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We calculate the two-point massless QCD correlator of nonlocal (composite) vector quark currents with
chains of fermion one-loop radiative corrections inserted into gluon lines. The correlator depends on the
Bjorken fraction x related to the composite current and, under large-β0 approximation, gives the main
contributions in each order of perturbation theory. In the mentioned approximation, these contributions
dominate the endpoint behavior of the leading-twist distribution amplitudes of light mesons in the
framework of QCD sum rules. Based on this, we analyze the endpoint behavior of these distribution
amplitudes for π and longitudinally polarized ρk mesons and find inequalities for their moments.

DOI: 10.1103/PhysRevD.108.096015

I. INTRODUCTION

Distribution amplitudes (DA) of mesons are the key
hadronic characteristics in hard exclusive reactions with
participation of hadrons—due to “factorization theorems,”
they determine the behavior of the form factors and
amplitudes of the corresponding exclusive processes.
The DA reflects the consequences of the long-distance
QCD dynamics for partons within the meson that carries
the xp fraction of the meson momentum p. Here we
investigate the role of higher radiative corrections to the
correlator of nonlocal currents in its relation to QCD sum
rules (SR) for DAs of light mesons. Finally, we will focus
on the behavior of DAs near the endpoints of the interval
x∈ ð0; 1Þ. We have two main, different in nature, radiative
contributions to QCD SR for the π=ρ-meson (light meson)
DAs [1,2] that determine the behavior near the endpoints:
(i) αs-corrections to the purely perturbative part of the
corresponding correlator [3,4], (ii) and αs-corrections to the
four-quark condensate interaction for this correlator. Both
kinds of corrections are considered here in the renormalon
n-bubble approximation to massless perturbative QCD.1

The paper is organized as follows. In Sec. II, we start
with the results of calculating the two-point correlators
Πnðx; 0;LÞ of nonlocal vector quark currents within the
n-bubble approximation (or, equivalently, at large β0as) in
MS scheme,

ð1Þ

Here, η is a space-time point; L ¼ lnðP2=μ2Þ with
P2 ¼ −p2, p being the external momentum and μ the
renormalization scale, and the constant A ¼ 4

3
asTFnf can

be replaced by −asβ0 as is prescribed by the naive non-
abelianization (NNA) trick [5], where as ¼ αs=ð4πÞ. In
Eq. (1), the nonlocal vector quark current Jðη; xÞ, denoted
diagrammatically with a vertex⊗, is defined as the inverse
Mellin transform M̂−1 of a quark bilinear involving the Nth
derivative of the quark field operator:

Jðη;xÞ¼ M̂−1Jðη;NÞ; Jðη;NÞ¼ d̄ðηÞ ˆ̃nðiñ∇ÞNuðηÞ; ð2Þ

where x is the Bjorken fraction; ∇μ ¼ ∂μ − igtaAa
μ is the

QCD covariant derivative; ñμ is the light-like vector,
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1In QCD, SUðNcÞ with Nc ¼ 3, the Casimir invariants are
CA ¼ Nc and CF ¼ TRðN2

c − 1Þ=Nc, TR ¼ 1=2. The one-loop
β-function coefficient is β0 ¼ 11

3
CA − 4

3
TRnf ¼ 9 at nf ¼ 3

massless quark flavors. as ¼ αs=ð4πÞ is the coupling constant.
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ñ2 ¼ 0. In Eqs. (1) and (2), as everywhere in what follows,
the arguments of the Mellin transform are underlined, i.e.,
fðaÞ ¼ M̂fðxÞ ¼ R

1
0 dxfðxÞxa. The nonlocal current (2)

emerges naturally in the description of QCD factorization
in hard exclusive processes—its projection on a meson
state gives the corresponding DA of the leading twist. The
investigation of the correlator Πnðx; y;LÞ is a general
problem consisting of a few parts that will be a subject
of another publication. Below, we consider a special case of
the correlator Πnðx; 0;LÞ and its derivatives with respect to
L which have an immediate application in the area of QCD
SRs, as discussed in Sec. III.

II. CORRELATOR Πnðx;0;LÞ AND QCD SR

Within the approach of QCD SR, the Borel transform B̂
(see discussion in Appendix A) of the correlator (1)
determines the perturbative contributions to meson DAs,

DAðx; lÞ ∼ Nc

π2

�
1

2
xx̄þ asCFB̂

X

n≥0
AnΠnðx; 0;LÞ

�
; ð3Þ

Πnðx; 0;LÞ ¼
Z

1

0

Πnðx; y;LÞdy; ð4Þ

where x̄ ¼ 1 − x and l ¼ lnðM2=μ2Þ is the logarithm of the
Borel parameterM2 appearing in the Borel transform B̂½Lm�
of the powers of L ¼ lnðP2=μ2Þ, see Appendix A. In the
approximation of large β0 (or nf), the pQCD part of SR is
completely determined by the diagrams (1) of the two-loop
topology with gluon lines dressed by chains of one-loop
fermion bubbles—renormalon chains

The general expression for these diagrams of the two-loop
topology with nonlocal vertices and an arbitrary exponent of
the gluon line propagator was derived in [6]. This “kite”
diagram can be represented in terms of the hypergeometric
functions 3F2ðxÞ and 3F2ðx̄Þ, which we will meet below in
the generating functions for Πnðx; 0;LÞ [4].

A. The generating function for the
correlator Πnðx;0;LÞ

Here we briefly discuss the properties of Πnðx; 0;LÞ,
which is the two-point n-bubble correlator of one local and
one nonlocal (dependent on the Bjorken fraction x) quark
current, as defined in Eq. (1). The sequence Πnðx; 0;LÞ can
be split into two parts originating from expansions of
different generating functions, exponential Π0

n and ordinary
Π00

n, see [4]:

Πnðx; 0;LÞ ¼ Π0
nðx; 0;LÞ þ Π00

nðx; 0;LÞ: ð5Þ

Further, we will consider two quantities derived from Πn—
its Borel image that is defined in (A1), B̂½Πn�, and the first
derivative Π̇n ≡ d

dLΠn, the later is useful for comparison
with the known results for the Adler D function:

X

n≥0

An

n!
Π̇0

nðx;0;LÞ¼
eALc

A2ð1þAÞð2þAÞ

× Ŝ

�
xA
�
−x̄ðAþ4xÞþ2xx̄

ðπAÞ2cotðπAÞ
xA sinðπAÞ

þxð2x̄þAÞABx̄ðA;1−AÞ

þ 2x2x̄A2

ð1þAÞ2 3F2

�
1;1;1þA

2þA;2þA

�
�
�
�x
���

; ð6Þ

X

n≥0
AnΠ̇00

nðx; 0;LÞ

¼ −
1

2A

Z
A

0

da
a

Z
1

0

�
Vðx; y; aÞ
h1ðaÞ

�

þðxÞ
yȳdy; ð7Þ

where

h1ðaÞ¼
ð1−aÞΓð1þaÞΓ3ð1−aÞ

ð1−2a=3Þð1−2aÞΓð1−2aÞ; Lc¼L−5=3; ð8aÞ

Vðx;y;aÞ¼ 2Ŝ

�
θðy>xÞ

�
x
y

�
1−a

�
1−aþ 1

y−x

��
: ð8bÞ

Here, h1ðεÞ comes from the ε-dependence of the fermion
one-loop correction on the gluon propagator (D ¼ 4 − 2ε is
the space-time dimension), its expansion in ε in the first
order leads to the shift c ¼ −5=3 in Lc; Vðx; y; aÞ is a
generalization [7,8] of the one-loop ERBL evolution
kernel that allows one to take into account renormalon-
chain corrections to V0ðx; yÞ ¼ Vðx; y; 0Þ; fðx; yÞþðxÞ ¼
fðx; yÞ − δðx − yÞfð0; yÞ is the plus distribution;
Ŝ½fðx; yÞ� ¼ fðx; yÞ þ fðx̄; ȳÞ. The part Π00 in (7) that is
obtained from the ordinary generating function is com-
pletely determined by the counterterms to the nonlocal
vertex. From (5)–(7), we can derive explicit coefficients of
the L-expansion of the correlator

Πnðx; 0;LÞ ¼ ð−1Þnn!
Xnþ1

k¼0

ð−LÞk
k!

Πk
nðx; 0Þ: ð9Þ

The highest degree term Πnþ2
n ðx; 0Þ is proportional toR

1
0 V0ðx; yÞþyȳdy ¼ 0 due to the vector current conserva-
tion. The first nonvanishing coefficient at k ¼ nþ 1 reads
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Πnþ1
n ðx; 0Þ ¼ 1

2
Ŝ

�
x ln x

− δ0;n

�
x ln x −

1

2
xx̄

�
π2

3
− 5 − ln2

�
x
x̄

����
;

ð10Þ

which is in agreement with the previous calculations for
n ¼ 0, 1 in [9]. The consequent terms are too cumbersome
to be written out here. Nevertheless, the highest transcend-
ence types of functions appearing in further orders can be
expressed in terms of (harmonic) polylogarithms [4]:

Πn
n>0ðx; 0Þ ∝ ŜLi3ðxÞ þ simpler polylogarithms;

Πn−1
n>1ðx; 0Þ ∝ ŜLi4ðxÞ þ…;

Πk>0
n ðx; 0Þ ∝ ŜHμðxÞ þ…;

where HμðxÞ are harmonic polylogarithms [10] with multi-
index μ ¼ μ1;…μr∶ μi > 0,

P
μi ¼ n − kþ 3.

Figure 1 shows several lowest-order contributions to
meson DAs in Eq. (3) given by the Borel transform (A1) of
Eqs. (5)–(7). These curves exhibit different behaviors for
the intermediate values of x, where they decrease sequen-
tially from LO to N4LO, and at the endpoints, where their
ratios become singular. The vicinity of endpoints is
quantitatively important for the form factors of the mesons
considered. Therefore, it makes sense to look at two
integral characteristics of the correlators B̂½Πnðx; 0;LÞ�,
their zeroth B̂½Πnð0; 0;LÞ� and inverse B̂½Πnð−1; 0;LÞ�
moments. They are mostly influenced by intermediate and
near-endpoint values of the x-dependent correlator,
respectively.

B. The zeroth moment Πnð0;0;LÞ
The derivative of the zeroth moment Π̇nð0; 0;LÞ is

proportional to the Adler function DðasÞ of QCD. The
corresponding exponential generating function (A → u)
reads

B̃ Π̇ðuÞ≡X

n≥0

un

n!
Π̇nð0; 0;LÞ

¼ 2euLc

3ð1þ uÞð2þ uÞ ½Φð−1; 2; 1 − uÞ

−Φð−1; 2; 3þ uÞ�; ð11Þ

where the function Φ is Lerch’s transcendent. Using the
identity

Φð−1; 2; zÞ ¼ 1

4
½ψ1ðz=2Þ − ψ1ððzþ 1Þ=2Þ�; ð12Þ

where ψ1 is the trigamma function, one can arrive at other
forms for B̃ Π̇ðuÞ [4,11]. Also, it coincides with the Adler
function Dðas; LÞ from [12] for n ¼ 2, 3 and with the all-
order result for Dðas; LÞ from [13,14]. The behavior of the
Borel transform B̂½Πnð0; 0;LÞ� is depicted in Fig. 2. This
asymptotic series should be truncated at n ¼ 3 where it
becomes divergent and bursts into factorial growth
at n ≃ 10.

C. The inverse moment Πnð− 1;0;LÞ
The two generating functions for the inverse moment can

be written [4] as

Πnð−1; 0;LÞ ¼ Π0
nð−1; 0;LÞ þ Π00

nð−1; 0;LÞ; ð13Þ

B̃ B̂½Π�ðuÞ≡X

n≥0

un

n!
B̂½Π0

nð−1; 0;LÞ�

¼ −euLc

2Γð1 − uÞð1þ uÞð2þ uÞ

×

�
ψ1

�
2 − u
2

�
− ψ1

�
1 − u
2

��
; ð14Þ

X

n≥0
AnB̂½Π00

nð−1; 0;LÞ� ¼
1

A

Z
A

0

daFð−1; aÞ; ð15Þ

where

Fð−1;aÞ¼ Γð4−2aÞ
6Γð2−aÞ2Γð3þaÞ

×

�
5þ6a−5a2

Γð3−aÞ þð1þ2aÞ½ψð1−aÞ−ψð1Þ�
aΓð1−aÞ

�
:

FIG. 1. The ratios of B̂½Πn� to the one-loop correlator LO ¼
xx̄=2∶ asCFB̂½Π0�=LO (solid blue line), a2sCFβ0B̂½Π1�=LO
(dashed red line), asCFðasβ0Þ2B̂½Π2�=LO (dotted green line),
and asCFðasβ0Þ3B̂½Π3�=LO (dash-dotted purple line). All curves
are for the case of l ¼ 0, αsðμ2 ¼ 1 GeV2Þ ≈ 0.49.
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Figure 2 illustrates the behavior of the sequence
B̂½Πnð−1; 0;LÞ� that can be obtained with the help of
(A1). The series becomes factorially divergent at n ¼ 4.

III. QCD SR FOR THE π=ρk DA
OF THE LEADING TWIST

The QCD SRs for the pion and longitudinally polarized

ρ-meson DAs of the leading twist 2, φπ and φk
ρ, respec-

tively, read [1,2].

ðfπÞ2φπðxÞþðfA1
Þ2φA1

ðxÞe−m2
A1
=M2

¼ΦPTðx;M;sA0 ÞþΦSðx;MÞþΔC ¼def Φπðx;MÞ; ð16aÞ

ðfkρÞ2φk
ρðxÞe−m2

ρ=M2 þðfkρ0 Þ
2
φk
ρ0 ðxÞe

−m2

ρ0=M
2

¼ΦPTðx;M;sV0 Þ−ΦSðx;MÞþΔC ¼def Φρðx;MÞ; ð16bÞ

where ΦSðx;MÞ is the scalar-condensate contribution and

ΦPTðx;M; sA0 Þ ¼
Z

sA
0

0

ρptðx; sÞe−s=M2

ds; ð16cÞ

ΔC¼ΔΦGðx;MÞþΔΦVðx;MÞþ
X3

i¼1

ΔΦTi
ðx;MÞ: ð16dÞ

In Eq. (16), φA1
and φk

ρ0 are the DAs for the next
resonances, sA0 and sV0 are the duality intervals in the axial
(for pion) and vector (for ρ meson) channels, respectively.
Remarkably, the right-hand side (rhs) Φπ and Φρ of QCD
SRs (16) for these two channels differ only in sign of the
scalar-condensate contribution ΦS. The reason for that was
discussed in [2].
The purely perturbative contributions ΦPTðx;M; sA0 Þ and

ΦPTðx;M; sV0 Þ in the rhs of Eqs. (16a) and (16b) can be
obtained from higher order corrections to Πðx;LÞ by
integrating the spectral density ρptðx; sÞ ¼ B̂2

ðs→P2ÞΠðx;LÞ
in Eq. (16c), see Appendix B. These perturbative terms
dominate in the rhs of Eqs. (16a) and (16b) in accordance
with the standard practice of processing QCD SR [16]. The
first two terms of ρpt are s-independent and have been known
[15,17] for a long time,

ρptðx; sÞ ¼
Nc

2π

�
xx̄þ asCFxx̄

�
5 −

π2

3
þ ln2

�
x̄
x

��
þ…

�
:

ð17Þ

In the vicinity of the endpoints x ¼ 0 and 1, the scalar con-
densateΦSðx;MÞ dominates the nonlocal condensate (NLC)
contributions that include condensates ΔΦG;V;Ti

ðx;MÞ
[1,18,19] collected in the term ΔCðx;MÞ in Eq. (16d). To
estimate the behavior near the endpoints, we take into
account only these two dominant terms, ΦPT and ΦS, in
the rhs of Eqs. (16a) and (16b), which is represented
diagrammatically in Fig. 3.
Note, that we apply here the usual factorization approxi-

mation for the four-quark condensate. Our estimates will be
made under the renormalon-chain approximation for pQCD
corrections, or, in other words, in the approximation of
large β0as in both ΦPT and ΦS. Let us call “reduced NLC
SRs” those that contain in their rhs of (16) only the

FIG. 3. Left diagram: the renormalon-chain contribution to the
perturbative part of QCD SR, ΦPT, via the density ρpt. Right
diagram: the contribution of as-corrections to ΦSðx;MÞ with a
pair of nonlocal scalar condensates depicted by two ovals; the
hard propagators of the coefficient function with a renormalon-
chain are emphasized with thicker lines; m.c. here means the
mirror conjugate diagram.

FIG. 2. The ratio RnðNÞ ¼ −asβ0B̂½ΠnðN; 0;LÞ�=
B̂½Πn−1ðN; 0;LÞ�. Top: N ¼ 0. Bottom: N ¼ −1. R0 is defined
as the ratio of 2-loop and 1-loop correlators, R0ð0Þ ¼ 3asCF and
R0ð−1Þ ¼ 5asCF [9,15]. Blue squares are for Rn ≤ 1. All free
parameters are the same as in Fig. 1.
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dominant terms ΦPT, ΦS, while all other contributions are
neglected.

A. Effects of renormalon-chain corrections
to pion DA

With growing powers of β0as, the bubble-chain correc-
tions lead to “swelling” of the perturbative part ΦPT of DA
φπ at the endpoints, which is shown in the top panel of
Fig. 4 in comparison with the leading-order contribution—
the asymptotic ΦAs ¼ 6xx̄. We restrict ourselves to con-
sidering orders up to asðasβ0Þ3 (the next order asðasβ0Þ4
does not change the result significantly) for which the series
convergence stays good enough and the series does not yet
succumb to factorial growth, see the discussion of Fig. 2 in
Secs II B and II C. At the same time, the corrections to the
NLC part ΦSðx;MÞ have the opposite effect, see top panel
of Fig. 5—they alleviate the swelling of the perturbative
part ΦPT. The final result of this mutual compensation in
the sum ΦPTðx;MÞ þΦSðx;MÞ is illustrated in Fig. 4
(bottom panel). We should mention here that Eq. (16)
should be considered as equalities in a weak sense, i.e., for
smooth convolutions of both sides of equations within the

stability domain in M2. Usually, such convolutions are
chosen as moments ðξ ¼ 2x − 1ÞN or x−1, but, in general, it
can be any appropriate function of x. In addition, the rhs of
the QCD SR for DA should not be a smooth function of x,
the smoothness of its behavior depends on a certain model
for NLC, see, e.g., discussion in [2]. We use here the
simplest Gaussian model for the NLC [1,15,20] that
introduces a single parameter for nonperturbative QCD
vacuum, an average virtuality of vacuum quarks hk2qi ¼
λ2q ≡ hq̄D2qi=hq̄qijμ2

0
≃1 GeV2 at λ2q ≈ 0.45 GeV2 [21]. This

model ignores any (still speculative) details of vacuum
quark-gluon distributions at the cost of finite discontinuous
contributions to the rhs of NLC SR, see the behavior of
solid blue/red curves for ΦSðx;MÞ in Fig. 5 (top). The
contribution of ΦSðx;MÞ is comparable to ΦPTðx;MÞ near
the lower bound M2

− (blue curve) of the stability interval
and significantly decreases at the upper bound M2þ (red
curve). Let us briefly clarify the calculation of ΦSðxÞ
presented as a right diagram in Fig. 3. The ΦSðxÞ is a
convolution of a pair of scalar NLCs and a coefficient
function (for details see [15,22]), the latter includes now a
renormalized bubble-chain. Due to the Gaussian decay of
the scalar NLC, the corresponding Feynman integrals for

FIG. 4. Top: the perturbative part ΦPT of the rhs of NLC SR up
to asðasβ0Þ3 (solid blue line) in comparison with ΦAsðxÞ (dashed
red line). Bottom: the rhs of NLC SR, Φπ , is the sum of the
condensate and perturbative contributions up to asðasβ0Þ3 for the
Borel parameter M2 in the interval ½M2

− ¼ 0.5 (blue line), M2þ ¼
1.5 (red line)] GeV2 at its lower and upper bounds.

FIG. 5. Top: NLC scalar condensate ΦS up to asðasβ0Þ3 for the
parameter M2 in the interval [M2

− ¼ 0.5 (blue line), M2þ ¼ 1.5

(red line)] GeV2. Bottom: the rhs of NLC SR for φk
ρ, Eq. (19) up

to asðasβ0Þ3 in the interval ½M2
−;M2þ� GeV2.
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this convolution are well convergent and do not need
to be renormalized. An important calculation of ΦSðxÞ
of the order asðasβ0Þ0 was performed in [15] (see also
Appendix A of [22])—our calculations are similar to those.
The key integrals for the bubble-chain inclusion in the
gluon line of the coefficient function are presented in
Appendix C.
Our goal here is to estimate how the QCD corrections

affect the behavior of DA at the vicinity of endpoints rather
than the whole profile of DA. Moreover, extending the
analyses to moderate values of the Bjorken variable would
require taking into account the other condensates
ΔΦG;V;Ti

ðx;MÞ, which are numerically significant some-
where in the middle of the interval of x. So one can expect
that the profile of the “true” pion DA lies somewhere within
the yellow region between the blue (at M2 ¼ M2

−) and red
(at M2 ¼ M2þ) bounds in Fig. 4 (bottom) (with some
uncertainty in the middle of the x-interval). The incline
of DA near the endpoints varies2 from 6 to 7. The inverse
moment hx−1iπ, an important integral characteristic of
Φπ , is

hx−1iπ≡
Z

1

0

Φπðx;MÞdx
x
≈3.4 forM2∈ ½M2

−;M2þ�: ð18Þ

This estimate of hx−1iπ seems reasonable because the
inverse moment is mostly formed by the behavior of DA
near the left endpoint. The estimate in (18) is only a bit
higher than the previous ones obtained in NLC SR [18] and
lies within the acceptable region of the phenomenological
analysis of the pion transition form factor (TFF) [23].

B. Effects of renormalon-chain corrections to DA φk
ρ

For the case of ρk DA that is determined from the NLC
SR in the vector channel, the 4-quark NLC contribution ΦS
comes with the opposite sign relative to the pion case,
which leads to the relation [2]

φk
ρðxÞ≈

�
φπðxÞ−

2

f2π
ΦSðx;MÞþΔA1ρ

0 ðx;MÞ
�
eCðMÞ; ð19Þ

where

CðMÞ ¼ m2
ρ

M2
þ ln ðf2π=f2ρÞ; ð20Þ

ΔA1ρ
0 ðx;MÞ ¼

�
fA1

fπ

�
2

e−m
2
A1
=M2

φA1
ðxÞ

−
�
fρ0

fπ

�
2

e
−m2

ρ0=M
2

φρ0 ðxÞ: ð21Þ

The symbol “approximately equal” in Eq. (19) means that
we suppose ΦPTðx;M; sA0 Þ ≈ΦPTðx;M; sV0 Þ for the purely
perturbative parts in both channels. The term ΔA1ρ

0 is
determined by the difference of the contributions of higher
resonances in the phenomenological parts of QCD SR for
the axial and vector channels.
Keeping only the contribution ΦPTðx;MÞ −ΦSðx;MÞ

(reduced NLC SR) in the rhs of (16b), one gets the profile

of φk
ρðxÞ that becomes wider near the endpoints. This

endpoint “swelling” of the φk
ρðxÞ profile is seen clearly in

Fig. 5 (bottom panel). This effect can be traced back also in

the representation (19) for φk
ρðxÞ through φπðxÞ. The incline

of the ρk meson DA near the endpoints is certainly larger
than for the pion DA and averages between 9 and 12 with
the value of the inverse moment being hx−1iρ ≈ 3.8.
Here it is impossible to reliably estimate the moments

hξni, ξ ¼ x − x̄ of π and ρk DAs due to the fact that the
reduced NLC SR neglects some of the condensate con-
tributions, but we can still suggest inequalities for the
moments. The significant swelling effect near the endpoints
should lead to the obvious inequalities

hξ2iρk > hξ2iπ > hξ2iAs ¼
1

5
; ð22Þ

and, therefore,

aρ
k

2 > aπ2 > 0; ð23Þ
where aM2 is the 2nd Gegenbauer moment of DA of a meson
M. Since the omitted contribution ΔC in the rhs of the NLC
SR (16) is the same for both channels, it does not violate the
inequalities. The results of lattice calculations [24,25]
support the conclusion (23),

aρ
k

2 ¼ 0.132ð27Þ ðLattÞ > aπ2 ¼ 0.116ð20Þ ðLattÞ;
while aπ2 ðLattQCDÞ ≈ aπ2ðSRÞ ð24Þ

at μ2Latt ¼ 4 GeV2, λ2q ≈ 0.45 GeV2 for aπ2ðSRÞ in [21].
Note that the previous versions of NLC SR for DAs of π
and ρk [2,26] yielded an opposite hierarchy of the mo-

ments, aρ
k

2 ¼0.032ð46Þ<aπ2¼0.149þ0.052
−0.043 ðatμ2¼1GeV2Þ.

The contributions of the orders asðasβ0Þn, n ¼ 2, 3 to the
dominant components of SRs reverse this situation—
allowance for the renormalon-chain effects in the reduced

NLC SRs of Eq. (16) provides a new estimate for aρ
k
2 (in the

same frame as for aπ2) that complies with the hierarchy (23)
suggested by lattice QCD:

aρ
k
2 ≈ 0.15 > aπ2 ≈ 0.07 at μ2 ¼ 1 GeV2:

Let us emphasize that we insist on the validity of inequality
(23) for aM2 , M ¼ π and ρk, per se, rather than on the precise

2For this estimate we have used the technique of average
incline elaborated in [22].
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values of the moments which serve only as an illustration
here. To obtain well-grounded estimates of the moments
aM2 one needs the standard treatment of the complete NLC
SRs (16).

IV. CONCLUSION

(i) Taking into account renormalon-chain corrections of
any order asðasβ0Þn in pQCD, we have calculated
the correlator Πðx; 0;LÞ of two vector quark cur-
rents, with one of the currents being nonlocal, which
makes the correlator a function of the Bjorken
fraction x. The generating functions for this corre-
lator and some of its moments have been con-
structed. The zeroth and inverse Mellin moments
of the correlator have been obtained for any order n.
The zeroth moment as well as some other fixed-
order special cases agree with all previous calcu-
lations in the literature.
The correlator Πðx; 0;LÞ at any fixed order n can

be expressed in terms of harmonic polylogarithms of
weight not higher than nþ 3. Investigating the
asymptotic series in asðasβ0Þn for the moments of
the correlator, we found that these series should be
truncated at n ¼ 3 or 4.

(ii) These radiative corrections to perturbative and con-
densate parts of QCD SR for pion distribution
amplitude, φπðxÞ, do not change the behavior of
φπðxÞ at the endpoints x ¼ 0 and 1 significantly.
Although these changes looks visible and corre-
sponding incline is a bit higher now—up to 7. But
this effect cannot disturb the agreement of previous
calculations of transition form factor and the phe-
nomenological processing of the data process
γ þ γ� → π0 [21,23].

(iii) The same class of radiative corrections to the
distribution amplitude of longitudinally polarized

ρ-meson, φk
ρðxÞ, drastically changes the behavior of

the DA near the endpoints in such a way that leads to

the inequality hξ2iρk > hξ2iπ (aρ
k
2 > aπ2 > 0). This

inequality agrees with the results of lattice calcu-
lations in [24,25].

APPENDIX A: BOREL TRANSFORM B̂

We used the standard form of the Borel transform for
QCD SR, see, e.g., in [16], it reads B̂ðM2→P2Þ½fðtÞ� and
manifests itself as the limit of a series of derivatives of the
function fðtÞ for t ¼ P2=μ2 (μ2—normalization scale)

B̂ðM2→P2Þ½fðtÞ�≡ B̂½fðtÞ�ðM2Þ

¼def lim
P2¼nM2

n→∞

ð−tÞn
ΓðnÞ

dn

dtn
½fðtÞ�: ðA1Þ

We emphasize that the Borel transformation B̂ðM2→P2Þ, acts
on the argument P2, this differs from the images of B̃ (the
inverse Laplace transform) acting on the powers of as (or
the constant A ∼ as) of the perturbation theory series, the
latter have been summed and discussed here in Secs. II B
and II C. A number of useful formulas for the B̂ are
presented below that are based on the definition (A1)

B̂

�
exp

�
−
P2

μ2
a

��
¼ δ

�
1 −

M2

μ2
a

�
: ðA2Þ

Based on (A2) one can derive

⇒ B̂

��
μ2

P2

�
n
�
¼ 1

ΓðnÞ
�
μ2

M2

�
n

; ðA3aÞ

B̂½eaL� ¼ −
aeal

Γð1 − aÞ : ðA3bÞ

Here a is a constant, e.g., a ¼ A ¼ −asβ0 as in Sec. II,
L ¼ ln t, l ¼ lnðM2

μ2
Þ. The B̂–images of radiation logs are

B̂
d
dL

¼ d
dl

B̂ ⇒ B̂

�
d
dL

Π ¼ Π̇
�

¼ d
dl

B̂Π; ðA4Þ

B̂½lnmðtÞ�ðM2Þ¼mð−1Þm
��

d
da

�
m−1 e−al

Γð1þaÞ
�

a¼0

ðA5aÞ

¼−m
�
lB−

d
da

�
m−1 e−γEa

Γð1þaÞ
�
�
�
�
a¼0

; ðA5bÞ

here lB ¼ lnðM2

μ2
Þ − γE.

APPENDIX B: EXTRACTION OF
SPECTRAL DENSITY ρðsÞ

Let us define a “double” Borel transform B̂2
ðsÞ ≡ B̂2

ðs→P2Þ
to obtain the spectral density ρptðsÞ of ΠðLÞ that is used in
Sec. III,

ΠðLÞ ¼
Z

∞

0

ρptðsÞds
sþ P2

− subtracted terms; ðB1aÞ

M2B̂ðM2→P2ÞΠðLÞ ¼
Z

∞

0

ρptðsÞe−s=M2

ds; ðB1bÞ

B̂2
ðsÞΠðLÞ≡ 1

s
B̂ð1s→ρÞ

�
1

ρ
B̂ð1ρ→P2ÞΠðLÞ

�
¼ ρptðsÞ; ðB1cÞ

where ρ is an intermediate variable. One obtains for every
power Ln inΠðLÞ the contribution to ρptðsÞ as a polynomial
in ls ¼ lnðsÞ:
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B̂2
ðsÞL

n ¼
�
ls −

d
dν

�
n
�
sinðπνÞ

π

���
�
�
ν¼0

; ðB2Þ

B̂2
ðsÞ½eaL� ¼ −eals

sinðπaÞ
π

: ðB3Þ

n 0 1 2 3 4 5

B̂2
ðsÞL

n 0 −1 −2ls π2 − 3l2s 4lsπ2 − 4l3s −π4 þ 10π2l2s − 5l4s

The key element of the perturbative contribution in the
“theoretical part” (rhs) of the SR is the integration of lnjðsÞ
from (B2),

Z
s0

0

ρptðsÞe−s=M2

ds ⇒ M2

Z
s0=M2

0

lnjðM2tÞe−tdt: ðB4Þ

Taking into account the main terms of the structure of the
correlator after summation, i.e., the terms of the generating
functions for Π0 and Π00 in Sec. II (see the terms in braces
below), we present the results for these functions and their
different derivatives where a is a constant,

ρptðsÞ∝ B̂2
ðsÞ

�
expðaLÞ

a
;L

�
¼
�
−expðalsÞ

sinðπaÞ
πa

;−1
�
;

ðB5Þ

B̂ΠðLÞ ∝ B̂

�
exp ðaLÞ

a
; L

�
¼

�
−
exp ðalÞ
Γð1 − aÞ ;−1

�
; ðB6Þ

Π̇ðLÞ ∝ d
dL

�
exp ðaLÞ

a
; L

�
¼ fexp ðaLÞ; 1g: ðB7Þ

APPENDIX C: ΦS INTEGRALS

The zeroth-order calculation asðasβ0Þ0 of the coefficient
function for ΦS, discussed in detail in [15] (see also

Appendix A in [22]), was performed for the correlator
of the initial two-fold form ΠSðx; yÞ. For this two-fold

form, the contribution ΠðnÞ
S ðx; yÞ with a n-bubble chain

looks most evident as a term of geometric progression

B̂ΠðnÞ
S ðx; yÞ ∼ ðasβ0ÞnŜfðx; yÞ

×

�
ln

�
Δ̄

y − x
− 1

�
− ln

�
δ2

μ20

�
− c

�n
; ðC1Þ

Δ ¼ δ2

M2
; Δ̄ ¼ 1 − Δ; δ2 ¼ λ2q

2
;

μ20 ¼ μ2eγE ; c ¼ −
5

3
; ðC2Þ

fðx; yÞ ¼ 16

9
π
h ffiffiffiffiffi

αs
p

q̄qi2
δ4Δ̄

x̄y
y − xþ Δ

θðΔ̄ > y − xÞθðy > Δ̄Þ

× θðy > xÞθðΔ > xÞ: ðC3Þ

Finally, we integrate over y to obtain the contribution to

ΠSðx; 0Þ ∼ΦSðxÞ. The partial contributionΦðnÞ
S of the order

ðasβ0Þn to ΦS reads

ΦðnÞ
S ðxÞ¼ðasβ0Þn

16

9
π
h ffiffiffiffiffi

αs
p

q̄qi2
δ4Δ̄

θð1>2ΔÞθðΔ>xÞx̄

×
Z

Δ̄þx

Δ̄

y
y−xþΔ

�
ln

�
Δ̄

y−x
−1

�
− ln

�
δ2

μ20

�
−c

�
n

dy

þðx→ x̄Þ ðC4Þ

The functions of the highest transcendence that appear in

ΦðnÞ
S ðxÞ from Eq. (C4) are the polylogarithms of weight

nþ 1,

Linþ1

�
−

x
Δ̄−x

�
; Linþ1

�
−

xΔ
Δ̄−x

�
; ðx↔ x̄Þ. ðC5Þ
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