It is not simple to define a “clean cut” between the
perturbative and the nonperturbative regimes. Our approach is,
instead, to show the distinctive features of the parameter flows in
each case.
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energy E, which were introduced in Sec. III. Before
proceeding, let us remark a consequence of the results
shown in the previous section: Strictly speaking, both the
energy and the oscillon frequency flow with time. However,
Fig. 3 shows that once the solution reaches the attractor
line, the reduced parameters A and ωosc evolve slowly.
Therefore, for the purposes of comparing a broad range of
initial conditions, it is reasonable to approximate ωosc and E
as time independent, which we will do throughout this
section.
First we study the oscillation frequencyωosc aswevary the

parameters of the initial breather profile. We uniformly
sample log10 ωini=μ∈ ½−1;−0.02� and θ0 ∈ ½0; π�. The lower

bound ofωini ensures that the initial profiles have a localized
peak at the origin, as illustrated in Fig. 1. Meanwhile, the
upper bound is driven by numerical considerations, since
solutionswith slowlydampingprofiles are difficult to resolve
numerically. Throughout this subsection, we use a total
integration time of μT ¼ 104, which allows for a few
thousand oscillations of the field at the origin in cases where
an oscillon forms. The corresponding frequency resolution is
Δωosc=ωosc ∼ N−1

osc ∼ 10−3, where Nosc is number of field
oscillations during the integration.
The resulting oscillation frequencies ωosc are illustrated

in Fig. 4 for four choices of ε. The color palette represents
the oscillon frequency ðωoscÞ span, ranging from the lowest

FIG. 4. Surfaces showing the oscillon frequency as a function of the phase and frequency of the initial SG breathers for ε ¼ 0.125,
0.25, 0.5, and 0.75. Regions within isocontours of oscillation frequency are produced from a grid of 50 × 50 initial configurations of
frequencies ðωiniÞ and phases (θ0), uniformly distributed in log10ðωini=μÞ∈ ½−1;−0.02� and in θ0 ∈ ½0; πÞ. The frequency of stable
oscillons (colored in ivory in all of the panels) formed by breathers with ωini ¼ ωB ≲ 0.3μ increases with ε. For the span of initial
conditions considered here, the quantity of scenarios where oscillons (with ωosc < μ) form tends to decrease as ε increases. Solutions
within the transition regions (in red) may have nontrivial modulation in their core during the transient. Fig. 5 focuses in the cases
enclosed in the blue rectangle (ε ¼ 0.75, in the right bottom panel), which exhibit time-dependent modulation in their amplitude. In the
upper right panel (dubbed as ε ¼ 0.25), we plotted a green dashed curve as an inset (to the right) to show how the frequency changes for
a frequency span at constant phase (θ0 ¼ 0.64). The inset shows a constant frequency plateau extending over the isofrequency contour
colored in ivory. Such a plateau breaks as ωini=μ gets closer to 1. Throughout the remaining sections of this paper, the dependence of the
oscillation frequency in ωini transforms in various ways to represent the dynamical state of the oscillating field. The upper bound in ωini

is set to resolve oscillons within a simulation box of length l ¼ 200μ−1.
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oscillation frequency (visible as wide plateaux in the maps)
in ivory, while its variations colored up to red brick
correspond to higher frequencies. Precise values of what
is meant by lower and higher frequencies depend on the
specific value of ε. Regions yielding unstable solutions are
colored in gray and labeled with the caption “unstable” and
have ωosc ¼ μ. In all cases, we see the emergence of a large
“plateau” of oscillons (shown in ivory) with nearly identical
frequencies ωosc. We further illustrate this plateau in the
inset figure of the top right panel. This is consistent with the
existence of an attractor line, as seen in Fig. 3. Further, it
suggests that the attractor has an “origin point” that acts as a
quasifixed point where many initial conditions rapidly
accumulate during a transient phase, followed by a sub-
sequent slow evolution along the remainder of the attractor
line. For this choice of initial condition parameters, the
plateau boundary has nontrivial structure, which also
extends to the ωosc isocontours more generally. We will
discuss the physical origin of this structure below.
For the three panels with ε ≤ 0.5, all of our breather

initial conditions settle into long-lived solutions. This
coincides with the (perturbative) intuition outlined above
that oscillon and breather solutions should be closely
related for the case ε ≪ 1. This is consistent with pertur-
bative (in the amplitude of the oscillations at the origin)
treatments of oscillon dynamics [30,34,35], which find a
continuum of solutions with arbitrarily small amplitude and
corresponding oscillation frequencies arbitrarily close to μ.
However, our use of an upper bound on ωini means we
cannot fully verify this claim, due to numerical difficulties
in evolving very broad solutions. We leave to future work
the interesting question of whether oscillon solutions of
arbitrarily small amplitude exist in the ε ≪ 1 regime.
For ε ¼ 0.75 (as seen in the bottom right panel), we see

the emergence of a new feature—some of our breather
initial conditions fail to form an oscillon but instead rapidly
decay, indicated by the gray region in the figure. We can
view this as the breakdown of our perturbative intuition for
the case of small amplitude solutions. Another indication of
failure from the perturbative picture is the existence of a
minimum frequency oscillon.
Examining the gray region, we see some preference to

form oscillons when the initial conditions have more
potential than kinetic energy. As with the examples in
the previous section, as the oscillons evolve, their frequen-
cies increase, and they approach the end of their life.
Consequently, if we were to consider longer timescales, we
expect the size of the decayed region to expand.3 We bin the
oscillation frequencies ωosc and plot color coded contours
in Fig. 4 for different breatherlike initial conditions, which
are labeled by their frequencies ωini and phase θ0.

We now take a more detailed look at solutions in the
transition region between oscillon forming and decaying
initial conditions. Since the frequency of the oscillons
slowly increases with time, we expect solutions in this
transition regime to be closely related to the final oscillon
decay process and solutions that are slightly displaced from
the oscillon attractor. In the left panel of Fig. 5, we show the
evolution at the origin for a few solutions in this transition
regime (indicated by the blue rectangle in the lower right
panel of Fig. 4) for ε ¼ 0.75.
A distinguishing feature of the solutions is the existence

of amplitude modulation and the corresponding emergence
of a second timescale (dubbed from now on as tmod). Within
the transition zone, as we consider solutions with larger
ωosc (corresponding to increasing ωini at fixed θ0), we find
both the magnitude and timescale of the amplitude modu-
lations increases. This continues until we hit the regime of
decayed solutions and no oscillon forms. Alternatively, as
we decrease the value of ωosc, the amplitude of the
modulation decreases as does its characteristic timescale.
For sufficiently small ωosc, the modulation becomes imper-
ceptible, and we obtain an effectively single timescale
object. Although not explicitly illustrated here, we also
(a) found amplitude modulated solutions for ε ¼ 0.125,
0.25, and 0.5 within the regions indicated by red and brown
contours in Fig. 4(a) and 4(b) confirmed in parameter space
that amplitude modulated solutions deviate off the oscillon
attractor as soon as ωmod ≠ ωosc.
The dynamical origin of the amplitude modulation in

ϕðr ¼ 0; tÞ can be better understood using the full space-
time structure of the solutions. From the left panel of Fig. 5,
we see that (at least at the origin) the modulated solutions
involve two hierarchically separated timescales
(1) a fast timescale tfast ∼ ω−1

osc, and
(2) a much slower timescale tmod ∼ ω−1

mod associated with
the modulation of the amplitude.

In order to study the modulation itself, we want to separate
out the slow modulated dynamics from the much shorter
timescale dynamics encoded in ωosc. After rasterizing the
image, we noticed that most of the high-frequency features
of the image are suppressed. The right two panels of Fig. 4
illustrate the evolution of the slow component for an
example modulated solution. In the middle panel, we show
the evolution of jϕðr; tÞ=ϕ⋆j. From this spacetime picture,
we see that the amplitude modulation at the origin is a
manifestation of a slow contraction and expansion of the
oscillon core. In the right panel, we plot the radial structure
of the evolving energy density for the same oscillon shown
in the middle panel. As the profile of the core expands and
contracts, we see correlated bursts of classical radiation
produced that then propagate away from the oscillon core at
(approximately) the speed of light. Analogous solutions
showing periodic phases of contraction and expansion also
appear in two (and more) spatial dimensions, and they will
be presented in the Appendix, in Sec. A 4, as the outcome

3In addition to these scenarios, we will also find solutions with
insufficient energy to form oscillons at any time.
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of a different numerical setup. Previous efforts have
presented amplitude modulation in oscillons (see [18,36],
for example) from initial Gaussian profiles and other
potentials. Our contribution is not only to explicitly illustrate
the spatial structure of such solutions; it is also to show that
these describe the dynamics in the stability limit.
Note that these modulated solutions are not captured by

the commonly assumed quasibreather prescription

ϕðr; tÞ
ϕ⋆

¼
X
n∈N

Rnðr;ωÞ sinðnωtþ δnÞ; ð18Þ

which expresses the solution in multiples of the “funda-
mental frequency” ω [4,13,37] and corresponds to ωosc in
agreement with the nomenclature we used in this paper.
Therefore, conclusions about oscillon properties based on
this ansatz are not directly applicable to the modulated
solutions in the transition regime. Despite this, the spatial
structure visible in the middle and right panels of Fig. 5
reveals that the amplitude modulated solutions remain
spatially localized and therefore, fall under the broad
definition of oscillon used here. We suspect that these
solutions are related to the emission of staccato radiation in
oscillons [38,39].
From Fig. 4, it is clear that oscillon formation is fairly

robust to changes in the form of the initial breather profile,
at least for ε ≪ 1. Fig. 6 provides an alternative empirical
representation of this robustness. Using our ensemble of

initial conditions uniformly sampled in log10ðωini=μÞ and
θ0, we construct the empirical distributions of ωosc as ε is
varied. These distributions are illustrated in Fig. 6. We see
the distributions deform form a two-component mixture
(when ε ¼ 0.125 and 0.25) to a three-component mixture

FIG. 5. Left panel: Time evolution of ϕð0; tÞ=ϕ⋆ for some of the solutions in the blue rectangle (case ε ¼ 0.75 of Fig. 4). We are using
the same color code as in Fig. 4, showing that the solutions with modulated amplitude serve as “transition solutions” between the stable
oscillons (in orange) and the fast decaying profiles (in gray). Interestingly, the frequency of the modulating envelope reduces as one
approaches the unstable solutions. Central panel: Spatial structure of an amplitude modulated solution for ε ¼ 0.75. Amplitude
modulation is associated to periodic phases of contraction and expansion of the oscillon core. Right panel: Energy density as a function
of radius and time for the solution in the middle panel. Modulation occurs as energy leaves the core in a discrete number of bursts. In the
middle and right panels, the black dashed lines correspond to constant-time snapshots of the field (central panel) and energy density
(right panel), rescaled to fit in both panels. Rasterization suppresses most of the high-frequency structures in the evolution of field and
energy density. Shaded areas below the dashed lines give a qualitative estimate of the field and energy density values. To show the peaks
and troughs in the central and right panels, time slices in the middle and right panels do not match.

FIG. 6. After counting the number of solutions in each panel of
Fig. 4, we observe the deformation of the probability discrete
probability distributions as a function of ε. Rectangles contain
75% of the solutions sampled for each value of ε, showing that at
ε ¼ 1, the remaining 25% of the samples do not form stable
oscillons. The dots represent the mean frequency of the sample
displacing upward as ε increases. Semitransparent colored dots
are also shown to represent the ε dependence of the oscillation
frequency distributions.
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(when ε ¼ 0.75 and 1), with ε ¼ 0.5 serving as a transition
state between the two. For the smaller values of ε, the
distribution is well modeled as a two-component system:
the first component is an approximate δ-function of
frequencies with ωosc ¼ ωmin;ε, while the second compo-
nent is a continuum of frequencies. These correspond to an
attractor point in solution space and points along the
attractor line, respectively. As for the first component, it
indicates an important point of our discussions: There is a
minimum frequency for oscillons to form. Examining both
the color codes in Fig. 4 and the lower bounds of the
histograms in Fig. 6, we observe that ωmin;ε grows with the
dimensionality. As for the second component, the con-
tinuum of solutions is consistent with the presence of small
amplitude oscillons [30,34,35]. As we will show below,
such solutions are well represented by breather perturba-
tions. Within the initial frequency prior, we do not observe
any decayed solutions for values of ε < 0.75. For ε ¼ 0.75,
we see the emergence of a third δ-function like component
with ωosc ¼ μ, corresponding to the decayed solutions.
This allows us to observe how the distributions (i.e., the

histograms colored for different values of ε) deform
progressively from being unimodal (ε ≪ 1) to be bimodal
(ε ∼ 1), and the range of oscillation frequencies contracts
and shifts toward larger frequencies as ε grows. The
interval shift is also visible from the displacement of the
ensemble’s mean; this is depicted by the white dot of each
distribution. Extending these statistical results to other
dynamical variables (such as the energy, for example) is
not recommendable. The prior parameter distribution is
determinant to its final shape, and its effects are hard to
dissociate without denser parameter sampling.
The emergence of smooth isocontours of ωosc as we scan

over breather initial conditions indicates that many initial
breather profiles can collapse into an oscillon with nearly
the same frequency. This degeneracy suggests a further
reduction of the initial parameter space, where we consider
constant phase curves (with θ0 ¼ 0 fixed) as a proxy for the
isofrequency surfaces in Fig. 4. We verified for several
cases that the energy/frequency flow lines do not depend on
the choice of initial phases. Our objective with this is to
visualize how the relationship between the oscillon energy
and frequency depend on ε. Fig. 7 shows ωosc as a function
of the initial energy and the oscillon energy at μt ¼ 104.
From this figure, we identify two important features:

(i) The collapse of different initial states to yield an
oscillon with minimal frequency ðωminÞ and maxi-
mal energy ðEmaxÞ. Both the maximum energy and
minimum frequency grow with the dimensionality
of the solution. These solutions correspond to the
plateau region in Fig. 4.

(ii) A continuum of states with frequencies greater than
ωmin and energies smaller than Emax. The range of
frequencies decreases with increasing dimension.

The continuum of states (also visible in the smallest bars of
the first three histograms of Fig. 6) is consistent with the

perturbative expectation that for ε ≠ 0, each breather profile
will undergo a small deformation into an oscillon. The
emergence of a maximal oscillon energy Emax is a non-
perturbative effect in the sense that the resulting oscillon
has properties very different from the corresponding
breather for many of the initial conditions. Our intention
is to represent the dynamical state of the solution by
introducing a (noninvertible) map between breather ener-
gies and frequencies to oscillon parameters measured at
μt ¼ 104. Therefore, features from the initial parameter
distributions are mapped to the flow lines in the ðωosc; EÞ
plane. As an example of this, we observe that for ε ≪ 1, the
maximal value of ωosc (and corresponding minimal energy
Emin) is just an artifact of our initial condition sampling.
Such a bound results from mapping the initial frequencies
upper bound to the oscillon frequencies ωosc. Existing work
on small amplitude oscillons has argued that there are a
continuum of oscillon solutions with frequencies arbitrarily
close to ωosc ¼ μ and arbitrarily small energies [30,34,35],
from which, we can infer that it is reasonable to set ωmax ¼
μ and Emin ¼ 0 in the ε ≪ 1 limit. Unfortunately, these
solutions are very wide, generating a large dimensionless
hierarchy between the width of the oscillon and the typical
wavelength of emitted radiation. This makes numerical
investigation of this regime difficult, and we leave the
phenomenology of solutions “in the gap” to future work.

FIG. 7. Convergence of energy and frequency curves (with
oscillon energy and oscillation frequency measured at different
times) is consistent with oscillons being well represented by SG
breathers when ε ≪ 1. Oscillation frequency after a few hundred
oscillations ðωoscÞ is illustrated as a function of the initial energy
(Eini) in solid dots, while oscillon energy Eosc and oscillation
frequency ωosc are plotted using semitransparent dots. Dashed
lines correspond to the initial frequency ωini in terms of Eini.
Vertical colored lines indicate the energy (denoted Emax in the
legend), where solutions cluster to show the existence of a
maximal energy for the oscillon. The values of ε considered to
produce the figure are shown in the color legend at the bottom
right of the figure.
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As ε grows, decayed solutions start to appear. Thus,
given a sufficiently fine grid of initial configurations, it may
be possible to compute the minimal energy/maximum
frequency of an oscillon for ε≳ 0.75. The left panel of
Fig. 5 shows that such a solution may show periodic
amplitude modulation. Figure 7 is also useful to show how
energy and frequency curves (plotted in dots) approach to
their initial values (in dashed lines) as ε gets smaller. This is
also an indication that the breather and oscillon profiles
look similar in this regime. The same figure also shows that
the connection between oscillons and breathers is more
subtle as the dimensionality increases. Thus, the closeness
of the frequency/energy flow lines as ϵ → 0may be used as
a feature defining the perturbative regime. The validity of
this and other definitions will be explored in a future
project.

B. Case ε≳ 1: Beyond the perturbative regime

Thus far, we have explored oscillons in the regime with
ε≲ 1, corresponding to spatial dimensions D≲ 2. Since ε
acts as a control parameter for the deformation away from
the one-dimensional sine-Gordon model, this roughly
corresponds to the regime where we expect oscillons and
breathers to be related perturbatively in ε. In particular, we
expect that the differences in energy, frequency, and shape
parameters of the oscillons and breathers will be perturba-
tive in ε. We now consider the regime ε≳ 1, where this
assumption about the closeness of oscillon and breather
profiles is somewhat dubious. Some evidence of this can
already be seen in the bottom right panel of Fig. 4,
corresponding to the case ε ¼ 0.75, where some of the
initial breather profiles (with nonzero initial kinetic energy)

decay rather than forming oscillons. Moreover, these results
also raise interesting questions about existence of a
frequency gap and/or energy gap.
From the right panel of Fig. 8, we see that as we continue

to increase ε, a larger fraction of the parameter space for the
initial breather profiles decay rather than settle into an
oscillon solution. This includes some of the profiles with
θ0 ¼ 0 (i.e., zero kinetic energy). In the left panel of Fig. 8,
we illustrate how the energy in the initial radial profile
depends on the initial condition parameters ωini and θ0.
Comparing the initial energy isosurfaces in the left panel to
the boundary of the region of decayed solutions suggests
that for ε≳ 1, there is a minimum energy oscillon con-
figuration, and the initial conditions that fail to form an
oscillon fall below it. The formation of stable oscillons is
subtle since energy dissipation is a necessary part of the
process. Thus, in D ≥ 2, there are initial configurations
radiating away most of its energy before forming an
oscillon. More generally, the similarity between the con-
stant energy isosurfaces and constant ωosc isosurfaces
indicates that the frequencies of oscillons that form the
breather initial conditions are largely determined by the
initial energy available in the simulation volume. We
confirmed that similar agreement occurs for other choices
of ε.
An important motivation of this project is the similarity

between oscillons’ and breathers’ radial profiles. Hence, we
will proceed with our discussions on oscillon’s paramet-
rization using breathers from a slightly different perspective
than the one we followed so far, i.e., by comparing the
radial profiles of oscillons and breathers. Let us consider
the evolving oscillons of the dimensionally deformed

FIG. 8. Initial energy (left panel) and oscillation frequency ωosc (right panel) as functions of the initial breather parameters for
ε ¼ 1.25. Parametrizing initial conditions with SG breathers discards a nontrivial fraction of the accesible states (inside the gray
contours in the right panel and in the shaded region in the left panel). Showing that in the nonperturbative limit, breathers may not have
sufficient energy to produce stable solutions.
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sine-Gordon equations in (7), where we use breather
profiles as initial conditions. After a few hundred oscil-
lations, we measure the height of the oscillon peak ðAoscÞ at
r ¼ 0 (as in Sec. III) at some instant where the oscillon has
reached its maximum amplitude. We compute its “instanta-
neous” breather frequency ωinst from the oscillon amplitude
by using

ωinst

μ
¼ cos

�
Aosc

4ϕ⋆

�
; ð19Þ

and build a radial breather profile ϕBðr; t ¼ 0jωB ¼ ωinstÞ
from (3). In Fig. 9, we show the evolution of the oscillon
profile and compare its shape (within a limited timespan)
with the breather built in this way, for ε ¼ 2 and after
μt ∼ 4 × 102. From our results, we infer that it is possible to
find a breather radial profile that approximates the shape of
an oscillon at a fixed instant of time. Moreover, we are able
to replicate this procedure at different times regardless of
the oscillon’s dimensionality, as long as this is stable.
Differences in radial profiles appear in the tails and grow as
ε increases. Furthermore, when ε ≪ 1, oscillon dynamics is
well represented by time-dependent breathers, and as the
dimensionality grows, oscillons tend to dephase quicker.
We have not tested if this also happens for different initial
conditions, but we find it holds for the one-dimensional
potential deformations presented in Sec. VII. In addition to
the existence of amplitude modulated solutions, the pos-
sibility of parametrizing oscillons using breathers gives us
another reason to consider a nonlinear mode mixing
formula instead of the quasibreather ansatz suggested in
[4,13]. This result also motivates us to extend this similarity
through the entire oscillon evolution (if possible). This
extension demands time-dependent frequencies instead of
fixed values (i.e., ωB → ωBðtÞ). In principle, such a change

in the parametrization may be sufficient to capture the
evolution of the oscillon profile and its oscillation phase.
Numerical renormalization [17] suggests a reasonable
procedure to build semianalytical oscillons. We will
explore its applications in a future project.
We study the reduced space of ωosc and E as in the

perturbative regime (in Sec. IVA). As a consistency check,
we found that the only effect of choosing θ0 ≠ 0 is to shift the
states toward lower energies/higher frequencies as phases
increase, leaving the flow lines invariant. We followed the
same procedure used to find our results in Fig. 7, i.e., by
measuring theoscillation frequency as a function of the initial
energy, as well as the energy at later times now in the case
ε≳ 1. The upper and lower panels to the left of Fig. 10 show
that a fraction of the solutions have decayed in a similar way
to what we observed in the case ε ¼ 0.75 in our discussions
of the perturbative regime. The upper panel (corresponding
to 2D solutions) shows an intermediate state labeled as
ðEmin;ωmaxÞ, since it is the oscillon with the highest
frequency and the lowest energy in our sample. This is an
amplitude modulated solution; it is located in between
decayed and nondecayed solutions in the same way as we
observed in the case ε ¼ 0.75 in the left panel of Fig. 5.
Finding the exact location of the maximum frequency states
depends on the sampling of initial conditions. Before
decaying, energies and frequencies of the amplitude modu-
lated oscillons do not vary significantly with time.
As for the panel at the bottom, corresponding to ε ¼ 1.8,

we do not find any intermediate states. The spread of
energies to the left and right of Emax can be interpreted as a
signal of the maximum and minimum energy states (and the
whole line of states in between, representing a continuum
of oscillons in the small epsilon limit) collapsed to a point
in parameter space. As we will show shortly, such a
collapse occurred at some smaller value of ε.
In all of the cases, it is clear that there is (approximately)

an oscillon with maximum energy, which can be produced
by a large family of breathers with initial energies larger
than a threshold, where such a threshold is represented by
an isosurface of constant energy, in an analog way to what
is depicted in Fig. 8. Oscillons’ maximal energy (Emax) can
be determined more robustly than minimum (or intermedi-
ate) energies or frequencies. We can confirm this by
examining the blobs in semitransparent black from the
two left panels of Fig. 10, which (for ωosc < μ) concentrate
to form a solid black region around a narrow energy band.
We estimate the maximum energies for a few values of
ε > 1 from the mean energy of the states within the darker
regions. Estimation errors correspond to the standard
deviations measured around the mean energy. With all
of this information, in the right panel of Fig. 10, we fit Emax
as a power law in ε of the form

μεþ1

V0

ðEmax − E>
0 Þ ¼

�
ε

ε>⋆

�
p>

; ð20Þ

FIG. 9. Comparing the radial profile evolution of a 3D oscillon
of the sine-Gordon model ðϕoscÞ (in solid blue lines), with a
breather profile ðϕBÞ built at fixed time μt ∼ 4 × 102 with
frequency ωinst=μ ¼ 0.482 (in red dashed lines). The peaks
formed by both solutions have very similar shapes.
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where the fitting parameters are E>
0 ¼ 50.26� 2.44, p> ¼

5.15� 0.15 and ε⋆ ¼ 0.947� 0.001. Energies and
frequencies vary faster in time as the dimensionality
increases, due to the reduction of oscillon lifetimes.
Thus, error bars enlarge since it is harder to measure fixed
values of Emax and ωmin. The points with error bars shaded
in blue represent the effect of time evolution in the fit:
Points with higher values of ε are the first to escape from
the power law, since the corresponding oscillons decay
faster as the dimensionality increases. Expressions fitted
such as Eq. (20) have no dependence on the initial breather
parameters ωini and θ0, since oscillons clustered in the ωmin
blobs are approximately the same for all of the initial
frequency and phase choices (as long as θ0 ≠ π=2).
The collapse of the minimal and maximal energy

configurations into a small fuzzy region in parameter space
(treated approximately as a point) is a characteristic feature
of the nonperturbative regime of dimensional deformations.
A sufficient amount of states located in the transition region
between oscillons and decayed solutions is required to
study the collapse. One way to increase the number of
configurations in this region is to include solutions evolved
from breathers with different initial phases. Spanning over
phases does not vary our estimations of Emax and ωmin;ε.
Hence, in addition to the initial frequency span, in Fig. 11,
initial phases are also mapped in the interval θ0 ∈ ½0; π=2Þ
to represent over 500 configurations in each constant ε flow
line, even when discontinuities in the maximum oscillon

FIG. 10. Left panels: Oscillation frequency extracted at μt ¼ 3 × 103 as a function of the initial energy (small blue dots) and the energy
after a few hundred oscillations (large semitransparent black dots) for ε ¼ 1.375 (upper panel) and ε ¼ 1.8 (lower panel). Initial
conditions correspond to 50 breathers with frequencies in the range log10 ωini=μ∈ ½−1.0; 0.02� (the same as in Fig. 4), and θ0 ¼ 0 as the
initial phase. From the two figures, it is clear that the two clusters of black points denote states that at low energies (and ωosc ∼ μ) have
already decayed. At higher energies, marked by the red dashed lines for frequencies ωosc < μ, the clustered points correspond to the
same stable oscillons. Right panel: Dots colored in solid black are the stable solution energies (indicated by red dashed lines in the left
panels) where the stable states accumulate, rendering (approximately) a monotonically growing function of ε. Oscillons in D≲ 3
dimensions are the first to move away from the power law, as shown in the collection of points shaded in blue. As time progresses,
oscillons slowly flow along the attractor (as shown in Fig. 3) losing energy and increasing their oscillation frequencies. As a result, the
corresponding dots (representing the states) flow upward following the black time arrow.

FIG. 11. Oscillon frequencies and energies in various dimen-
sionalities. We chose 50 frequencies from a uniform span in the
range log10 ωini=μ∈ ½−1.0; 0.0Þ and 10 initial phases from the
interval θ0 ∈ ½0; π=2Þ for each value of ε. We notice the emer-
gence of a frequency gap growing as ε increases. The inset at the
upper right corner shows the change in the empirical probability
distributions for ε∈ ½1.0; 1.375�. Histogram deformations explic-
itly show that the collapse of the oscillation frequency range to a
point (also shown in the lower left panel of Fig. 10) occurs for
ε∈ ½1.25; 1.375Þ.
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frequency (as a function of ε) reveal that the sampling is
still too sparse to resolve ðωmax; EminÞ accurately. However,
it is dense enough to show drastic changes in the number of
oscillons found in a certain range of frequencies and
energies. Such changes manifest as gaps in Fig. 11 and
suggest the existence of a minimum energy/maximum
frequency state when ε≳ 1. Additionally, our results
confirm the collapse of a continuum of states (limited by
maximal and minimal energy oscillons) close to the
transition from the perturbative to the nonperturbative
regime. At ε ¼ 1.125, we find a localized range of
frequencies where oscillons can be found; here, the
maximum and minimum frequencies are significantly
closer than in cases with smaller epsilon. The marginalized
empirical distributions can be found in the inset plotted in
the upper corner of the figure. In this inset, the oscillation
frequency interval is restricted to ωosc=μ∈ ½0.88; 0.95� to
show deformations in the distributions, which agree with
the collapse of the continuum of states to a single point
when 1.25 ≤ ε < 1.375. It is possible (but not very likely)
that such a point is actually a very narrow line for ε ≈ 2. As
seen in the lower left panel of Fig. 10, states spread
diffusely around the maximal energy/minimum frequency
band, which starts to appear at ε ¼ 1.31. With our

simulations, we were not able to clearly distinguish more
than one state in that small region. The simulations dubbed
as ðωmax; EminÞ in red circles for the cases ε ¼ 1 and ε ¼
1.0625 (as well as some of their nearest neighbors)
correspond to amplitude modulated oscillons undergoing
periodic phases of contraction and expansion in their cores.
These are located in the intermediate region between
oscillons and decayed solutions, which is consistent with
our results in Sec. IVA for the case ε ¼ 0.75 depicted
in Fig. 5.
Employing alternative parametrizations leads to many

opportunities and possible explotations; in particular, it is
reasonable to evaluate how an increase in the energy affects
oscillon stability. Following the standard breather para-
metrization (i.e., α ¼ 1), we find that the initial condition
with θ0 ¼ 0 and ωini=μ ¼ 0.9 does not form a 3D oscillon

ϕðr; tÞ
ϕ⋆

¼ αϕBðr; tjωB ¼ ωiniÞ. ð21Þ

Potential energy can also grow for small amplitude states
oscillating around ϕ ¼ 0. If we consider this initial con-
dition for α ¼ 1, θ0 ¼ 0 and ωini=μ ¼ 0.9, and evolve it for

FIG. 12. Evolution of the energy density of a breatherlike initial condition in the three-dimensional sine-Gordon model for ωini ¼ 0.9μ
and α ¼ 20. When α ¼ 1.0, the frequency corresponds to a breather oscillating inside the well minimum centered at ϕ ¼ 0. Left panel:
Initial phase of the evolution corresponding to the collapse and expansion of spherical shells. Right panel: Dilution of the bound states,
the solution disappears after two intermittent bursts.
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ε ¼ 2 (i.e., in three spatial dimensions), the solution does
not form an oscillon. As an experiment, we increased the
amplitude of the same configuration by a factor of α ¼ 20
to see the effects of an arbitrarily large amplitude boost in
the solution. In Fig. 12, our results show that the solution
corresponds to a series of spherically symmetric energy
shells; field configurations oscillate around more than one
minima of the sine-Gordon potential. Certainly, the solu-
tion does not have any similarity with the oscillons
discussed throughout this paper, and oscillon lifetimes
are not boosted by the extra initial energy injected.
Bursts of classical radiation escape from the solution
throughout its evolution. It is clear that energy is no longer
a localized quantity, and the frequency of the solution at the
origin may not be a relevant parameter anymore. Therefore,
increasing the initial breather’s amplitude by using the
parametrization in Eq. (21) does not necessarily support the
formation of long-lived oscillons in higher dimensions.
This agrees with many preceding results using enlarged
Gaussian profiles as initial states.

V. CRITICAL BEHAVIOR

In the preceding sections, we found evidence of an
oscillon attractor in the space of spherically symmetric
solutions to the dimensionally deformed sine-Gordon
model. Further, this attractor is dynamically accessible
from a wide range of radial breather initial conditions. In
addition to this, we found that amplitude modulated
solutions, which are intermediate states between oscillons
and decayed solutions, progressively deviate away from the
osciilon attractor. In this section, we quantify the properties
of this oscillon attractor as ε≡D − 1 is varied. After
collecting our results from the perturbative and nonpertur-
bative regimes, the features of the oscillon attractor are
consistent with the presence of critical behavior. Thus far,
most of our discussions focus on the oscillation frequencies
ωosc and energies E as diagnostic parameters describing
oscillon dynamics. These two parameters are clearly well
motivated physically and also directly illustrate the sim-
ilarity between the oscillon solutions and corresponding
breathers when ε ≪ 1, as shown in Fig. 7.
First, let us summarize the key properties of the oscillon

attractor that we found in Sec. IV.
(1) For all values of ε > 0, we found a maximum

oscillon energy Emax, corresponding to a minimum
oscillation frequency ωmin. Breather initial condi-
tions with Einit > Emax tended to rapidly evolve
toward this oscillon configuration.

(2) As we increased ε, we eventually found that some of
the breather initial conditions rapidly decayed in-
stead of forming an oscillon. The separation between
decayed and oscillon solutions closely matched the
energy of the initial breather configurations, sug-
gesting the existence of a minimum energy oscillon
for sufficiently large values of ε. Our results in

Fig. 11, where we found energy/frequency gaps with
no oscillons, provide further evidence of this. The
span of initial conditions in the region jωosc −
ωinij ≪ 1 is too sparse to determine if this feature
appears at a finite value of ε or not. A technical
reason to not sample this regime is that oscillons are
very wide, and therefore, appropriate numerical
implementations are computationally expensive.

(3) As a result of these two properties, there are a
continuum of oscillon solutions for ε ≪ 1, labeled
alternatively by their energy Eosc or oscillation
frequency ωosc.

(4) As we continue to increase ε, the states ðωmax; EminÞ,
ðωmin; EmaxÞ, and all the states in between approach
each other, and the attractor line collapses down to
a point.

It is of interest to understand how these key features of
the oscillon attractor evolve with ε. Specifically, the
maximum energy oscillon acts as a critical solution of
sorts, since it forms the beginning of the oscillon attractor
line. As a result, our breather initial configurations with
Eini > Emax tend to cluster around this point as they
dynamically evolve. In Fig. 13, we gather the results of
Emax and ωmin from the perturbative and nonperturbative
regimes, knowing that these read from the accumulation of
states around specific points of the ðωosc; EÞ plane for every
value of ε. Our results indicate that the Emax dependence of
ε cannot be well approximated by a single power law. We
need two separate curves to do such a fit, one for ε≲ 1

μεþ1

V0

ðEmax − E<
0 Þ ¼

�
ε

ε<⋆

�
p<

; ð22Þ

and another one for ε≳ 1

μεþ1

V0

ðEmax − E>
0 Þ ¼

�
ε

ε>⋆

�
p>

: ð23Þ

The corresponding fit parameters are summarized in
Table I. Naively, this suggests the presence of a phase
transition of order higher than zero. However, the bottom
panel of Fig. 13 shows that the minimum frequency ωmin is
well fit by only one power law

ωmin

μ
¼
�
ε

εω⋆

�
pω

; ð24Þ

with εω⋆ ¼ 2.262� 0.078 and pω ¼ 0.125� 0.003 ≈ 1
8
.

This implies that the discontinuity in powers seen in the
maximum energy is either not universal, or with respect to
the frequency, it is represented by a higher order phase
transition. For larger values of ε, the power law fit becomes
poor, and the minimum frequency actually appears to
decrease slightly before reaching a plateau. Expressions
fitted as Eqs. (22)–(24) have no dependence on the initial
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breather parameters ωini and θ0, since the stable oscillons
are (approx) the same for all of the initial frequency and
phase choices in the ivory regions (as long as θ0 ≠ π=2).
Thus, the measured values of Emax and ωmin are insensitive
to the initial breathers shape.
The collapse of a continuum of states, bound by states

with minimum and maximum energy/frequencies, is one of
the main results of our discussions in the nonperturbative
regime in Sec. IV B. To illustrate the collapse toward the
minimum frequency line in the lower panel of Fig. 11, the
maximum frequency states included come from (a) setting
ωmax ¼ μ as an educated guess when ε < 0.75 and
(b) empirical maximum frequency values found from our
simulations in the nonperturbative regime. Figure 14
resembles a phase diagram, depicting the collapse of
minimum and maximum frequency states to a single point.

Such a collapse allows us to identify a “triple point” in
the phase diagram, which can be located in interval
ε∈ ½1.25; 1.375Þ. The black dots denote the upper limit
in oscillon frequencies spanned by our simulations. We
have found oscillons in the regions hatched in blue, while
the regions in red correspond to wide oscillons. Such
solutions have not been explored due to the resolution
limits of our numerical setup. Even when we considered
initial phases when sampling initial configurations to probe
lower energies in the nonperturbative regime, maximum
frequencies (within the purple rectangle) are still prone to

FIG. 13. Maximum energy (upper panel) and minimum oscil-
lation frequency (lower panel) of oscillons as a function of the
number of spatial dimensions, after collecting the ωmin and Emax
results in Secs. IVA and IV B. Dashed green and light blue lines
in the top panel depict the ε > 1 and ε < 1 behavior of the
maximum energy as a function of ε, respectively. In contrast to
the maximum energy, the dashed black line shows that the
minimum frequency fits using a single power law. Contours in
blue and orange are the regions contained within a distance of
one, two, and five times the errors around the measured values.
These contours should not be interpreted as confidence contours.

TABLE I. Fitting coefficients and uncertainties for the pertur-
bative and nonperturbative energy and frequency fits presented in
Figs. 10 (green curve, right panel) and 13. E<

0 is consistent with
the energy of an infinitely separated KK̄ pair, while E>

0 is the
energy of the two-dimensional oscillon with minimal frequency.
The last row contains the fitting coefficients of the minimum
frequency ωmin as a function of ε, which is well represented by
the power law plotted in the lower panel of Fig. 13.

Case E0½μεþ1=V0� ε⋆ p

(<) 15.54� 0.66 0.21� 0.01 2.47� 0.07
(>) 50.26� 2.44 0.947� 0.001 5.15� 0.15
(ω) � � � 2.262� 0.078 0.125� 0.003

FIG. 14. Phase diagram showing the collapse of states toward
the minimum frequency curve in Fig. 13 as the dimensionality
increases. The purple dotted line at ωmax ¼ μ corresponds to the
maximum frequency estimates in the perturbative regime. Black
dots represent the maximum oscillation frequencies measured in
our simulations, which show for ε ≳ 1 the collapse of states in the
nonperturbative limit. The area hatched in blue contains oscillons
emerging from breathers within the range of initial frequencies
and phases, and the red area is the region of the ðε;ωoscÞ plane
that has not been explored. The rectangle in purple denotes large
error bars for the maximum frequencies for ε > 0.75 due to
sparse initial parameter sampling. The size of the rectangle does
not intend to show the magnitude of the errors in ωmax.
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large error bars. The collapse of all intermediate states to a
single point, and the gaps between stable and unstable
solutions are still visible in spite of this. Amplitude
modulated solutions were found throughout the entire
region hatched in blue as intermediate states between
minimum and maximum frequency configurations, altho-
ugh these are easier to distinguish around ε≳ 1.
In what remains of this paper, we will explore alternative

ways to deform the sine-Gordon model. In Sec. VI, we
suggest an implementation to consider dynamical transi-
tions in the spacetime dimensionality and evaluate some of
their effects. We build a tunable model deforming the sine-
Gordon to the axion monodromy potential to extend our
previous results in Sec. VII. Further in the text, the reader
can learn about our numerical implementation in the
Appendix and find the discussions in Sec. VIII. It would
be interesting to extend this treatment to consider other
localized structures, such as solitons and strings produced
by topological defects [40–42], finding their connections (if
any) with other integrable models.

VI. TIME-DEPENDENT DEFORMATIONS

The concept of dynamical spacetime dimensionality has
been suggested in a wide variety of scenarios [43–46], and
its effects in nonlinear field theories deserve attention. On
the other hand, thus far, all the spherically symmetric
oscillons were produced by instantaneous dimensional
deformations of sine-Gordon breathers. Therefore, in this
section, we explore dimensional modifications of the SG
model having a finite duration, since it is valid to ask
how the connections are presented in Sec. IV due to
time-dependent dimensional deformations. To introduce
dynamical dimensional transitions, let us consider the
following action:

Sεt ¼
Z

ðlTrÞεt
	
1

2

�
∂ϕ

∂t

�
2

−
1

2

�
∂ϕ

∂r

�
2

− μ2ϕ2
⋆

�
1 − cos

�
ϕ

ϕ⋆

��

drdt: ð25Þ

For simplicity, we assume that the dimensional length scale
lT is the same as μ, which may not hold in a general setup.
Sensitivity of our results with other choices will be
explored in a future project. This action yields the dimen-
sionally deformed equations of motion in (7). In this
section, we modify the action by converting ε into a
time-dependent function denoted as εt, which is a straight-
forward deformation of the Minkowskian scalar field action
in spherical symmetry. Introducing such a dependence on
real (instead of integer) values in the action analog to the
dimensional regularization procedure applied in quantum
field theory [47–49]. After this redefinition, equations of
motion follow from the functional derivative of (25):

dϕ
dt

≡ Πε; ð26aÞ

dΠε

dt
¼ −Πεε̇t lnðlTrÞ þ

�
εt
r
þ ∂

∂r

�
∂ϕ

∂r
− μ2ϕ⋆ sin

�
ϕ

ϕ⋆

�
:

ð26bÞ

It is clear that in the case ε̇t ¼ 0 the equations reduce to
spherically symmetric in (1þ εt) spatial dimensions. The
term proportional to ε̇t has a logarithmic singularity at
r ¼ 0, but this is not a reason of concern since (a) the
singularity is less severe than r−1, and (b) it is only
switched on during the transition.
As for the functional form of εt, we continuously connect

constant values of ε by using cosine tapered functions [50].
Thus, we can write εt as

εt ¼
(
εini þ ΔD

h
sin
�

πt
2σt

�i
2
; 0 ≤ t < σt;

εini þ ΔD; t ≥ σt;
ð27Þ

which is a C1 piecewise function continuous at t ¼ σt. This
function is very similar to a continuous step function,
except that the input and output are exact instead of
asymptotic, which allows us to be precise about the initial
and/or final state of the dynamical system. σt is the duration
of the transition from D ¼ εini þ 1 to D ¼ εini þ ΔDþ 1
spatial dimensions, and it determines the speed of the
dimensional deformation. εini is the initial value of εt, and
ΔD is the change in the number of spatial dimensions we
want to achieve. The positive/negative sign ofΔD is used to
denote if the transition is an increase/decrease in εt. ε̇t is a

FIG. 15. Comparing the evolution of the solution of Eqs. (26a)
and (26b) (labeled as ϕðr ¼ 0; tÞ=ϕ⋆ and plotted in a solid blue
line) transitioning from 3D to 1D in a couple of oscillations with a
SG breather evaluated at the origin. The initial sine-Gordon
breather [labeled as ϕBðrc; tÞ=ϕ⋆ and plotted in red dots] is a
good fit of the solution considering a phase of θB ≈ −4π=21.
Such a result validates the frequency extraction procedure
introduced in Sec. III and used throughout this manuscript.
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single-peaked function of time, which becomes a “delta
kick” in the limit σt → 0. In the single-particle reduction of
our system, such a spike can lead us to fractional kinetic
energy gain or loss, similar to the scenario of an inelastic
collision.
As a proof of concept for the deformed field equations,

we evaluate the transition from a breatherlike spherically
symmetric oscillon in three spatial dimensions to a one-
dimensional breather. In this case, the initial condition has
the same shape of the breather in Eq. (3) with ωB ¼ 0.1μ
and initial phase θ0 ¼ 0. To represent the dimensional
transition, we use εini ¼ 2, ΔD ¼ −2 and σt ¼ 0.1μ−1 in
Eq. (27), which is approximately instantaneous. Figure 15

shows that the solution evaluated at constant radius rc ¼ 0
can be written as

ϕðr; tÞ
ϕ⋆

¼ ϕBðr ¼ 0; tjωB ¼ ωoscÞ; ð28Þ

with θB ≈ −4π=21 and ωosc ≈ 0.381μ. The value of ωosc
was extracted from the evolving field following the
procedure described in Sec. III (as seen in the right panel
of Fig. 2): by finding the dominant frequency of the
solution evaluated at the origin. As plotted in the figure,
this result is fully consistent with a well-known fact of
the sine-Gordon model [16]: Its solutions can only be

FIG. 16. Oscillon frequency as a function of the phase and initial breather frequency for the 1D to 2D transitions described in Table II.
We use a grid of 50 × 50 initial configurations of frequencies ðωiniÞ and phases (θ0) (which is the same as in Fig. 4) distributed uniformly
in log10ðωini=μÞ∈ ½−1;−0.02� and in θ0 ∈ ½0; πÞ. The cusps reported in Fig. 4 emerge in the limit of abrupt dimensional transitions, such
as the two panels at the bottom, and conversely become less sharp as the transition slows down (i.e., the two panels at the top). In all
scenarios, decayed states (in gray contours) represent 40% (approx) of the 2500 solutions evolved. Symmetry around θ0 ¼ π=2 is only
restored in the limit σt → 0. We chose the range of oscillation frequencies to coincide with the interval of oscillon frequencies for the
flow line ε ¼ 1.0 (orange dots) in Fig. 11.
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combinations of breathers, solitons, and nonlinear waves.
Simultaneously, we evaluated the consistency of the
deformed field equation solutions with SG breathers and
validated the frequency extraction procedure explained in
preceding sections.
We evaluate the sensitivity of the oscillation frequency

ðωoscÞ with the dynamical dimensional transition suggested
in Eqs. (26a) and (26b) in coherence with our work in the
previous sections. None of the breathers has been deformed
to compensate for the lack of energy in the one-dimensional
initial conditions. Considering εini ¼ 0 and ΔD ¼ þ1, we
simulate the dynamical deformation of 1D breathers into 2D
oscillons for the four different durations reported in Table II.

As we can notice, the first two cases σð1Þt and σð2Þt correspond
to transitions happening in less than one oscillation. Cases

σð3Þt andσð4Þt lastmore than a full oscillationperiod, observing
that the duration of the extremal scenarios is different by two
orders ofmagnitude.Wegenerate oscillation frequencymaps
in Fig. 4 in the same range of initial frequencies and phases
used in the perturbative regime. In the four panels of Fig. 16,
we present the oscillation frequency maps corresponding to
the transition durations in the table. We observe that the
symmetry of the cusp centered at θ0 ¼ π=2 is restored in the
abrupt transition limit (in the lower right and left panels

labeled as σð1Þt ), used throughout the perturbative and non-
perturbative regimes discussed in this manuscript. However,
we notice from our results that, essentially, the oscillation
frequency range is (approximately) independent of the
dimensional transition duration for the span of initial breath-
ers used throughout the paper.
The right column of Table II reveals that the number of

rapidly decaying solutions (within the gray contours) varies
in less than 10% for a two orders of magnitude change in
the transition duration, which implies that the amount of
oscillons is also approximately independent of the tran-
sition speed. However, it would not rigorous to extend these
conclusions to different choices (and ways of sampling) of
initial conditions. Similar deformations to the high duration
maps σð3Þt and σð4Þt in Fig. 16 can be reproduced if we

change the initial frequency binning of the σð1Þt panel, by

mixing some fraction of the amplitude evolution from
adjacent initial frequencies. For larger time intervals such

as in the panel labeled as σð4Þt , the cusps become less sharp,
connecting smoothly the regions of initial parameter space
where oscillons and rapidly decaying solutions exist. It is
clear that the initial dependence tends to disappear as the
transitions become slower. As shown in Table II, the
slowest transition has a relatively mild effect in changing
the number of oscillons. Nonetheless, the same cannot be
said about the amount of intermediate frequency states. In
the same panel, we notice that the frequency gradient
becomes smoother, and consequently, the number of
amplitude modulated solutions increases with respect to
the other cases.

VII. OSCILLONS IN OTHER MODELS:
POTENTIAL DEFORMATIONS

Thus far we have studied oscillons for a relativistic scalar
field with canonical kinetic terms evolving in a cosine
potential (i.e., the sine-Gordon model). By considering
spherical solutions in noninteger dimensions, we were able
smoothly connect oscillon solutions in these models to the
breathers of the one-dimensional sine-Gordon model.
However, oscillons exist in a plethora of other relativistic
field theories, and we would like to understand if sine-
Gordon breathers can be related to these oscillons as well.
In this section, we extend the framework introduced above
to the case of oscillons in theories other than the sine-
Gordon model. For concreteness, we will apply these
methods to the axion monodromy model, which is well
known to support oscillons [4,13,14,51].
The potential for axion monodromy is given by

VM ¼ μ2Mϕ
2
M

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ2

ϕ2
M

s
− 1

#
; ð29Þ

and is illustrated in Fig. 17. From a global perspective, the
monodromy potential VM is radically different from the
sine-Gordon potential VSG. For example, VM has a single
global minimum and no local maxima, while the sine-
Gordon potential has a (countably) infinite number of
degenerate potential minima and maxima. However, a
typical oscillon only probes a finite region away from
the local potential minimum around which it oscillates. As
a result, the deformation to the part of the potential actually
probed by a given oscillon solution can be small.
Analogously to passing between spatial dimensions, we

want a tunable parameter to that will allow us to smoothly
deform our theory between the sine-Gordon potential and
monodromy model. While there are many ways such a
parameter can be introduced, we adopt the following
straightforward approach. First, we need to match the
characteristic time and field scales of the two potentials.
We match characteristic timescales by setting μM ¼ μSG so

TABLE II. Cases and duration (range of the number of
oscillations, given the span in ωini) of the transitions from one
to two spatial dimensions. The right column contains the number
of rapidly decaying solutions obtained in the maps of Fig. 16,
contained by the contours colored in gray.

Cases
Duration
σt½μ−1�

Number of
oscillations

Number of decaying
states

σð1Þt
0.1 [0.02; 0.16] 1080

σð2Þt
0.5 [0.1; 0.8] 1080

σð3Þt
2.5 [0.5; 4.0] 1183

σð4Þt
12.5 [2.5; 20.0] 984
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that the potential curvatures at the origin are equal. To
ensure that nonlinear corrections to both potentials appear
at similar field excursions, we also set ϕM ¼ ϕ⋆. We then
introduce the difference between the monodromy potential
and the sine-Gordon

ΔV ≡ VM − VSG

¼ μ2ϕ2
⋆

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ2

ϕ2
⋆

s
þ cos

�
ϕ

ϕ⋆

�
− 2

3
75: ð30Þ

Finally, we introduce a (tunable) deformed potential

VεV ≡ VSG þ εVΔV

¼ μ2ϕ2
⋆

�
1 − cos

�
ϕ

ϕ⋆

��
þ εVΔV; ð31Þ

where the tunable parameter εV ∈ ½0; 1�. For εV ¼ 0, we
recover the sine-Gordon potential, and for εV ¼ 1, we
recover the monodromy potential. Fig. 17 illustrates this
potential deformation procedure. We see that within the
local minimum at the origin (roughly for −π ≲ ϕ=ϕ⋆ ≲ π),
the deformed potentials (including the monodromy poten-
tial) are a small perturbation of the sine-Gordon potential.
Although we only consider the axion monodromy potential
here, it should be clear that the procedure is generally
applicable.
For the purposes of this study, we will restrict ourselves

to the one-dimensional case. The corresponding equations
of motion are

dϕ
dt

¼ Πϕ; ð32aÞ

dΠϕ

dt
¼ ∂

2ϕ

∂x2
− μ2ϕ⋆ sin

�
ϕ

ϕ⋆

�
− εVΔV 0ðϕÞ; ð32bÞ

where we now identify εV as the parameter controlling a
deformation away from the one-dimensional sine-Gordon
equation. Although we will not explore this here, the
potential deformations controlled by εV could be combined
with dimensional deformations as in the preceding sections.
We now consider the evolution from breather initial

conditions in the deformed potential (31) as the parameter
εV is varied. To ensure that the solution only probes regions
where the deformed potential closely matches the sine-
Gordon potential, we take ωini=μ∈ ½10−0.1; 10−0.015�. The
lower bound ensures that the oscillating solutions are
confined to a single potential well centered at ϕ ¼ 0,
where the sine-Gordon and monodromy potentials are
similar to each other. Meanwhile, the upper bound arises
from numerical difficulties in evolving very broad oscillon
profiles. Empirically, we find oscillon solutions emerge
from these initial conditions but that the relaxation onto the
oscillon attractor is somewhat slower than for the dimen-
sional deformations studied above. To capture the evolution
along the attractor, we evolve our simulations for time
μTmax ¼ 2 × 104, which is twice as long as the ε ≪ 1 cases
considered above. We also find that the properties of the
oscillon are approximately invariant to the initial phase,
which is consistent with the fact that the initial energy of the
configuration is independent of θ0 for D ¼ 1. Therefore, in
what follows, we fix the initial phase of the breather
profiles θ0 ¼ 0.
Fig. 18 summarizes the properties of oscillons that

emerge from these scans over initial breather frequencies
as we vary the potential deformation parameter εV. As in
the previous sections, we focus on the oscillation frequency
ωosc and energy E of the resulting oscillon. Details of how
we extract these quantities from simulation data are
provided in Sec. III.
For εV ¼ 0, we are in the one-dimensional sine-Gordon

limit, and the breathers are exact solutions to the equations
of motion. In this case, we see that the frequency distri-
bution is unchanged, providing a basic sanity check on our
results. As we increase εV, we observe the density of
oscillation frequencies increasing at lower frequencies.
From our work in previous sections, we understand that
it is possible to build an oscillation frequency map from the
initial breather frequencies [i.e., log10 ωoscðlog10 ωiniÞ]. To
shorten the notation, we denote Wosc ≡ log10ðωosc=μÞ and
W ini ≡ log10ðωini=μÞ. Moreover, conservation of probabil-
ities implies that the initial frequency distribution Pωini

and
the oscillation frequency distribution Qωosc

are related via

Pωini
dW ini ¼ Qωosc

dWosc: ð33Þ

FIG. 17. An illustration of the potentials (31) for εV ∈ ½0; 1�
deformed in incremental steps and plotted with respect to the
energy density scale V0 ¼ μ2ϕ⋆

2. For reference, the monodromy
(εV ¼ 1) and sine-Gordon (εV ¼ 0) potentials are shown as a
solid salmon and a solid black line, respectively. The peak
amplitude of the maximum (ωini ¼ 0.96μ) and minimum
(ωini ¼ 0.79μ) frequency breather profiles used in our parameter
scans span the area hatched with gray lines. Within this region,
the monodromy and the sine-Gordon potentials are nearly
the same.
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We assumed that Pωini
is a discrete uniform distribution in

W ini; hence, the distribution Qωosc
is the Jacobian

Qωosc
¼ 1

N

���� dWosc

dW ini

����−1; ð34Þ

where N ¼ 50 is the number of points sampled in the
interval log10ðωini=μÞ∈ ½−0.1;−0.015�. The integral of
Qωosc

along Wosc (i.e., its cumulative distribution) repre-
sents the map W iniðWoscÞ, which is essentially the inverse
map of ωoscðωiniÞ. The left panel of Fig. 18 shows the
evolution of the Jacobian and the map W−1

oscðW iniÞ as the
potential deforms. The accumulation of lower frequency
states in the Jacobian suggests that the formation of a
minimum frequency oscillon is a generic dynamical feature
and does not depend on the initial frequency prior.
Although the Jacobian tends to become narrower in the
upper end of the frequency span, the evidence may not be
sufficient to prove the existence of a maximum frequency
oscillon.
The right panel of Fig. 18 instead shows the relationship

between the energy and oscillation frequency of the
oscillons, which is the analog of Fig. 7 and Fig. 10. As
with the perturbative dimensional deformations in Fig. 7,
we see a continuum of breather energies and frequencies.
Further, it is clear that the breathers of the one-dimensional
sine-Gordon model (the εV ¼ 0 line) map smoothly into the
oscillons of the axion monodromy model, at least for this

range of initial breather frequencies ωini. This is strong
evidence that the breathers provide a reasonable approxi-
mation to the oscillons, especially in the limit εV ≪ 1.
Since we have restricted to relatively large values of
ωini=μ, the maximum energy oscillon we observe is
dictated by our initial conditions, rather than a physical
mechanism. If we were to explore smaller values of
ωini=μ, we expect a maximum energy plateau would
appear as in the case of dimensional deformations.
Comparing the frequencies of the left end of the

curves (which all have ωðmaxÞ
ini ¼ 10−0.015μ), we see that

ωoscðωðmaxÞ
ini Þ decreases with εV. This agrees with the

behavior seen in the left panel. We see no evidence of
a frequency gap or minimal energy solution, although a
more definitive investigation of this requires extending
our numerical techniques to the case of very wide
oscillons, which we leave to future work. Similarly, we
leave a more detailed exploration of the oscillon phase
diagram (similar to our results in Sec. V) for potential
deformations to future work. To be consistent with our
results for dimensional deformations in Fig. 7, the inset
plotted in the lower right corner of the figure includes the
initial energy lines to show the convergence of parameter
flows as εV → 0. Our results in this figure confirm that
one-dimensional oscillons are well represented by brea-
thers when ϵV ≪ 1. We are not able to explain why the
states with the lowest frequencies coincide for all the
values of εV. We leave further investigations of this for a
future project.

FIG. 18. Left panel: Distribution of oscillon frequencies ωosc, assuming a log-uniform prior for ωini with
−0.1 ≤ log10 ðωini=μÞ ≤ −0.015. We sampled this prior using 50 initial conditions with uniformly spaced log10ðωini=μÞ in the
indicated interval. The oscillation frequency interval deforms as a function of εV . The areas shaded with lines correspond to the Jacobian
Qωosc

¼ N−1jdWosc=dW inij−1, while the areas in semitransparent colors determine the inverse map W−1
oscðW iniÞ. As the frequency

intervals contracts with the curvature growth of the sine-Gordon potential, a uniformly distributed sample in log10ðωosc=μÞ deforms to
have a higher number of available states at lower frequencies. Right panel: Continuous deformation of energy versus oscillation
frequency curves for various intermediate stages of the potential deformation. The inset plotted to the right shows that flow lines concur
in the limit εV, showing consistency with the small dimensional deformations limit in Fig. 7.

JOSÉ T. GÁLVEZ GHERSI and JONATHAN BRADEN PHYS. REV. D 108, 096017 (2023)

096017-22



VIII. DISCUSSION

In this paper, we provided an explicit connection
between one-dimensional sine-Gordon breathers with
spherically symmetric oscillons. To achieve this, we stud-
ied the oscillons produced by deforming the breather
solutions of the sine-Gordon equation and viewed the
dimensional term εr−1∂ϕ=∂r (with ε≡D − 1) as a pertur-
bation to the one-dimensional sine-Gordon equation.
In Sec. II, we quickly revised the breather solution and its

features and presented it as the initial condition of the
evolving solution. A key point of this section is to under-
stand that the breather needs (essentially) only one para-
meter to be fully characterized: its oscillation frequency.
Hence, examining the evolution of the oscillon frequency
ðωoscÞ is a viable way to assess the dynamical state of the
deformation. In Sec. III, we outlined a procedure to extract
the post-transient oscillation frequency of an oscillon, as
well as its amplitude and energy. We did not intend to
provide a “complete” description of the oscillon dynamics
with this parameter choice, but rather a convenient reduc-
tion of the dimensionality of the configuration space. We
explicitly showed the formation of an oscillon attractor in
parameter space, finding that once the solutions have
reached the oscillon attractor, it is safe to consider their
parameters to be approximately constant.
The deceleration of the parameter flow allows us to build

an approximately static map connecting one-dimensional
breathers and spherically symmetric oscillons. In Sec. IV,
we solved the dimensionally deformed sine-Gordon equa-
tion to scan over different initial breather profiles. Such
profiles are parametrized by their initial frequencies and
phases. We divide our results in two scenarios: the
perturbative (ε≲ 1) and the nonperturbative (ε≳ 1)
regimes of dimensional deformations. By choosing the
measured oscillon energy and frequency to reduce the
space of parameters, we explicitly show this connection in
Sec. IVA via a noninvertible map in the perturbative
regime. When ε ≪ 1, we notice that the resulting distri-
bution of oscillon energies and frequencies can be modeled
as a two-component system: The first is an approximate δ-
function, which determines a maximum energy/minimum
frequency bound for oscillons. The second component is a
continuum of states corresponding to points along the
attractor line. Oscillons along the continuum are well
represented by perturbative corrections of breathers.
Resolving the maximum frequency/minimum energy limit
involves solving wide oscillons, which is a complicated
task due to the generation of a large hierarchy between the
oscillon width and the wavelength of the emitted radiation.
In our simulations, decayed solutions start to emerge as ε

gets closer to one. As in the small deformation limit, many
of the states accumulate around a maximal energy con-
figuration. In between decayed solutions and maximum
energy states, we found oscillons having nontrivial radial

structures for 0.75≲ ε≲ 1.0625, observing that their evo-
lution and radial profiles are incompatible with the quasi-
breather prescription. Still, it is correct to call them
oscillons since their oscillating profiles and energy den-
sities are spatially localized. These solutions undergo
periodic phases of contraction and expansion of their cores,
and in consequence, their amplitudes are modulated. As
core profiles expand and contract periodically, we observed
correlated bursts of classical radiation produced propagat-
ing away from the oscillon core at (approximately) the
speed of light. Apart from the natural oscillation timescale
(scaling as ω−1

osc), we see the emergence of a second, much
slower, timescale related to the amplitude modulation. The
location of these solutions in the oscillation frequency map
gives us a reason to suspect that the emergence of the
second timescale is related to oscillon decay rate. We leave
further explorations of this possible connection for future
research.
With further growth in ε, we studied the ε≳ 1 regime of

dimensionally deformed breathers in Sec. IV B. The con-
nection between breathers and oscillons in this regime is
more subtle than in the perturbative case. In this regime, we
found that it is possible to construct a breather having a
similar profile to a spherically symmetric oscillon at a fixed
instant of time, regardless of the oscillon dimensionality.
We have not explored yet if this result holds for different
initial profiles; nonetheless, it holds for the potential
modifications attempted in Sec. VII. Similarities persist
dynamically only in the case of small dimensional defor-
mations and dephase quicker as ε grows. This result
suggests the possibility of building semianalytical solu-
tions, capturing the frequency, amplitude, and oscillation
phase as time-dependent parameters. We leave the imple-
mentation of semianalytic oscillons for a future project.
As for the explorations in parameter space started in the

nonperturbative regime, we generated (a) an oscillon fre-
quency map—extending of our procedures from the ε≲ 1
case—and (b) an initial energy map by scanning over
the same initial breather parameters previously used in
Sec. IVA. We overlapped the two maps to find that there
is aminimumenergy threshold to form an oscillon. For states
with energies below that threshold, we showed that an
arbitrary initial energy boost does not necessarily translate
in increasing the oscillon stability. Finding the corresponding
minimum energy/maximum frequency oscillon is a compli-
cated task requiring a denser scan of initial breather profiles;
however, our findings show that our scan is sufficient to
prove its existence. On the other end of the oscillon attractor,
the δ-shaped distributions of states defining the maximum
energy bound for oscillons also appear when ε≳ 1. We find
that a power law proportional to ε5.15�0.15 is a good fit for the
maximum energy as a function of ε≳ 1. Although we could
not determine the minimum oscillon energies precisely, the
span of initial breather profiles is sufficient to find one of
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the key results of our analysis: the gradual collapse of the
continuum of states, bound by maximum and minimum
energy oscillons, to (approximately) a single stable solution
for ε∈ ½1.25; 1.375Þ.
The objective of Sec. V is to show how critical behavior

manifests in oscillon formation. To make this possible, we
summarized most of our results in Secs. IV B and IVA. The
evolution of the maximum energy oscillon with respect to ε
needs two power laws to be represented: one for oscillons in
the perturbative regime and anotherwhen ε≳ 1. Naively, this
indicates the presence of a phase transition. On the other
hand, it is sufficient to fit a single power lawproportional to ε

1
8

to describe the minimum oscillon frequency. This result
implies one of two possibilities: (a) the phase transition seen
for the maximum energy is not universal, or (b) the order of
the phase transition is higher when is plotted in terms of the
frequency.
Due to the high computational cost of solving wide

configurations, we could not resolve the minimum energy
end points of the oscillon attractors nor their dependence on
the dimensionality. However, it is reasonable to consider
ωosc ¼ μ as an educated guess for the maximum frequency
bound in the perturbative regime. From our simulations in
the nonperturbative regime, the stable solution with the
highest frequency was used to provide a crude estimate of
the maximum frequency oscillon. Combining our maxi-
mum frequency estimates with the minimum frequency
yields a plot similar to a phase diagram. From this plot, we
confirmed the collapse of minimum and maximum fre-
quency (including a continuum of intermediate states)
configurations to a single point, which is the main result
of our explorations in the nonperturbative regime. We also
found that some of the states in the region limited by
maximum and minimum frequencies correspond to ampli-
tude modulated solutions.
In Secs. VI and VII, we tested the connections between

breathers and spherically symmetric oscillons in different
dynamical setups. In Sec. VI, we considered the effects of
dynamical spacetime dimensionality in oscillon formation,
observing that the cusps in the oscillation frequency
isocontours (centered at θ0 ¼ π=2) tend to dilute as the
dimensional transitions have longer durations. Thus, there
is no preference to form oscillons from breathers with more
potential or kinetic energy. Additionally, the framework
implemented in this section allows us to validate the
frequency extraction procedure presented in Sec. III. In
Sec. VII, we built a tunable potential as an alternative way
to produce one-dimensional oscillons from breathers. This
potential transformed the periodic sine-Gordon potential
into the monodromy potential in incremental steps. The
evolution of the frequency Jacobian with the growth of the
deformation parameter suggests that the accumulation of
states to form a maximum frequency oscillon is generic. We
found no evidence of a frequency gap or a minimum energy
bound for oscillons.
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APPENDIX: NUMERICAL SETUP AND
CONVERGENCE TESTS

In this Appendix, we provide details of our numerical
setup, including the unit conventions used in the code,
discretization scheme, and various tests of numerical
convergence.

1. Dimensionless units

Before detailing our numerical methods, we briefly
review the units used in our code. For notational consis-
tency, we will denote dimensionless quantities by an
overbar ·. We follow the convention ℏ ¼ c ¼ 1 throughout,
so that time and space have units of inverse mass.
For the sake of generality, suppose we have a potential

VðϕÞ ¼ μ2ϕ⋆
2V̄

�
ϕ

ϕ⋆

�
; ðA1Þ

with μ2 fixed by the requirement

V 00ðϕminÞ ¼ μ2; ðA2Þ

where ϕmin is the field value at the potential minimum we
wish to expand around. Given a potential of this form, we
will measure the field in units of the characteristic scale ϕ⋆
and time and space in units of the inverse field mass μ−1. To
do this, we introduce the dimensionless field variable

ϕ̄≡ ϕ

ϕ⋆
; ðA3Þ

and dimensionless time and space coordinates

t̄≡ μt; x̄≡ μx: ðA4Þ
For consistency, the dimensionless field momentum is
given by
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Π̄≡ ∂ϕ̄

∂t̄
¼ Π

μϕ⋆
: ðA5Þ

The dimensionless equations of motion for the radial
profile in D ¼ εþ 1 dimensions in first-order form are
then given by

dϕ̄
dt̄

¼ Π̄ ðA6aÞ

dΠ̄
dt̄

¼
�
∂

∂r̄
þ εt

r̄

�
∂ϕ̄

∂r̄
−
dV̄ðϕ̄Þ
dϕ̄

: ðA6bÞ

For the sine-Gordon potential that is the primary focus of
this paper, we have

V̄ðϕ̄Þ ¼ 1 − cos ϕ̄: ðA7Þ

As for the case of time-dependent dimensional transi-
tions developed in Sec. VI, the dimensionless version of
Eqs. (26a) and (26b) yields

dϕ̄
dt̄

¼ Π̄ ðA8aÞ

dΠ̄
dt̄

¼
�
∂

∂r̄
þ εt

r̄

�
∂ϕ̄

∂r̄
þ ε̇tΠ̄ ln r̄ − sin ϕ̄; ðA8bÞ

where we considered lT ¼ μ. For deformations involving
the monodromy potential, as in Sec. VII, we have

V̄ðϕ̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ̄2

q
: ðA9Þ

In order to simply notation, throughout this Appendix,
we work in the dimensionless units outlined above but will
omit the overbars throughout.

2. Spatial and temporal discretization

For our spatial discretization, we use a pseudospectral
approach which we outline here. Given a function fðrÞ
defined on the semi-infinite interval ½0;∞Þ, we expand it in
a (truncated) basis of even Chebyshev rational functions on
the doubly infinite interval

fðrÞ ¼
XN−1

n¼0

cn cos ðnθðrÞÞ; ðA10Þ

where

θðrÞ ¼ 2 cos−1
�

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
�
; ðA11aÞ

rðθÞ ¼ l cot
�
θ

2

�
; ðA11bÞ

with r∈ ½0;∞� and θ∈ ½0; 2π�. Here, l is a tunable
parameter that should be set to the typical “size” of the
object in the radial grid. As explicitly seen in (A10), this
expansion of the function is equivalent to an (even) cosine
expansion in the mapped θ coordinate. Alternatively, in the
coordinate system

x ¼ cos

�
θðrÞ
2

�
¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ l2
p ; ðA12Þ

this is an expansion in the even Chebyshev polynomials.
For further details, see Boyd [52]. Although we will not
explore them here, the cotangent mapping can be freely
exchanged for other coordinate mappings adapted to a
specific problem.
The expansion (A10) defines the field at all values

r∈ ½0;∞� of the radial grid. However, provided we have
adequately resolved f (i.e., we have taken N large enough),
we can store all of the information contained in the cn’s in
N spatial grid points. For our purposes, it is convenient to
choose the (mapped) Gauss-Chebyshev collocation points

ri ¼ l cot
�
θi
2

�
ðA13aÞ

θi ¼
�
N − iþ 1

2

�
π

N
i ¼ 1;…; N: ðA13bÞ

Here is one of the key facts to understand our implemen-
tation: Even symmetry prevents us from enforcing
Neumann boundary conditions. In addition to this, it is
not necessary to evaluate singular terms in the equations of
motion. The cotangent mapping can be freely exchanged to
other coordinate choices specific to the problem. Therefore,
a target function f expandable in the even Chebyshev basis
can be expressed as

fðriÞ ¼
XN−1

n¼0

cn cos ½nθðriÞ�; ðA14Þ

where θðriÞ follows from (A12)

θðriÞ ¼ 2 cos−1
�

riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ l2

p �
: ðA15Þ

As every spectral expansion, interpolation to points out of
the collocation grid only needs from the expansion coef-
ficients. For example, we can trace the value of f at the
origin by computing

fðr ¼ 0Þ ¼
XN−1

n¼0

ð−1Þncn: ðA16Þ

The expansion also allows computing the derivative of the
target function
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dfðriÞ
dr

¼
XN−1

n¼0

�
−ncn

dθðriÞ
dr

�
sin ½nθðriÞ�: ðA17Þ

We immediately identify the term in square brackets as the
sine transform (F sin) of the radial derivative. Knowing that
dθðriÞ=dr ¼ −2lðr2i þ l2Þ−1, the radial derivative is also
equivalent to the following inverse sine transform

dfðriÞ
dr

¼ 2l
l2 þ r2i

F−1
sinðncnÞ: ðA18Þ

If we use fftw3 [53] to compute cosine
(FFTW_REDFT10–DCT type II) and inverse sine
(FFTW_RODFT01—DST type III) transforms, the ele-
ments of the ncn array need to be rearranged before
applying an inverse sine transform.
As for the time evolution, we used an eighth-order Gauss-

Legendre symplectic integrator [54], which is the same used
in [17,55], where the time step for the evolution is limited by
the Courant-Friedrichs-Lewy (CFL) condition:

ΔtCFL ≈ Δxmin; ðA19Þ

whereΔxmin is the smallest spacing between grid points. This
condition holds for semilinear wave equations with poten-
tials (or external interactions) bounded from below.

3. Perfectly matched layers (PMLs) and equations of
motion in flux conservative form

Oscillons slowly dissipate energy during their evolution
through the emission of outward traveling radiation, as
shown in Figs. 5 and 12, for example. To maintain
numerical accuracy, this radiation must be dealt with either
by removing it from the simulation volume or increasing
the spatial resolution at large radii. Since oscillons are long-
lived, we want to integrate for extended periods of time.
Therefore, using the latter approach would require an
inordinate number of grid points, resulting in a huge
memory requirement and making the parameter scans
computationally intractable. Instead, we will follow the
former approach and force the radiation to damp away at
large radii through the use of perfectly matched layers
(PMLs). In this subsection, we will outline our numerical
implementation of PMLs. We follow the procedure devel-
oped in Frolov et al. [55], which extends the PML approach
presented in Johnson [56]. We begin with the equations of
motion

dϕ
dt

¼ Π ðA20aÞ

dΠ
dt

¼
�
∂
2

∂r
þ ε

r
∂

∂r

�
ϕ −

dV
dϕ

ðϕÞ: ðA20bÞ

The procedure introduces two auxilliary fields, denoted
here by v≡ r−1∂ϕ=∂r and

dw
dt

≡ ðεþ 1Þv − dV
dϕ

ðϕÞ; ðA21Þ

which absorbs the potential derivatives and the dimensional
deformations. The definition of v preserves the parity of the
fields evolving in the lattice without introducing singular
behavior. After the field redefinition Π → Πþ w, the
equations written in flux conservative form now read as

dϕ
dt

¼ Π − w ðA22aÞ

dΠ
dt

¼ r
∂v
∂r

ðA22bÞ

dw
dt

¼ ðεþ 1Þv − dV
dϕ

ðϕÞ ðA22cÞ

dv
dt

¼ 1

r
∂

∂r
ðΠ − wÞ; ðA22dÞ

where the last equation imposes the commutation of time
and radial derivatives. The implementation of perfectly
matched layers is based on the analytical continuation of
the spacetime coordinates domain, resulting in the defor-
mation of the radial derivative

∂

∂r
→

�
1þ γðrÞ

∂t

�
−1 ∂

∂r
; ðA23Þ

where γðrÞ is a function with compact domain, which is
zero along the simulation length and behaves as a smooth
incline in the last nodes of the grid, acting as an absorb-
ing layer.
Once the derivative redefinition is applied in the

Eqs. (A22b) and (A22d), we find the set of equations to
simulate

dϕ
dt

¼ Π − w ðA24aÞ

dΠ
dt

¼ r
∂v
∂r

− γΠ ðA24bÞ

dw
dt

¼ ðεþ 1Þv − dV
dϕ

ðϕÞ ðA24cÞ

dv
dt

¼ 1

r
∂

∂r
ðΠ − wÞ − γv; ðA24dÞ

where the cost is the introduction of two auxilliary variables,
with two corresponding evolution equations. Writing flux
conservative equations for the one-dimensional deformed
system in Sec. VII and the time-dependent dimensional
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transitions in Sec. VI is not substantially different from the
procedure described above. In the latter case, we also need
one more equation corresponding to an auxiliary variable ψ ,
defined to evolve as

dψ
dt

¼ ε̇tΠ; ðA25Þ

to absorb the inelastic collision term in (26b). After redefin-
ing the timederivative by Π̄þ ψ ln r − w → Π̄, the equations
of motion with absorbing boundary layers can be written in
their final form,

dϕ
dt

¼ Πþ w − ψ ln r; ðA26Þ

dΠ
dt

¼ r
∂v
∂r

− γΠ; ðA27Þ

dv
dt

¼
�
1

r
∂

∂r

�
ðΠþ w − ψ ln rÞ − γv; ðA28Þ

dw
dt

¼ ðεt þ 1Þv − dV
dϕ

ðϕÞ; ðA29Þ

dψ
dt

¼ ε̇tðΠþ w − ψ ln rÞ; ðA30Þ

which is the extension of Eqs. (A24a)–(A24d) for the case of
time-dependent dimensional transitions.
For consistency, we evaluate energy conservation in the

simulation length by considering the case ε ¼ 0 (i.e., during
the oscillation of standing breathers). In Fig. 19, we plot
the energy conservation residuals jΔEj≡ jEðtÞ − Eðt0Þj,
observing that conservation holds at the level of round-off
errors in double precision and residuals do not grow in time.

Additionally, it is important to show the effect of PMLs as
filters of radiation escaping the simulation length. To do so,
we allow the propagation of a free Gaussian wave packet
following the one-dimensional wave equation (with no
potential) and compute its scalar flux

J ðt; rÞ≡ μ2
∂ϕ

∂r
∂ϕ

∂t
; ðA31Þ

in the simulation domain. In Fig. 20, we observe the
absorption of the Gaussian peak “fired” directly toward
the PML.Reflected scalar flux is several orders ofmagnitude
smaller compared to the ingoing flux and becomes even
smaller with subsequent reflections. A closer look at the red
region shows that the solution decays progressively as it goes
through the absorbing layer. Luckily, the cases of study do
not involve (a) inhomogeneousmedia or (b) angle-dependent
absorption where PMLs are prone to fail. In the case of
artificial numerical reflections, the safest way to proceed is to
increase the resolution in the nodes where the absorbing
layers are located (as suggested in [56]). This is beneficial to
resolve the tail structure and its frequency peaks.

FIG. 19. Energy conservation for a standing sine-Gordon
breather with ωini ¼ 0.794μ and θ0 ¼ 0, evolved from the
equations of motion (A24a)–(A24d) in the case ε ¼ 0, showing
that perfectly matched layers do not interfere with the solution
inside the simulation length.

FIG. 20. Impact of a Gaussian wave packet on a perfectly
matched layer (PML). Scalar flux reduces in 9 to 10 orders of
magnitude after hitting the absorbing layer for the first time,
which suggests that the setup is operational. With the purpose of
showing the action of the PML on the ingoing flux, here, we
included some of the grid nodes within the plot. Nevertheless, the
width of the layer is not considered within the simulation box.
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4. Intermittent expansion and contraction of the oscillon
core in two-dimensional solutions

The presence of modulation in the oscillons amplitude is
not an artifact of using radial equations of motion. Let us
evaluate the two-dimensional equations of motion, given by

dϕ
dt

¼ Π; ðA32Þ

dΠ
dt

¼ ∂
2ϕ

∂x2
þ ∂

2ϕ

∂y2
− μ2ϕ⋆ sin

�
ϕ

ϕ⋆

�
: ðA33Þ

For these results, we use an independent piece of code
working with periodic boundary conditions in a two-
dimensional simulation box, this being sufficiently large
to avoid interactions with classical radiation. In the right
panel of Fig. 21, we show the evolution of a solution with
the breatherlike initial conditions in (21) projected in the
y ¼ 0 plane, choosing α ¼ 1 (i.e., without modifying the
initial amplitude), θ0 ¼ 0, and ωini ¼ 0.63μ to fix the initial
breather’s shape. The oscillon’s core undergoes intermittent
periods of contraction and expansion noticeable in dis-
tances comparable to the size of the object. Intermittent
behavior does not seem to support energy equipartition,
since during this phase, radiation can be trapped and
injected again before escaping the core. In the left panel
of the same figure, we show amplitude modulation for the
same initial breather parameters, which is also visible in the
perturbative regime discussions in Sec. IVA. The existence
of intermittent phases of contraction and expansion of the
oscillon core (represented by amplitude modulations) has
been tested in two independent numerical setups.
Therefore, it is unlikely that these are consequences of
some numerical artifact, or some long-time growing insta-
bility. Apart from this consistency check, we can also use
the 2D solutions of Eqs. (A32) and (A33) at constant initial
phase θ0 to sample over different values of initial frequency

ðωiniÞ. We noticed that the modulation frequency of the
amplitude envelope (similar to the red curve in right panel
of Fig. 2) becomes larger as ωini reduces, this being
consistent with our observations in the perturbative regime.
In principle, such a frequency can be treated as an addi-
tional diagnostic parameter, which is measurable and can
be sampled over the span of initial parameters to be
connected with the imaginary part of the frequency (if
such a connection exists), which is the oscillon’s decay rate.
We will study its connections to the dynamical state of
amplitude modulated solutions in a future project.

5. Convergence tests

In this section, we perform convergence tests for the
amplitude modulated solution depicted in the middle and
right panels of Fig. 5 for ε ¼ 0.75. Considering that
dimensional deformations stretch the breathers’ length to
form much wider oscillons, the numerical implementation
needs at least 103 nodes to resolve oscillons with sufficient
dynamical range. We construct four radial semi-infinite
domains following the Gauss-Chebyshev collocation grids
for the length scale l ¼ 102μ−1 and considering the
resolutions reported in Table III, where the CFL timescale
ΔtCFL follows from the condition in Eq. (A19), which
follows from the dispersion relation for semilinear wave
equations with bounded potentials. The number of nodes in
the lowest possible resolution is still considered to be
“high” for spectrally accurate one-dimensional simulations.
Nevertheless, resolving radiation at large radii still requires
enough resolution to be correctly attenuated by the PMLs.
In the left panel of Fig. 22, we plot the spectral coefficients
(found by computing the cosine transform of the solution)
in terms of the number of nodes for all of the resolutions at
fixed time t ¼ 104μ−1. We observe that keeping high
frequency coefficients in the same magnitude as round-
off errors requires a large number of collocation nodes.
High frequency coefficients appear during the initial

FIG. 21. Evolution of a breatherlike initial condition in two-dimensional sine-Gordon model for ωini ¼ 0.63μ. Left panel: Projection
of the solution in the y ¼ 0 plane, showing quasiperiodic phases of contraction and expansion of the oscillon core. Right panel:
Evolution of the solution in the origin, consistent with modulations in the amplitude described for the perturbative regime in Sec. IVA.
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transient phase as scattering modes decay with fractional
powers of the distance. Spectral coefficients coincide for
the first hundred nodes, which are sufficient to resolve the
core, as we can observe in the right panel. Up to some
extent, this justifies the invariance of the oscillation
frequency maps in Fig. 4 with changes in the resolution.
Solutions keeping all of the high-frequency terms with
powers below machine precision are computationally
expensive, needing at least eight to 10 times more k modes
to be fully resolved. In the right panel, we observe the field
configuration as a function of the radial coordinate. The
solutions at different resolutions (interpolated to the lowest
resolution spatial grid) look almost identical: It is only at
the origin where one percent level errors can be assessed.
An important feature we can extract from the right panel

of Fig. 22 is that we can evaluate the convergence errors by
considering the field values at the origin (or the closest
point in the collocation lattice) at different resolutions.
Considering the solution at the highest resolution as a
reference, we can subtract the solutions from the other
resolutions and evaluate the differences as functions of

time. To compare the outcomes from different spatial
resolutions, the time step Δt ¼ Δtmid−max

CFL =8 is kept as a
constant in all the resolutions to avoid inaccuracies due to
time interpolation. In Fig. 23, we plot the difference
between field configurations obtained at different spatial
resolutions. Observing that numerical errors reduce as we
use more modes to resolve the oscillating configurations,
this figure is a piece of evidence indicating numerical
convergence. Moreover, it is important to remark that
reported errors do not grow in time for the highest
resolutions. As expected, for the lowest resolutions, errors
tend to increase when the core expands and contracts,
which is the defining feature of amplitude modulated
solutions.

FIG. 22. Left panel: Spectral coefficients as functions of the number of collocation points, corresponding to the solution in the middle
and right panels of Fig. 5 for ε ¼ 0.75. Initial condition is the breather parametrized by ωini ¼ 0.398μ and θ0 ¼ 0.6π, and we plot the
solution at fixed t ¼ 104μ−1 for the resolutions reported in Table III. Results at all resolutions coincide for the first hundred nodes, which
are sufficient to produce the oscillon core. Right panel: Oscillating field as a function of the radius for the same resolutions. The origin is
where the difference between solutions is the clearest; however, all of the solutions coincide approximately. Dashed black curve is a
snapshot (at the same instant) of the solution resolved at the highest resolution.

TABLE III. Resolutions used to solve Eqs. (A24a)–(A24d) for
ε ¼ 0.75. Considering l ¼ 100μ−1 and the absorbing boundary
layer centered at the end of the simulation box, we perform
convergence tests for the field configuration with intermittent
phases of expansion and contraction shown in Fig. 5.

Resolutions Number of nodes Time step ½ΔtðresÞCFL �
Max 8192 1=16
Mid-max 4096 1=8
Mid-min 2048 1=4
Min 1024 1=4

FIG. 23. Subtracting field configuration at r ¼ rmax, where the
differences between field configurations are the largest (this is
near the origin, as depicted in the right panel of Fig. 22).
Numerical error decreases as the solutions are resolved with
more collocation modes.
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