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We study the electromagnetic radiation by a fermion carrying an electric charge q embedded in a
medium rotating with constant angular velocity Ω parallel or antiparallel to an external constant magnetic
field B. We assume that the rotation is “relatively slow”; namely, that the angular velocity Ω is much
smaller than the inverse magnetic length

ffiffiffiffiffiffi
qB

p
. In practice, such angular velocity can be extremely high.

The fermion motion is a superposition of two circular motions: one due to its rigid rotation caused by forces
exerted by the medium, another due to the external magnetic field. We derive an exact analytical expression
for the spectral rate and the total intensity of this type of synchrotron radiation. Our numerical calculations
indicate very high sensitivity of the radiation to the angular velocity of rotation. We investigate its
dependence on the sign of electric charge, direction of the magnetic field and the sense of rotation and show
that the radiation intensity is strongly enhanced if qB and Ω point in the opposite direction and is
suppressed otherwise.

DOI: 10.1103/PhysRevD.108.096014

I. INTRODUCTION

The synchrotron radiation—electromagnetic radiation
by charged fermions in the magnetic field—is a funda-
mental process of quantum electrodynamics that has many
phenomenological applications in nearly every area of
physics. In astrophysics it is emitted by relativistic particles
in the extra-solar magnetic fields and it may be a source of
jets generated by supermassive black holes, in relativistic
nuclear physics it provides a mechanism of photon radi-
ation from quark-gluon plasma and it serves as a diagnostic
tool of the properties of condensed matter systems.
According to the classical theory of synchrotron radia-

tion, a charged particle of energy E and charge q in a
magnetic field B moves along a spiral trajectory with the
synchrotron frequency ωB ¼ qBc=E and, by virtue of its
acceleration, emits the electromagnetic radiation that was
first computed by Schott in 1912 [1]. The quantum theory
of synchrotron radiation that takes into account the quan-
tization of the fermion and photon fields was developed by
Sokolov and Ternov [2,3] and has been extensively applied
in astrophysics [4–7].

Often, the systems of charged fermions also rotate as a
whole in an external magnetic field. In some exotic systems
the angular velocity of rotation Ω is comparable or even
exceeds the synchrotron frequency. In such systems the
effect of rotation on the synchrotron radiation is significant.
Table I provides several examples. The most noteworthy
example is the quark-gluon plasma produced in relativistic
heavy-ion collisions. It has recently been observed that it is
not only a subject of intense magnetic fields generated
by the valence charges [8–13], but also possesses huge
vorticity, whose magnitude is comparable to the synchro-
tron frequency and which points in the same direction as
the magnetic field [14–21]. This is illustrated in Fig. 1.
The rotating black hole is another natural candidate to

observe the effect of rotation on synchrotron radiation.
The angular velocities can be as high as r−1g , where rg is the
gravitational radius. For a black hole of solar mass this
amounts to Ω ∼ 105 s−1. For comparison, the synchrotron
frequency of a nonrelativistic proton in a 1 Gs magnetic
field is ten times smaller than ωBðPÞ ∼ 104 s−1. Fortu-
nately, even less exotic systems may be sensitive to the
rotation effects if the emitting particle energy is large
enough, see Table I. A more mundane example is a modern
dental drill that can rotate as fast as 13 kHz, which is
roughly the same as ωBðPÞ. Observation of the effect of
rotation on synchrotron radiation seems to be a realistic,
albeit difficult, experimental problem.
These remarks motivate us to study the synchrotron

radiation of rotating systems. Recently, we published a
letter where we outlined our method and reported our first
results [24]. The goal of this article is to provide a through
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elaboration of our approach and present new results. We
focus on the dynamics of the synchrotron radiation by a
single rotating fermion, but we bear in mind future
applications to quark-gluon plasma whose electromagnetic
radiation may contain a significant synchrotron radiation
component [25–28]. Quantization of rotating quantum
fields was discussed before in [29–33], and a variety of
peculiar effects associated with rotation were considered
in [34–42]. The effect of rotation and the magnetic field
on bound states was also recently addressed by two
of us [22,43,44].
In relativistic heavy-ion collisions a charged particle

moves together with the quark-gluon plasma. In the
laboratory frame it rotates with angular velocity Ω. We
ignore the complexity of the electromagnetic field and
instead focus on a qualitative analysis that assumes that in
the plasma comoving frame there is only a uniform time-
independent magnetic field B, while the electric field
vanishes, as dictated by Ohm’s law. We seek to compute

the intensity of electromagnetic radiation emitted by such a
particle as measured in the laboratory frame.
Unlike stationary systems, rotating systems must nec-

essarily have finite radial size: causality demands that their
radial extent has to be smaller than 1=Ω. Consider for
example a wave function of a stationary system. It extends
to spatial infinity even if the system is well localized,
though it is strongly suppressed there. By applying the
rotation operator expðiJzΩÞ, we cause the system to rotate.
Now, however, the wave function is defined only at
r < 1=Ω. A complete description of the system requires
specifying the boundary conditions at r ¼ 1=Ω. If the
system size is comparable to 1=Ω, then the boundary
conditions have a crucial effect on the system dynamics.1

Conceptually, the role of the boundary is to balance the
centrifugal and other fictitious forces that attempt to scatter
the system to radial infinity. This is true even for classical
systems as we discuss in Sec. II. For systems in thermal
equilibrium, the boundary conditions are expected to have a
significant effect on the equation of state. In this paper we
assume that 1=Ω is by far the largest radial distance, which
allows us to ignore the contributions at the boundary.
This is the meaning of the term “relatively slow” rotation
mentioned in the title. However, the boundary effects are
crucial for rapidly rotating systems. See Fig. 1 for an
instructive example. The calculations in this paper are valid
in regions II and III.
To obtain the wave functions of the rigidly rotating

fermion system one can employ two methods. One method
consists in rotating the inertial frame solution of the Dirac
equation to the rotating frame. This method was employed
by Vilenkin to obtain the thermal Green’s functions of the
rotating system [45]. Another method consists in solving
the Dirac equation in the rotating frame. This method has
recently been employed in [46,47] to study the combined
effect of the magnetic field and rotation on the NJL model
at finite temperature. The two methods are presumed to be
equivalent at least as long as the system size is much

TABLE I. The magnetic fields, the corresponding synchrotron frequencies and angular velocities for various systems. Notation EeV

means that energy E is in units of eV. Note that the spectrum of the cosmic rays extends up to E ∼ 1021 eV. A more detailed look at the
quark-gluon plasma is given in Fig. 1. Useful unit conversions: eV2 ¼ 14.4 Gs, s−1 ¼ 6.6 × 10−16 eV.

System Magnetic field B Synchrotron frequency ωB ¼ eBc
E Angular velocity Ω

Earth 10−4ðGsÞ=10−5 ðeV2Þ 10−6=EeV (eV) 10−4s−1=10−19 ðeVÞ
Dental drill — — 104 s−1=10−11 ðeVÞ
MRI 105ðGsÞ=104 ðeV2Þ 103=EeV ðeVÞ —
Reimann’s nanoparticle [23] — — 109 s−1=10−6 ðeVÞ
Neutron star 108–1015ðGsÞ=107–1014 ðeV2Þ 106–1013=EeV ðeVÞ < 103 s−1=10−12 ðeVÞ
Quark-gluon plasma 1014–1018ðGsÞ=1013–1017 ðeV2Þ 1012–1016=EeV ðeVÞ 1024 s−1=109 ðeVÞ
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FIG. 1. Typical values of the inverse magnetic length
ffiffiffiffiffiffi
qB

p
, the

absolute value of the synchrotron frequency jωBj and the vorticity
Ω of the quark-gluon plasma versus the collision energy of the
relativistic heavy-ions. Region I: fast rotation

ffiffiffiffiffiffi
qB

p
∼ Ω, the

boundary conditions at r ¼ 1=Ω are very important. Region II:
relatively slow rotation ωB ∼ Ω ≪

ffiffiffiffiffiffi
qB

p
, the boundary conditions

are not important, but the synchrotron radiation is affected by
rotation. Region III: slow rotation Ω ≪ ωB ≪

ffiffiffiffiffiffi
qB

p
, rotation can

be neglected. An earlier version of this figure appeared in [22].

1Since any wave packet diffuses with time, the boundary
conditions will eventually become essential for the system
description.
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smaller than the maximum radial distance 1=Ω allowed by
causality. The situation is more complex in the presence
of a magnetic field. The constant magnetic field in the
stationary laboratory frame (as in a typical experiment with
magnetic materials), transforms to a more complicated
field configuration in the noninertial rotating frame, see,
e.g., [22]. However, if it is constant in the rotating frame (as
in astrophysical applications and in heavy-ion collisions),
then the situation is converse. We chose to consider the
latter scenario for two reasons: (i) we are interested in
eventually applying our results to relativistic heavy-ion
phenomenology and (ii) our results apply even in the
former case in the nonrelativistic limit, relevant in most
condensed matter systems. Indeed, B is invariant under
rotation around its direction up to terms of order 1=c2.
We would like to stress that in our setup only the

fermion field rotates, while the photon field does not.2

As a result, the fermion wave function depends on the
angular velocity, while the photon wave function does not.
In cylindrical coordinates this effect is accounted for by
shifting the fermion energy by −mΩ where m is an
eigenvalue of the angular momentum operator Ĵz [48,49].
The boundary condition at r ¼ 1=Ω from the rotation

axis necessarily induces quantization of the spectrum in
the radial direction. Even though it is known how to take
the exact boundary conditions into account [44,50,51], they
introduce cumbersome algebraic complications which are
unnecessary in the regime studied here. As we have already
indicated above, the calculation is greatly simplified in the
slow rotation limit Ω ≪

ffiffiffiffiffiffiffiffiffijqBjp
since the characteristic

extent of the fermion wave function in the radial direction is
1=

ffiffiffiffiffiffiffiffiffijqBjp
. This approximation was also used in [46]. This

essentially eliminates the fermion current at the boundary
and obviates the need for the boundary condition. We
discuss this in more detail in Sec. III.
Our paper is organized as follows. In Sec. II we develop a

classical approach to the synchrotron radiation of a rotating
system. It illuminates some of the conceptual issues that
otherwise may be misconstrued. In Sec. III we discuss the
exact solution of the Dirac equation for rotating fermions in
a constant magnetic field. The electromagnetic field is
quantized in Sec. IV in the basis of the Chandrasekhar-
Kendall states. The differential and total radiation intensity
is derived in Secs. V and VI. Our main analytical result
is (90) for the differential radiation intensity. The numerical
procedure is described in Sec. VIII. The radiation spectrum
is displayed in Fig. 5, the angular distribution of the

intensity in Fig. 7, and the total intensity in Fig. 8. We
summarize in Sec. IX.
Throughout the paper q denotes the electric charge

carried by the fermion, B the magnetic field and Ω the
angular velocity of rotation. 3-vectors are distinguished by
bold face. We adopt the natural units ℏ ¼ c ¼ 1 unless
otherwise indicated.

II. WARM-UP: CLASSICAL MODEL

Before we plunge into a fully quantum calculation, it is
instructive to consider a classical model. This will provide
us with a number of useful insights.
Consider a particle of negative charge q ¼ −jqj and mass

M ¼ 1, such as an electron, embedded into a medium
rotating with constant angular velocity Ω ¼ Ωẑ. For exam-
ple, this particle can be a quark in the quark-gluon plasma.
Embedding means that the centrifugal force does not drive
the particle to infinity in the rotation plane. If there were no
magnetic field, the particle would be stationary in the frame
rotating with the medium. However, due to the Lorentz
force exerted on the particle by the constant magnetic field
B ¼ Bẑ with B > 0, it rotates counterclockwise in a
circular orbit in the ðxyÞ plane with the angular velocity
ωB. The particle trajectory in the rotating frame is

x0 ¼ R − ϱ sinðωBtÞ; y0 ¼ ϱ cosðωBtÞ ð1Þ

where ðR; 0Þ is the orbit center, ϱ ¼ V=ωB is the orbit
radius, V > 0 is the particle velocity and ωB ¼
jqBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
. Using the boost-invariance along the z-axis

we chose a reference frame with z ¼ 0.
Since the medium, together with the particle, rotates with

angular velocity Ω with respect to the laboratory frame, the
particle trajectory in the laboratory frame is determined by
rotating (1) through the angleΩt about the z-axis. In the lab
frame

x ¼ x0 cosðΩtÞ − y0 sinðΩtÞ;
y ¼ x0 sinðΩtÞ þ y0 cosðΩtÞ ð2Þ

implying that

x ¼ R cosðΩtÞ − ϱ sin
�ðωB þ ΩÞt� ð3aÞ

y ¼ R sinðΩtÞ − ϱ cos
�ðωB þ ΩÞt� ð3bÞ

In terms of the complex variable x̃ ¼ xþ iy (3) can be
written compactly as

x̃ ¼ ReiΩt þ iϱeiðΩþωBÞt ð4Þ

The particle trajectory (3) in the lab frame is shown
in Fig. 2.

2One may envisage a different process, where the photon field
rotates along with the fermion field in the magnetic field, e.g., the
electromagnetic plasma in a tokamak. In this case one can employ
the equivalence principle to first evaluate the intensity of the
synchrotron radiation in the instantaneously comoving inertial
frame and then transform it to the laboratory frame.
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It can be shown that Eqs. (3) satisfy the equation of
motion:

̈r ¼ −ð2Ωþ ωBÞẑ × ṙþ ΩðΩþ ωBÞr: ð5Þ

The two terms on the right-hand-side are forces exerted
on the particle. The first does no work (f · dr ¼ 0) and is
responsible for the circular motion. The second is the drag
that is responsible for keeping the particle within the torus
(as discussed above, if not for the drag our particle would
spin out to r → ∞).
Now we wish to consider motion with given total energy

E and angular momentum projection on the z-axis L. (In
the quantum case this corresponds to the stationary states in
cylindrical coordinates.) To this end we need to determine
the conserved quantities E and L and express the param-
eters ϱ and R through them. First, dot (5) with ṙ:

d
dt

�
1

2
ṙ2 − ΩðΩþ ωBÞ

1

2
r2
�

¼ 0 ð6Þ

Thus,

E ¼ 1

2
ṙ2 −ΩðΩ − ωÞ 1

2
r2 ð7Þ

is a conserved quantity. It is natural to identify it with the
nonrelativistic kinetic energy. The relativistic energy is then

E ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2E

p : ð8Þ

Noting that

r2 ¼ x̃x̃� ¼ R2 þ ϱ2 þ 2ωBϱR
Ω

sinðωBtÞ ð9Þ

ṙ2 ¼ ˙̃x ˙̃x� ¼ R2Ω2 þ ϱ2ðΩþ ωBÞ2
− 2RΩϱðΩþ ωBÞ sinðωBtÞ ð10Þ

and using (4) one gets

E ¼ ωBϱ2ðωB þ ΩÞ
2

−
ωBΩR2

2
: ð11Þ

Next, cross (5) with ṙ:

d
dt

�
r × ṙþ ð2Ωþ ωBÞ

1

2
r2ẑ

�
¼ 0: ð12Þ

Thus,

l ¼ ẑ · ðr × ṙÞ þ ð2Ωþ ωBÞ
1

2
r2 ð13Þ

is conserved. Clearly it is the projection of the non-
relativistic angular momentum on the z-axis. The relativ-
istic generalization is

L ¼ El: ð14Þ

One can use ẑ · ðr × ṙÞ ¼ Imðx̃� ˙̃xÞ to compute

l ¼ ωBR2

2
−
ωBϱ2

2
: ð15Þ

Following the outlined program we now express V ¼ ϱωB
and R in terms of E and L:

V2 ¼ 1 −
1

E2
þ 2ΩL

E
ð16Þ

R2 ¼ 1

ω2
B

�
1 −

1

E2

�
þ 2ðΩþ ωBÞL

Eω2
B

; ð17Þ

where

ωB ¼ jqBj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
¼ jqBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

E2
−
2ΩL
E

r
: ð18Þ

The parameters E and L are restricted by the causality
constraint ṙ2 ≤ 1. In view of (10) it follows that

ðRΩ� ϱðΩþ ωBÞÞ2 ≤ 1

and hence (assuming R > 0 and ϱ > 0)

RΩ − ϱjΩþ ωBj ≥ −1; RΩþ ϱjΩ − ωBj ≤ 1: ð19Þ

The left-hand and the right-hand sides of (19) are plotted
in Fig. 3. Evidently, at any given L the values of E are
restricted. Analogously, in the quantum case, the possible
values of particle energy at any given value of the magnetic
quantum number are restricted by causality.
The total intensity of the electromagnetic radiation

emitted by a particle reads

FIG. 2. Trajectory of a classical particle of unit mass M ¼ 1,
angular momentum L ¼ 1 and energy E ¼ 1.5 (left panel) or
E ¼ 2.5 (right panel) in magnetic field qB ¼ −1 embedded into
rotating mediumΩ ¼ 0.1. The entire trajectory must be inside the
rotating medium. L and E are defined in the following text.
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W ¼ 2α

3

̈r2 − ðṙ × ̈rÞ2
ð1 − ṙ2Þ3 ¼ 2α

3

̈r2ð1 − ṙ2Þ þ ðṙ · ̈rÞ2
ð1 − ṙ2Þ3 ; ð20Þ

where α ¼ q2=ð4πÞ. It is seen from (9) and (10) thatW is a periodic function of time with the period 2π=ωB. Therefore, its
time average is

hWi ¼ ωB

2π

Z
2π=ωB

0

Wdt

¼ α

3

8R2ϱ2Ω3ðωB þ ΩÞ3 − 2ðR2Ω2 þ ϱ2ðωB þ ΩÞ2 − 1ÞðR2Ω4 þ ϱ2ðωB þ ΩÞ4Þ þ R2V2Ω2ðωB þ ΩÞ2
ð−2ϱ2ðR2Ω2 þ 1ÞðωB þ ΩÞ2 þ ðR2Ω2 − 1Þ2 þ ϱ4ðωB þ ΩÞ4Þ3=2 : ð21Þ

To study the limiting cases we fix the orbit center R
and its radius ϱ ¼ V=ωB. Taking Ω → 0 at fixed ωB
reduces (21) to

hWiΩ¼0 ¼
2α

3
ðqBÞ2

�
1 −

1

E2

�
E2; ð22Þ

which is a well-known result of the classical theory. Let us
also record for the future reference the high energy limit of
this formula in cgs units

Wcl ¼
q2

4π

2ðqBÞ2E2

3M4
: ð23Þ

The opposite limit is qB → 0 (hence ωB → 0) at fixedΩ. In
this case in the rotating frame the particle is at rest because
there is no longer a Lorentz force exerted on it. For
simplicity consider ϱ ¼ 0. Then (21) reduces to

hWiqB¼0 ¼
α

3

R2Ω4

ð1 − R2Ω2Þ2 ; ð24Þ

which is also a well-known result.
The radiation intensity is plotted in Fig. 4 as a function of

E. The first lesson is that the radiation intensity depends on

the relative direction of the vectors qB and Ω: when they
point in the same direction the radiation is suppressed,
whereas if they point in opposite directions, the radiation is
enhanced.
The divergence ofW in the case of antiparallel qB andΩ

occurs when the denominator of (21) vanishes. This is,
however, not a physical divergence, because it implies that
the radiation energy exceeds the energy of the emitting
particle, whereas Eq. (21) was derived assuming that the
radiated energy is negligible compared to E. The magni-
tude of the radiation reaction force isW (along the direction
of the particle velocity). It must be much smaller than the
forces in the equation of motion (5). We checked that for
the parameters in Fig. 4 the radiation reaction force reaches
about a third of the Lorentz force when E ∼ 4. Our classical
model breaks down at this point. In the next section we
begin developing a quantum model which naturally takes
the recoil into account.

III. FERMION WAVE FUNCTION IN MAGNETIC
FIELD IN ROTATING FRAME

A. Solution to the Dirac equation

To represent a system rotating with angular velocityΩ in
the z-direction, we consider a reference frame rotating with
angular velocity −Ω about the z-axis and introduce a set of

1.5 2.0 2.5 3.0 3.5 4.0
E

–1.5

–1.0

–0.5

0.5

1.0

FIG. 3. Inequalities (19) as a function of E; solid lines are the
left-hand-sides. qB ¼ −1, L ¼ −1, Ω ¼ 0.1, M ¼ 1. The first
inequality of (19) is violated at about E ≈ 2.

5 10 15 20 25 30
E

0.5

1.0

1.5

2.0

2.5

3.0

<W>/Wcl

FIG. 4. hWi=Wcl as a function of E at qB ¼ −1, L ¼ 1,M ¼ 1,
Ω ¼ −10−5 (dash-dotted), 0 (solid) and 10−5 (dashed). Recoil,
neglected in this calculation, becomes important at E ∼ 4.
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cylindrical coordinates ft;ϕ; r; zg. The Dirac equation
describing a fermion of mass M and electric charge q
moving in the constant magnetic field B pointing in the
z-direction reads

ðiγ ·D −MÞψ ¼ 0; ð25Þ

where

Dμ ¼ ∂μ þ Γμ þ iqAμ: ð26Þ

Under the symmetric gauge Aμ ¼ ð0;−By=2; Bx=2; 0Þ,
the only nonvanishing component of Γμ, related to the
Christoffel symbols, is Γ0 ¼ −Ω½γx; γy�=4. Equation (25)
can be cast in the Schrödinger form i∂tψ ¼ Ĥψ with the
Hamiltonian

Ĥ ¼ γ0γ · ðp − qAÞ þ γ0M þ ΩĴz; ð27Þ

where p ¼ −i∇ and Ĵz ¼ −i∂ϕ þ i
2
γxγy are the operators of

momentum and the total angular momentum correspond-
ingly. The last term in (27) describes the effect of rotation.
The Hamiltonian Ĥ commutes with p̂z and Ĵz. Denote

the corresponding eigenvalues as E, pz and m respectively.
Then a solution of the Dirac equation in cylindrical
coordinates has the following form, in the standard repre-
sentation of the γ-matrices:

ψðt; r;ϕ; zÞ ¼ e−iϵEt
eipzzffiffiffiffi
L

p eimϕffiffiffiffiffiffi
2π

p

0
BBBB@

f1ðρÞe−iϕ=2
f2ðρÞeþiϕ=2

f3ðρÞe−iϕ=2
f4ðρÞeþiϕ=2

1
CCCCA; ð28Þ

where ϵ ¼ �1 labels the positive and negative-energy
solutions and we introduced the dimensionless variable

ρ ¼ jqBj
2
r2. The radial functions fsðρÞ, s ¼ 1;…; 4 must be

determined by solving the Dirac equation. Substituting (28)
into the Dirac equation and introducing the operators

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jqBj
2

ρ

r �
2
d
dρ

þ σ −
m − 1

2

ρ

�
;

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jqBj
2

ρ

r �
2
d
dρ

− σ̄ þmþ 1
2

ρ

�
; ð29Þ

where σ̄ ¼ sgnðqBÞ, we find the equations satisfied by the
radial functions

R2R1f1;3 ¼ −2jqBjλf1;3; R1R2f2;4 ¼ −2jqBjλf2;4;
ð30Þ

where

2jqBjλ ¼ ðϵE − ΩmÞ2 −M2 − p2
z ð31Þ

defines the principal quantum number λ. To solve Eqs. (30)
we make a substitution

f2;4 ¼ e−ρ=2ρ
mþ1=2

2 u2;4ðρÞ f1;3 ¼ e−ρ=2ρ
m−1=2

2 u1;3ðρÞ:
ð32Þ

The auxiliary functions usðρÞ, s ¼ 1;…; 4 satisfy the
Kummer equation

ρu00s þ ðbs − ρÞu0s − asus ¼ 0 ð33Þ

with

a2;4 ¼
1þ σ̄

2
þ 1 − σ̄

2

�
mþ 1

2

�
− λ; b2;4 ¼ mþ 3

2
;

ð34Þ

a1;3 ¼
1 − σ̄

2

�
mþ 1

2

�
− λ; b1;3 ¼ mþ 1

2
: ð35Þ

Solutions of (33) that are finite at the origin ρ ¼ 0 can
be expressed in terms of the confluent hypergeometric
function

uðρÞ ¼ K 1F1ðas; bs; ρÞ
ΓðbÞ ; ð36Þ

where K is a constant and Γ is the gamma-function.
Apparently, the form of a solution depends on the sign
σ̄ of the product qB.
Another boundary condition must ensure that physical

observables vanish at r > 1=Ω where the proper time
intervals in the rotating frame become imaginary. How-
ever, in the limit of slow rotation, when Ω ≪

ffiffiffiffiffiffiffiffiffijqBjp
, the

wave functions (28) are exponentially small at r ¼ 1=Ω.
Thus, we can safely impose the boundary conditions at
ρ → ∞ instead. This effectively corresponds to unbounded
motion. In both cases σ̄ ¼ �1 we require that the functions
us vanish at ρ → ∞, which implies that −as are non-
negative integers [2,52]. This implies that the principal
quantum number is also a non-negative integer n [2,52]:

λ ¼ n ¼ 0; 1; 2;… ð37Þ

It follows from (31) that the energy dispersion relation
reads

ðϵE − ΩmÞ2 ¼ 2jqBjnþ p2
z þM2: ð38Þ
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It is convenient to define the radial quantum number a in
place of as:

a1;3 ¼
σ̄þ 1

2

�
m−

1

2

�
− a; a2;4 ¼

σ̄þ 1

2

�
mþ 1

2

�
− a;

ð39Þ

which implies

a ¼ nþ σ̄m −
1

2
: ð40Þ

The radial wave functions read

fσ̄1;3 ¼
ffiffiffiffiffiffiffiffiffi
jqBj

p
Cσ̄
1;3I

σ̄
1ðρÞ; fσ̄2;4 ¼

ffiffiffiffiffiffiffiffiffi
jqBj

p
iCσ̄

2;4I
σ̄
2ðρÞ; ð41Þ

where

Iσ̄1ðρÞ ¼ In−1−σ̄
2
;aðρÞ; Iσ̄2ðρÞ ¼ In−1þσ̄

2
;aðρÞ: ð42Þ

The Laguerre functions In;a are related to the generalized

Laguerre polynomials LðαÞ
n ðzÞ [52] as

In;aðρÞ ¼
ffiffiffiffiffi
a!
n!

r
e−ρ=2ρ

n−a
2 Lðn−aÞ

a ðρÞ: ð43Þ

We normalize the eigenfunctions as

Z
ψ†ψd3x ¼ 1: ð44Þ

In particular, the radial functions satisfy

X4
s¼1

Z
∞

0

jfsj2rdr ¼ 1; ð45Þ

which implies the constraint

X4
s¼1

ðCσ̄
sÞ�Cσ̄

s ¼ 1: ð46Þ

The coefficients Cσ̄
s can be computed by plugging (28)

back into the Dirac equation which produces

ðϵE −mΩ ∓ MÞf1;3 þ iR2f4;2 − pzf3;1 ¼ 0;

ðϵE −mΩ ∓ MÞf2;4 þ iR1f3;1 þ pzf4;2 ¼ 0; ð47Þ

and using the identities

R1Iσ̄1ðρÞ ¼ þσ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
Iσ̄2ðρÞ

R2Iσ̄2ðρÞ ¼ −σ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
Iσ̄1ðρÞ ð48Þ

one obtains the algebraic equations

ðϵE − Ωm ∓ MÞCσ̄
1;3 þ σ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
Cσ̄
4;2 − pzCσ̄

3;1 ¼ 0;

ð49aÞ

ðϵE − Ωm ∓ MÞCσ̄
2;4 þ σ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
Cσ̄
3;1 þ pzCσ̄

4;2 ¼ 0:

ð49bÞ

Finally, the solutions of the Dirac equation take the form

ψn;a;pz;ζðxÞ ¼ e−iϵEt
eipzzffiffiffiffi
L

p eimϕffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffi
jqBj

p
0
BBBB@

Cσ̄
1I

σ̄
1ðρÞe−iϕ=2

iCσ̄
2I

σ̄
2ðρÞeþiϕ=2

Cσ̄
3I

σ̄
1ðρÞe−iϕ=2

iCσ̄
4I

σ̄
2ðρÞeiϕ=2

1
CCCCA;

n ≥ 0; a ≥ 0; ð50Þ

where the coefficientsCσ̄
s satisfy (49). Similar solutions in the

chiral representation were previously discussed in [53–55].
Equation (46) does not uniquely determine the coeffi-

cients Cs. Thus we are free to choose the functions (50) to
be the polarization states of the fermion. There are two
common choices of the polarization operators that com-
mute with fĤ; Ĵz; P̂zg.

B. Polarization states

In the Appendix we provide a detailed derivation of the
helicity and spin magnetic moment operators that we use to
characterize the polarization states. Here we give a brief
summary of the results.

1. Longitudinally polarized electrons—Helicity states

We can choose the polarization states of the fermion to
be the eigenstates of the helicity operator ĥ ¼ Σ · ðp − qAÞ.
To verify that it commutes with the Hamiltonian, it is useful
to write it using (27) as ĥ ¼ γ5ðH −ΩĴzÞ − γ5γ0. The
solutions of the Dirac equation that are also eignestates of
the helicity operator obey the equation:

ĥψ ¼ ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ΩmÞ2 −M2

q
ψ ; ð51Þ

which results in

Cσ̄
1 ¼ −

σ̄

2
A1B1; Cσ̄

2 ¼
1

2
A1B2; Cσ̄

3 ¼ −
σ̄

2
A2B1;

Cσ̄
4 ¼

1

2
A2B2; ð52aÞ

A1 ¼
�
E −ΩmþM

E − Ωm

�1
2

; A2 ¼ ζ

�
E −Ωm −M

E − Ωm

�1
2

;

ð52bÞ
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B1 ¼
�
1þ ζpzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE − ΩmÞ2 −M2
p

�1
2

;

B2 ¼ ζ

�
1 −

ζpzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE −ΩmÞ2 −M2

p
�1

2

; ð52cÞ

where ζ ¼ �1.
Notice that for M ¼ 0, we have

Cσ̄
3

Cσ̄
1

¼ Cσ̄
4

Cσ̄
2

¼ A2

A1

¼ ζ: ð53Þ

Only for a massless field γ5 commutes with the
Hamiltonian and with Ĵz. In that case requiring that ψ is
also an eigenstate of the chirality operator γ5 leads to the
conditions (53). The helicity states above are equivalent to
the chiral states if the field is massless. For a massive field,
the eigenstates of energy do not have a definite chirality,
even at the lowest Landau level n ¼ 0.

2. Transversely polarized electrons—magnetic
polarization states

Another operator that commutes with the Hamiltonian
and whose eigenstates we will use to characterize the
polarization states is the spin magnetic moment μ
defined as [2,3]:

μ ¼ Σ −
iγ0γ5

2
Σ × ðp − qAÞ: ð54Þ

Its time evolution is governed by the equation μ̇ ¼
γ0Σ × qB. It follows that μz is a conserved quantity and
its eigenvalues

μ̂zψ ¼ ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ΩmÞ2 − p2

z

q
ψ ; ð55Þ

can be used to label the stationary states (50), where
ζ ¼ �1. The corresponding eigenfunctions are given
by (50) with

0
BBBB@

Cσ̄
1

Cσ̄
2

Cσ̄
3

Cσ̄
4

1
CCCCA ¼ 1

2
ffiffiffi
2

p

0
BBBB@

−σ̄B3ðA3 þ A4Þ
B4ðA4 − A3Þ

−σ̄B3ðA3 − A4Þ
B4ðA4 þ A3Þ

1
CCCCA; ð56Þ

where

A3 ¼
�
E − Ωmþ pz

E −Ωm

�1
2

; A4 ¼ ζ

�
E − Ωm − pz

E −Ωm

�1
2

;

ð57aÞ

B3 ¼
�
1þ ζMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE − ΩmÞ2 − p2
z

p
�1

2

;

B4 ¼ ζ

�
1 −

ζMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE −ΩmÞ2 − p2

z

p
�1

2

: ð57bÞ

C. Boundary conditions and causality

We have mentioned already that in the limit of slow
rotationΩ ≪

ffiffiffiffiffiffiffiffiffijqBjp
the boundary condition can be set at the

infinite radial distance from the rotation axis. This guarantees
that the eigenfunctions are exponentially suppressed at
r > 1=Ω. In particular, in this approximation, hðrΩÞκi ≪ 1
for any positive κ in a state with quantum numbers n and a.
For example, we can compute using (50) [2,3]:

hr2i ¼
Z

ψ†
n;a;pz;ζ

ðxÞr2ψn;a;pz;ζðxÞd3x

¼ 2

jqBj
	�

nþ aþ 1

2

�
− hSzi



; ð58Þ

where hSzi is the average spin along the magnetic field.
For an unpolarized state we thus arrive at the condition
2Ω2ðnþ aþ 1=2Þ ≪ jqBj. For other κ’s one obtains a
different combination of n and a, so, in general, causality
demands that

n; a ≪ Ncaus ≡ jqBj
2Ω2

: ð59Þ

This condition must be satisfied by the fermion state before
and after the photon emission.
We show in the next section, that the matrix elements for

photon emission are proportional to the Laguerre functions
In;n0 ðxÞ. Considering them as functions of their order n, one
can verify that the main contribution to the sum over n0
comes when n ∼ n0. Thus, as long as n of the initial state
satisfies (59), the final state’s n0 will satisfy it as well. The
same is true of a and a0. We discuss this in more detail in
Sec. VIII which deals with the numerical analysis.

IV. PHOTON WAVE FUNCTION

The photon wave function in the radiation gauge A0 ¼ 0,
∇ · A ¼ 0 is a solution to the wave equation

ð∇2 − ∂
2
t ÞAðxÞ ¼ 0: ð60Þ

Its solutions with given energy ω obey the vector
Helmholtz equation

ð∇2 þ ω2ÞAðxÞ ¼ 0: ð61Þ
The general solution to (61) is a linear combination of
scaloidal, toroidal, and poloidal fields that are obtained
from the solution to the scalar Helmholtz equation
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ð∇2 þ ω2ÞuðxÞ ¼ 0 ð62Þ

as follows

S ¼ ∇u; T ¼ ∇u × a; P ¼ 1

ω
∇ × T; ð63Þ

where a is an arbitrary vector. Since we chose a gauge in
which A is divergenceless, it is spanned only by the toroidal
and poloidal fields.
Let k be the photon momentum. Decompose it into

components along the rotation axis and perpendicular to it:
k ¼ kzẑþ k⊥. It follows from (60) that k2 ¼ k2z þ k2⊥ ¼ ω2.
The eigenfunctions of (62) are given by

uðxÞ ¼ Jlðk⊥rÞeiðkzzþlϕÞ: ð64Þ

Setting a ¼ ẑ=k as the most convenient choice, it follows
from (63) that [56–59]

Tl;k⊥;kzðxÞ ¼
�
il
kr

Jlðk⊥rÞr̂ −
k⊥
k
J0lðk⊥rÞϕ̂

�
eiðkzzþlϕÞ ð65Þ

Pl;k⊥;kzðxÞ ¼
�
ikzk⊥
k2

J0lðk⊥rÞr̂ −
lkz
k2r

Jlðk⊥rÞϕ̂

þ k2⊥
k2

Jlðk⊥rÞẑ
�
eiðkzzþlϕÞ: ð66Þ

A particular combination of T and P describes circularly
polarized photons:

Φh;l;k⊥;kzðϕ; r; zÞ≡
k
k⊥

1ffiffiffi
2

p �
hTl;k⊥;kzðϕ; r; zÞ

þ Pl;k⊥;kzðϕ; r; zÞ
�
; ð67Þ

where h ¼ �1 labels right or left-handed photon states and
the integer l is the eigenvalue of the total angular momen-
tum along ẑ. These states are closely related to the twisted,
or vortex, photon states [60].3 Using the definitions (63) it
can be shown that

∇ ×Φh;l;k⊥;kzðxÞ ¼ hkΦh;l;k⊥;kzðxÞ: ð68Þ

We normalize these states as

Z
Φh;l;k⊥;kzðxÞ ·Φh0;l0;k0⊥;k0zðxÞd3x

¼ ð2πÞ2δll0δhh0
δðk⊥ − k0⊥Þ

k⊥
δðkz − k0zÞ: ð69Þ

The photon wave function, normalized to one particle
per unit volume, reads

Ah;l;k⊥;kzðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ωV

p Φh;l;k⊥;kzðϕ; r; zÞe−iωt: ð70Þ

The general solution to the wave equation in cylindrical
coordinates is then

Aðr; tÞ ¼
X
l;h

Z
d3k
ð2πÞ3 ah;l;k⊥;kz

1ffiffiffiffiffiffiffiffiffiffi
2ωV

p

× Φ⃗h;l;k⊥;kzðrÞe−iωt þ c:c:; ð71Þ

where the coefficients ah;l;k⊥;kz become the annihilation
operators upon quantization of the electromagnetic field.

V. DIFFERENTIAL RADIATION INTENSITY
FOR qB < 0

In this and the following sections we compute the
intensity of the synchrotron radiation in the case of σ̄ ¼
sgnðqBÞ ¼ −1, which makes the notation more compact.
We then generalize to the case of σ̄ ¼ þ1 in the subsequent
section where we also address the symmetries under the flip
of the magnetic field and the angular velocity direction.
The photon emission amplitude by a fermion of charge q

transitioning between two Landau levels is given by the
S-matrix element

S ¼ ð2πÞδðE0 þ ω − EÞ ð−iqÞffiffiffiffiffiffiffiffiffiffi
2ωV

p
Z

ψ̄n0;a0;p0
z;ζ0 ðxÞ

×Φ�
h;l;k⊥;kzðxÞ · γψn;a;pz;ζðxÞd3x; ð72Þ

where primed quantities refer to the final Landau level. The
corresponding photon emission rate reads

ẇ ¼ ð2πÞq2
2ωV

δðE0 þ ω − EÞ

×
X
l;h

����hj ·Φiδm0;m−l
2π

L
δðpz − p0

z − kzÞ
����
2

×
dkzL
2π

dk⊥k⊥πR2

2π
; ð73Þ

where we introduced a shorthand notation

Z
ψ̄n0;a0;p0

z;ζ0 ðxÞΦ�
h;l;k⊥;kzðxÞ · γψn;a;pz;ζðxÞd3x

≡ hj ·Φiδm0;m−l
2π

L
δðpz − p0

z − kzÞ: ð74Þ

L is the longitudinal extent of the system, and R its trans-
verse radius so that the system volume is V ¼ πR2L. The
delta-symbols on the right-hand-side of (74) indicate

3See also a recent review [61] that emphasizes applications in
particle physics.
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the anticipated conservation of the z-components of the
momentum and the angular momentum.
The radiation intensity, viz. energy radiated per unit time

is given by W ¼ ẇω. The total radiation intensity is
obtained by summing over n0, a0, ζ0 and integrating over
dp0

zL=ð2πÞ4:

Wn;a;pz;ζ ¼
q2

4π

X
n0;a0;ζ0

X
l;h

δm0;m−l

×
Z

jhj ·Φij2δðω − Eþ E0Þdkzk⊥dk⊥: ð76Þ

In practice it may be useful to introduce the polar angle θ as
kz ¼ ω cos θ. Then k⊥ ¼ ω sin θ and the integration mea-
sure over the photon momentum is dkzdk⊥ ¼ ωdωdθ.
Now we proceed to evaluate the matrix elements hj ·Φi

defined in (74). We decompose the photon wave function as

Φ�ðϕ; r; zÞ ¼ 1ffiffiffi
2

p φ�ðrÞe−ikzze−ilϕ; ð77Þ

where using the Eqs. (65)–(67) and the identity

J0lðk⊥rÞ ¼
1

2

�
Jl−1ðk⊥rÞ − Jlþ1ðk⊥rÞ

�
; ð78Þ

we have

φ� ¼ φ�
r r̂þ φ�

ϕϕ̂þ φ�
z ẑ; ð79aÞ

with

φ�
rðrÞ ¼ i

kz
k
Jlþ1ðk⊥rÞ − Jl−1ðk⊥rÞ

2
−

ihl
k⊥r

Jlðk⊥rÞ; ð79bÞ

φ�
ϕðrÞ ¼

h
2
Jlþ1ðk⊥rÞ−

h
2
Jl−1ðk⊥rÞ−

lkz
kk⊥r

Jlðk⊥rÞ; ð79cÞ

φ�
zðrÞ ¼

k⊥
k
Jlðk⊥rÞ: ð79dÞ

To obtain the Cartesian components of the fermion current
we use the explicit form of the wave functions (50). Denote

χn;a ¼
ffiffiffiffiffiffiffiffiffi
jqBj

p
0
BBBBB@

C1In−1;aðρÞe−i
ϕ
2

iC2In;aðρÞei
ϕ
2

C3In−1;aðρÞe−i
ϕ
2

iC4In;aðρÞei
ϕ
2

1
CCCCCA
; ð80Þ

which yields

χTn0;a0γ
0γxχn;a ¼ ijqBj�K1eiϕIn;aIn0−1;a0 − K2e−iϕIn−1;aIn0;a0


≡ jqBjðiFþ

1 e
iϕ − iF−

1 e
−iϕÞ; ð81aÞ

χTn0;a0γ
0γyχn;a ¼ jqBj�K1eiϕIn;aIn0−1;a0 þ K2e−iϕIn−1;aIn0;a0


≡ jqBjðFþ

1 e
iϕ þ F−

1 e
−iϕÞ; ð81bÞ

χTn0;a0γ
0γzχn;a ¼ jqBj�K4In−1;aIn0−1;a0 − K3In;aIn0;a0


≡ jqBjF3; ð81cÞ

where we used the definitions

K1 ¼ C1
0C4 þ C3

0C2; K2 ¼ C4
0C1 þ C2

0C3;

K3 ¼ C4
0C2 þ C2

0C4; K4 ¼ C1
0C3 þ C3

0C1: ð82Þ

Casting the scalar product φ� · γ in the form

φ� · γ ¼ �
cosϕφ�

rðrÞ − sinϕφ�
ϕðrÞ

�
γx

þ �
sinϕφ�

rðrÞ þ cosϕφ�
ϕðrÞ

�
γy þ φ�

zðrÞγz

and using (79) and (81) the matrix element (74) becomes:

hj ·Φi ¼ jqBjffiffiffi
2

p
Z

∞

0

drr
��
iFþ

1 ðrÞ − iF−
1 ðrÞ

�
φ�
rðrÞ

þ �
Fþ
1 ðrÞ þ F−

1 ðrÞ
�
φ�
ϕðrÞ þ F3ðrÞφ�

zðrÞ

: ð83Þ

The integral over the radial variable involving φ�
z in (83)

can be performed using the known formula [2,3,62]

Z
∞

0

Jm−m0 ð2ðxρÞ1=2ÞIn0;a0 ðρÞIn;aðρÞdρ ¼ In;n0 ðxÞIa;a0 ðxÞ;

ð84Þ

and introducing the dimensionless variable

x ¼ k2⊥
2jqBj : ð85Þ

Substituting r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ=jqBjp

and k⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBjxp

we obtain

4The integration over the longitudinal momentum can be done
using the usual rule δðpz → 0Þ ¼ L=2π to obtain

Z ���� 2πL δðpz − p0
z − kzÞ

����
2 dp0

zL
2π

¼ 1: ð75Þ
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jqBj
Z

rdrF3ðrÞφ�
zðrÞ ¼

k⊥
k

Z
∞

0

Jm−m0
�
2ðxρÞ1=2�F3ðρÞdρ

¼ k⊥
k

�
K4In−1;n0−1ðxÞ − K3In;n0 ðxÞ


× Ia;a0 ðxÞ:

The other two radial integrals in (83) can be expressed in
terms of the following four integrals

hR1i ¼
Z

dρJm−m0−1ðk⊥rÞIn;aðρÞIn0−1;a0 ðρÞ; ð86aÞ

hR2i ¼
Z

dρ
Jm−m0 ðk⊥rÞ

k⊥r
In;aðρÞIn0−1;a0 ðρÞ; ð86bÞ

hR3i ¼
Z

dρJm−m0−1ðk⊥rÞIn−1;aðρÞIn0;a0 ðρÞ; ð86cÞ

hR4i ¼
Z

dρ
Jm−m0 ðk⊥rÞ

k⊥r
In−1;aðρÞIn0;a0 ðρÞ: ð86dÞ

Altogether we have

hj ·Φi ¼ 1ffiffiffi
2

p sin θ½K4In−1;n0−1ðxÞ−K3In;n0 ðxÞ�Ia;a0 ðxÞ

þ 1ffiffiffi
2

p K1ðh− cos θÞ
	
1

2
In;n0−1ðxÞIa;a0 ðxÞ

þ ðm−m0ÞhR2i−
1

2
hR1i



−

1ffiffiffi
2

p K2ðhþ cos θÞ

×

	
1

2
In−1;n0 ðxÞIa;a0 ðxÞ þ ðm−m0ÞhR4i−

1

2
hR3i




ð87Þ

Thanks to a recurrence relation of the Bessel functions

2ν

z
JνðzÞ ¼ Jνþ1ðzÞ þ Jν−1ðzÞ

the integrals (86) are not independent:

ðm −m0ÞhR2i −
1

2
hR1i ¼

1

2
In;n0−1ðxÞIa;a0 ðxÞ; ð88aÞ

ðm −m0ÞhR4i −
1

2
hR3i ¼

1

2
In−1;n0 ðxÞIa;a0 ðxÞ: ð88bÞ

Substituting (88) into (87) we obtain the final expression
for the matrix element

hj ·Φi ¼ 1ffiffiffi
2

p Ia;a0 ðxÞ
�
sin θ

�
K4In−1;n0−1ðxÞ − K3In;n0 ðxÞ



þ K1ðh − cos θÞIn;n0−1ðxÞ
− K2ðhþ cos θÞIn−1;n0 ðxÞ

�
: ð89Þ

Plugging (89) into (76) yields the expression for the
differential radiation intensity for a photon with circular
polarization h:

Wh
n;a;pz;ζ

¼ q2

4π

X
n0;a0;ζ0

Z
ω2 sin θdωdθδðω − Eþ E0Þ

×
1

2
I2a;a0 ðxÞj sin θ

�
K4In−1;n0−1ðxÞ − K3In;n0 ðxÞ


þ K1ðh − cos θÞIn;n0−1ðxÞ
− K2ðhþ cos θÞIn−1;n0 ðxÞj2: ð90Þ

By fixing a0 and n0 (and, by virtue of (40), m0) one can also
discuss the differential intensity for a photon with a given
orbital angular momentum l ¼ m −m0.

VI. TOTAL RADIATION INTENSITY FOR qB < 0

The Landau levels on the initial and the final fermion are

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2njqBj þ p2

z

q
þ Ωm;

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2n0jqBj þ p02

z

q
þ Ωm0: ð91Þ

The energy and the longitudinal momentum conservation
conditions are

ω ¼ E − E0; p0
z ¼ pz − ω cos θ: ð92Þ

Solving the above system for p0
z and ω we obtain

p0
z ¼ pz − ω0 cos θ; ð93Þ

ω0 ¼
E −m0Ω − pz cos θ

sin2θ

×

�
1 −

	
1 −

Bsin2θ
ðE −m0Ω − pz cos θÞ2



1=2

�
; ð94Þ

where we defined

B ¼ 2ðn − n0ÞjqBj − Ω2ðm −m0Þ2
þ 2ðE −m0ΩÞΩðm −m0Þ: ð95Þ

These are the resonant frequencies at which photons are
radiated by a rotating fermion in a magnetic field.
It is convenient to perform a boost along the rotation

axis into the frame where pz ¼ 0. Then the energy and
momentum conservation conditions simplify

PHOTON RADIATION BY RELATIVELY SLOWLY ROTATING … PHYS. REV. D 108, 096014 (2023)

096014-11



p0
z ¼ −ω0 cos θ; ð96Þ

ω0 ¼
E −m0Ω
sin2θ

�
1 −

	
1 −

Bsin2θ
ðE −m0ΩÞ2



1=2

�
: ð97Þ

The delta-function in (76) can be written as

δðω − Eþ E0Þ ¼ δðω − ω0Þ
∂ðω−EþE0Þ

∂ω

¼ δðω − ω0Þ
1þ ∂E0

∂ω

ð98Þ

with ω0 the solution (97) and

∂E0

∂ω
¼ ∂

∂ω

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2n0jqBj þ ω2 cos2 θ

q
þm0Ω

�

¼ ω cos2 θ
E0 −m0Ω

: ð99Þ

Using (98) in (90) and averaging over the initial fermion
polarizations ζ we obtain

1

2

X
ζ

Wh
n;a;pz¼0;ζ ¼

q2

4π

X
n0;a0

Z
π

0

dθ
ω2
0 sin θ

1þ ω0 cos2 θ
E0−m0Ω

Γh
n;aðn0; a0; θÞ;

ð100Þ

where

Γh
n;a ≡ 1

2

X
ζ;ζ0

jhj ·Φij2 ¼ 1

2

�
Γð0Þ
n;a þ hΓð1Þ

n;a
�
: ð101Þ

Summation over ζ and ζ0 yields

K2
1 ≡ 1

2

X
ζ;ζ0

K2
1 ¼ K2

2 ¼ K2
3 ¼ K2

4

¼ ðE −mΩÞðE0 −m0ΩÞ −M2

4ðE −mΩÞðE0 −m0ΩÞ ; ð102aÞ

K1K2 ¼ K3K4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBjp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0jqBjp
4ðE −mΩÞðE0 −m0ΩÞ ; ð102bÞ

K1K4 ¼ −K2K3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBjp

ω cos θ
4ðE −mΩÞðE0 −m0ΩÞ ; ð102cÞ

K1K3 ¼ K2K4 ¼ 0: ð102dÞ

Substitution into (100) yields

Γð0Þ
n;a ¼ I2a;a0 ðxÞ

�
2K2

1

�
I2n;n0−1ðxÞ þ I2n−1;n0 ðxÞ

þ K2
1sin

2θ
�
I2n;n0 ðxÞ þ I2n−1;n0−1ðxÞ − I2n;n0−1ðxÞ − I2n−1;n0 ðxÞ


− 2K1K2sin2θ

�
In;n0 ðxÞIn−1;n0−1ðxÞ þ In−1;n0 ðxÞIn;n0−1ðxÞ


− 2K1K4 sin θ cos θ

�
In−1;n0−1ðxÞIn;n0−1ðxÞ þ In−1;n0 ðxÞIn;n0 ðxÞ

� ð103Þ

Γð1Þ
n;a ¼ I2a;a0 ðxÞ

�
2K2

1 cos θ
�
I2n−1;n0 ðxÞ − I2n;n0−1ðxÞ

�
þ 2K1K4 sin θ

�
In−1;n0−1ðxÞIn;n0−1ðxÞ

− In−1;n0 ðxÞIn;n0 ðxÞ
��

: ð104Þ

VII. RADIATION INTENSITY AT qB > 0

Thus far in Secs. V and VI we considered qB < 0. To
obtain the radiation intensity for σ ¼ sgnðqBÞ ¼ þ1 we
keep the same reference frame and make the following
changes:

(i) Because of the change of sign of Cσ̄
1;3 in (52) or (56)

and (57a):

K1 → −K1; K2 → −K2; ð105Þ

(ii) The definition of a differs for opposite σ̄,
see Eq. (40).

(iii) Because of the change of In;n0 function indices, see
Eq. (42),

n → n − 1; n − 1 → n; and the same for n0:

ð106Þ

Following the same steps described in Sec. V, we even-
tually obtain

dWhσ̄¼þ
n;a;pz;ζ

dω
¼ q2

4π

X
n0;a0;ζ0

δm;m0þl

Z
π

0

ω2 sin θdθδðω − Eþ E0Þ

× I2a;a0 ðxÞ
���� sin θ�K4In;n0 ðxÞ − K3In−1;n0−1ðxÞ



þ K1ðh − cos θÞIn−1;n0 ðxÞ

− K2ðhþ cos θÞIn;n0−1ðxÞ
����
2

: ð107Þ

In general, comparing Eq. (107) with Eq. (90), we can write

dWhσ̄
n;a;pz;ζ

dω
¼ q2

4π

X
n0;a0;ζ0

δm;m0þl

Z
π

0

ω2 sin θdθδðω − Eþ E0Þ

× I2a;a0 ðxÞWh;σ̄
n;n0 ðx; θÞ; ð108Þ
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where

Wh;σ̄
n;n0 ðx; θÞ ¼

���� sin θ�K4Iσ̄−;−ðxÞ − K3Iσ̄þ;þðxÞ


þ K1ðh − cos θÞIσ̄þ;−ðxÞ

− K2ðhþ cos θÞIσ̄−;þðxÞ
����
2

; ð109Þ

and

Iσ̄�;�ðxÞ ¼ In−1�σ̄
2
;n0−1�σ̄

2
ðxÞ:

The total radiation intensity is

Wtot ≡ 1

2

X
ζ

Wh;σ̄
n;a;pz¼0;ζ

¼ q2

4π

X
n0;a0

Z
π

0

dθ
ω2
0 sin θ

1þ ω0 cos2 θ
E0−m0Ω

1

2

�
Γð0Þ
n;a − hσ̄Γð1Þ

n;a
� ð110Þ

where Γð0Þ
n;a and Γð1Þ

n;a are the same as in Eqs. (103) and (104).
Let us now compare the synchrotron radiation of a

particle of charge q moving in the magnetic field B in
rotating frame Ω and the same particle moving in the
magnetic field −B in rotating frame −Ω. Flipping both the
direction of the magnetic field and the angular velocity of
rotation changes the sense of the rotational motion about
the symmetry axis. Thus the total radiation intensity should
be the same. Indeed, Eq. (110) implies that

1

2

X
ζ;ζ0

Wh;σ̄
n;n0 ðx; θÞ ¼

1

2

X
ζ;ζ0

W−h;−σ̄
n;n0 ðx; θÞ: ð111Þ

With this in mind we can ask if there is a difference between
the radiation summed over all helicities and spins from a
particle in two magnetic fields with opposite direction (or,
equivalently, from two particles of opposite charge in the
same field). That is, we want to know the difference

Δσ̄ ¼
X
ζ;ζ0;h

�dWhþ
n;a;pz;ζ

dω
−
dWh−

n;a;pz;ζ

dω

�
: ð112Þ

When Ω ¼ 0, the energy E does not depend on m and we
can use the identity

P
a0 I

2
a;a0 ðxÞ ¼ 1 [2] to show, using the

previous transformation (111), that Δσ̄ ¼ 0.
In contrast, the energy of a rotating system depends on

m. Since fixing n and a while flipping σ̄ results in opposite
m, see Eq. (40), to have the same energy we also need to
change the sign of Ω. Only by changing the sign of Ω can
we obtain the same expressions and we have

X
h;ζ;ζ0

�dWhþ
n;a;pz;ζ

dω
ðþΩÞ − dWh−

n;a;pz;ζ

dω
ð−ΩÞ

�
¼ 0; ð113Þ

as expected.

VIII. NUMERICAL RESULTS

In this section we present the procedure and the results of
the numerical calculation of the synchrotron radiation
intensity for σ̄ ¼ sgnðqBÞ ¼ −1, e.g., an electron q ¼ −1
in the magnetic field pointing in the z-direction B > 0.
The radiation intensity for a positive charge can be easily
obtained using the results of the previous section, by simply
inverting the sense of rotation.

A. Frequency spectrum

We derive the frequency spectrum by explicitly integrat-
ing over the angle θ in (90) using the delta-function. The
argument of the delta function has two roots θ�. The
frequency spectrum is then the sum of the intensity
expressions for the two angles:

dWh
n;a;pz;ζ

dω
¼ q2

4π

X
n0;a0;ζ0;θ�

E0 −m0Ω
cos θ�

I2a;a0 ðxÞ

×
�
sin θ�

�
K4In−1;n0−1ðxÞ − K3In;n0 ðxÞ


þ K1ðh − cos θ�ÞIn;n0−1ðxÞ
− K2ðhþ cos θ�ÞIn−1;n0 ðxÞ

�
2; ð114Þ

where

cos θ� ¼ � 1

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ω −m0ΩÞ2 − 2n0jqBj −M2

q
: ð115Þ

Figure 5 exhibits a typical synchrotron radiation spectrum.
For comparison we also plotted the spectrum emitted by the
nonrotating fermion. While the spectrum of the nonrotating
fermion depends only on the principal quantum number n0,
the spectrum of the rotating fermion is split in many lines
having different a0, as expected from the energy shift
caused by rotation. Moreover, the positions of the spectral
lines are shifted toward larger (smaller) values of ω for
positive (negative) sense of rotation and their heights are
diminished in comparison with the nonrotating spectrum.
This indicates that the radiation intensity is enhanced
(suppressed) for σ̄ ¼ −1 and positive (negative) sense of
rotation.

B. Total intensity

We calculate the total intensity numerically by summing
over the quantum numbers n0 and a0 and integrating over
θ in (110). The dependence of Wh;σ̄

n;a;pz¼0;ζ, summed over
polarizations and helicities, on n0 and a0 is illustrated
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in Fig. 6. There are two takeaways from this figure. First,
the main contribution to the intensity comes from those n0
which are close to n. Second, for any particular n0, there is a
relatively narrow region of a0 for which the intensity is
significant. These features are general, although at larger n,
smaller values of n0 become more relevant. Our numerical
calculation searches for these narrow regions on the a0 axis
for each n0 ≤ n, then sums only over those regions. This
selection process causes the error in our calculation to grow
with n, as there are more discarded terms, and for high
enough n the calculation of the Laguerre polynomials
becomes numerically difficult. We also cut off our calcu-
lation when a0 approaches Ncaus, given by (59). The results
are independent of this cutoff (and the calculation rarely
enforces this cutoff), as the intensity falls off quickly with
increasing a0. Other features of Fig. 6 depend on specific
parameters. For example, note that there are two peaks in
intensity as a function of a0 for each n0 curve. In general,
there are aþ 1 such peaks. Varying qB and Ω changes the
relative heights of the peaks.

The angular distribution of radiation peaks in the
direction perpendicular to the magnetic field and vanishes
along the rotation axis. These features, present in the
classical and quantum nonrotating systems, are also salient
in the rotating system as displayed in Fig. 7. The novel
feature is that depending on the sign of Ω the intensity is
either enhanced (Ω > 0) or suppressed (Ω < 0) for the
rotating fermion. This effect is enhanced at higher energies
and for larger jΩj. As in the nonrotating case, most of the
radiation by an ultrarelativistic fermion is concentrated in
the cone, with small opening angle of the order M=E ≪ 1
at large E.
It is instructive to compare our results to the radiation

intensity of the nonrotating fermion. In the limit Ω → 0,
the photon energy ω0 depends only on n and n0, but
not on a and a0. This allows explicit summation over
a0 in (100), which can be performed using the identityP

a0 I
2
a;a0 ðxÞ ¼ 1 [2] and yields the well-known result for

the synchrotron radiation intensity by a nonrotating fer-
mion. If the fermion is ultrarelativistic E=M ≫ 1 and the
magnetic field is not very strong jqBj=M2 ≪ 1 (implying in
particular that ωB ≪ E), then the spectrum becomes
approximately continuous and one can employ the quasi-
classical approximation which yields, for a nonrotating
fermion [63],

WWKBðχÞ ¼ −
q2

4π

χ2

2

Z
∞

0

4þ 5χx3=2 þ 4χ2x3

ð1þ χx3=2Þ4 Ai0ðxÞxdx;

ð116Þ

where χ ¼ jqBjE=M3 is a boost-invariant parameter and Ai
is the Airy function. Quantum effects, such as fermion
recoil, are negligible when χ ≪ 1, in which case (116)
reduces to the classical expression Wcl given by (23). It is
customary to present the radiation intensity in units of Wcl.
Figures 8 and 9 show the intensity of the radiation for

various values of the angular velocity and the magnetic
field. One can qualitatively understand the remarkably

n' =

n' ='n 1='n 2='n 3= 4 = 0
= + 0.01

0.0 0.1 0.2 0.3 0.4 0.510–5

10–4

0.001

0.010

0.100

1

dW

d

n' =

n' ='n 1='n 2='n 3= 4 = –0.01
= 0

0.0 0.1 0.2 0.3 0.4 0.510–5

10–4

0.001

0.010

0.100

1

dW

d

0 0

FIG. 5. The spectrum of synchrotron radiation (114). Magnetic field strength: qB ¼ −0.1. Initial quantum numbers: n ¼ 5, a ¼ 1,
m ¼ 7=2 and pz ¼ 0. The spectrum is summed over the final quantum numbers 0 ≤ a0 ≤ 50 and h ¼ �1. Solid black lines: Ω ¼ −0.01
(corresponding to E ¼ 1.379), dashed lines: Ω ¼ 0 (corresponding to E ¼ 1.414), and solid gray lines Ω ¼ 0.01 (corresponding to
E ¼ 1.449). Our units: ℏ ¼ c ¼ M ¼ 1.

0 500 1000 1500

10–9

10–7

10–5

0.001

FIG. 6. The intensity of photon emission normalized to the
classical intensity as a function of n0 and a0 with n ¼ 3000,
a ¼ 1, qB ¼ −10−2, and Ω ¼ 10−5 (corresponding to
E ¼ 7.840). Each curve has a different n0. Alternating line styles
emphasize a different value of n0. Our units: ℏ ¼ c ¼ M ¼ 1.
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FIG. 7. The intensity of photon emission w̄ ¼ W
Wcl

as a function of θ for indicated parameters. All four figures have a ¼ 1. The solid
curves: Ω ¼ 0. The upper (lower) dashed curves in (a), (b), and (d) Ω ¼ 10−6 (Ω ¼ −10−6). In (c) the upper (lower) dashed curve has
Ω ¼ 10−5 (Ω ¼ 10−6). Our units: ℏ ¼ c ¼ M ¼ 1.

FIG. 8. The total intensity of the synchrotron radiation in units of the classical intensity (23) as a function of the initial energy E at
qB ¼ −0.01. Left: solid lines correspond to various angular velocities Ω and the thick gray line is the quasiclassical approximation at
Ω ¼ 0. The deviation of the result for Ω ¼ 0 from the quasiclassical result is due to loss of computational accuracy for large n, as
explained in the text. Right: an expanded view of the total intensity for Ω ¼ 10−5. The dependence of the intensity on the initial value of
a is weak and not noticeable in the figure. Our units: ℏ ¼ c ¼ M ¼ 1.
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strong effect of slow rotation on intensity by considering
an elementary classical model. A nonrelativistic charged
particle’s trajectory is a combination of two circular
motions: one with angular velocity Ω due to the rigid
rotation, and another with angular velocity ωB ¼ jqBj=E
due to the Lorentz force exerted by the magnetic field. The
former is independent of the fermion energy E, whereas the
latter decreases as E−1. One can also notice that when the
rotations due to the magnetic field and to the rigid rotation
of the fermion are in the opposite direction (e.g., qB < 0
and Ω < 0), the result is suppression of radiation. This
happens because the rotating fermion experiences smaller
effective ωB, hence smaller effective magnetic field [22].
Conversely, when the two rotations are in the same
direction (e.g. qB < 0 and Ω > 0) we observe enhance-
ment of the radiation. Finally, we notice a similarity
between the classical and quantum models shown in
Figs. 4 and 8 respectively.

C. Dependence on Ncaus

We checked that our results are not sensitive to moderate
variation of the cutoff Ncaus given by (59). The mathemati-
cal significance of the cutoff is to prevent fermion tran-
sitions from the initial state E to the final state with large
negative energy E0. This would occur at very large negative
values of m, as seen implied by (38). This divergence is a
mere artifact of our neglect of the boundary condition at
r ¼ 1=Ω. Taking these conditions into account eliminates
the divergence [64]. The boundary conditions become

important in rapidly rotating systems corresponding to
region I in Fig. 1. To illustrate this point we computed
the spectrum of synchrotron radiation (114) by rapidly
rotating fermion (qB¼−0.1M2 and Ω¼ 0.07M). Figure 10
shows significant dependence of the spectrum on the cutoff
Ncaus. Moreover, one can see that some photons are emitted
with energies larger than the initial energy of the fermion.
The emergence of these nonphysical states clearly indicates
the breakdown of the “slow rotation” approximation and
requires a careful treatment of the boundary conditions. This
will be addressed in a dedicated paper.

IX. SUMMARY

In this paper we performed a detailed analysis of the
synchrotron radiation by a fermion embedded in a uni-
formly rotating medium. Using the exact solution to the
Dirac equation we analytically computed the radiation
intensity spectrum given by (90), (115) and the total
intensity given by Eqs. (100), (97), (101), (103), and (104).
We also used these equations to study in Sec. VII the
dependence of our results on the sign of the electric charge,
direction of the magnetic field and the angular velocity. The
final analytical results still contain a summation and an
integration that we performed numerically.
Our main observation, exhibited in Fig. 8, is that rotation

has a very strong effect on the radiation. This happens
because the synchrotron frequency is inversely proportional
to the fermion energy and therefore becomes comparable to
the angular velocity of rotation at high energies, see Table I
and Fig. 1. This is our benchmark result. It is completely
general and can be applied to any area of physics where
rotation is an important factor.
Of special interest are relativistic heavy-ion collisions

(HIC), in which we can estimate the radiation produced
by a single quark in the quark gluon plasma (QGP).

FIG. 9. The same as in Fig. 8 but with Ω ¼ 0;�10−6 and two
values of qB. Gray lines with circles are for qB ¼ −10−2. Black
lines with stars are for qB ¼ −10−3. Note the effect of rotation is
greater at lower energies for the smaller field. Our units:
ℏ ¼ c ¼ M ¼ 1.

n' ,a'≤ Ncaus
n' ,a'≤ 2 Ncaus

=+ 0.07, qB=– 0.1, Ncaus=10, n = 5, a= 4, E=1.45
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FIG. 10. The spectrum of synchrotron radiation (114). Mag-
netic field strength is qB ¼ −0.1. Initial quantum numbers:
n ¼ 5, a ¼ 4, m ¼ 1=2 and pz ¼ 0, corresponding to
E ¼ 1.450. The spectrum is summed over the final quantum
numbers a0 and n0 up to Ncaus ¼ 10 for the black lines and up to
2Ncaus ¼ 20 for the gray lines. Our units: ℏ ¼ c ¼ M ¼ 1.
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Measurements of spin polarization provide a late-time
vorticity of about Ω ∼ 10−2T ≃ 1 MeV [65] and estimates
of the magnetic field give jqBj ∼m2

π ¼ 2 × 104 MeV2.
Taking the temperature of the QGP to be T ¼ 300 MeV
and an effective thermal mass for the quarks of M ∼ T ¼
300 MeV and adopting the mass units (M ¼ 1) used in
this work, we have ðE; jqBj;ΩÞ ¼ ð1 to 3; 0.2; 0.003Þ. We
see that the energy and angular velocity of rotation in this
scenario matches the values used in Fig. 8 whereΩ ¼ 10−3.
Instead, the magnetic field in the figure is lower
(jqBj ¼ 10−2). However, the magnetic field intensity
decreases to this magnitude at later stages of the QGP,
and therefore the plot in Fig. 8 is reasonably indicative of
the expected radiation intensity of a quark embedded in the
QGP formed in HICs. Hence HICs are instances where the
scales

ffiffiffiffiffiffiffiffiffijqBjp
;Ω, and ωB have similar orders of magnitude

and thus synchrotron radiation is significantly enhanced
or suppressed by rotation depending on the charge of
the quark.
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APPENDIX: POLARIZATION STATES

We would like to find the conserved quantities related to
spin. To this end, we can construct the polarization
operators in the following way [2]. Let α be a 4 × 4 matrix
in the spinor space, e.g. α ¼ γ5;Σ; σμνFμν. Given α, we
define α̃ as

α̃≡ fH; αg ¼ Hαþ αH; ðA1Þ

where H is the Hamiltonian of our system. With this
definition it is easy to realize that

½H; α̃� ¼ ½H2; α�:

In this way, we reduce the problem of finding a quantity
that commutes with the Hamiltonian to finding a combi-
nation of gamma matrices that commutes with the
Hamiltonian squared. This is particularly easy for the free
Dirac field (without EM field and rotation) because

H2
0 ¼ p2 þM2 ðA2Þ

does not contain gamma matrices and every gamma matrix
commutes with it. A notable example is obtained if we
choose α ¼ γ5. In this case, we can define

h ¼ 1

2M
γ̃5 ¼ Σ · p

M
: ðA3Þ

This is the helicity operator.

1. Helicity operator in external EM field

In the presence of electromagnetic field, in order to
maintain gauge invariance we need to perform the minimal
substitution:

H → H − qϕ; pμ → Pμ ¼ pμ − qAμ:

Because of the gauge invariance we need to change the
definition of α̃

α̃≡ fH − qϕ; αg: ðA4Þ

Using the fact that the Hamiltonian with electromagnetic
field is

HEM ¼ γ0γ ·Pþ γ0Mþ qϕ¼ γ5Σ ·Pþ γ0Mþ qϕ; ðA5Þ

choosing α ¼ γ5, we obtain the helicity operator

hEM ¼ 1

2M
γ̃5 ¼ 1

2M

�ðHEM − qϕÞγ5 þ γ5ðHEM − qϕÞ

¼ Σ · P
M

: ðA6Þ

From (A5), we also have

Σ · P ¼ γ5HEM − γ5γ0M − qϕγ5; ðA7Þ

and we can write the helicity operator as

hEM ¼ γ5HEM − γ5γ0M − qϕγ5

M
: ðA8Þ

From the equation above we find by a straightforward
calculation that

d
dt

hEM ¼ ∂

∂t
hEM þ i½HEM; hEM� ¼ −

q
M

�
∂A
∂t

þ ∇ϕ
�
· Σ

¼ q
M

Σ ·E: ðA9Þ

We see then that the helicity operator is a constant of
motion (and commutes with the Hamiltonian) if E ¼ 0.

2. Helicity operator in external electromagnetic field
and in rotating frame

In the rotating frame we can perform the same operation
to obtain the spin operators. This time we have to define the
quantity
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α̃≡ fHΩ − qϕ −Ω · J;αg; ðA10Þ

where denoted the Hamiltonian as HΩ for the sake of
notation consistency in this Appendix. In the main part of
the paper it is denoted simply as H. Explicitly,

HΩ ¼ γ0γ · Pþ γ0M þ qϕþΩ · J

¼ γ5Σ · Pþ γ0M þ qϕþΩ · J: ðA11Þ

Considering the helicity operator γ̃5, we find that it has
the same form as in the external electromagnetic field:

γ̃5

2M
¼ 1

2M

�ðHΩ − qϕ −Ω · JÞγ5 þ γ5ðHΩ − qϕ −Ω · JÞ

¼ Σ · P
M

¼ hEM:

In terms of the Hamiltonian (A11) the helicity operator can
be written as

MhEM ¼ γ5ðHΩ −Ω · JÞ − γ5γ0M − γ5qϕ: ðA12Þ

Even in this case we have:

d
dt

hEM ¼ ∂

∂t
hEM þ i½HΩ; hEM� ¼ −

q
M

�
∂A
∂t

þ ∇ϕ
�
· Σ

¼ q
M

Σ ·E: ðA13Þ

Thus in a purely magnetic background, helicity is con-
served. We can also check that

½hEM;Ω · J� ¼ 0: ðA14Þ

3. Canonical spin tensor—spin magnetic and electric
moments

The canonical spin tensor is

Sλ;μν ¼ ψ
i
8
fγλ; ½γμ; γν�gψ : ðA15Þ

For λ ¼ 0, we consider the gamma matrices:

αij ≡ i
4
fγ0; ½γi; γj�g ¼ i

2
γ0½γi; γj� ¼ γ0σij: ðA16Þ

Starting from this we define the spin magnetic vector μ as

μi ¼ ϵijkα̃
jk ¼ ϵijk

2M

�ðHΩ − qϕ −Ω · JÞαjk

þ αjkðHΩ − qϕ −Ω · JÞ: ðA17Þ

We find that [66,67]

μ ¼ Σ −
iγ0γ5

2M
Σ × ðp − qAÞ ðA18Þ

and that

d
dt

μ ¼ γ0Σ × qB − iγ0γ5Σ × qE: ðA19Þ

In particular, for E ¼ 0 and B ¼ Bẑ we see that μz is a
constant of motion. In this case using

α12 ¼ γ0Σz;

and

γ0σzðHΩ −Ω · JÞ ¼ ðHΩ −Ω · JÞγ0Σz − 2Pzγ
0γ5; ðA20Þ

we can write:

μz ¼
1

2M

�ðHΩ −Ω · JÞγ0Σz þ γ0ΣzðHΩ −Ω · JÞ

¼ 1

M

�ðHΩ −Ω · JÞγ0Σz − Pzγ
0γ5



¼ 1

M

�ðHΩ −Ω · JÞiγ0γ1γ2 − Pzγ
0γ5


: ðA21Þ
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