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We obtain stability criteria for diffusive inviscid multicomponent Israel-Stewart hydrodynamics with and
without background or dynamic electromagnetic fields. Our analysis is grounded on the maximum entropy
principle, and it provides stability conditions that are valid around all thermodynamic equilibria, including
rotating equilibria, charged equilibria, and equilibria in a background gravitational field. We prove that the
electromagnetic part of the information current is stable and causal by construction, and, therefore, the
stability criteria found for Israel-Stewart theories of hydrodynamics automatically extend to similar
formulations of magnetohydrodynamics.
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I. INTRODUCTION

Relativistic hydrodynamics effectively describes the
evolution of many-body systems in terms of a few macro-
scopic degrees of freedom and is used to study various
physical systems in cosmology, astrophysics, condensed
matter physics, and heavy-ion physics [1–4]. For simple
uncharged fluids, the equations of motion are given by
energy-momentum conversion, but, depending on the
system of interest, other single or multiple currents might
exist and have to be taken into account [5]. In particular, a
lot of interest has been given in recent years to heavy-ion
collisions with lower energies, which supposedly span
regions of the QCD phase diagram with finite baryon
chemical potentials. This growing interest has motivated
numerical studies of hydrodynamics with baryon charge
diffusion [6,7]. However, in such systems, according to the
underlying physics, electric charge and strangeness are
also conserved, and, therefore, a multicomponent hydro-
dynamic theory needs to be applied. Similar situations are
hypothesized to exist in neutron stars [8–11].
Avariety of multicomponent hydrodynamic formulations

exists in the literature. A nonexhaustive list includes exten-
sions of Israel-Stewart hydrodynamics [12–15], Denicol-
Niemi-Molnar-Rischke (DNMR) second-order hydrody-
namics [16], and Carter’s multifluid theory [17–19]. Also,
the fluid might be coupled to dynamic or background
electromagnetic fields, which might affect the transport of
the conserved charges. For example, a highly conducting
fluid that starts with an electric charge separation tends to
electrically neutralize. In a single-component fluid, this will
also lead to a vanishing baryon charge density. However, in a

multicomponent fluid, where electric and baryon density are
independent degrees of freedom, the electric neutralization
due to strong electromagnetic fields might affect the baryon
density, and strangeness, in nontrivial ways. Understanding
the evolution of such fluids requires an appropriate multi-
component magnetohydrodynamic theory. In the DNMR
approach, a single-component resistive dissipative theory has
been developed [6,20], which in principle can be extended
similarly to Ref. [16]. In this paper, a multicomponent
extension of the Israel-Stewart hydrodynamics [21,22] in
the presence of electromagnetic fields is considered, which
will be called the Israel-Stewart-Maxwell model.
In developing, and solving, dissipative relativistic hydro-

dynamics theories a key question is the stability of
equilibrium [23–25], i.e., if the theory predicts equilibrium
states to be resilient against arbitrary small perturbations.
This question can be addressed using the so-called infor-
mation current method [22,24,26], which relies on the
maximum entropy principle and does not need to assume a
homogeneous equilibrium state. Therefore, it is valid for all
thermodynamic equilibria, including those with accelera-
tion, rotation, and background gravitational fields, and also
addresses the related question of linear causality. A recent
application of this method can be found in Ref. [27] which
investigates the stability of multicomponent viscid Isreal-
Stewart hydrodynamics. In the present work, on the other
hand, we apply the information-current method to derive
the linear stability criteria of the multicomponent inviscid
Israel-Stewart-Maxwell model, which is, in particular,
relevant to numerical solutions [28]. To this end, we start
by introducing the multicomponent Israel-Stewart theory in
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Sec. II A. Then, in Sec. III, we review Gibbs’ stability
criterion and derive the information current for the multi-
component Israel-Stewart theory. The result is used in
Sec. IV to find the stability criteria. After considering special
cases, we show that the information current of the multi-
component Israel-Stewart theory can be transformed into the
information current of Carter’s multifluid theory. The sta-
bility conditions of the latter theory are known, which leads
us to the multicomponent Israel-Stewart theory stability
conditions. In Sec. V, we turn to the multicomponent
Israel-Stewart theory with background electromagnetic
fields. We show how the thermodynamic potential must
be modified due to the background Lorenz force.
Interestingly, we find that background electromagnetic fields
do not alter the stability conditions of the multicomponent
Israel-Stewart theory. Finally, in Sec. VI, we study the
multicomponent Israel-Stewart-Maxwell model, where
electromagnetic fields are dynamic degrees of freedom,
and we prove our core result: the electromagnetic part of
the information current is stable and causal by construction,
and, therefore, the stability conditions of a dissipative
hydrodynamic theory extend to a similar theory of resistive
dissipative magnetohydrodynamics, if the medium is non-
polarizable and nonmagnetizable. Our results, in particular,
not only agreewith the results fromRef. [29], but also predict
how they extend to resistive fluids, and to inhomogeneous
equilibria. The paper concludes in Sec. VII. For the reader’s
convenience, details of the calculations, as well as clarifying
examples, are presented in several appendixes.

A. Notations and conventions

We use natural units (ℏ ¼ c ¼ kB ¼ 1) and mostly plus
metric sign convention, i.e., ημν ¼ diagð−1; 1; 1; 1Þ. The
covariant, exterior, and Lie derivatives are denoted by ∇, d,
and L, respectively. The convention for the totally anti-
symmetric tensor ϵμναβ is such that in Minkowskian
coordinates ϵ0123 ¼ −ϵ0123 ¼ 1. Standard symmetrization
and antisymmetrization notations are defined as AðμνÞ ¼
1
2
ðAμν þ AνμÞ and A½μν� ¼ 1

2
ðAμν − AνμÞ, respectively. We

use the notation Ahμi ¼ ΔμνAν, where Δμν ¼ gμν þ uμuν,
with uμ being the fluid’s four-velocity. Δμν projects every
vector Aμ onto the plane orthogonal to uμ.

II. MULTICOMPONENT ISRAEL-STEWART
THEORY FOR CHARGE DIFFUSION

Let us start by introducing the multicomponent Israel-
Stewart theory, which is an extension of the single-charge
Israel-Stewart theory in the Landau frame [22]. For reasons
that will become clear later, it is convenient to first consider
the case without electromagnetic fields. We allow for an
arbitrary number of conserved and nonconserved chemical
species. However, we neglect bulk and shear viscosity,
which would make a fully general analysis unmanageable
analytically.

A. Constitutive relations

The fluid’s state is characterized by the fields
φi ¼ fε; uμ; nA; Vμ

Ag, representing respectively the energy
density, the flow velocity, the chemical densities, and the
diffusive currents. The label A ¼ 1;…; l is a chemical
index. Since uμ is normalized (uμuμ ¼ −1) and Vμ

A are
orthogonal to the flow lines (uμV

μ
A ¼ 0), the algebraic

degrees of freedom are 4ð1þ lÞ. We note that in a general
fluid mixture, there are no preferred chemical species.
Therefore the Eckart frame is not convenient, and it is
easier to use the Landau frame. The consequences of this
choice are nevertheless immaterial, since in the linear
regime all frames are equivalent [30] (the only exception
is the “general frame” [31], which has more degrees of
freedom). The Landau frame entails that uμTμν ¼ −εuν

and uμN
μ
A ¼ −nA, so that, if we neglect bulk and shear

viscosity, we have the following constitutive relations for
the stress-energy tensor, particle, and the entropy current:

Tμν ¼ ðεþ PÞuμuν þ Pgμν; ð1aÞ

Nμ
A ¼ nAuμ þ Vμ

A; ð1bÞ

Sμ ¼ suμ −
μA

T
Vμ
A − bABVν

AVBν
uμ

2T
; ð1cÞ

where the Einstein summation is assumed for the chemical
indices A and B (see Appendix A for a simple example).
The scalars P, s, T, and μA in the constitutive relations (1)
are the equilibrium pressure, entropy density, temperature,
and chemical potentials of the fluid, respectively. They are
pure functions of ε and nA, satisfying standard thermody-
namic identities, namely the first law, the Gibbs-Duhem
equation, and the Euler relation, respectively:

dε ¼ Tdsþ μAdnA; ð2aÞ

dP ¼ sdT þ nAdμA; ð2bÞ

εþ P ¼ Tsþ μAnA: ð2cÞ

The symmetric l × l matrix bAB in Eq. (1c) quantifies the
cost in entropy density associated with diffusive currents.

B. Field equations

Out of the 4ð1þ lÞ equations needed to close the system,
4þ l are the balance laws for energy, momentum, and
particles:

∇μTμν ¼ 0; ð3aÞ

∇μN
μ
A ¼ RA; ð3bÞ
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where RAðε; nBÞ are some reaction rates. The remaining
field equations are the equations of motion for Vμ

A, which
should be constructed to guarantee that ∇μSμ ≥ 0 [32]
holds exactly. In order to keep the following stability
analysis as general as possible, we will not construct
explicit evolution equations. Any system of equations that
fulfills the second law of thermodynamics is permitted. An
example of such a system is discussed in Appendix B.

III. THE GIBBS STABILITY CRITERION

Our stability analysis is grounded on the Gibbs stability
criterion [26,33,34]. The main idea is that, if (i) the second
law of thermodynamics holds on all possible solutions of
the fluid equations, i.e.,∇μSμ ≥ 0 always holds, and (ii) the
state of thermodynamic equilibrium maximizes the total
entropy for fixed values of the conserved charges, then the
total entropy is a Lyapunov function [35], and the equi-
librium state is Lyapunov stable. If the equilibrium state
maximizes the entropy in all reference frames, then the
theory is linearly causal [36], covariantly stable, i.e, stable
in all reference frames [37,38], and symmetric hyperbolic
[30,39,40]. In this section, we briefly review this method
and derive the so-called information current of the multi-
component Israel-Stewart theory in the inviscid limit.

A. Extremum principle for open systems

Consider an isolated system, comprised of our fluid (1)
in weak contact with an environment, in such a way that the
total entropy is the sum of the entropies of the parts,
Stot ¼ Sþ SE, and similarly for all conserved charges
QI

tot ¼ QI þQI
E. Here, I is an index that counts the

conserved charges, such as the energy and baryon number.
These charges are fluxes of the relevant Noether currents
across a chosen Cauchy surface. Quantities with the label
“E” refer to the environment, while quantities with no label
refer to the fluid. Assume that the environment is always in
thermodynamic equilibrium within itself, but not neces-
sarily with the fluid, so that SE ¼ SEðQJ

EÞ always holds.
Then, if the environment is much larger than the fluid, i.e.
jQIj ≪ jQI

totj, we can expand the total entropy as follows
(cf. Ch. 7 of Ref. [41]):

Stot ¼ Sþ SEðQI
tot −QIÞ

≈ Sþ SEðQI
totÞ −

∂SEðQJ
totÞ

∂QI
E

QI; ð4Þ

where Einstein summation is assumed for the charge
index I. Higher order terms converge to zero in the limit
QI=QI

E → 0. The second law of thermodynamics requires
Stot to be nondecreasing in time. But since the total charges
are conserved, SEðQI

totÞ is constant in time, so that the
function Φ ¼ Sþ α⋆I Q

I is also nondecreasing in time,
where the numbers

α⋆I ≔ −
∂SEðQJ

totÞ
∂QI

E
ð5Þ

remain constant, being functions of the total conserved
charges. As a consequence, the fluid evolves until it reaches
the state that maximizesΦ for the given values of α⋆I , which
are fixed by the initial condition. Such a state is the state of
thermodynamic equilibrium identified by specific values
of α⋆I .
The function Φ ¼ Sþ α⋆I Q

I can be expressed as a
hydrodynamic integral. In particular, if JIμ are the con-
served current four-vectors associated with the charges QI ,
and Σ is an arbitrary Cauchy surface, then Φ ¼ R

Σ ϕ
μdΣμ,

where dΣμ is the standard-oriented surface element (see
Ref. [42], Box 5.2), and

ϕμ ¼ Sμ þ α⋆I J
Iμ: ð6Þ

In our case, there are two types of conserved currents [43].
The first type comprises net charge currents arising from
internal symmetries of the underlying theory that are
conserved in all chemical reactions. Such currents have
form qIANμ

A, where q
IA is the conserved quantum number I

carried by the species A. The other currents arise from
spacetime symmetries. In fact, if Kh

ν are Killing vectors,
then Kh

νTνμ is a conserved current (h is an index that counts
the Killing vectors). The associated charges are, e.g., the
energy, the linear momentum, and the angular momentum.
Introducing the equilibrium fugacities αA⋆ ¼ α⋆I q

IA, where I
runs only over the “chemical” charges, and the “combined”
Killing vector β⋆ν ¼ α⋆hK

h
ν, Eq. (6) becomes

ϕμ ¼ Sμ þ αA⋆N
μ
A þ β⋆ν Tνμ: ð7Þ

B. Information current of the multicomponent
Israel-Stewart

Let us now turn to the derivation of the information
current of the multicomponent Israel-Stewart theory intro-
duced in the previous section. In order to find the state that
maximizes Φ, we introduce a smooth one-parameter family
φiðλÞ of solutions to the fluid equations, in a fixed back-
ground metric, where λ ¼ 0 is the equilibrium state. Then,
wewriteΦ as a function of λ, and we demand that Φ̇ð0Þ ¼ 0

and Φ̈ð0Þ ≤ 0 (with ḟ ¼ df=dλ). Since the equilibrium state
maximizes Φ at constant α⋆I , the parameters αA⋆ and β⋆ν do
not depend on λ (the “⋆” helps us keep track of this
distinction). Then, we have

ϕμ ¼ ½sþ αA⋆nA þ β⋆ν uνðεþ PÞ −R�uμ
þ ðαA⋆ − αAÞVμ

A þ Pβ⋆μ; ð8aÞ
ϕ̇μ ¼ ½sþ αA⋆nA þ β⋆ν uνðεþ PÞ −R�u̇μ

þ ½ṡþ αA⋆ṅA þ β⋆ν u̇νðεþ PÞ þ β⋆ν uνðε̇þ ṖÞ − Ṙ�uμ
þ ðαA⋆ − αAÞV̇μ

A − α̇AVμ
A þ Ṗβ⋆μ; ð8bÞ
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ϕ̈μ ¼ ½sþ αA⋆nA þ β⋆ν uνðεþ PÞ −R�üμ
þ ½̈sþ αA⋆n̈A þ β⋆ν üνðεþ PÞ þ β⋆ν uνð̈εþ P̈Þ
þ 2β⋆ν u̇νðε̇þ ṖÞ − R̈�uμ
þ 2½ṡþ αA⋆ṅA þ β⋆ν u̇νðεþ PÞ þ β⋆ν uνðε̇þ ṖÞ − Ṙ�u̇μ
þ ðαA⋆ − αAÞV̈μ

A − α̈AVμ
A − 2α̇AV̇μ

A þ P̈β⋆μ; ð8cÞ

where we have introduced the compact notations αA ≔
μA=T and R ≔ bABVν

AVBν=2T. The stationary point
requirement is that Φ̇ð0Þ ¼ R

Σ ϕ̇
μð0ÞdΣμ must vanish for

all Cauchy surfaces Σ and for all families φiðλÞ. This leads
to the well-known equilibrium conditions,

μA

T
¼ qIAα⋆I ;

uμ
T

¼ β⋆μ ; Vμ
A ¼ 0: ð9Þ

The first condition entails both diffusive and chemical
equilibrium, the second one entails thermal and mechanical
equilibrium, and the third one is simply the requirement that
no irreversible flux can exist in equilibrium. Plugging
Eq. (9) into Eq. (8c) and using Eq. (2), we obtain

Tϕ̈μð0Þ ¼ ½T ̈sþ μAn̈A þ uνüνðεþ PÞ − ̈ε − TR̈�uμ
− 2Ṗu̇μ − 2Tα̇AV̇μ

A: ð10Þ

In order for Φ̈ð0Þ to be positive for all Cauchy surfaces Σ
and for all nonvanishing perturbations φ̇ið0Þ, the informa-
tion current Eμ ¼ −ϕ̈μð0Þ=2, as is proved in the next
subsection, must be a future-directed nonspacelike vector.
In order to find Eμ, we first note that

TR̈ð0Þ ¼ bABV̇ν
AV̇Bν; uνüν ¼ −u̇νu̇ν;

̈ε ¼ T ̈sþ μAn̈A þ Ṫṡþ μ̇AṅA; ð11Þ

which follow respectively from Eq. (9), uνuν ¼ −1, and
Eq. (2). Introducing the notation δφi ¼ φ̇ið0Þ, and using
these identities, we arrive at the formula for the information
current:

TEμ ¼ ½δTδsþ δμAδnAþðεþPÞδuνδuνþbABδVν
AδVBν�

uμ

2

þðsδTþnAδμAÞδuμþTδ

�
μA

T

�
δVμ

A: ð12Þ

In Appendix C, we show that, for fluids with a single
chemical species, i.e., l ¼ 1, this information current
reduces to the “energy current” of Olson [22] in the inviscid
limit. Hence, when l ¼ 1, the stability analysis in this work
automatically reduces to Olson’s analysis.

C. Proof that stability follows
from the extremum principle

For completeness, let us review the proof that ifEμ is future
directed nonspacelike, the equilibriumstate is stable [26]. Let
us first note that, since α⋆I are constant numbers, and JIμ are
conserved currents, then (6) implies ∇μϕ

μ ¼ ∇μSμ ≥ 0.
Hence, by application of the Gauss theorem, we conclude
that ΦðλÞ is nondecreasing in time, and Φð0Þ is constant
(being the equilibrium Massieu function [44]). Then,
using ΦðλÞ ¼ Φð0Þ þ 1

2
λ2Φ̈ð0Þ þOðλ3Þ, and recalling that

Eμ ¼ −ϕ̈=2, we find that the functional

E ¼
Z
Σ
EμdΣμ ¼ lim

λ→0

Φð0Þ −ΦðλÞ
λ2

ð13Þ

is nonincreasing in time. But if Eμ is future directed non-
spacelike, E plays the role of a square integral norm of the
perturbation fields δφi. Hence, the equilibrium state is
linearly stable [45], in the sense that the linear perturbation
fields δφi evolve keeping the norm E between zero and its
initial value.

IV. STABILITY CONDITIONS

Now that we have the information current Eμ, we can
derive the stability conditions for multicomponent Israel-
Stewart from the requirement that Eμ must be future
directed nonspacelike. We will first study the fluid and
diffusive sectors independently. Then, using the classifica-
tion of Ref. [30], we will find the change of variables that
transforms the information current (12) to the one of
Carter’s multifluid theory. This will enable us to obtain
the general stability conditions of the multicomponent
Israel-Stewart theory. Finally, we will show that our results
in the single component limit reproduce the existing results
of Olson [46] in the inviscid limit. In the following, we
assume T > 0 (see Sec. 10 [47] for the justification).

A. Stability of the fluid sector

If we impose δVν
A ¼ 0 into Eq. (12), then Eμ reduces to

the information current of a perfect-fluid mixture, whose
stability conditions are well known, and entail, among other
things, the following constraints [24,26,36]:

εþ P > 0; ð14aÞ

c2s ¼
∂P
∂ε

����
nA=s

∈ ð0; 1� ð14bÞ

cv ¼ T
∂s
∂T

����
nA

> 0: ð14cÞ

The first condition guarantees stability against spontaneous
acceleration, or, in other words, enforces positive inertia.
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Equation (14b) ensures the subluminality of adiabatic
sound waves and positive adiabatic compressibility, while
Eq. (14c) assures stability to heat exchanges.

B. Stability of the diffusive sector

We can obtain other stability conditions by focusing on
perturbations that preserve both mechanical and thermal
equilibrium, i.e., those with δuν ¼ δT ¼ 0. Under these
assumptions, the information current (12) reduces to

TEμ ¼
�
∂μA

∂nB

����
T
δnAδnBþbABδVν

AδVBν

�
uμ

2
þ ∂μA

∂nB

����
T
δVμ

AδnB;

ð15Þ

where we have used δμA ¼ δnBð∂μA=∂nBÞT . This informa-
tion current has the same structure as Carter’s multifluid
theory information current (cf. Eq. (42) of [43]). Hence, the
resulting stability conditions are analogous: the three l × l
symmetric matrices

∂μA

∂nB

����
T
; bAB; bAB −

∂μA

∂nB

����
T
; ð16Þ

are required to be positive definite for stability (actually, the
third matrix is allowed to be semidefinite). The proof is
summarized in Appendix D. From a physical perspective,
we can interpret these three stability conditions as stability
to particle diffusion, stability to the spontaneous flux
formation, and a causality bound on diffusion, respectively.
Such a causality bound is the multicomponent generaliza-
tion of Eq. (77) of Ref. [48].

C. Systematic derivation of all stability conditions

In Secs. IVA and IV B, we have provided some “easy to
check” necessary conditions for stability. Now it is time to
find the complete set of necessary and sufficient conditions.
This seems to be a formidable task for an arbitrary l,
considering that the information current (12) is rather
complicated. Luckily, there is a useful trick, arising from
the fact that the connection between our information
current and that of Carter’s theory is not accidental. In
fact, according to the classification introduced in Ref. [30],
the multicomponent Israel-Stewart theory belongs to the
ðl; l; 0Þ − ð≤l; 0; 0Þ universality class, whose representative
is Carter’s multifluid theory [17–19,49–51]. Hence, there
must exist a change of variables that transforms the
information current (12) into that of Carter’s theory, whose
stability conditions are known [43]. Such a change of
variables is

δjμs ¼ sδuμ −
μA

T
δVμ

A; ð17aÞ

δjμA ¼ nAδuμ þ δVμ
A; ð17bÞ

and its inverse is

δuμ ¼ Tδjμs þ μAδjμA
εþ P

; ð18aÞ

δVμ
A ¼ −

TnAδj
μ
s

εþ P
þ
�
δBA −

nAμB

εþ P

�
δjμB: ð18bÞ

Here, δjμs and δjμA are the linear perturbations to the fluxes
of entropy and particles, as measured in the equilibrium
local rest frame. Note that uμδj

μ
s ¼ uμδj

μ
A ¼ 0. Introducing

the “extended” chemical indices X; Y ∈ fs; 1;…; lg, which
treat the entropy as a “zeroth chemical species” (such that
ns ¼ s and μs ¼ T) we can write δμX ¼ εXYδnY , where εXY

is a symmetric ðlþ 1Þ × ðlþ 1Þ matrix that can be written
as a block matrix as

εXY ¼ ∂μX

∂nY
¼

2
664
∂T
∂s

∂μ
∂s

∂T
∂n

∂μ
∂n

3
775: ð19Þ

Here, n ¼ ½n1;…; nl�T and μ ¼ ½μ1;…; μl�. Consequently,
Eq. (12) can be rewritten in the form

TEμ ¼ ½εXYδnXδnY þKXYδjνXδjYν�
uμ

2
þ εXYδjμXδnY; ð20Þ

where KXY , which is also a symmetric ðlþ 1Þ × ðlþ 1Þ
matrix, can be written as

KXY ¼ 1

h2

�
T μ

−Tn hI−nμ

�T�h 0

0 b

��
T μ

−Tn hI−nμ

�
: ð21Þ

Here h ¼ εþ P, b ¼ ½bAB�, and I is the l × l identity
matrix. Note that Eq. (21) is a congruence transformation
of the matrix in the middle, arising from Eq. (18).
Equation (20) is formally identical to the information

current of Carter’s theory [see [43] Eq. (42)], and, therefore,
it leads to the same stability conditions. In particular,
the fluid is stable if and only if the matrices εXY , KXY ,
and KXY − εXY are positive definite. Positive definiteness
of εXY guarantees thermodynamic stability in the usual
“textbook sense” (see, e.g., Sec. 21 of Ref. [47] or Ch. 12 of
Ref. [33]), positive definiteness of KXY guarantees that all
chemical components have positive kinetic energy, and pos-
itive (semi-)definiteness of KXY − εXY enforces causality.

D. A concrete example

Let us apply the results of the previous subsection to the
case l ¼ 1, which has already been analyzed elsewhere
[22,24,46]. In this way, we can corroborate our findings by
comparing them with established literature. The matrix εXY

is 2 × 2 now, and its first diagonal entry is T=cv, which is
automatically positive if condition (14) holds. Hence, we
only need to compute the determinant of εXY :
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det½εXY � ¼ ∂ðT; μÞ
∂ðs; nÞ ¼ ∂ðT; μÞ

∂ðT; nÞ
∂ðT; nÞ
∂ðs; nÞ ¼ ∂μ

∂n

����
T

∂T
∂s

����
n
; ð22Þ

which is positive if both conditions (14) and (16) are
fulfilled. Consequently, conditions (14) and (16) guarantee
that εXY is positive definite. Furthermore, one can verify
that KXY is positive definite if and only if εþ P and b are
positive, which are also ensured if conditions (14) and (16)
are satisfied. Thus, we are left only with the problem of
determining the causality constraints arising from the
positive definiteness of KXY − εXY . Rather than studying
this matrix directly, it is more convenient to first perform
the following congruence transformation, which diagonal-
izes K preserving positive definiteness:

�
s −μ=T
n 1

�T
½KXY − εXY �

�
s −μ=T
n 1

�

¼

2
664
hð1 − c2sÞ −nT

∂α

∂n

���
s

−nT
∂α

∂n

���
s

b − T
∂α

∂n

���
ε

3
775; ð23Þ

where we have used in particular

∂X
∂n

����
s
¼ ∂X

∂n

����
s
− s

∂X
∂s

����
n
;

∂P
∂n

����
s
¼ h

n
∂P
∂ε

����
s
;

T
∂α

∂n

����
s
− μ

∂α

∂s

����
n
¼ T

∂α

∂n

����
ε

; ð24Þ

with X∈ fα; Pg, and where we recall that h ¼ εþ P,
α ¼ μ=T, and we have defined s ¼ s=n (the specific
entropy). The positive definiteness of the first diagonal
entry implies c2s < 1, which agrees with condition (14). The
positivity of the second diagonal entry leads to a more
stringent version of the positivity condition on the third
matrix in (16). In particular, we have that

b > T
∂α

∂n

����
ε

¼ ∂μ

∂n

����
T
þ T3

∂T
∂ε

����
n

�
∂α

∂T

����
n

�
2

≥
∂μ

∂n

����
T
; ð25Þ

where we have used Eqs. (82) and (97) of Ref. [24], namely

∂T
∂n

����
ε

¼ T2
∂α

∂ε

����
n
;

∂T
∂ε

����
n
≥ 0: ð26Þ

However, the most stringent causality condition comes
from the positivity of the determinant of the matrix (23).
With the aid of the identities

nT
∂α

∂n

����
s
¼ hc2s

n
−
h
T
∂T
∂n

����
s
; ð27aÞ

nT
∂α

∂n

����
ε

¼ hc2s
n

−
2h
T

∂T
∂n

����
s
þ h2

n2T2

∂T
∂s

����
n
; ð27bÞ

we obtain the following causality constraint:

hð1−c2sÞ
�
n2bþh

h2
−

1

nT2

∂T
∂s

����
n

�
−
�
1−

n
T
∂T
∂n

����
s

�
2

> 0; ð28Þ

which is precisely the causality condition of the inviscid
Israel-Stewart reported by Olson [46] (seeΩ3), expressed in
the Landau frame through Eq. (88) of Ref. [40]. This
completes the stability analysis for the l ¼ 1 case.

V. BACKGROUND ELECTROMAGNETIC FIELDS

It is finally time to study the effect of electromagnetic
fields on fluid stability. We call the “Israel-Stewart-
Maxwell model” a fluid whose constitutive relations are
exactly the same as introduced in Sec. II A, but the energy-
momentum conservation (3a) is replaced by the Lorentz
force,

∇μTμν ¼ Fν
μJeμ ¼ qeAFν

μN
μ
A; ð29Þ

where Fμν is the Faraday tensor, and qeA is the electric
charge of the particle of type A (the electric current Jeμ ¼
qeANμ

A is one of the conserved currents JIμ introduced in
Sec. III A). A fluid of this kind is minimally coupled to
electromagnetic fields. Namely, it is neither polarizable nor
magnetizable, and, therefore, there are no electromagnetic
corrections to the constitutive relations (1), and the Israel-
Stewart part communicates with the Maxwell part solely
through (29) and the equations of motion of Vμ

A. More
general cases are left for future investigation.
In this section, we focus on the case where electromag-

netic fields are externally generated and can be treated as
fixed background fields. This approach is only applicable
to weakly charged fluids (Jeμ → 0) close to strong electro-
magnetic sources (Fαβ

ext → ∞) so that the Lorentz force is a
“0 ×∞” indeterminate form with a finite value, but the
fluid does not generate electromagnetic fields of its own.

A. Conditions for the existence of equilibrium

Not all background fieldsFαβ allow an equilibrium state to
form. An external source that fluctuates will prevent the fluid
from relaxing to a stationary state. Hence, it is reasonable to
demand that Fαβ be invariant under the symmetry group
generated by the thermal Killing vector β⋆μ in equilibrium,
i.e., Lβ⋆F ¼ 0, where F is the Faraday two-form. Using
Cartan’s magic formula Lβ⋆F ¼ β⋆ · dFþ dðβ⋆ · FÞ (see,
e.g., [52]), where d is the exterior derivative, and recalling
that dF ¼ 0, we find dðβ⋆ · FÞ ¼ 0. Consequently,

β⋆ν Fν
μ ¼ −∇μψ

⋆; ð30Þ

for some externally fixed background scalar potential ψ⋆.
Note that, since Fαβ is skew symmetric, we have
β⋆μ∇μψ

⋆ ¼ 0, meaning that ψ⋆ is itself stationary in the
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equilibrium rest frame. Under assumption (30), conservation
of energy is restored, but one needs to add the “electrostatic
potential contribution.” In particular, if we contract Eq. (29)
with β⋆ν , and use Eq. (30), together with the conservation of
the electric current (∇μJeμ ¼ 0), and the Killing condition
∇ðμβ⋆νÞ ¼ 0, we obtain the following conservation law:

∇μðβ⋆ν Tνμ þ ψ⋆JeμÞ ¼ 0: ð31Þ

The vector field in the brackets can be seen as the energy
current of the system, which accounts for the familiar term
“electric potential × charge” in electrostatics. Note that, in
Eq. (30), the vector β⋆ν Fνμ is proportional to the electric field
as measured in the equilibrium local rest frame of the fluid.
Hence, if we setψ⋆ ¼ 0, we obtain a puremagnetic field and
no electric field in the rest frame. In this case, the conserved
energy current in (31) reduces to the same energy current we
have for vanishing electromagnetic fields.

B. Equilibrium states and their stability

If we retrace, in the presence of background electro-
magnetic fields, analogous steps as in Sec. III, still
assuming that ∇μSμ ≥ 0, we see that the result is almost
the same. The only difference appears in the steps between
equations (6) and (7): we need to replace the current β⋆ν Tνμ,
which is no longer conserved, with β⋆ν Tνμ þ ψ⋆Jeμ. Hence,
the current ϕμ, as defined in (6), now explicitly reads as

ϕμ ¼ Sμ þ ðα⋆I qIA þ ψ⋆qeAÞNμ
A þ β⋆ν Tνμ: ð32Þ

Interestingly, this current can still be rewritten in the form
(7), with the difference that now αA⋆ ¼ α⋆I q

IA þ ψ⋆qeA. But
then, if we repeat the procedure of Sec. III B, keeping ψ⋆

independent of λ (ψ⋆ being a background quantity), we
obtain the same information current, and therefore the same
stability conditions. In particular, the analysis of Sec. IV is
not altered. The only difference is that now, in Eq. (9), the
condition of equilibrium against diffusion needs to be
modified as

μA

T
¼ α⋆I q

IA þ ψ⋆qeA: ð33Þ

Now, if we focus on individual spacetime events, nothing
has changed since we can “reabsorb” the electromagnetic
correction into the fugacity of the electric charge (namely
α⋆e þ ψ⋆ → ᾱ⋆e ). This implies that chemical equilibrium
still holds. There is, however, a crucial difference compared
to Eq. (9): while α⋆I are constants [cf. Eq. (5)], ψ⋆ can
instead exhibit gradients. Indeed, Eq. (33) tells us that
the fluid tends to stratify to counterbalance the electric
force:

∇μðμA=TÞ þ qeAβ⋆ν Fν
μ ¼ 0: ð34Þ

Nevertheless, the stability conditions for these equilibrium
states are unchanged. In particular, the ð1þ lÞ × ð1þ lÞ
symmetric matrices εXY , KXY , and KXY − εXY must be
positive definite.

VI. DYNAMICAL ELECTROMAGNETIC FIELDS

We can finally study the “complete” Israel-Stewart-
Maxwell model, where the Faraday tensor Fμν is a dynamic
degree of freedom. Now, Eq. (29) still holds, but the system
regains a conserved stress-energy tensor Tμν

tot ¼ Tμν þ Tμν
em,

where Tμν is the fluid stress-energy tensor given in Eq. (1a),
and

Tμν
em ¼ Fμ

αFνα −
1

4
gμνFαβFαβ ð35Þ

is Maxwell’s stress-energy tensor, which keeps the vacuum
form since the medium is not polarizable or magnetizable.
Note that, since the inhomogenous Maxwell equations read
as ∇νFμν ¼ Jeμ [53], we have ∇μT

μν
em ¼ −Fν

μJeμ, and
using Eq. (29), we indeed recover the conservation law
∇μT

μν
tot ¼ 0. The constitutive relations for the entropy

current and the particle currents still are given by
Eq. (1), unaffected by electromagnetic fields.

A. Some preliminaries

The analysis of Sec. III A also holds for the conglom-
erate Israel-Stewart-Maxwell fluid. In this case, the thermo-
dynamic potential Φ ¼ Sþ α⋆I Q

I splits as the sum of a
matter part and an electromagnetic part, Φ ¼ Φmat þΦem,
where the first is the flux of the current (7) (with
αA⋆ ¼ α⋆I q

IA), while the second is the flux of the current

ϕμ
em ¼ β⋆ν T

νμ
em: ð36Þ

It is well known that the Maxwell stress-energy tensor
obeys the dominant energy condition [54], so that β⋆ν T

νμ
em is

a past-directed nonspacelike vector. Consequently, Φem ¼R
Σ ϕ

μ
emdΣμ ≤ 0, being zero only for Fμν ¼ 0.

Given that Φmat depends only on matter fields, and Φem
depends only on electromagnetic fields, intuition may
suggest that the maximum of Φ can be obtained by simply
maximizing Φmat and Φem separately. However, this would
be a mistake. The problem is that we need to maximize
Φmat þΦem within the space of all the physically permis-
sible field configurations on Σ, i.e., only those field
configurations that satisfy the Maxwell equations,

ϵμναβ∇νFαβ ¼ 0; ∇νFμν ¼ Jeμ: ð37Þ

For example, calling nν the unit normal to the hypersurface
Σ, we have the following constraint:

nνð∇μFμν þ JeνÞ ¼ 0: ð38Þ
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We note that, due to the antisymmetry of Fμν, this is not an
equation of motion. It is a differential equation that relates
Fμν and Jeν across the Cauchy surface Σ (it is the equation
“divergence of electric field” ¼ “charge density”). Hence,
the potential Φmat þΦem needs to be maximized within a
constrained manifold of states on Σ. This makes the
stability analysis more delicate, but it can still be carried
out rigorously, as we show below.

B. Electromagnetic contributions
to the information current

Following the same steps as in Sec. III B, let us differ-
entiate ϕμ

em twice with respect to λ:

ϕμ
em ¼ β⋆ν F

μ
αFνα −

1

4
FαβFαββ

⋆μ; ð39aÞ

ϕ̇μ
em ¼ β⋆ν Ḟ

μ
αFνα þ β⋆ν F

μ
αḞνα −

1

2
FαβḞαββ

⋆μ; ð39bÞ

ϕ̈μ
em ¼ β⋆ν F̈

μ
αFνα þ β⋆ν F

μ
αF̈να −

1

2
FαβF̈αββ

⋆μ þ 2β⋆ν Ḟ
μ
αḞνα

−
1

2
ḞαβḞαββ

⋆μ: ð39cÞ

Using the Maxwell equations (37) and Fμν¼∇μAν−∇νAμ,
where Aμ is the electromagnetic four-potential, as is shown
in Appendix E, we rewrite ϕ̇μ

em and ϕ̈μ
em as follows:

ϕ̇μ
em ¼ β⋆ν AνJ̇eμ þ 2Ȧνβ

⋆½νJeμ� þ ḞμαðLβ⋆AÞα
− ȦαðLβ⋆FÞμα þ∇αZ

½αμ�
ð1Þ ; ð40aÞ

ϕ̈μ
em ¼ β⋆ν AνJ̈eμþ 2Äνβ

⋆½νJeμ� þ F̈μαðLβ⋆AÞα− ÄαðLβ⋆FÞμα

þ∇αZ
½αμ�
ð2Þ þ 2β⋆ν Ḟ

μ
αḞνα −

1

2
ḞαβḞαββ

⋆μ: ð40bÞ

Here, ∇αZ
½αμ�
ðiÞ are some residual terms [cf. Eqs. (E4) and

(E5)] which, when integrated over the Cauchy surface, can
be transformed (by Gauss’ theorem [55]) into boundary

integrals,
R
Σ ∇αZ

½αμ�
ðiÞ dΣμ ¼ 1

2

H
∂Σ Z

½αμ�
ðiÞ dSμα, which vanish if

the fields decay fast enough at infinity. Hence, we can
ignore these terms. Consequently, for Φ̇ to vanish, one must
have Lβ⋆F ¼ 0 in equilibrium. If we choose a gauge such
that Lβ⋆A ¼ 0 (in equilibrium), we can then combine
Eq. (40) with Eq. (8), to obtain the following equilibrium
conditions:

μA

T
¼ qIAα⋆I þqeAβ⋆ν Aν;

uμ
T
¼ β⋆μ ; Vμ

A ¼ 0; ð41Þ

which are in perfect agreement with statistical mechanics
[56]. In a different gauge, Ãα ¼ Aα þ∇αχ, we have
ðLβ⋆ ÃÞα ¼ ∇αðβ⋆ν∇νχÞ. As a result, the two terms

β⋆ν Ã
νJ̇eμ and ḞμαðLβ⋆ÃÞα in Eq. (40a) combine together

to give β⋆ν ðÃν −∇νχÞJ̇eμ þ∇αðḞμαβ⋆ν∇νχÞ. The pure
divergence can be reabsorbed into ∇αZ

αμ
ð1Þ, and we can

ignore it. Then, the first equation of (41) becomes the
gauge-invariant expression

μA

T
¼ qIAα⋆I þ qeAðβ⋆ν Ãν þ ΛÞ; ð42Þ

where we have defined Λ ¼ −β⋆ν∇νχ. This formula gen-
eralizes Eq. (2.3) of Ref. [57] to multicomponent systems.
Finally, the information current naturally splits as the

sum of Eq. (12) and

TEμ
em ¼ −uν

�
δFμ

αδFνα −
1

4
gμνδFαβδFαβ

�
: ð43Þ

But the term in the brackets is just the Maxwell stress-
energy tensor with Fμν replaced by δFμν. Hence, the
dominant energy condition still applies, meaning that
Eμ
em is future directed nonspacelike by construction. In

conclusion, the same stability analysis we carried out in
Sec. IV also applies to the full Israel-Stewart-Maxwell
model. In other words, all equilibrium states (also charged
equilibria) are stable provided that the matrices εXY , KXY ,
and KXY − εXY are positive definite. This completes our
analysis.

VII. CONCLUSIONS

In this work, we investigated the stability of diffusive
inviscid multicomponent Israel-Stewart hydrodynamics
using the Gibbs stability criterion. To this end, applying
results of Ref. [30], we utilized the formal equivalence
between the information current of multicomponent Israel-
Stewart theory and that of Carter’s multifluid theory. By
means of an appropriate variable transformation, we could
map the already known stability criteria of Carter’s theory
[43] into the stability criteria of multicomponent Israel-
Stewart hydrodynamics. We also showed that our results
reproduce the results of Olson [22] in the single compo-
nent case.
Then, we extended our analysis to what we call the

“multicomponent Israel-Stewart-Maxwell theory,” i.e., the
Israel-Stewart theory in the presence of electromagnetic
fields. We first considered background electromagnetic
fields and found that the thermodynamic potential is
modified to account for an electrostatic potential correction.
Such a modification can be reabsorbed into the definition of
the fugacities, which then develop gradients to counteract
the electric force. Interestingly, this does not affect the final
formula of the information current, so the stability criteria
of multicomponent Israel-Stewart still hold (unchanged) in
the presence of background electromagnetic fields.
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Finally, we analyzed the Israel-Stewart-Maxwell theory
with dynamic electromagnetic fields. We showed that, for
an equilibrium state to exist, the gauge field’s comoving
temporal component contributes to the fugacities. This is
a multicomponent extension of well-known statistical
mechanics results, which led us to our main finding: the
electromagnetic part of the information current is stable and
causal by construction. Consequently, the stability criteria
of diffusive inviscid Israel-Stewart hydrodynamics auto-
matically extend to the Israel-Stewart-Maxwell model,
namely to diffusive resistive inviscid Israel-Stewart
magnetohydrodynamics.
The stability criteria derived in this work are valid for an

arbitrary number of chemical species, with or without
chemical reactions. Under such criteria, we could guarantee
the stability of all thermodynamic equilibrium states,
including rotating equilibria, globally charged equilibria,
and equilibria in the presence of background gravitational
fields. Furthermore, we could automatically enforce cau-
sality [36–38], and even symmetric hyperbolicity (if the
equilibrium state is homogeneous [30]).
In this work, we have neglected the effects of bulk and

shear viscosities. However, our main finding that the
electromagnetic sector is stable will hold also in that case.
Hence, the stability criteria of diffusive viscid Israel-
Stewart hydrodynamics automatically extend to the corre-
sponding formulation of magnetohydrodynamics. Finding
the stability criteria of such a theory in the multicomponent
case is a complicated task that, if doable, is a natural
extension of the present work. We have also assumed that
the medium is nonpolarizable and nonmagnetizable.
Assessing the stability of polarizable and magnetizable
media will be a worthwhile extension of the current work.
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APPENDIX A: AN EXAMPLE
OF BASIS TRANSFORMATION

Taking inspiration from the physics of heavy-ion colli-
sions (see Ref. [16] and references therein), let us consider
(as a simple example) a fluid comprised of three flavors of
quarks. Then, we can work in the so-called flavor basis, for
which A ¼ fu; d; sg, referring to respectively “up,”
“down,” and “strange” quarks. Consequently, the electric

charge carried by each chemical species is qeA ¼
½2=3;−1=3;−1=3�T . This system can be equivalently
described in the so-called BQS (namely “baryon,”
“electric,” and “strangeness”) basis, defined as follows:
nB ¼ ðnu þ nd þ nsÞ=3, nQ ¼ 2nu=3 − ðnd þ nsÞ=3, and
nS ¼ −ns. These relations can be compactly expressed
using chemical index notation [18] as

ñA ¼ LB
AnB; ðA1Þ

where

L ¼

2
64
1=3 2=3 0

1=3 −1=3 0

1=3 −1=3 −1

3
75: ðA2Þ

The chemical potentials μA transform with the inverse of L,
namely

μ̃A ¼ ðL−1ÞABμB; ðA3Þ

where

L−1 ¼

2
64
1 2 0

1 −1 0

0 1 −1

3
75: ðA4Þ

To prove this, we start from Eq. (2a), expressed in the new
chemical basis, and perform the following manipulations to
get to the old basis:

dε ¼ Tdsþ μ̃AdñA ¼ Tdsþ μ̃AdðLB
AnBÞ

¼ Tdsþ ðμ̃ALB
AÞdnB ¼ Tdsþ μBdnB; ðA5Þ

which implies μB ¼ μ̃ALB
A, or, equivalently, Eq. (A3).

Note that, for this procedure to work, the matrix elements
LB

A need to be constants.
Other quantities transform with L−1 for each upper

index and with L for each lower index, just like in usual
linear algebra. For example, q̃e ¼ L−1 · qe ¼ ½0; 1; 0�T , as
expected. Also, this transformation law can be proved
explicitly:

Jeμ ¼ q̃eAÑμ
A ¼ q̃eALB

AN
μ
B ¼ qeANμ

A

⇒ q̃eALB
A ¼ qeA: ðA6Þ

APPENDIX B: SIMPLE EQUATIONS OF MOTION

In this Appendix, we work out a simple equation of
motion for the diffusion currents in the presence of
electromagnetic fields from the second law of thermody-
namics. For simplicity, here we assume that there are no
chemical reactions, namely RA ¼ 0 in Eq. (3b) so that all
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particle currents are conserved. Then, taking the divergence
of entropy current (1c), and using Eq. (29), we find

T∇μSμ ¼ Vμ
A

�
qeAEμ − T∇μα

A − bABuν∇νVBμ

− VBμT∇ν

�
bABuν

2T

��
; ðB1Þ

where Eμ ¼ Fμνuν is the electric four-vector. Now we
assume

T∇μSμ ¼ TVμ
Aðκ−1ÞABVBμ; ðB2Þ

where ðκ−1ÞAB is a positive definite, and, subsequently, the
second law is guaranteed. We are then naturally led to
postulate

qeAEμ − T∇hμiαA − bABuν∇νVBhμi − TVBμ∇ν

�
bABuν

2T

�

¼ Tðκ−1ÞABVBμ; ðB3Þ

where ðκ−1ÞAB is now recognized as the inverse of the
diffusion matrix κAB, which is symmetric, by the Onsager
principle, in addition to being positive definite. Neglecting
the last term on the left-hand side of Eq. (B3), which is of
higher order1 (and unphysical [58]), we obtain a system of
coupled Cattaneo-type equations,

τBAu
ν∇νVBhμi þ VAμ ¼ −κAB∇hμiαB þ σAEμ: ðB4Þ

Here

τBA ¼ κACbCB

T
; σA ¼ κACqeC

T
; ðB5Þ

where the latter equation is the multicomponent form of the
Wiedemann-Franz law.
We note that Eq. (B4) is the simplest, and not the most

general, equation of motion compatible with Eq. (B2). In
fact, adding some vectors MA

μ to either side of Eq. (B4),
where Vμ

AM
A
μ ¼ 0, does not affect Eq. (B2). Of course, one

should keep in mind that the added term must vanish in
equilibrium and be orthogonal to uμ. One possible term
of such form is ΩμνVν

Cb
AC, where Ωαβ ≡∇½αuβ� is the

fluid kinematic vorticity tensor. Adding this term to the
right-hand side of Eq. (B4) gives rise to the so-called
Coriolis term which is usually found in the literature [16].
Another possible term is proportional to FμνVν

Cb
AC. In a

conducting fluid, such a term gives rise to a term

proportional to ϵμναβBαVCβbAC added to Eq. (B4), where
Bμ ¼ 1

2
ϵμναβuνFαβ is the magnetic four-vector. Such a term,

in the single component limit, can be found for example in
Ref. [20]. These terms are consistent with the second law of
thermodynamics, but their nature and existence cannot be
deduced from it. Furthermore, they do not modify the
information current of the theory [which depends only on
the constitutive relations (1)] and, therefore, do not play any
role in the thermodynamic stability analysis discussed in
the main text.
For convenience, here we rewrite the stability condition

of the single component diffusive Israel-Stewart theory
[Eq. (28)] in terms of relaxation time τ and electric
conductivity σ,

τ >
hσ
qn2

�
1

1 − c2s

�
1 −

n
T

∂
2ε

∂n∂s
−
s
T
∂
2ε

∂s2

�
2

þ h
T2

∂
2ε

∂s2
− 1

�
:

ðB6Þ

APPENDIX C: RECOVERING OLSON’s
INFORMATION CURRENT

Calculating δTμν ¼ Ṫμνð0Þ for the stress-energy tensor of
Eq. (1a), contracting the result with δuν, and recalling that
uνδuν ¼ 0, we find

ðεþ PÞuμδuνδuν ¼ δTμ
νδuν − δPδuμ: ðC1Þ

Inserting this into Eq. (12) for l ¼ 1, we find

TEμ ¼ ½δTδsþ δμδnþ ðεþ PÞδuνδuν þ bδVνδVν�
uμ

2

þ δPδuμ þ Tδ

�
μ

T

�
δVμ

¼ δTμ
νδuν −

1

2
ðεþ PÞuμδuνδuν þ Tδ

�
μ

T

�
δVμ

þ ½δTδsþ δμδn� u
μ

2
þ 1

2
bδVνδVνuμ: ðC2Þ

This information current coincides with the one of Olson
[22] if one considers that

δTδsþ δμδn ¼ ∂ε

∂P

����
s

ðδPÞ2
εþ P

þ ∂ε

∂s

����
P

∂P
∂s

����
μ=T

ðδsÞ2
εþ P

; ðC3Þ

where s ¼ s=n is the specific entropy. For proof of this
identity, see the supplementary material of Ref. [26].

APPENDIX D: STABILITY CONDITIONS FROM
CARTER-TYPE INFORMATION CURRENTS

Consider a generic information current of the form
(X and Y are species indices)

1Neglecting this term formally breaks the second law of
thermodynamics as an exact inequality, which no longer holds
for arbitrary solutions. However, this term would anyway vanish
in the linear regime, meaning that it cannot affect linear stability.

L. GAVASSINO and MASOUD SHOKRI PHYS. REV. D 108, 096010 (2023)

096010-10



TEμ ¼ ½εXYδnXδnY þKXYδjνXδjYν�
uμ

2
þ εXYδjμXδnY; ðD1Þ

where the perturbation fields δφi ¼ fδnX; δjνXg are a set of
density-flux couples (with uμδj

μ
X ¼ 0), while εXY and KXY

are symmetric background matrices. We require Eμ to be
future directed timelike. The isotropy of the problem
implies that, if we work in the equilibrium local rest frame,
we only need to demand e ¼ 2TðE0 − E1Þ to be positive
for all nonvanishing perturbations. Explicitly,

e ¼ εXYδnXδnY þKXYδj1Xδj
1
Y − 2εXYδj1XδnY

þKXYδj2Xδj
2
Y þKXYδj3Xδj

3
Y

¼ εXYðδnX − δj1XÞðδnY − δj1YÞ þ ðKXY − εXYÞδj1Xδj1Y
þKXYδj2Xδj

2
Y þKXYδj3Xδj

3
Y: ðD2Þ

Clearly, e is positive definite if and only if the symmetric
matrices εXY , KXY , and KXY − εXY are positive definite.

APPENDIX E: DETAILS OF DERIVATION
OF EQ. (40)

To derive Eq. (40a), we study the three terms on the
right-hand side of (39b) one by one. The trick is to express
some selected Faraday tensors in terms of their vector
potentials and to rearrange the derivatives using the Leibniz
rule at the expense of collecting some perfect divergences.
In the first term, we substitute the third factor using
Fνα ¼ ∇νAα −∇αAν, and invoke the Leibniz rule for ∇α

to get

β⋆ν Ḟ
μ
αFνα ¼ ḞμαðLβ⋆AÞαþAνβ⋆ν J̇eμ−∇αðβ⋆ν AνḞμαÞ: ðE1Þ

In the second term, we substitute the third factor using
Ḟνα ¼ ∇νȦα −∇αȦν, and invoke the Leibniz rule for both
∇α and ∇ν to obtain

β⋆ν F
μ
αḞνα ¼ Ȧνβ

⋆νJeμ − Ȧαðβ⋆ν∇νFμα − Fμν∇νβ
⋆αÞ

þ∇αðβ⋆αFμνȦν − Ȧνβ⋆ν FμαÞ: ðE2Þ

Finally, we rewrite the third term in the form
−Fαβð∇αȦβÞβ⋆μ, and use the Leibniz rule for ∇α to get

−
1

2
FαβḞαββ

⋆μ ¼ −ȦνJeνβ⋆μ þ ȦαFνα∇νβ
⋆μ

−∇αðβ⋆μFανȦνÞ: ðE3Þ

Adding up all three pieces, we finally recover Eq. (40a),
with

Z½αμ�
ð1Þ ¼ −β⋆ν AνḞμα − β⋆ν ȦνFμα þ 2β⋆½αFμ�νȦν: ðE4Þ

The derivation of (40b) is completely analogous to the
above. The corresponding residual terms are given by

Z½αμ�
ð2Þ ¼ −β⋆ν AνF̈μα − β⋆ν ÄνFμα þ 2β⋆½αFμ�νÄν: ðE5Þ

Since Z½αμ�
ð1Þ and Z½αμ�

ð2Þ are antisymmetric, Gauss’s theorem

applies; see Poisson [55], Sec. 3.3.3, Eq. (3.3.3).

[1] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics,
edited by L. Rezzolla and O. Zanotti (Oxford University
Press, New York, 2013), ISBN-10: 0198528906; ISBN-13:
978-0198528906.

[2] G. S. Denicol and D. H. Rischke, Microscopic Foundations
of Relativistic Fluid Dynamics (Springer International Pub-
lishing AG, New York, 2022).

[3] N. Andersson and G. L. Comer, Living Rev. Relativity 10, 1
(2007).

[4] W. Florkowski, M. P. Heller, and M. Spaliński, Rep. Prog.
Phys. 81, 046001 (2018).

[5] M. J. Landry, J. Stat. Mech. (2022) 073205.
[6] G. S. Denicol, X.-G. Huang, E. Molnár, G. M. Monteiro, H.

Niemi, J. Noronha, D. H. Rischke, and Q. Wang, Phys.
Rev. D 98, 076009 (2018).

[7] L. Du and U. Heinz, Comput. Phys. Commun. 251, 107090
(2020).

[8] N. Andersson and G. L. Comer, Classical Quantum Gravity
18, 969 (2001).

[9] R. Prix, Phys. Rev. D 69, 043001 (2004).

[10] A. Sourie, N. Chamel, J. Novak, and M. Oertel, Mon. Not.
R. Astron. Soc. 464, 4641 (2017).

[11] L. Gavassino, M. Antonelli, P. M. Pizzochero, and B.
Haskell, Mon. Not. R. Astron. Soc. 494, 3562 (2020).

[12] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke,
Phys. Rep. 227, 321 (1993).

[13] A. Monnai and T. Hirano, Nucl. Phys. A847, 283 (2010).
[14] A. Monnai and T. Hirano, J. Phys. Conf. Ser. 270, 012042

(2011).
[15] A. Harutyunyan and A. Sedrakian, Symmetry 15, 494

(2023).
[16] J. A. Fotakis, E. Molnár, H. Niemi, C. Greiner, and D. H.

Rischke, Phys. Rev. D 106, 036009 (2022).
[17] B. Carter, Proc. R. Soc. A 433, 45 (1991).
[18] B. Carter and I. M. Khalatnikov, Phys. Rev. D 45, 4536

(1992).
[19] L. Gavassino and M. Antonelli, Classical Quantum Gravity

37, 025014 (2020).
[20] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke,

Phys. Rev. D 99, 056017 (2019).

STABILITY OF MULTICOMPONENT … PHYS. REV. D 108, 096010 (2023)

096010-11

https://doi.org/10.12942/lrr-2007-1
https://doi.org/10.12942/lrr-2007-1
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1742-5468/ac7a27
https://doi.org/10.1103/PhysRevD.98.076009
https://doi.org/10.1103/PhysRevD.98.076009
https://doi.org/10.1016/j.cpc.2019.107090
https://doi.org/10.1016/j.cpc.2019.107090
https://doi.org/10.1088/0264-9381/18/6/302
https://doi.org/10.1088/0264-9381/18/6/302
https://doi.org/10.1103/PhysRevD.69.043001
https://doi.org/10.1093/mnras/stw2613
https://doi.org/10.1093/mnras/stw2613
https://doi.org/10.1093/mnras/staa886
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/j.nuclphysa.2010.08.002
https://doi.org/10.1088/1742-6596/270/1/012042
https://doi.org/10.1088/1742-6596/270/1/012042
https://doi.org/10.3390/sym15020494
https://doi.org/10.3390/sym15020494
https://doi.org/10.1103/PhysRevD.106.036009
https://doi.org/10.1098/rspa.1991.0034
https://doi.org/10.1103/PhysRevD.45.4536
https://doi.org/10.1103/PhysRevD.45.4536
https://doi.org/10.1088/1361-6382/ab5f23
https://doi.org/10.1088/1361-6382/ab5f23
https://doi.org/10.1103/PhysRevD.99.056017


[21] W. Israel and J. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).
[22] T. S. Olson, Ann. Phys. (N.Y.) 199, 18 (1990).
[23] W. Hiscock and L. Lindblom, Phys. Rev. D 31, 725 (1985).
[24] W. A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) 151, 466

(1983).
[25] P. Kovtun, J. High Energy Phys. 10 (2019) 034.
[26] L. Gavassino, Classical Quantum Gravity 38, 21LT02

(2021).
[27] D. Almaalol, T. Dore, and J. Noronha-Hostler, arXiv:

2209.11210.
[28] A. Dash, M. Shokri, L. Rezzolla, and D. H. Rischke, Phys.

Rev. D 107, 056003 (2023).
[29] R. Biswas, A. Dash, N. Haque, and V. Roy, Springer Proc.

Phys. 277, 449 (2022).
[30] L. Gavassino, M. M. Disconzi, and J. Noronha, arXiv:

2302.03478.
[31] J. Noronha, M. Spaliński, and E. Speranza, Phys. Rev. Lett.

128, 252302 (2022).
[32] W. Israel, Relativistic thermodynamics, in E.C.G. Stueck-

elberg, An Unconventional Figure of Twentieth Century
Physics: Selected Scientific Papers with Commentaries,
edited by J. Lacki, H. Ruegg, and G. Wanders (Birkhäuser,
Basel, Basel, 2009), pp. 101–113.

[33] D. Kondepudi and I. Prigogine, Modern Thermodynamics
(John Wiley and Sons, Ltd, New York, 2014).

[34] L. Gavassino and M. Antonelli, Classical Quantum Gravity
40, 075012 (2023).

[35] J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct
Method: With Applications, Mathematics in Science An-
dengineering Vol. 4 (Academic Press, New York, 1961).

[36] L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev. Lett.
128, 010606 (2022).

[37] L. Gavassino, Phys. Rev. X 12, 041001 (2022).
[38] L. Gavassino, Phys. Lett. B 840, 137854 (2023).
[39] L. Gavassino, Phys. Rev. D 107, 065013 (2023).
[40] L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev. D

106, 056010 (2022).

[41] K. Huang, Statistical Mechanics, 2nd ed. (John Wiley &
Sons, New York, 1987).

[42] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W.H. Freeman and Co., New York, 1973).

[43] L. Gavassino, Classical Quantum Gravity 39, 185008
(2022).

[44] H. B. Callen, Thermodynamics and an Introduction to
Thermostatistics, 2nd ed. (Wiley, New York, NY, 1985).

[45] R. Geroch and L. Lindblom, Ann. Phys. (N.Y.) 207, 394
(1991).

[46] T. S. Olson and W. A. Hiscock, Phys. Rev. D 41, 3687
(1990).

[47] L. Landau and E. Lifshitz, Statistical Physics, 3rd ed.
(Pergamon Press, New York, 1980), Vol. 5.

[48] C. V. Brito and G. S. Denicol, Phys. Rev. D 102, 116009
(2020).

[49] B. Carter, Covariant Theory of Conductivity in Ideal Fluid
or Solid Media (Springer, Berlin, 1989), Vol. 1385, p. 1.

[50] D. Langlois, D. M. Sedrakian, and B. Carter, Mon. Not. R.
Astron. Soc. 297, 1189 (1998).

[51] L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev. D
105, 045011 (2022).

[52] B. F. Schutz,Geometrical Methods of Mathematical Physics
(Cambridge University Press, Cambridge, England, 1980).

[53] S. M. Carroll, Spacetime and Geometry: An Introduction to
General Relativity (Cambridge University Press, Cambridge,
England, 2019).

[54] E. Nungesser and A. D. Rendall, Classical Quantum Gravity
26, 105019 (2009).

[55] E. Poisson, An advanced course in general relativity
(2002), https://archive.org/details/Eric_Poisson__Advanced_
general_relativity/page/n5/mode/2up.

[56] K. Jensen, R. Loganayagam, and A. Yarom, J. High Energy
Phys. 05 (2014) 134.

[57] J. Hernandez and P. Kovtun, J. High Energy Phys. 05 (2017)
001.

[58] L. Gavassino and J. Noronha, arXiv:2305.04119.

L. GAVASSINO and MASOUD SHOKRI PHYS. REV. D 108, 096010 (2023)

096010-12

https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(90)90366-V
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1007/JHEP10(2019)034
https://doi.org/10.1088/1361-6382/ac2b0e
https://doi.org/10.1088/1361-6382/ac2b0e
https://arXiv.org/abs/2209.11210
https://arXiv.org/abs/2209.11210
https://doi.org/10.1103/PhysRevD.107.056003
https://doi.org/10.1103/PhysRevD.107.056003
https://doi.org/10.1007/978-981-19-2354-8
https://doi.org/10.1007/978-981-19-2354-8
https://arXiv.org/abs/2302.03478
https://arXiv.org/abs/2302.03478
https://doi.org/10.1103/PhysRevLett.128.252302
https://doi.org/10.1103/PhysRevLett.128.252302
https://doi.org/10.1088/1361-6382/acc165
https://doi.org/10.1088/1361-6382/acc165
https://doi.org/10.1103/PhysRevLett.128.010606
https://doi.org/10.1103/PhysRevLett.128.010606
https://doi.org/10.1103/PhysRevX.12.041001
https://doi.org/10.1016/j.physletb.2023.137854
https://doi.org/10.1103/PhysRevD.107.065013
https://doi.org/10.1103/PhysRevD.106.056010
https://doi.org/10.1103/PhysRevD.106.056010
https://doi.org/10.1088/1361-6382/ac79f4
https://doi.org/10.1088/1361-6382/ac79f4
https://doi.org/10.1016/0003-4916(91)90063-E
https://doi.org/10.1016/0003-4916(91)90063-E
https://doi.org/10.1103/PhysRevD.41.3687
https://doi.org/10.1103/PhysRevD.41.3687
https://doi.org/10.1103/PhysRevD.102.116009
https://doi.org/10.1103/PhysRevD.102.116009
https://doi.org/10.1046/j.1365-8711.1998.01575.x
https://doi.org/10.1046/j.1365-8711.1998.01575.x
https://doi.org/10.1103/PhysRevD.105.045011
https://doi.org/10.1103/PhysRevD.105.045011
https://doi.org/10.1088/0264-9381/26/10/105019
https://doi.org/10.1088/0264-9381/26/10/105019
https://archive.org/details/Eric_Poisson__Advanced_general_relativity/page/n5/mode/2up
https://archive.org/details/Eric_Poisson__Advanced_general_relativity/page/n5/mode/2up
https://archive.org/details/Eric_Poisson__Advanced_general_relativity/page/n5/mode/2up
https://doi.org/10.1007/JHEP05(2014)134
https://doi.org/10.1007/JHEP05(2014)134
https://doi.org/10.1007/JHEP05(2017)001
https://doi.org/10.1007/JHEP05(2017)001
https://arXiv.org/abs/2305.04119

