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The relativistic Langevin equation poses a number of technical and conceptual problems related to its
derivation and underlying physical assumptions. Recently, a method has been proposed in Petrosyan and
Zaccone [J. Phys. A 55, 015001 (2022)] to derive the relativistic Langevin equation from a first-principles
particle-bath Lagrangian. As a result of the particle-bath coupling, a new “restoring force” term appeared,
which breaks translation symmetry. Here we revisit this problem aiming at deriving a fully translation-
invariant relativistic Langevin equation. We successfully do this by adopting the renormalization potential
protocol originally suggested by Caldeira and Leggett. The relativistic renormalization potential is derived
here and shown to reduce to Caldeira and Leggett’s form in the nonrelativistic limit. The introduction of this
renormalization potential successfully removes the restoring force and a fully translation-invariant relativistic
Langevin equation is derived for the first time. The physically necessary character of the renormalization
potential is discussed in analogy with nonrelativistic systems, where it emerges due to the renormalization of
the tagged particle dynamics due to its interaction with the bath oscillators (a phenomenon akin to level
repulsion or avoided crossing in condensed matter). We discuss the properties that the corresponding non-
Markovian friction kernel has to satisfy, with implications ranging from transport models of the quark-gluon

plasma to relativistic viscous hydrodynamic simulations and to electrons in graphene.

DOI: 10.1103/PhysRevD.108.096012

I. INTRODUCTION

Brownian motion as described by Langevin equations
[1] has widespread applications from liquid dynamics, to
chemical physics, to nuclear physics. Moreover, these
models serve as the basis for the important fluctuation-
dissipation theorem (FDT) [2] and extend to hydrodynam-
ics [3]. Thus, it is vital to explore their potential in
investigating high-energy fluids, which also encompasses
the description of plasmas under appropriate conditions [4].
However, dealing with high-energy physics presents a
challenge as it typically requires the utilization of relativ-
istic frameworks, such as general relativity or special
relativity [5]. This motivates the need to formulate the
appropriate relativistic extension of dissipative equations of
motion such as the Langevin equation.

For example, there has been recently a lot of interest in
implementing stochastic thermal fluctuations in viscous
relativistic simulations of heavy-ion collisions [6] and in
dissipative models for effective field theory [7]. However,
the corresponding fluctuation-dissipation theorem in these
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models is invariably assumed to be Markovian, which
cannot be given for granted in the absence of a first-
principles derivation of the underlying relativistic Langevin
dynamics. In the context of the quark-gluon plasma (QGP),
the Langevin transport model has proved useful to describe
the diffusion of heavy quarks [8-10], but it relies on the
nonrelativistic Langevin equation. Finally, a Langevin
description accounting for relativistic effects might be
important for electrons in graphene, which are both weakly
relativistic and possess viscosity [11,12].

In the context of the relativistic Langevin equation,
two main approaches can be identified. The first approach
is more general and based on a relativistic extension of
the Ornstein-Uhlenbeck process [13], while the second
approach derives the Langevin equation from more specific
frameworks, such as relativistic dissipative hydrodynamics
[14] and dissipation models [15]. In general, the more
specialized the assumptions, the more difficult it is to
generalize the final results beyond their intended frame-
work. In all of these models, however, substantial assump-
tions are used, in the absence of a first-principles derivation
from an underlying Lagrangian or Hamiltonian.

In light of this issue, Ref. [16] proposes a first-
principles derivation from a (Caldeira-Leggett) particle-
bath Hamiltonian. During this process, however, a new
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apparent force emerges, which breaks translation sym-
metry. In this paper, we consider this issue by introducing a
renormalization potential that absorbs the translation-
symmetry breaking term, thereby yielding a translation-
invariant relativistic Langevin equation. Before addressing
this objective, we briefly review the existing literature on
this subject. After that, we will showcase the methods
employed to solve the problem presented by Ref. [16] and,
finally, arrive at a manifestly translation-invariant form of
the relativistic Langevin equation.

II. PREVIOUS APPROACHES

A. Relativistic Ornstein-Uhlenbeck process

The first generalization of the Langevin process to
special relativity comes from Debbasch et al. [13]. In this
paper, the authors presented what they called a “toy model”
where a Langevin equation of motion valid for relativistic
systems is postulated to have a covariant form that correctly
recovers the Galilean limit at the low speed. In later works,
this theory was expanded upon to a great extent [17-19].

The model is based on two main assumptions: (i) the
stochastic process cannot affect the time component of the
system, and (ii) the dynamics are described by an Ornstein-
Uhlenbeck process.

Furthermore, as stochastic processes are time dependent1
we are left with the choice of a time parameter. As the
authors of [20] point out, the natural choice falls on the
coordinate time of the lab frame, and we shall call it z.

Introducing the four-vector formalism and labeling
respectively x = (x%,x) and p = (p°, p) the four-position
and the four-momentum of the tagged particle (TP),
the friction tensor a'; and the Wiener process B'(f) =
(B'(t), B*(t), B} (1)) one can write the stochastic differ-
ential equations (SDEs) for both the dynamic variables:

dx* (1) = p*/ p°dt, (1)
dp'(t) = F(t)dt — a';p’dt + B'(1), (2)

where we extended Eq. (1) to work also with the time
component and F(7) is a deterministic external force (e.g.,
Lorentz force) [20]. Furthermore, the second assumption is
verified by the fact that an Ornstein-Uhlenbeck process is a
mean-retrieving Wiener process, and Eq. (2) reflects just this
fact. Importantly, the stochastic force within this approach
was postulated (without derivation) to be delta correlated in
time, i.e., a Markovian process. This assumption was shown
by later approaches (based on a first-principles derivation)
such as [16] to be not realistic because the causality of
particle-bath couplings introduces an inherently non-
Markovian character to the fluctuation-dissipation theorem,
such that the Markovian case cannot, generally, be retrieved.

'As they are time-indexed random variables {X,}.

B. Specialized approaches

Starting with the work of Dunkel et al. [15], a (1 + 1)-
dimensional dissipation-based approach was proposed. The
main idea behind the derivation is to assume a TP immersed
in a particle heat bath (PHB) of vanishing temperature
T — 0, which allows them to drop the stochastic term.

By picking a comoving frame of reference (FoR) X, such
that at a certain time 7, v,(t) = v,(z,(¢)) =0, then in
general, the PHB will have a nonvanishing speed V, and as
such has to be taken into account, giving

dv,

g, (0 =—Ew ) =V.) =&V, 3)
dE,
dr, (1) = —mév.(t)(v.(t) = V.) =0.  (4)

This serves as the basis to write the four-vector Newton
equation, and by introducing the proper time dz = dt, /y(v.,)
the two equations become one:

dp
dr

=-—m&(0,v,(1) = V,) = —m&, (u — UY), (5)

where &, = diag(0, £) and #* and U* are both the TP and
PHB four speeds. The relativistic Langevin equation is
then retrieved by reintroducing the (1 4 1) Wiener process
wt = (0,w) giving the sought-after SDE:

dp"(z) = =&, (p"(z) —mU")dr +wi(z).  (6)

where the increments are Gaussian distributed in such a
way that the velocity increments remain bounded [15].

Koide et al. [14] instead focus on introducing causality
into the Landau-Lifshits theory of relativistic dissipative
hydrodynamics. The idea is similar to achieving the
same goal in the nonrelativistic case, which is effectively
implemented by limiting the interaction speed. Taking
inspiration from Cattaneo’s heat equation [21], mollifiers
[22] are employed to impose limits on the interaction.

The derivation follows by noting that in nonequilibrium
thermodynamics there is an irreversible current that is
proportional to the driving force and Fick’s law expresses
the fact that diffusion is induced by spatially inhomo-
geneous concentrations of particles. But this current is
“delayed” due to the finite speed of light, and so the idea is
to “mollify” the behavior of the time dependence. Since
entropy production, in nonequilibrium thermodynamics, is
the sum of the products of different thermodynamic driving
forces and irreversible currents, these have to be split up
due to Curie’s (symmetry) principle. All that is left, at this
point, is to modify the driving forces in such a way that
makes them comply with the relativistic causality principle.
This is done, as before, by mollifying the driving forces
with respect to the proper time.
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III. THE FIRST-PRINCIPLES APPROACH

In light of the aforementioned issues, Ref. [16] took
inspiration from the work of Zwanzig [2] and implemented
a first-principles approach that we shall now present in its
most important points.

A. Lagrangian and equations of motion

Let us start by defining the system at hand. The system is
composed of a massive TP, whose motion will be extended
to special relativity, and a PHB made up of relativistic
oscillators (RO). The interaction between TP and PHB is
bilinear, meaning that no two PHB modes can interact
and assumes weak interactions between the particle dis-
placement and the oscillators’ dynamics. The whole proc-
ess is adiabatic, in the sense that the TP only exchanges
work with the PHB by mechanically interacting with it.
Furthermore, we can take into account an external deter-
ministic force acting on the TP; however, this has to satisfy
the causality principle and, as such, will be built on the
model of Lorentz force. And finally, we will choose, as the
time parameter, the lab time coordinate ¢t and denote with a
dot the lab time derivative.

Having defined the problem at hand, we can start by
writing down the Lagrangian for the particle-bath system.2
For simplicity let us split the Lagrangian up into two
components

L = Lrp+ Lpps (7)
with
mc?
Lyp = Ol Vex(, X, 1), (8)

2

I/I’l'C2 n;w:
Lowg = ) ——~—5 ||
pre ZV(@) 2y(x)

where we label x and ¢; the position of the TP and of
the ith PHB mode, respectively. As for the form of the
interaction between particle and bath [cf. the second term
on the right-hand side (rhs) of Eq. (9)], this is motivated by
the following considerations:

(1) It is the four-vector equivalent of the particle-bath
interaction originally used by Zwanzig for classical
nonrelativistic systems [2].

(2) For ¢ —» o we correctly retrieve the nonrelativis-
tic limit.

(3) Itcorresponds to the line element ds> minimizing the
variation of the action as it represents the geodesic
between the two points in Minkowski space.

gix
LS
o7

2
: ©)

4

*We choose the Lagrangian formalism as the Lagrangian is
a pseudoscalar under Lorentz transformations and Lorentz-
covariant Lagrangians yield Lorentz-covariant EOMs [23].

Using the Euler-Lagrange equations, we can write
the equations of motions (EOMs), for the TP and for the
bath oscillators, respectively, as

gi 2)]
i 4

% [y@)x <m + Z o
TR

1

d

We can further simplify Eq. (11) by assuming that the
interaction is mediated by (lightlike) massless particles that,
accordingly, follow null geodesics. This allows us to set
ds*> = 0 and, thus, ||--- ||, = 0 as the interaction happens
instantly within the light cone, leaving us with a more
manageable EOM:

d N m;g; 9i
= [my(2)i] = —Fex + Z 7 (0) <gi - ;£> (12)

Focusing on Eq. (11) and expanding the left-hand side
(Ihs) we find that the PHB mode trajectories can be
decomposed into two subspaces. This goes as follows.

We now can assume to know the trajectory x of the
TP, and by considering the ith mode, we notice that

dy(¢)/dt =y*(4)(¢.§);. Defining A as the lhs of

Eq. (11), we can expand the time derivative, obtaining

d 5 r*(q,)

A= d[ 7(@Qal=qr(q) +—5(q,4,)5 (13)

The newfound EOM for the PHB is now considerably more
intricate. However, we can bring it into a simpler form by
decomposing the trajectories of the oscillators into longi-
tudinal and transverse components [16], where longitudinal
here means parallel to the velocity ¢.. This can be achieved
by noting that the particle moves in a linear subspace; we
can call this v, and as such ¢, = ¢,y It is good to note
that this is an abuse of notation, as v represents a vector
space and not a formal vector. We can easily justify this
abuse of notation by thinking that the parallel linear
subspace has a basis’ v = span{ey, ..., e, }, and therefore
we can compose any vector of said space in terms of the
basis vectors by the means of a linear combination, w =
wiep + o+ wye, where |lwl| = ¢; and w/|lw[| = pj.
We can now decompose any vector into both the
parallel subspace v and the perpendicular subspace v,

3 . .
‘Where now v, does not have the vectorial notation as we are
referring to the vector space.
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e.g..A = ay, + bv,,. Then we can use this decomposition
to rewrite the lhs of Eq. (11) obtaining

B} i} L@,
A= (@), +dr0)r(@) +—5 4.4, (14)

By finally projecting4 the EOM onto the two subspaces we
get a system of EOMs that describes the dynamics of the
PHB oscillators:

73 (Ql-)mzﬁ“i(h x) = % (60,22”1_ - giEHi)’ (15)

r@ma, (12) = 5 (ote, —gx). (16)

A plane that contains the unperturbed mode motion,
called parallel ¢ and its orthogonal subspace g, . So we
can rewrite Eq. P 11) as

d T . L@,
i [miy(@)ql = (Gy,vy, + G1,v.,)7(q) +C—{gﬁig“i£ui
m;

By projecting the equation onto both subspaces (e.g.,
(A, 4|)3) we can decompose the trajectory into two EOMs:

PaImiy (h0) =55 g, —ota)). - (18)

r@ma, (1:3) = o5 g —ota, ). (19)

As these two equations have a lot in common, we note that,
by Taylor expanding around ¢ — 0O, they share the same
solution, albeit with different numerical values, as the
Taylor expansions differ only in the numerical coefficients.
Because of this, from now we will drop the subscripts
referring to the orthogonal subspaces.

B. Kernel for the relativistic oscillators
bath dynamics

In the form found above, neither Eq. (18) nor Eq. (19)
can be solved analytically, due to the strong anharmonic
nonlinear character of the relativistic oscillators which form
the PHB. Because of this, Ref. [16] proposed to analyze the
numerical solution of the aforementioned equations and
compare them with the nonrelativistic analytical solution
found in [2]. By introducing a frequency shift for the bath
oscillators to fit the numerical data, it was possible to retain
all the usability of the analytical nonrelativistic solution [2]

“That is, by applying the inner product to (11): (A, v l1>3 =
mi/y(&){(@7 g, = ;%) v1,)3-

supplemented with the relativistic modifications. This
section will be presented in a (1 4+ 1) formalism as the
(3 + 1) generalization follows “mutatis mutandis.”

In particular, three main effects are evident in Figs. 1(a)

and 1(b) and those are the following:

(1) A systematic shift in the eigenfrequency of the bath
oscillators as they are ROs [cf. Fig. 1(a)], which is
due to the intrinsic anharmonicity of the ROs.

(2) A dependence of the ROs frequency on the TP
position x as seen in both Figs. 1(a) and 1(b).

(3) Suboscillations (“wrinkles) at the crests of each
wave: this phenomenon contributes little to the
fitting of the simulations data, and hence it will
be ignored [see Fig. 1(b)].

As explained in Ref. [24] anharmonic oscillators can

be thought of as harmonic oscillators with a harmonic

SN <
[
A

FIG. 1. (a) Comparison of the numerical solution (orange)
with the nonrelativistic solution (blue) as the frequency and
phase are set as constant. Adapted from Ref. [16] with permission
of the Institute of Physics Publishing. (b) The variation from
the numerical solution (orange) and the nonrelativistic solution
(blue), highlighting the behavior of the system far from the
origin.
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eigenfrequency w; plus a correction term that stems from the
nonlinear nature of the dynamics of the system. In our case,
the harmonic eigenfrequency is one of the classical oscil-
lators with y(¢) = 1, and by comparison with the numerical

solution it is found that the correction’ dw;  y=3/4(¢),

obtaining a renormalized frequency @; = @; + dw,.

So one proceeds by introducing a frequency shift (or
frequency renormalization) @; = w; + éw;(y(q)), and
phase-correction coefficient £(x(¢)), to take into account
the strongly anharmonic, nonlinear behavior” of the ROs.

This is in analogy with the self-consistent theory of
phonons in condensed matter physics, where the anharmo-
nicity of the interatomic interaction leads to deviations from
the harmonic behavior of the normal modes of vibrations
(i.e., the phonons). Also in that case, the deviation from
harmonic modes is effectively encoded via a renormaliza-
tion of the harmonic frequency, exactly in the same way as
here [26,27].

After that, we can see in Fig. 1(b) that the two solutions
match at x = 0. However, now the spatial dependency
becomes nontrivial. In Ref. [16] the authors took care of
this fact by introducing the relativistic phase-drift correc-
tion for the RO oscillations:

&(t,x) = At(x — B), (20)

where A and B are both parameters that have to be fitted to
the numerical solutions for the RO dynamics. As explained
in Ref. [16], this correction function allows us to absorb
the further dependencies on space and time coordinates
induced by the RO dynamics into the phase drift correction
such that’ @; = const.

All of the arguments above lead to the corrected
relativistic solution for the RO dynamics:

4,(1) = q,(0) cos (” (t ‘M»

g 2051)
+g—ii Oty(X(S))z(S) sin (a),- <FM—S>)"S’

(21)

where we can see the presence of the phase drift correction
£ and the renormalized eigenfrequencies @.

SAs described before, one expects the nonlinear term to be
dependent on y(g) since this is what introduced the nonlinearity
in the first place.

6Chamging effective mass based on speed [25].

"Where for consistency we use @ as @ # @ since the change in
eigenfrequencies.

C. Solving for the relativistic Langevin dynamics:
Symmetry breaking

To obtain the solution to the PHB EOMs we have to
compute the integral by parts in the last term of Eq. (21).
Following the same manipulations as in Ref. [16], the final
form of the solution to Eq. (11) is

4,(1)=4,(0)cos <‘7’f (“M»

+27(3,(0)4,0)sin (@,. (f—é(tm))

c

+g)_"i{§(t)[)t7(i(S))Sin <‘7’i (t_s_@» S};

d
-2 500 /0 y(x(y))sin (w (r—s—éi—”))dyds-

In the integral done by part, we have also followed the
suggestion of Ref. [16], and effectively absorbed the
dependence of & on the trajectory x(s) into the (generic)
dependence of £ on s, since x is a parametric function of s.
Hence, instead of &(x(s)) we simply write &(s). After some
algebraic reshuffling of various terms, we can substitute the
solution into Eq. (12) and single out the terms which form
the (generalized) Langevin equation. The final result is
given by Eq. (30) in Ref. [16]. Importantly, the friction
kernel satisfies a non-Markovian FDT, which reads as:
(F, () F, (1)) = mkgTK(t — '), where F),(t) is the sto-
chastic force, kp is the Boltzmann constant, K (7 — ¢') is the
friction kernel, and (- --) denotes ensemble averaging. As
discussed in Ref. [16], due to the unavoidable presence of
the phase shift £ and its form discussed above, the friction
kernel K(7 — ¢') cannot be reduced to a Dirac delta, which
makes the relativistic Langevin equation intrinsically non-
Markovian.

Despite successfully deriving a relativistic Langevin
equation from a particle-bath first-principles derivation,
proving that the result both satisfies a non-Markovian FDT
and possesses a manifestly covariant form, an additional
symmetry-breaking term arises that Ref. [16] refers to as
the “restoring force:

x [/ y(i(s)); sin <w (z— s —@»ds = 1} .

(23)

where the subscript ¢ indicates that the indefinite integral is
evaluated at s = r. However, not only should this term
not be present in the standard form of a Langevin equation
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but it also manifestly breaks translation invariance.
Furthermore, there is no apparent physical motivation for
the presence of this term and, even more interestingly, for
¢ — oo we have F, — 0 further highlighting the hypothesis
that this is, indeed, a relativistic effect.

IV. DISCUSSION OF THE
TRANSLATION-SYMMETRY
BREAKING FORCE

The objective of this paper is to bring the above
relativistic Langevin equation to a manifestly translation-
invariant form. To this aim, we first need to dissect the
particle-bath Lagrangian used by Zwanzig [2] and later
extended to relativistic settings by Petrosyan and Zaccone
[16]. We notice that, as suggested early on by Caldeira
and Leggett themselves [28], a translation-symmetry break-
ing term in the dissipative dynamics may arise, under
certain conditions, from the particle-bath coupling imple-
mented in the starting Caldeira-Leggett (particle-bath)
Lagrangian.

A. Caldeira-Leggett model and the multimode
Brownian oscillator model

We start by considering the form of the nonrelativistic
Lagrangian as it was used by Zwanzig in his original
derivation [2]. As pointed out by Gottwald et al. [29], the
Caldeira-Leggett (CL) particle-bath model does not have a
renormalized potential; instead the so-called multimode
Brownian oscillator (MBO) does.

More in detail, a CL heat bath is a bath composed
of harmonic oscillators (unable to interact with one
another) and of a TP coupled with every oscillator with
a linear interaction in position [28]. This implies that the
total potential energy of the TP should have the following
form:

Ve(x. (g) = Vool + %2 = alg, . (29

One can then complete the square and have a total
potential energy of the following form:

Vals (g) = ) + % (q——x)z. (25)

In this formulation, the new TP potential Vip is the
renormalized TP potential

2
VTP(E) = Vp(x) - Z%f- (26)

Obviously, the two potential energies (24) and (25) are
identical.

If one removes the renormalization of the TP potential,
we then have the following model:

Vmgo (%, {C] }) = Vrp(x

2: ( )? (27)

which is the one used by Zwanzig [2] to derive the classical
generalized Langevin equation and often referred to as the
MBO model.

Both models, i.e., CL and MBO reported above,
can be used to derive classical and quantum Langevin
equations [29].

The need for the use of a renormalized potential Vp(x)
and its relation to translation invariance are discussed in
different places in literature, e.g., in [28,30]. The physical
motivation for such a correction term lies in the fact that
whenever interaction with the TP happens, a new degree of
anharmonicity is introduced into each harmonic oscillator,
and as such we have to take into account how the ith mode
trajectory is affected by the interaction. This effect is well
known in quantum mechanics as level repulsion [28],
and it has important consequences also in condensed matter
physics, where a similar coupling between harmonic
oscillators and an elastic matrix leads to avoided crossing
(level repulsion) of phonon modes [31].

Caldeira and Leggett go as far as suggesting, in [28], that
the emergence of a restoring force, such as the one given by
Eq. (23) found in Ref. [16], is a side effect of the frequency
renormalization introduced by the bilinear coupling imple-
mented in the particle-bath Lagrangian.

B. Caldeira-Leggett renormalization protocol

Following Ref. [28], in the following we design
a renormalization potential to absorb the translation-
symmetry breaking “restoring force.” We decided to follow
Caldeira and Leggett [28] as they provide some insights
into how to do this, notably in Sec. III, where they propose
the following protocol:

(1) Start off with the CL model Eq. (24) in the form

where no renormalization potential is present.

(2) Solve for the EOMs and derive the new Langevin

equation with the restoring force present.

(3) Compute an ad hoc potential that cancels out the

restoring force.

(4) Add it to the Lagrangian and solve the new EOMs.

(5) If during the derivation process unwanted terms

arise, tweak the potential and repeat.

Let us start with the first point, i.e., rederiving the
relativistic Langevin equation using the CL model with
the nonrenormalized potential. Accordingly, we write the
system Lagrangian:

mc?

Lo —=——V i), -
™= ext(X, £, 1) (28)
mict m@? 4
Lpgg = ) —~—5—(lailli =255 (g1 x)s ). (29
PHB Zy(&) 2 () <|‘L||4 Py (q; x>4) (29)
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Here we decided to keep the four-vector form of the
interaction as the presence of the time components does
not interfere in the Euler-Lagrange equations. Furthermore,
by using a rescaling of the dynamic variable, the interaction
potential is indeed manifestly translation invariant.

As for the EOMs, we have

£ [ﬂi)i(m + Z”;Ta; (”ﬁf”§ o @"’m))}

_ m;gi
Eext + zl: Y(&) gi’ (30)
d N1 i (=2 31
o mira)g;] = ) (@7q; = gix). (31)

We can, in fact, see that Eq. (31) did not change, and as
such Eq. (21) is still the right solution for the PHB modes.
Focusing on the lhs of Eq. (30) and using the identity
lla=b|% = ||a|?+ ||b]? - 2{(a, b), we can cancel the
term proportional to the interaction interval® leaving us with

d DN . mia)l‘z 2 gi
Gl @s(1+ 52 (1a3-2 40,21 )|

=i s (105 ool - Zova) )
~ & mrtass (1—22n;i' )| (32)

We can now see how we can drop the second term too in
the parentheses of Eq. (32): this is because of the two
hypotheses, namely (i) m > m; and (ii) by definition of
weakly interacting TP with the PHB (as prescribed by
the CL model), g; ~ 10°. These assumptions are certainly

valid for
2
Il < \/g: (33)

Then we have the two EOMs,

&x
i 67)12_

d m; gl
d[ [my(x Fext + Z (34)

d N m;  _,

7 [miv(q,)4,] = ) (@7q; — gix), (35)
to make the derivation easier to follow, and we can rewrite
Eq. (22) in terms of the ith contribution to the memory
kernel, restoring force and noise function defined in [16].

¥As we discussed earlier, this is the hypothesis of a null line
element [16].

To do this, let us define

Kb =g sz(s))/“”s‘“(&’ (1m9-22) )
(37)
F, = =010, (38)

where, to clean up the notation, we defined

(1) = [ / y(i(s)) sin (@i (t—s—é"—it)>>ds}t. (39)

Then Eq. (22) can be rewritten as:

= EP:‘ + E’i
+ / i(t - )y (it - s)Ki(r.5)ds.  (40)

In this form, it is easy to see how the Langevin equation
appears by substituting Eq. (40) into Eq. (34). Most
importantly, we notice that the restoring force indeed
changed, losing the second term in Eq. (23), which further
highlights how the renormalization of the potential indeed
affects the restoring force.

C. The relativistic renormalization potential

Having dealt with points one and two in the Caldeira-
Leggett renormalization protocol, in this section, we will
finally deduce the form of the renormalization potential and
verify that it indeed leads to the vanishing of the restoring
force. Reference [28] discusses how this potential has to be
dependent on the TP dynamic variables only. If this was not
the case, then it would alter the PHB dynamics and EOM,
and as such Eq. (22) would no longer be the solution for the
PHB dynamics.

The most natural candidate is

—V®(x. i.1) = F,(x. £ 1) (41)

since, this way, when added to the Lagrangian equa-
tions (28) and (29), the restoring force cancels out, hence
the positive sign in the rhs.
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Then the renormalization potential has the form

Ossn) =0 R0, @)

which is consistent, “mutatis mutandis,” with its non-
relativistic analog, given by the second term on the rhs
in Eq. (26). In particular, both are quadratic in the position

2
m;g;
)

>~ The only

difference is in the (new) relativistic factor %, which

of the TP, and proportional to the factor

reduces to one in the nonrelativistic limit, y — 1, ¢ — oo.

Now using Eqgs. (28), (29), and (42), we can define L =
L1p + Lpyg — ®(x, &, 1) and derive the EOM of the TP, as
®(x, &, 1) does not depend on ¢, nor on g, and as such

remains unchanged from Eq. (31).
However, the TP EOM becomes

% [W@)X(l - Zgﬁ’z (1 + I(t)))]

m;g;
=—-Fo—F, - ngf (43)

where we followed the same steps as in Eq. (32). As we can
see upon substituting in Eq. (40), the renormalization
potential successfully cancels out the restoring force;
however, the lhs acquires a new term in the process, which
is given by Y, 7% x*(1 + I(t)) inside the round bracket in
the lhs of Eq. (43). We shall now demonstrate that this term
vanishes. We will now present a qualitative argument, while
in the Appendix we will explore a physical justification and
analyze the implication of this result.

Based on the assumptions used before in the context of
Eq. (33), we have that

migi , I(t) 9i£2
—=x*(1+1(t) ~—+ . 44
2mczx ( ) c? © 2¢2 (44)

We now recall Eq. (39), and use the form of the phase
shift £ determined numerically. By using the convolution
theorem of Fourier integrals, we are able to write

10 = | [ aurts(s))sin @111 - A= B) - s))ds]

- :(y@(u» s+ sinau)(1(1 _A<x—3)2)>]

= | [t -0~ B7) =) sin <@,~<s>>ds] ,

t

t

t

where * denotes the convolution product. Now, having to
deal with ROs, @; is large, such that we have a fast oscillating
trigonometric function. In the last step, we highlighted that
x(t) has to be continuous, i.e., x € C°(R™). Furthermore, the

function x:R* — R3 is continuous as well because x =
J{,}dt where we considered the acceleration of the TP to
be stochastic. Moreover, the TP is a massive particle,
meaning that it possesses inertia. It is physically meaningful
to assume that the force acting on the TP at each time is
upper-bounded, also implying that V ¢,,7, 3K € R such
thaty(x(#,)) — y(x(7,)) < K, and it also implies that y (x(7))
is a continuous function. This allows us to deduce that, for
any finite range of times, y(x(s)) is indeed integrable. Then
all the hypotheses of the Riemann-Lebesgue (RL) lemma are
satisfied, and by application of the RL lemma to the above
Fourier integral, we conclude that in the limit @;, we have
I(t) — 0, as a direct consequence of the RL lemma. In
reality, of course, @; is large but finite. Hence, / (t) will
not be exactly zero but it will be a small number such that
I(1)/c*~ 0 and, therefore, also ;7% x*(1+ (1)) is
negligible in Eq. (43).

D. Translation-invariant relativistic
Langevin equation

Having dealt with this last problematic term and then by
substituting Eq. (40) into the TP EOM leads us to the
relativistic Langevin equation:

d N
= [my(%)x] = =Fex + F,,

+ [ 3=t - )K(r5)ds. (49
where the conservative force is given by
Fo. = _v(vexl - CD) (46)

with @ the relativistic renormalization potential derived in
the previous section:

I(t) mz’g%xz
TG @ =0 “7)

It is important to notice that the renormalization potential
determined above is not just an artificial way of removing
an unwanted translation-symmetry breaking term, given by
the restoring force discussed above. The renormalization
potential derived above is fully necessary from a physical
point of view, as already pointed out by Caldeira and
Leggett [28]. In particular, its physical meaning and
significance are as follows. The coupling between the
tagged particle and the bath oscillators introduces anhar-
monicity into both the dynamics of the oscillators and that
of the tagged particle. This is because the coupling
effectively changes the original conservative potential of
the oscillators, as is obvious from, e.g., Eq. (9), and,
therefore, it must also change the original potential of the
tagged particle. In turn, these alterations of the original
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potential (for both PHB and TP) are inevitably linked to the
renormalization of the corresponding natural frequencies,
which makes this effect analogous to level repulsion or
avoided crossing of interacting phonon modes in solids
[31,32], as pointed out earlier. In particular, the level-
repulsion or avoided-crossing effect becomes larger, mean-
ing that the change in the original eigenfrequencies also
becomes larger, for larger values of the coupling constant
g;. This is a consequence of the fact that larger g; values
cause a larger renormalization of the corresponding
potentials.

Equation (45) is the most important result of this work.
By using the technique developed in Ref. [16], and by
determining the renormalization potential according to
the protocol suggested by Caldeira and Leggett [28], we
managed to arrive at a translation-invariant relativistic
Langevin equation.

This equation can also be written in manifestly covariant
form, as follows.

Starting from the lhs of Eq. (45), by defining the four
momentum of the TP as p' = (p°, p) = (E/c, imy(x)) we
get the covariant form [15] N

3y mi = 2 pi (48)

For the rhs things get a little trickier because of the
stochastic force, but first let us proceed in order: both F
and F.y, can be made into spatial components of four-
vector whose temporal components are equal to zero by
construction.

Let us now deal with the stochastic force and define a
covariant rank-2 tensor, i.e., the memory tensor K* (¢, s) =
diag(0, K''(t,s), K*(t,s), K"(t,s)). We note that in
Eq. (45), extending the integrand to the four-vector formal-
ism, we can rewrite y(x(z—s))x(t—s) = pt(t—s)/m.
Using these two devices and the Einstein summation
notation, we finally arrive at

d 1 [t
Spt=—F 4+ F —— | Kt (t,s)p¥(t—s)ds, (49
0P ext + Fp m% (2. 8)p*(t=s)ds,  (49)

which is the fully covariant form of the relativistic Langevin
equation we just derived from first principles. We used
Greek indices as is customary for four-vectors, whereas
earlier in the paper we used Latin indices for the spatial
components only. Moreover, another interesting thing to
point out is that we are still using ¢ as our coordinate time,
this can be done because we are working in the instantaneous
rest frame of the TP, and hence we could exchange 7 with the
proper time 7. Alternatively, we could have defined another
parameter, as it is sometimes done in the literature on general
and special relativity (e.g., in [33] the parameter A is used).
Furthermore, by following this procedure, we can see that
we are working under the assumption that stochastic

behavior does not affect the time component, as prescribed
by p° = 0. This is indeed quite standard and agrees with
previous models in the literature [13].

V. RELATIVISTIC FLUCTUATION-DISSIPATION
THEOREM

We shall consider the implications of the above results on
the fluctuation-dissipation theorem (FDT) associated with
the relativistic Langevin equation. Let us start by noting
that we can treat the dependence on @ of & as an explicit
dependence &(t, @;), which allows us to define a density of
states p(@), where @; is promoted to a continuous variable.
With this passage to a continuous frequency spectrum, we
can use Fourier transforms to write all the various terms that
form the relativistic Langevin equation, as follows:

Ko = | ® dip(@) 22 1 (5(5))

0]

| [ arrtasin (@(f—y—gi(yc’@)>>}y:s’

where the information carried by the subscript i resides now
in the explicit dependence on the continuous variable @.

The above form for the memory kernel is of great interest
as we can draw a parallel between the classical framework
and the relativistic one. In the nonrelativistic case, one
has [2]

(@)

k() = [ dopto) 25,

cos(wt). (51)

In particular, Zwanzig showed that in the case where
p(@) = a@?, as for bosonic oscillators, and g(@) = const,
then in the nonrelativistic limit we would have K () o &(t)
by evaluating the above integral in Eq. (51) [2]. By assuming
that the system is at thermodynamic equilibrium and thus
follows the Maxwell-Boltzmann (or Maxwell-Jiittner) dis-
tribution at + =0 [to evaluate the ensemble average of
the stochastic force autocorrelation (£, (¢)F),(¢')] leads then
to the well-known Markovian FDT: (F',(1)F,(?)) =
mkgT§(t — 1), as derived by Zwanzig [2].

In the relativistic case, this simplification is no longer
possible, as we have a dependency on the oscillator’s
trajectory via & To solve this problem we can substitute
into Eq. (50) the form Eq. (20) deduced from the numerics.
As shown in Ref. [16], this makes it possible for the
memory kernel to be proportional to §(¢) even in this
framework. However, the assumption g¢(@) = const is
untenable in the relativistic case. This is because this
assumption is tantamount to saying that the TP interacts
with the same strength with all the ROs in the system,
irrespective of their separation in spacetime from the TP.
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This is obviously in contradiction with the principle of
locality, which lies at the heart of special relativity.

Following the same strategy as in [16], and assuming that
g(@) # const in compliance with the principle of locality in
special relativity, leads us to the relativistic FDT in the
following form:

(FY(OE(1) = mksTK(1= 1), (52)

where K(t—1)# 6(t—1¢) and K(t—1¢') is specified by
Eq. (50). This implies that the relativistic FDT is, in general,
non-Markovian and the assumption of a Markovian FDT in
relativistic systems is unjustified. This provides a first-
principles justification to the observation that memory and
non-Markovianity are typically observed in the QGP (barring
the regime of lowest energies) (see, e.g., [34,35]), where
lattice QCD calculations indicate that the spectral function is
non-Ohmic, i.e., non-Markovian, at high enough energies.

VI. CONCLUSION

In summary, we considered the derivation of the rela-
tivistic Langevin equation from a particle-bath Lagrangian
proposed in Ref. [16], and we applied the protocol devised
by Caldeira and Leggett [28] to determine the renormal-
ization potential for the tagged particle. This renormaliza-
tion potential is important because, on the one hand, it is
physically necessary as the coupling to the oscillator’s
bath necessarily renormalizes the conservative potential
acting on the tagged particle. Furthermore, the introduction
of the renormalization potential is necessary to derive a
fully translation-invariant relativistic Langevin equation
from first principles, which has been done here for
the first time to our knowledge. The form of the relativ-
istic renormalization potential obtained here, given by

i 2 . .
D = y(f)f(’j))”jﬂg x%(t), reduces to the classical one in the

i
nonrelativistic limit, i.e., to ® = Z4= x?(7) (that was already

obtained by Caldeira and Leggett themselves [16]).

These results also further establish the non-Markovianity
of the relativistic fluctuation-dissipation theorem which is
associated with the relativistic Langevin equation. In other
words, special relativity necessarily introduces non-
Markovian corrections to the noise. In future work, the
form of the relativistic memory kernel K (7 — ¢') as given by
Eq. (50) will be studied for simple cases, although this
requires numerical work to implement trajectories of both
the tagged particle and the relativistic oscillators. From the
generated trajectories, also the renormalization potential ®
can then be computed. It is hoped that the numerical
calculations will lead to analytical parametrizations for the
memory kernel that can be implemented in hydrodynamic
simulations. The form of the kernel can also be compared
with non-Markovian spectral densities measured in lattice
QCD simulations of the QGP [34,35].

In future work, these results can be used as the starting
point for the mathematical modeling of relativistic fluids,
weakly relativistic electrons in graphene and other topo-
logical materials, relativistic plasmas, and for further
generalizations to high-energy density matter. For example,
we expect the above relativistic fluctuation-dissipation
theorem to be highly relevant for the Johnson-Nyquist
noise of weakly relativistic electrons in graphene, where the
form of the fluctuation-dissipation theorem determines the
statistics of the noise [36].
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APPENDIX: PHYSICAL JUSTIFICATION
OF I(t)/c* < 1

Here we will provide a more physical justification for the
key argument made in the context of Eq. (33).

Letus start by using the assumption of a massive TP, which
as such it will never reach the speed of light, meaning that we
can take [|x(?)|; = ¢K(r) with L:R*T - [0, 1).

Now we can consider two scenarios, the first one being
of a dissipative adiabatic system, meaning that the TP loses
energy to the PHB. The second scenario assumes a finite
observation time and a finite number of PHB oscillators,
allowing us to have a constraint on the maximum speed of
the TP.

Assuming a dissipative behavior of the PHB enables us
to write that the TP energy E1p(7)? < E1p(0)? V t as work
is exchanged between the TP and the heat bath modes.
However, based on the initial conditions of the problem
E1p(0) is a known quantity, so by using the definition of
relativistic energy and introducing K(¢) we can write

Erp(t)* < Erp(0)?,
(Ip(0)ll4¢)* < Exp(0)* — E,

Eqp(0)* — Ej

rEROIED] < /=55
K 1 |Ep(0)?
— —-1=A
Vi-e <\ B ’

then () € [0, \/A/(A + 1)], and indeed the upper bound

is less than 1. Now that /C() has an upper bound, we use it
to control the integral
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I(r) < y<c

o) [fon (@ (-5
< (A—l—l)[/lds}t: A+t

from which it follows that I(z)/c*> <1 is a sensible
approximation indeed.

The second approach gives more context about the
maximum expected velocities that the TP can achieve.
This is done by assuming that our system is allowed to
evolve only for a finite time window or observation
time. Having a finite number of PHB constituents means
that the force acting on the TP is indeed finite, coupling

it with the finite time of observation allows us to say
that there exists an upper bound to the magnitude of
the TP speed during the observation period, such that
Ik = max (/C(t)).

Now we can control the integral as we did before, this
time obtaining 1(f) < y(Kc)t. Hence we get I(t) < ¢?, or,
in a more complete form, > < ¢?(1 — K?). To compare the
order of magnitudes, let us assume that =~ 10" and then

K < V1 —=10"1%2"_which for a reasonable amount of time
t < 10" equates to a Lorentz factor of up to y~ 109,
meaning that this approximation is indeed sensible for
all phenomena occurring in between the relativistic and the
ultrarelativistic limits.
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