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We investigate the differential emission rate of neutral scalar bosons from a highly magnetized
relativistic plasma. We show that three processes contribute at the leading order: particle splitting
(ψ → ψ þ ϕ), antiparticle splitting (ψ̄ → ψ̄ þ ϕ), and particle-antiparticle annihilation (ψ þ ψ̄ → ϕ). This
is in contrast to the scenario with zero magnetic field, where only the annihilation processes contribute to
boson production. We examine the impact of Landau-level quantization on the energy dependence of the
rate and investigate the angular distribution of emitted scalar bosons. The differential rate resulting from
both (anti)particle splitting and annihilation processes are typically suppressed in the direction of the
magnetic field and enhanced in perpendicular directions. Overall, the background magnetic field
significantly amplifies the total emission rate. We speculate that our model calculations provide valuable
theoretical insights with potentially important applications.
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I. INTRODUCTION

The properties of matter under extreme conditions, where
relativistic effects play a profound role, are a source of great
fascination. This fascination is not surprising, as such
extreme conditions naturally occur in the early Universe
and in stars [1–5]. However, replicating these conditions in a
laboratory setting is exceptionally challenging. The most
promising efforts in this direction involve heavy-ion experi-
ments conducted at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven and the Large Hadron Collider
(LHC) at CERN [6,7]. In these experiments, heavy ions
are accelerated to sufficiently high energies to produce tiny
volumes of quark-gluon plasma (QGP) [8,9]. Although this
new state of matter has a very brief lifetime and is likely
far from equilibrium, some of its properties can still be
deduced [10–12].
Over the last two decades, significant progress has been

made in understanding the properties of hot QGP [13,14].
The emerging picture can be summarized as follows.
Heavy-ion collisions generate matter with high energy
density, which is initially far from equilibrium. Due to

strong interaction, this matter rapidly approaches a quasi-
equilibrium QGP state. Furthermore, it behaves almost
like a perfect hydrodynamic fluid, undergoing expansion,
cooling, and eventual hadronization [15–18]. The resulting
hadrons carry its remnants to the detectors, enabling one to
unveil the properties of hot QGP.
The QGP produced in heavy-ion collisions not only

possesses an extremely high temperature but also carries a
strong magnetic field [19–22] and exhibits high vorticity
[23–25]. Theoretical investigations indicate that both the
magnetic field and vorticity can modify the observed
properties of QGP [26–30]. Of particular significance are
the observables linked to electromagnetic probes, as they
convey information about the plasma’s properties across all
stages of its evolution [31].
In this paper, we will study the differential production

rate of neutral scalar bosons within a strongly magnetized
relativistic plasma. Previously, an attempt to address this
problem was undertaken in Ref. [32]. However, only
simplified kinematics with momenta of scalar bosons
parallel to the magnetic field was considered. Another
related study on the scalar boson decay at zero temperature
and weak field was reported in Ref. [33]. In both instances,
the constraints imposed by kinematics allowed only for the
contribution of particle-antiparticle annihilation processes
to the absorptive part of the self-energy (or boson decay).
Herein, we undertake a comprehensive approach, removing
all constraints on kinematics, permitting arbitrary magnetic
field strengths, and incorporating the thermal effects of the
plasma to address this problem in its entirety.
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At first glance, this problem may not have direct
phenomenological implications for QGP in heavy-ion
collisions. After all, there are no known spin-zero particles
to be emitted from a relativistic plasma. Nevertheless, we
believe that this problem has theoretical value. By compar-
ing the results with the emission of photons [34–38] and
dileptons [39–48] (i.e., spin-one channel) studied previ-
ously, we can get insights into the impact of particle spin on
emission rates and angular distributions. This hypothetical
scenario also extends our understanding of the fundamental
laws of physics and their potential applications in other
fields.
For example, neutral scalar bosons often appear in dark

matter [49–51] and inflationary models [52]. Moreover,
their properties, when modified by a nonzero temperature
and primordial magnetic fields, can have cosmological
implications [53,54]. In the end, our goal is to refine our
theoretical tools and expand the frontiers of scientific
knowledge. Not every thought experiment or hypothetical
scenario leads to a discovery, but more often than not, it
provides fresh insights and perspectives.
The paper is organized as follows. We introduce the

model of magnetized plasma with a single flavor of fermion
species, coupled to a neutral scalar field via a Yukawa-type
interaction, in Sec. II. There, we also define the differential
emission rate in terms of the imaginary part of the scalar-
boson self-energy. The general expression for the self-
energy at nonzero temperature is obtained in Sec. III. In the
derivation, we utilize the Landau-level representation for
the fermion propagator, which allows us to extract an
analytical expression for the imaginary part of the self-
energy in the form of a convergent series. In Sec. IV, the
corresponding result is used to calculate the differential
emission rate of scalar bosons from a magnetized plasma.
We study in detail the angular dependence of the emission
rate, as well as analyze the partial contributions due to
annihilation (i.e., ψ þ ψ̄ → ϕ) and splitting (i.e., ψ̄ → ψ̄ þ
ϕ and ψ → ψ þ ϕ) processes. A discussion of the main
findings and a summary of the results are given in Sec. V.
For comparison, the bosonic self-energy in the zero
magnetic field limit is presented in the Appendix.

II. MODEL

For simplicity, we consider a model ofmagnetized plasma
with a single flavor of fermion species ψ . By assumption, the
fermions interact with the neutral scalar fieldϕ via a Yukawa
interaction. The corresponding Lagrangian density reads

L¼ ψ̄ðiγμDμ −mÞψ þ 1

2
∂
μϕ∂μϕ−

1

2
M2ϕ2 − gϕψ̄ψ ; ð1Þ

where m and M are the masses of the fermion and scalar
particles, and q is the electric charge of the fermion. The
covariant derivative is defined as usual, i.e., Dμ ≡ ∂

μþ
iqAμðxÞ, where AμðxÞ is an Abelian gauge field, capturing

the effect of a background magnetic field B. The corre-
sponding field strength tensor is given by Fμν ¼ ∂

μAνðxÞ−
∂
νAμðxÞ. Without loss of generality, we will assume that the
magnetic field points along the z axis and use the following
Landau gauge: AμðxÞ ¼ −yBδμ1. The explicit form of the
strength tensor reads Fμν ¼ −ε0μν3B. Here we use the
conventional definition of the contravariant coordinates,
i.e., xμ ¼ ðt; x; y; zÞ, and the Minkowski metric gμν ¼
diagð1;−1;−1;−1Þ.
The differential thermal emission rate of scalar bosons

from the corresponding plasma is given by

d3R
d3k

¼ −
nBðΩÞ
ð2πÞ3Ω Im½ΣRðΩ;kÞ�; ð2Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ jkj2

p
is the (on shell) scalar particle

energy, nBðΩÞ ¼ 1=½eΩ=T − 1� is the Bose-Einstein distri-
bution function, and ΣRðΩ;kÞ is the retarded self-energy of
the scalar field. At leading order in coupling, the latter is
determined by the one-loop Feynman diagram in Fig. 1,
where the solid and dashed lines represent fermions and
bosons, respectively. Because of the background magnetic
field, the fermion propagators are labeled by the longi-
tudinal momenta and the Landau-level indices.
Note that, in view of the detailed balance, the expression

in Eq. (2) can represent either the emission or the
absorption rate per unit volume. However, the total emis-
sion (or absorption) rate can be also affected by the system
size, if the latter is comparable to or larger than the mean
free path lϕ of the scalar bosons with energy Ω. For
simplicity, we will ignore the corresponding effects below.
If needed, however, they could be incorporated approx-
imately by separating the surface layers of depth lϕ from
the rest of the plasma. The rate in Eq. (2) is valid only for
the surface layers. The emission from the inner parts is
approximately vanishing.
In view of the rotational symmetry of a magnetized

plasma about the magnetic field direction, the differential
rate is independent of the azimuthal angle ϕ (which is
measured in xy-plane from the positive x-axis). Taking this
fact into account, we derive the following expression for the
total rate integrated over all directions:

dR
dk

¼ −
Z

π

0

k2nBðΩÞ
ð2πÞ2Ω Im½ΣRðΩ;kÞ� sin θdθ; ð3Þ

FIG. 1. Leading order one-loop Feynman diagram for the scalar
self-energy.
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where the polar angle θ is measured from the positive z-axis
towards the xy-plane. In other words, the transverse and the
longitudinal components of the boson momentum are k⊥ ¼
k sin θ and kz ¼ k cos θ, respectively. By rewriting the rate
in terms of the boson energy, we have

dR
dΩ

¼ −
Z

π

0

knBðΩÞ
ð2πÞ2 Im½ΣRðΩ;kÞ� sin θdθ: ð4Þ

In order to characterize the angular profile of emission,
we will utilize the following definition of the ellipticity
parameter:

v2 ¼ −
R
π
0 ðd3R=d3kÞ cosð2θÞdθR

π
0 ðd3R=d3kÞdθ ; ð5Þ

which is analogous to the one used in heavy-ion physics but
expressed in terms of a different angular coordinate. An
extra negative sign in the definition ensures that a positive
value of ellipticity (v2 > 0) describes an oblate emission
profile, i.e., stronger average emission in the directions
perpendicular to the magnetic field (or, in heavy-ion
physics language, in the reaction plane). A negative value
of ellipticity (v2 < 0) implies a prolate emission profile,
i.e., stronger average emission in the directions parallel to
the magnetic field (or, in heavy-ion physics language,
perpendicularly to the reaction plane).

III. ONE-LOOP SELF-ENERGY

In the presence of a background magnetic field, trans-
lation symmetry is broken in the plane perpendicular to the
magnetic field. As a consequence, the transverse momenta
are not good quantum numbers for classifying fermionic
states. This fact is also reflected in the structure of the
fermion propagator, which takes the following form in
coordinate space [55]:

Sðx; yÞ ¼ exp

�
−iq

Z
x

y
AμðxÞdxμ

�
S̄ðx − yÞ; ð6Þ

where the first factor is the so-called Schwinger’s phase.
Formally, this phase is the only part that breaks the
translation symmetry. The second factor, S̄ðx − yÞ, is a
translation invariant part of the propagator. Its explicit form
will be given below.

In coordinate space, the one-loop self-energy of the
scalar field is given by

Σðx − yÞ ¼ ig2Tr½S̄ðx − yÞS̄ðy − xÞ�; ð7Þ

see Fig. 1, where the trace runs over the Dirac indices. Note
that, at this leading order in coupling, it is determined only
by the translation invariant part of the fermion propaga-
tor S̄ðx − yÞ.
It should not be surprising that the dependence of S̄ðxÞ

on the transverse and longitudinal spatial coordinates (i.e.,
r⊥ and z, respectively) is very different. Unlike translations
in the xy-plane, translations in the z direction are part of the
remaining symmetry in the problem. In other words, the
corresponding longitudinal momentum kz is a good quan-
tum number. Thus, it convenient to use the following
mixed representation for translation invariant part of the
propagator:

S̄ðxÞ ¼
Z

d2pk
ð2πÞ2 S̃ðpk; r⊥Þe−ipk·xk ; ð8Þ

where, by definition, xk ¼ ðt; zÞ, r⊥ ¼ ðx; yÞ, and pk ¼
ðp0; pzÞ is the longitudinal momentum. The explicit form
of S̃ðpk; r⊥Þ reads [27]

S̃ðpk; r⊥Þ ¼ i
e−ζ=2

2πl2

X∞
n¼0

D̃ðpk; r⊥Þ
p2
k −m2 − 2njqBj ð9Þ

with the shorthand notation ζ ≡ jr⊥j2=ð2l2Þ and

D̃ðpk; r⊥Þ≡ ðpk þmÞ½PþLnðζÞ þ P−Ln−1ðζÞ�

− i
=r⊥
l2

L1
n−1ðζÞ; ð10Þ

where l≡ 1=
ffiffiffiffiffiffiffiffiffijqBjp

is the magnetic length, LnðzÞ are the
Laguerre polynomials, La

nðzÞ are the generalized Laguerre
polynomials, and P� ≡ 1

2
ð1� isignðqBÞγ1γ2Þ are the spin

projectors along the magnetic field direction.
After substituting the expression for S̄ðxÞ into the

definition of self-energy in Eq. (7) and performing the
Fourier transform, we derive the following momentum
representation:

ΣðkÞ ¼ ig2
Z

d2pk
ð2πÞ2

Z
d2r⊥e−ir⊥·k⊥Tr½S̃ðpk; r⊥ÞS̃ðpk − kk;−r⊥Þ�: ð11Þ

By using the fermion propagator in Eq. (9) and performing the trace over the Dirac indices, we obtain the following
expression for the scalar self-energy:
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ΣðkÞ ¼ −
ig2

2π2l4

Z
d2pk
ð2πÞ2

Z
d2r⊥e−ir⊥·k⊥e−ζ

×
X
n;n0

ðm2 þ pk · ðp − kÞkÞ½LnðζÞLn0 ðζÞ þ Ln−1ðζÞLn0−1ðζÞ� − 2r2⊥
l4 L

1
n−1ðζÞL1

n0−1ðζÞ
ðp2

k −m2 − 2njqBjÞððpk − kkÞ2 −m2 − 2n0jqBjÞ : ð12Þ

The integration over the transverse spatial coordinates can be performed exactly using the same approach as in
Refs. [37,38]. The result reads

ΣðkÞ ¼ −i
g2

πl2

Z
d2pk
ð2πÞ2

X
n;n0

ðm2 þ pk · ðp − kÞkÞðIn;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞÞ − 2
l2 I

n−1;n0−1
2 ðξÞ

ðp2
k −m2 − 2njqBjÞððpk − kkÞ2 −m2 − 2n0jqBjÞ : ð13Þ

where ξ≡ ðk⊥lÞ2=2 and the two new functions are

In;n0
0 ðξÞ≡ ð−1Þnþn0e−ξLn0−n

n ðξÞLn−n0
n0 ðξÞ; ð14Þ

In;n0
2 ðξÞ≡ 2ðn0 þ 1Þð−1Þnþn0e−ξLn0−n

n ðξÞLn−n0
n0þ1

ðξÞ: ð15Þ

To take thermal effects into account, we introduce the Matsubara frequencies through the imaginary time formalism. Then,
replacing the fermion energy p0 → iωk ¼ 2iπðkþ 1ÞT and the boson energy with the bosonic counterpart, i.e.,
k0 → iΩm ¼ 2iπmT, the corresponding finite-temperature scalar self-energy reads

ΣðiΩm;kÞ ¼
g2T
πl2

X∞
k¼−∞

Z
dpz

2π

X
n;n0

ðm2 þ pk · ðp − kÞkÞðIn;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞÞ − 2
l2 I

n−1;n0−1
2 ðξÞ

ððiωkÞ2 − p2
z −m2 − 2njqBjÞððiωk − iΩmÞ2 − ðpz − kzÞ2 −m2 − 2n0jqBjÞ ; ð16Þ

where the shorthand notation pk · ðp − kÞk stands for iωkðiωk − iΩmÞ − pzðpz − kzÞ. Computing the sum over the
Matsubara frequencies, we derive the following expression for the self-energy:

ΣðiΩm;kÞ ¼
g2

πl2

Z
dpz

2π

X
n;n0

X
η;λ¼�1

nFðEn;pz
Þ − nFðλEn0;pz−kzÞ

4λEn;pz
En0;pz−kzðEn;pz

− λEn0;pz−kz þ iηΩmÞ

×

�
ðλEn;pz

En0;pz−kz þm2 − pzðpz − kzÞÞðIn;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞÞ − 2

l2
In−1;n0−1
2 ðξÞ

�
; ð17Þ

where En;pz
≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þm2 þ 2njqBj

p
and En0;pz−kz ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz − kzÞ2 þm2 þ 2n0jqBj

p
are the Landau level energies, and

nFðΩÞ ¼ 1=ðeΩ=T þ 1Þ is the Fermi-Dirac distribution function. In the derivation we used the following general result:

T
X∞
k¼−∞

iωkðiωk − iΩmÞY þ Z
½ðiωkÞ2 − a2�½ðiωk − iΩmÞ2 − b2� ¼

X
η;λ¼�1

nFðaÞ − nFðλbÞ
4λabða − λbþ ηiΩmÞ

½λabY þ Z�: ð18Þ

To obtain the self-energy in Minkoswky space, we need to perform a suitable analytic continuation in Eq. (17). The
retarded expression for the self-energy is obtained by replacing iΩm → Ωþ iϵ

ΣRðΩ;kÞ ¼ g2

πl2

Z
dpz

2π

X
n;n0

X
η;λ¼�1

nFðEn;pz
Þ − nFðλEn0;pz−kzÞ

4λEn;pz
En0;pz−kzðEn;pz

− λEn0;pz−kz þ ηΩþ iηϵÞ

×

�
ðλEn;pz

En0;pz−kz þm2 − pzðpz − kzÞÞðIn;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞÞ − 2

l2
In−1;n0−1
2 ðξÞ

�
; ð19Þ

where ϵ → þ0.
It should be noted that the expression for the self-energy in Eq. (19) contains both vacuum and thermal contributions.

While the latter is finite, the former has an ultraviolet divergence. Therefore, one has to regularize it in order to proceed with
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the calculation. Fortunately, only the real part of the self-energy is divergent. The imaginary part, which appears in the
definition of the emission rate, is finite.

A. Absorptive part of the self-energy

From the expression for the retarded self-energy in Eq. (19), one can extract the imaginary part by using the well-known
Sokhotski formula, see Eq. (A5). The corresponding result reads

Im½ΣRðΩ;kÞ� ¼ −
g2

l2

Z
dpz

2π

X
n;n0

X
η;λ¼�1

nFðEn;pz
Þ − nFðλEn0;pz−kzÞ

4ηλEn;pz
En0;pz−kz

δðEn;pz
− λEn0;pz−kz þ ηΩÞ

×

�
ðλEn;pz

En0;pz−kz þm2 − pzðpz − kzÞÞðIn;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞÞ − 2

l2
In−1;n0−1
2 ðξÞ

�
: ð20Þ

Note that the Dirac δ-function inside the integrand enforces
the following energy conservation relation:

En;pz
− λEn0;pz−kz þ ηΩ ¼ 0: ð21Þ

The imaginary part of the self-energy (20) is an odd
function of the scalar energy Ω. Without loss of generality,
therefore, we will assume that Ω > 0 from this point
onward.
Depending on the choice of signs of λ and η, the energy

conservation relation (21) represents one of the three
possible processes involving particles and/or antiparticles
states with Landau indices n and n0. Two of them
correspond to particle-splitting processes involving fer-
mions (λ ¼ 1 and η ¼ −1) or antifermions (λ ¼ 1 and
η ¼ −1). In Fig. 2, they are represented by the diagrams in
panels (a) and (b), respectively. The third process (λ ¼ −1
and η ¼ −1) corresponds to the fermion-antifermions
annihilation, represented by the diagram in panel (c) of
Fig. 2. When Ω is positive, there are no physical processes
associated with the fourth combination of signs, i.e., λ¼−1
and η ¼ 1. It is clear since the energy conservation
equation (21) has no real solutions in this case.
The necessary and sufficient conditions for having real-

valued solutions to the energy conservation equation (21)
are given as follows:

ψ → ψ þ ϕ∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

q
≤ k− and n > n0; ð22Þ

ψ̄ → ψ̄ þ ϕ∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

q
≤ k− and n < n0; ð23Þ

ψ þ ψ̄ → ϕ∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

q
≥ kþ; ð24Þ

for the three types of processes. Here we introduced the
following shorthand notation for the transverse momenta
thresholds:

k�≡
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2njqBj
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2n0jqBj

q ���; ð25Þ

which depend on the Landau-level indices n and n0. The
constraints for Ω are identical for the two particle-splitting
processes in Eqs. (22) and (23), except for the restrictions
on the Landau-level indices. However, they are very
different from the kinematic constraint for the annihilation
process in Eq. (24). The requirements n > n0 and n < n0 in
Eqs. (22) and (23), respectively, ensure that the initial
Landau level state lies above the final one.
By solving the energy conservation relation (21), we find

the following pair of analytical solutions for the longi-
tudinal momentum:

FIG. 2. Feynman diagrams for the three processes involving a scalar boson and fermion states in the Landau levels n and n0: (a) particle
splitting ψ → ψ þ ϕ, (b) antiparticle splitting ψ̄ → ψ̄ þ ϕ, (c) particle-antiparticle annihilation ψ þ ψ̄ → ϕ.
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pð�Þ
z ≡ kz

2

�
1þ 2ðn − n0ÞjqBj

Ω2 − k2z
� Ω
jkzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s �
: ð26Þ

Note that these are exactly the same as in the case of dilepton emission [48], provided the dilepton invariant mass is replaced
with the scalar boson mass. Nevertheless, as we will see below, the rate and the angular distribution of scalar emission will
be very different.
By using the analytical solutions in Eq. (26), we can also obtain the corresponding fermion Landau-level energies,

En;pz

����
pð�Þ
z

¼ −
ηΩ
2

�
1þ 2ðn − n0ÞjqBj

Ω2 − k2z
� jkzj

Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s �
; ð27Þ

En0;pz−kz

����
pð�Þ
z

¼ ληΩ
2

�
1 −

2ðn − n0ÞjqBj
Ω2 − k2z

∓ jkzj
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s �
: ð28Þ

Having explicit analytical solutions for the longitudinal momentum, now we can rewrite the Dirac δ-function in Eq. (20) as
follows:

δðEn;pz
− λEn0;pz−kz þ ηΩÞ ¼

X
s¼�

2En;pz
En0;pz−kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ
p δðpz − pðsÞ

z Þ: ð29Þ

Finally, by integrating over pz in Eq. (20), we derive the expression for the imaginary part of the scalar boson self-energy in
the form of a convergent series over Landau levels:

Im½ΣRðΩ;kÞ� ¼ g2

2πl2

X∞
n>n0

θðΩ2 − k2z − k2þÞ − θðk2− þ k2z − Ω2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

p hðn; n0Þ

×

��
ðnþ n0ÞjqBj − 1

2
ðΩ2 − k2zÞ þ 2m2

�
ðIn;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞÞ − 2

l2
In−1;n0−1
2 ðξÞ

�

þ g2

4πl2

X∞
n¼0

θðΩ2 − k2z − 4m2 − 8njqBjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2zÞðΩ2 − k2z − 4m2 − 8njqBjÞ

p h0ðnÞ

×

��
2njqBj − 1

2
ðΩ2 − k2zÞ þ 2m2

�
ðIn;n

0 ðξÞ þ In−1;n−1
0 ðξÞÞ − 2

l2
In−1;n−1
2 ðξÞ

�
: ð30Þ

Here we introduced the following functions made of the Fermi-Dirac distributions:

hðn; n0Þ≡ 2 −
X

s1;s2¼�
nF

�
Ω
2
þ s1

Ωðn − n0ÞjqBj
Ω2 − k2z

þ s2
jkzj

2ðΩ2 − k2zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

q �
; ð31Þ

h0ðnÞ≡ hðn; nÞ ¼ 2 − 2
X
s2¼�

nF

 
Ω
2
þ s2

jkzj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðm2 þ 2njqBjÞ
Ω2 − k2z

s !
: ð32Þ

Notice that the second term in Eq. (30) is the contribution due to annihilation processes with n ¼ n0.

The expression for the imaginary part of self-energy (30)
is one of the main analytical results of this study. By
substituting it into the definition in Eq. (2), we can calculate
the differential emission rate of neutral bosons from a
magnetized plasma. The corresponding numerical results
will be presented and analyzed in the next section.

Note that the general structure of the expression in
Eq. (30) resembles the photon polarization tensor obtained
in Ref. [38]. However, there are some profound
differences. Unlike spin-one photons, the bosons are
spin-zero particles in the model at hand. As we discuss
later in detail, the spinless nature of bosons strongly
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affects the angular dependence of the self-energy and, in
turn, the corresponding angular distribution of boson
emission. For example, the differential rate due to par-
ticle-splitting processes will be suppressed in the direction
parallel to the magnetic field. In the case of photons, such
emission was not only allowed but played a dominant role
at small energies.

Before concluding this subsection, it is instructive to
consider a simplified kinematic regime with k⊥ ¼ 0 (i.e.,
for θ ¼ 0 or θ ¼ π). It is the only case that was analyzed
previously in the literature, see Ref. [32]. It corresponds to
scalar boson emission in the direction of the magnetic field.
Substituting k⊥ ¼ 0, the general result for self-energy in
Eq. (30) reduces down to

Im½ΣRðΩ; 0; kzÞ� ¼ −
g2

8πl2

ðΩ2 − k2z − 4m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

p X∞
n¼0

αn
θðΩ2 − k2z − 4m2 − 8njqBjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 − k2z − 4m2 − 8njqBj
p h0ðnÞ; ð33Þ

where we introduced αn ¼ 2 − δn;0 and took into account

that limξ→0 ½In;n0
0 ðξÞ� ¼ δn;n0 and limξ→0 ½In;n0

2 ðξÞ� ¼ 2ðnþ
1Þδn;n0 [38]. Compared to the general result in Eq. (30), this
expression for the self-energy is much simpler. More
importantly, from a physics viewpoint, the kinematics of
allowed processes is very restrictive at k⊥ ¼ 0. In particu-
lar, no one-to-two particle-splitting processes contribute in
this case at all. Only the particle-antiparticle annihilation
processes do (and only if M > 2m). Since the same does
not hold at any nonzero k⊥, such a simplified regime is an
exceptional outlier. Furthermore, as we will see in the next

section, the particle-splitting processes contribute substan-
tially to the total emission rate in some kinematic regimes.

B. Zero magnetic field limit

Herewe verify that the result for the self-energy in Eq. (30)
is consistentwith the known zero-field limit. For our purposes,
it is sufficient to consider only the case with k⊥ ¼ 0.
To consider the limit of vanishing magnetic field in

Eq. (33), we introduce a continuous variable v ¼ 2njqBj
and replace the sum over n with an integral over v. Then,
we have

Im½ΣRðΩ;kÞ� ¼ −
g2

8π

ðΩ2 − jkj2 − 4m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2

p θðΩ2 − jkj2 − 4m2Þ
Z

v0

0

dvffiffiffiffiffiffiffiffiffiffiffiffiffi
v0 − v

p
�
1 −

X
s2¼�

nF

�
Ω
2
þ s2

jkj ffiffiffiffiffiffiffiffiffiffiffiffiffiv0 − v
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2

p ��
; ð34Þ

where the upper limit of integration is v0 ¼ ðΩ2 − jkj2 − 4m2Þ=4. In the last expression, we also replaced jkzj with jkj in
view of the Lorentz symmetry, which is restored in the absence of a magnetic field.
After introducing the new integration variable u ¼ jkj ffiffiffiffiffiffiffiffiffiffiffiffiffiv0 − v

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2

p
, we obtain

Im½ΣRðΩ;kÞ� ¼ −
g2

4π

ðΩ2 − k2z − 4m2Þ
jkzj

θðΩ2 − k2z − 4m2Þ
Z

u0

0

du

�
1 −

X
s2¼�

nF

�
Ω
2
þ s2u

��
; ð35Þ

where

u0 ¼
jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2 − 4m2

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2

p : ð36Þ

Finally, after integrating over u, we derive

Im½ΣRðΩ;kÞ� ¼ −
g2

8π
ðΩ2 − jkj2 − 4m2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2 − 4m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − jkj2

p þ 2T
jkj ln

1þ e−Eþ=T

1þ e−E−=T

�
θðΩ2 − jkj2 − 4m2Þ: ð37Þ

Note that E� ≡Ω=2� u0 coincide with the definitions in Eq. (A10) in the Appendix. The final result for the imaginary part
of self-energy in Eq. (37) also agrees with the B ¼ 0 expression given in Eq. (A11).
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When the scalar bosons are on the mass shell, i.e., Ω2 ¼ M2 þ jkj2, one has

Im½ΣRðkÞ�jΩ2¼M2þjkj2 ¼ −
g2

8π
ðM2 − 4m2Þ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4m2

p
ffiffiffiffiffiffiffi
M2

p þ 2T
jkj ln

1þ e−Eþ=T

1þ e−E−=T

#
θðM2 − 4m2Þ: ð38Þ

As we see, this expression is nonvanishing only when
M2 ≥ 4m2. From a physics viewpoint, it indicates that the
annihilation processes are the only ones contributing. It is not
surprising since one-to-two particle-spitting processes
(ψ → ψ þ ϕ and ψ̄ → ψ̄ þ ϕ) are forbidden without a
background magnetic field. The latter is evident when
considering the process in the rest frame of the boson.
(Curiously, such one-to-two processesmay be allowed when
themasses of the initial and final fermions are different [56].)
In the case of a nonzero magnetic field, in contrast, particle-
spitting processes are allowed because the momentum
conservation constraint in the plane perpendicular to the
field is relaxed.

IV. NUMERICAL RESULTS

Here, we use the imaginary part of self-energy derived in
the previous section to analyze the differential emission rate
of neutral bosons from a magnetized plasma. Because of an

elaborate expression in Eq. (30) and the complications due
to the sum over Landau levels, the angular dependence of
the rate in Eq. (2) is hard to comprehend. Therefore, here
we study it with the help of numerical methods.
In the model at hand, two qualitatively different regimes

exist. They are determined by the value of the scalar boson
mass M, which can be either greater or less than the
fermion-antifermion threshold 2m. In the subthreshold
regime (M < 2m), no scalar boson production can occur
without a background magnetic field at the leading order in
coupling. The situation changes when B ≠ 0. The annihi-
lation becomes possible when the scalar boson energy
exceeds the threshold of 2m. More interestingly, the boson
production via particle-splitting processes is allowed in the
whole range of energies Ω > M.
Below, we will study both regimes by considering the

following two representative cases: M ¼ 3m (suprathres-
hold) and M ¼ m=3 (subthreshold). In each case, we will
study the angular dependence of the rate in detail for

FIG. 3. Neutral scalar boson differential production rates for several different energies and two fixed temperatures: T ¼ 5m (left
panels) and T ¼ 15m (right panels). The magnetic field is jqBj ¼ 4m2 and the scalar boson masses are M ¼ 3m (top panels) and
M ¼ m=3 (bottom panels).

JORGE JABER-URQUIZA and IGOR A. SHOVKOVY PHYS. REV. D 108, 096009 (2023)

096009-8



several representative values of the magnetic field and
temperature. As we will see, the behavior of the differential
rates will be very different, especially at small values of the
polar angle θ.
To reduce the number of free parameters and simplify the

analysis, we will express all dimensionful quantities in
units of the fermion massm. We will consider two different
values of the magnetic field, i.e., jqBj ¼ ð2mÞ2 (moderate
field) and jqBj ¼ ð5mÞ2 (strong field), and two different
temperatures, i.e., T ¼ 5m and T ¼ 15m, that correspond
to moderately relativistic and ultrarelativistic plasmas,
respectively. Without loss of generality, we will use
the Yukawa coupling g ¼ 1 in numerical calculations
below.
When calculating numerically the imaginary part of self-

energy (30), one needs to sum over Landau-level indices n
and n0. Since the corresponding double-series is conver-
gent, one may truncate the summation at sufficiently large
finite nmax. Its value will be determined by the largest
energy scale in the problem, which will be set by either the
temperature or the scalar boson energy Ω. The latter will be
varied in a range from Ω ¼ M up to about Ω ≃ 35m (for
jqBj ¼ 4m2) and Ω ≃ 90m (for jqBj ¼ 25m2). Thus, from
general considerations, one should include at least

sufficient number of Landau levels to open the phase space
for the processes with the largest energies. This leads to the
bound from below:

nmax ≳
�
max

�
T2

2jqBj ;
Ω2

2jqBj
	�

; ð39Þ

where the square brackets represent the integer part.

A. Moderate magnetic field, jqBj= 4m2

Let us start the study of the differential rate as a function
of the angular coordinate θ in the case of a moderately
strong magnetic field jqBj ¼ ð2mÞ2. To achieve a high
angular resolution, we will use the discretization steps of
Δθ ¼ π=ð2nθÞ with nθ ¼ 103. The direction along the
magnetic field corresponds to θ ¼ 0, and the perpendicular
direction is θ ¼ π=2. There is no need to consider θ > π=2,
as the corresponding rates can be obtained using the
symmetry with respect to mirror reflection in the xy-plane.
Indeed, such a symmetry remains unbroken in the presence
of a constant background magnetic field.
Representative numerical results for the differential rates

are shown in Fig. 3 for two fixed temperatures, i.e., T ¼ 5m

FIG. 4. The angular profile of the scalar boson production rates for several different energies and fixed temperature T ¼ 15m. The
magnetic field is jqBj ¼ 4m2 and the scalar boson masses areM ¼ 3m (top panels) andM ¼ m=3 (bottom panels). Each panel contains
separate contributions due to annihilation (red lines) and particle-splitting (green lines) processes, as well as the total rates (blue lines).
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(left panels) and T ¼ 15m (right panels), as well as two
choices of the scalar boson mass, i.e.,M ¼ 3m (top panels)
and M ¼ m=3 (bottom panels). Different lines correspond
to different energies of neutral scalar bosons. They satisfy
the mass-shell condition, Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ þ k2z

p
, where

k⊥ ¼ k sin θ and kz ¼ k cos θ.
By comparing the results for two different temperatures

in the left and right panels of Fig. 3, we see that the rates
tend to grow with temperature, as expected. In the case of
M ¼ 3m, the growth is relatively week at first when the
energy exceeds the threshold Ω≳M only slightly. It
becomes more pronounced at higher values of energy.
From a different perspective, the average rates decrease
with increasing the scalar boson energy. However, one sees
a substantial suppression only after the energy exceeds the
plasma’s temperature. To a large degree, such a behavior is
dominated by the annihilation processes.
It is worth noting that the contribution of the lowest

Landau level to the total rate remains relatively modest
across the whole range of scalar boson energies. It plays a
significant role only in the suprathreshold case (M ¼ 3m)
at small temperatures, when the scalar boson’s energy is
only slightly higher than its minimum value Ωmin ¼ M.
This observation underscores the limitations of the so-
called lowest Landau level approximation, which is often

employed to obtain simple estimates in the strong field
regime. As we see, in relativistic plasmas, relying on such
an approximation would yield unreliable results.
The growth of rates with increasing temperature is more

pronounced in the case of a subthreshold scalar boson
mass, i.e.,M ¼ m=3, as seen from the two bottom panels of
Fig. 3. The qualitative behavior is also different, especially
at small values of the polar angle θ. To understand this
subthreshold regime, it is important to remember that the
scalar production is possible only because of a nonzero
magnetic field. Since M < 2m, neither annihilation nor
(anti)particle-splitting processes can occur at θ ¼ 0, see
Eq. (33) and related discussion. This is in drastic difference
to the suprathreshold case in the two top panels of Fig. 3.
For both temperatures and both values of the scalar mass,

the differential rates tend to grow on average as a function
of θ. It implies that the scalar bosons are emitted predomi-
nantly in the directions perpendicular to the magnetic field.
We can easily visualize the corresponding emission profiles
using the polar plots in Fig. 4. According to our convention,
the magnetic field points upwards. The six individual
panels show the polar plots for emission rates of bosons
with several fixed energies and the two mass choices;
M ¼ 3m (top panels) and M ¼ m=3 (bottom panels).
The red lines represent the partial contributions of the

FIG. 5. The total rates and ellipticity of scalar boson emission from a magnetized plasma at two different temperatures: T ¼ 5m (blue
lines) and T ¼ 15m (red lines). The magnetic field is jqBj ¼ 4m2 and the scalar boson masses areM ¼ 3m (top panels) and M ¼ m=3
(bottom panels).
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annihilation rates, the green lines represent the particle-
splitting rates, and the blue lines give the total rates. We
show the results only for one temperature, T ¼ 15m. The
results for another temperature (T ¼ 5m) are qualitatively
similar but have different magnitudes and contain slightly
different admixture of annihilation and particle-splitting
processes. Their relative contributions will become clear
when we discuss the total rates below.
As seen from Fig. 4, both annihilation (red lines) and

particle-splitting (green lines) processes tend to provide
higher rates of the scalar boson production in the directions
perpendicular to the magnetic field. While having similar
butterfly-shaped profiles, relative magnitudes of the two
types of contributions vary with model parameters. In the
suprathreshold caseM ¼ 3m, annihilation dominates almost
at all energies. In the subthreshold caseM ¼ m=3, however,
the particle-splitting processes contribute more at small
energies, but annihilation overtakes them at large energies.
It is interesting to draw attention to the spacial case of Ω ¼
1.5mwhen the bosonmass isM ¼ m=3, which falls into the
subthreshold regime with M < Ω < 2m. In this case, par-
ticle-splitting processes are the only ones contributing to the
total rate. It is the reasonwhy the corresponding (bottom left)
panel in Fig. 4 has only blue lines visible. (Technically, the
green lines, with the exact same profile, hide behind the
blue ones.)

Let us now turn to the total rate dR=dΩ integrated over
all angular directions, as defined in Eq. (4). It describes
production rate (per unit time and unit volume) of scalar
bosons with energies between Ω and Ωþ dΩ. Unlike the
differential rate, its expression contains an extra power of
momentum, which accounts for the available phase space.
Clearly, such a phase space collapses when Ω approaches
M from above. Then, the rate dR=dΩ should also vanish
when Ω → M. We will see below that it is indeed the case.
The extra power of the momentum in the definition will
also explain why dR=dΩ does not start decreasing with
energy until Ω becomes several times the plasma’s
temperature.
For the case of the moderately strong field jqBj ¼ 4m2,

the corresponding rates as functions of the energy are
summarized in the two left panels of Fig. 5. The other two
panels on the right show the ellipticity measure v2 for the
scalar boson emission, formally defined by Eq. (5). In all
the panels, the color coding represents temperature, with
the blue for T ¼ 5m and the red for T ¼ 15m. In addition
to the total rates (filled circles) shown in the panels on the
left, we also display the separate partial contributions due to
annihilation (open diamonds) and particle-splitting (open
squares) processes. For guiding the eye, we connected
the points with different lines: solid (total rate), dotted
(annihilation part) and dashed (particle-splitting part),

15m,

15m,

FIG. 6. Neutral scalar boson differential production rates for several different energies and two fixed temperatures: T ¼ 5m (left
panels) and T ¼ 15m (right panels). The magnetic field is jqBj ¼ 25m2 and the scalar boson masses are M ¼ 3m (top panels) and
M ¼ m=3 (bottom panels).
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respectively. For comparison, the dash-dotted lines re-
present the rates in the limit of the vanishing magnetic
field. As we argued before, such a limit is meaningful only
for M ¼ 3m (suprathreshold case). For subthreshold scalar
mass M ¼ m=3, the rates vanish without a magnetic field.
The rates for all model parameters represented in Fig. 5

share many similar features. Overall, they have a tendency
to grow with increasing the temperature. It is easy to
understand since the number densities of both occupied
positive-energy states and unoccupied negative-energy
states increase with temperature. The availability (anti)
particles in such states, in turn, opens the phase space for
all relevant processes producing scalar bosons. On the
other hand, as a function of energy, the rates grow at first,
reach a maximum value around Ω ∼ 1.7T, and then
decrease. After passing the peak value, the behavior
at high energies gradually approaches an exponential
asymptote, i.e., dR=dΩ ∼ exp ð−Ω=TÞ.
By comparing the partial contributions of different types

of processes in the two left panels of Fig. 5, we see that it is
the annihilations rather than the particle splittings that
dominate at sufficiently large energies. The interplay of the
two is more subtle at low energies, where the relative

contributions depend on the scalar boson mass. For the
suprathreshold mass, M ¼ 3m, the annihilation is more
likely to dominate the total rate for (almost) all energies.
For the subthreshold mass, M ¼ m=3, on the other hand,
the particle-splitting processes give larger contributions
in a range of small energies, Ω≲ 1.7T. Still, even for
M ¼ m=3, the annihilation eventually takes over at higher
energies.
Now let us turn to the results for the ellipticity parameter

v2, shown in the two right panels of Fig. 5. In general, as we
see, the values of v2 are positive and relatively large. At
high energies, typical values of v2 are of the order of 0.2 to
0.3. The values tend to go down with increasing the
temperature, though. There are some qualitative differences
between the cases of M ¼ 3m (suprathreshold) and M ¼
m=3 (subthreshold), especially in the range of small
energies, i.e., Ω≲ 1.7T. In particular, for M ¼ 3m, the
ellipticity parameter v2 shows a wide range of variations at
small energies. It can even take negative values. These
variations come from a finite number of quantum tran-
sitions between Landau levels that produce large threshold
spikes in some directions and, thus, dramatically affecting
v2. In contrast, forM ¼ m=3, the ellipticity parameter tends

FIG. 7. The angular profile of the scalar boson production rates for several different energies and fixed temperature T ¼ 5m. The
magnetic field is jqBj ¼ 25m2 and the scalar boson masses are M ¼ 3m (top panels) and M ¼ m=3 (bottom panels). Each panel
contains separate contributions due to annihilation (red lines) and particle-splitting (green lines) processes, as well as the total rates
(blue lines).
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to grow by a factor of two or more with decreasing the
energy fromΩ ¼ 2m down toΩ ¼ m=3. Recall that, in this
energy range, many particle-splitting processes contribute.
They do not allow scalar boson production in the direction
θ ¼ 0 and, thus, tend to give large v2.

B. Strong magnetic field, jqBj= 25m2

Now let us consider the case of a strong field, i.e.,
jqBj ¼ ð5mÞ2. As in the previous subsection, we will start
from the representative numerical results for the differential
rates as functions of the angular coordinate θ. The rates for
several fixed values of the scalar boson energy are
displayed in Fig. 6. It includes four panels with the results
for two different temperatures, T ¼ 5m (left panels) and
T ¼ 15m (right panels), and two different scalar boson
masses, M ¼ 3m (top panels) and M ¼ m=3 (bottom
panels).
The strong field results in Fig. 6 are qualitatively similar to

those in the weaker field, presented earlier in Fig. 3. As
before, the rates generally growwith temperature. Also, their
dependence on the angular coordinate θ is similar too: (i) on
average, the rates tend to increase with θ and (ii) the
functional dependence around θ ¼ 0 changes in the same
waywhenonegoes from the suprathreshold (M ¼ 3m) to the
subthreshold (M ¼ m=3) scalar boson mass. By comparing

the results in Figs. 3 and 6, we also find that the rates are
considerably higher in the case of stronger field.
The emission profiles and relative contributions of the

annihilation and particle-splitting processes in the case of
strong field, jqBj ¼ 25m2, remain about the same as in the
weaker field, jqBj ¼ 4m2. Several representative profiles
with characteristic butterfly shapes are displayed in six
polar plots in Fig. 7. For the scalar mass M ¼ 3m, the
angular distribution of emission is particularly simple at
small energies. One of such cases for Ω ¼ 6m is displayed
in the top left panel of Fig. 7. At such low energy, the only
allowed annihilation processes are those between the low-
est Landau levels. As a results, the corresponding rate
visualized by the red line has a very smooth profile.
Interestingly, it is one of those special cases when the
annihilation has a slightly higher probability of producing
scalar boson in the direction parallel to the magnetic field.
Nevertheless, the particle-splitting processes overcompen-
sate due to their much higher probability to produce scalar
bosons in the directions perpendicular to the magnetic field.
There are no surprises in the case of the subthreshold

boson mass, M ¼ m=3. When M < Ω < 2m, again only
the particle-splitting processes contribute. It explains why
only the blue-line profile is shown in the bottom left panel
of Fig. 7, which corresponds to Ω ¼ 1.5m. With increasing
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FIG. 8. The total rates and ellipticity of scalar boson emission from a magnetized plasma at two different temperatures; T ¼ 5m (blue
lines) and T ¼ 15m (red lines). The magnetic field is jqBj ¼ 25m2 and the scalar boson masses areM ¼ 3m (top panels) andM ¼ m=3
(bottom panels).
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the energy, the role of annihilation processes grows and
they eventually dominate the total rate even for the
subthreshold values of the boson mass. In fact, the emission
profiles and relative contributions of different processes
become very similar at large energies irrespective of the
boson mass.
For the case of jqBj ¼ 25m2, the total rates dR=dΩ

integrated over the angular directions are shown in the two
left panels of Fig. 8. The two right panels contain the data
for the ellipticity measure v2 of the scalar boson produc-
tion. As before, the results for the lower temperature,
T ¼ 5m, are represented by the blue lines and those for the
higher temperature, T ¼ 15m, are represented by the red
lines. Additionally, the filled circles are used as plot
markers for the total rate, the open diamonds for annihi-
lation contributions, and the open squares for particle-
splitting processes. In the suprathreshold case, M ¼ 3m,
we show additionally the zero-field rates, represented by
the dash-dotted lines. (Recall that no nontrivial zero-field
limit exists in the subthreshold case with M ¼ m=3.)
The energy dependence of the total rates in Fig. 8 is very

similar to theweaker field case in Fig. 5. The rates growwith
increasing the temperature. The dependence on the scalar
boson energy vaguely resembles the black body radiation:
the rates grow from zero to its maximum value around the
energy Ω ∼ 1.7T and then decrease by gradually approach-
ing the exponential asymptote, dR=dΩ ∼ exp ð−Ω=TÞ.
The relative contributions of the annihilation and par-

ticle-splitting processes can be read off from Fig. 8 too.
While particle-splittings dominate in a range of small
energies, Ω≲ 1.7T, the annihilation overwhelms the total
rate at high energies, Ω≳ 1.7T. In the case of larger
(smaller) scalar massM ¼ 3m (M ¼ m=3), the correspond-
ing switch of the two regimes occurs at slightly lower
(higher) energies. Such a correlation is not surprising since
the relative role of annihilation processes is larger (smaller)
in the suprathreshold (subthreshold) case.
The ellipticity measure v2 of the scalar boson production

is again positive and relatively large. Its values are in the
same ballpark of 0.2 to 0.3. As in the case of the weaker
field, v2 gets slightly suppressed with increasing the
temperature. The prominent differences between the cases
of M ¼ 3m (suprathreshold) and M ¼ m=3 (subthreshold)
appear only at small energies, i.e., Ω≲ 1.7T.

V. CONCLUSIONS

In this paper, we have derived an analytic expression for
the imaginary (absorptive) part of the scalar boson’s self-
energy within a strongly magnetized relativistic plasma.
The model we consider involves a neutral scalar field that
interacts with charged fermions through a Yukawa-type
coupling. We use the expression for the imaginary part of
self-energy to calculate the differential production rate of
scalar bosons. In view of the principle of detailed balance,

this same quantity also determines the absorption rate of
scalar boson in the magnetized plasma.
As evident from the explicit expression we have derived,

the production rate is determined by three distinct types of
processes: particle-splitting (ψ → ψ þ ϕ), antiparticle-
splitting (ψ̄ → ψ̄ þ ϕ), and particle-antiparticle annihila-
tion (ψþ ψ̄ →ϕ). All such processes have been thoroughly
analyzed, with careful consideration given to the effects
of Landau-level quantization of charged fermions. In the
context of a high-temperature relativistic plasma (i.e.,
T ≳ ffiffiffiffiffiffiffiffiffijqBjp

), our findings reveal that a large number of
Landau levels contributes to the rate. In essence, this
implies that one cannot rely on the commonly employed
lowest Landau level approximation even when the mag-
netic field is very strong compared to the scale set by the
fermion mass.
The energy dependence of the rates exhibits a resem-

blance to a black body spectrum, featuring a peak at an
intermediate energy level comparable to the plasma’s
temperature. In our study of several representative cases,
we have found that the peak typically occurs at approx-
imately Ω ≃ 1.7T. Also, the rates grow with increasing
temperature. The influence of thermal effects can be readily
understood. As the temperature rises, the number of
occupied positive-energy states and unoccupied negative-
energy states grows. It leads to a larger phase space for all
the processes contributing to the scalar boson production.
The rates also exhibit growth with an increasing mag-

netic field, but the underlying physics is more subtle. One
key aspect is the substantial relaxation of momentum
conservation constraints provided by the background field.
The case in point is the production of bosons through
(anti)particle-splitting processes, which are prohibited in
the absence of a magnetic field. Additionally, the high
degeneracy of Landau levels likely plays a role in enhanc-
ing scalar boson production. As in the case of magnetic
catalysis [57], one may argue that such degeneracy
increases the average density of quantum states near small
energies. In the case of a hot plasma, this effect translates
into an increased phase space for annihilation processes. By
comparing the results for two representative field strengths,
jqBj ¼ 4m2 and jqBj ¼ 25m2, as well as for B ¼ 0, we see
that the presence of a magnetic field enhances the aver-
age rates.
We also studied in detail the dependence of the differ-

ential production rate on the angular coordinate and the
scalar boson energy. The butterflylike emission profiles
indicate a higher likelihood of boson production in direc-
tions perpendicular to the magnetic field. This preference
for perpendicular emission is reflected in the ellipticity
measure, denoted as v2, which typically assumes positive
values in the range of 0.2 to 0.3 at high scalar boson
energies. At small energies, on the other hand, the values of
v2 exhibit greater variability due to energy quantization of
the low-lying Landau-level states. In this regime, isolated
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energy thresholds can lead to abrupt changes in the v2
values, rendering this characteristics less informative and of
limited utility.
As stated in the Introduction, we do not try to address

phenomenological applications in this study. Nevertheless,
we cannot help but note that our findings regarding the
production (or decay) rate of scalar bosons may have
important implications for cosmology. In particular, they
suggest that the primordial magnetic field might exert an
even stronger influence on the magnetic warm inflation
scenario than previously reported in Refs. [53,54]. Indeed,
now we can fully substantiate the claim that the presence of
the magnetic field significantly amplifies the total boson
decay rate. Furthermore, the rate far exceeds the contribu-
tion from the lowest Landau level, which was employed as
an estimate in Ref. [54].
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México through Facultad de Ciencias, CGEP-AANILD,
and DGAPA-UNAM under Grant No. PAPIIT-IN108123.

The work of I. A. S. was supported by the U.S. National
Science Foundation under Grant No. PHY-2209470.

APPENDIX: ZERO MAGNETIC FIELD

In this appendix, for comparison purposes, we derive the
imaginary part of the scalar boson self-energy in the limit of
vanishing magnetic field. Similar results at nonzero temper-
ature can be found in the literature, e.g., see Refs. [56,58].
At the leading order, the scalar boson self-energy is

given by

ΣðkÞ ¼ ig2
Z

d4p
ð2πÞ4 Tr½SðpÞSðp − kÞ�; ðA1Þ

which is the momentum space representation of a definition
analogous toEq. (7). In the absence of a background field, the
fermion propagator reads

SðpÞ ¼ i
pþm

p2 −m2 þ iϵ
: ðA2Þ

After calculating the Dirac trace and replacing the energy
integration with the Matsubara sum, we derive

ΣðiΩm;kÞ ¼ 4g2T
X∞
k¼−∞

Z
d3p
ð2πÞ3

iωnðiωn − iΩmÞ − p · ðp − kÞ þm2

½ðiωnÞ2 − E2
p�½ðiωn − iΩmÞ2 − E2

p−k�
; ðA3Þ

where we have introduced the notation for the fermion energies Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and Ep−k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2 þm2

p
.

The zero-field result above is analogous to Eq. (16) in the main text. Similarly, we use Eq. (18) to compute the Matsubara
sum and arrive at the following result:

ΣRðΩ;kÞ ¼ g2
X

η;λ¼�1

Z
d3p
ð2πÞ3

nFðEpÞ − nFðλEp−kÞ
λEpEp−kðEp − λEp−k þ ηΩþ iηϵÞ ½λEpEp−k − p · ðp − kÞ þm2�; ðA4Þ

where we performed the analytical continuation to Minkowski space by replacing iΩm → Ωþ iϵ. To separate the real and
imaginary parts, we utilize the Sokhotski formula,

1

Ep − λEp−k þ ηΩþ iηϵ
¼ P

1

Ep − λEp−k þ ηΩþ iηϵ
− iηπδðEp − λEp−k þ ηΩÞ: ðA5Þ

Then, the imaginary part of the self-energy is given by

Im½ΣRðΩ;kÞ� ¼ −g2π
X

η;λ¼�1

Z
d3p
ð2πÞ3

nFðEpÞ − nFðλEp−kÞ
ηλEpEp−k

½λEpEp−k − p · ðp − kÞ þm2�δðEp − λEp−k þ ηΩÞ: ðA6Þ

The remaining integration over the loop momenta can be performed by switching to spherical coordinates,
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Im½ΣRðΩ;kÞ� ¼ −g2π
X

η;λ¼�1

Z
∞

0

Z
1

−1

Z
2π

0

p2dpdxdφ
ð2πÞ3

nFðEpÞ − nFðλEp−kÞ
ηλEpEp−k

× ½λEpEp−k − p2 þ jpjjkjxþm2�δðEp − λEp−k þ ηΩÞ

¼ −g2π
X

η;λ¼�1

Z
∞

0

Z
1

−1

p2dpdx
ð2πÞ2

nFðEpÞ − nFðλEp−kÞ
ηλEpEp−k

× ½λEpEp−k − p2 þ jpjjkjxþm2�jEp þ ηΩj δðx − x0Þ
jpjjkj ; ðA7Þ

where we used the properties of the Dirac δ-function and took into account the following solution to the energy-
conservation equation:

x0 ¼ −
Ω2 − jkj2 þ 2ηEpΩ

2jpjjkj : ðA8Þ

Changing the integration variable from p to energy Ep, we derive

Im½ΣRðΩ;kÞ� ¼ −
g2π
ð2πÞ2

Z
Eþ

E−

dEp
nFðEpÞ − nFðEp −ΩÞ

jkj
�
2m2 −

Ω2 − jkj2
2

�
ΘðΩ − EpÞΘðΩ2 − jkj2 − 4m2Þ; ðA9Þ

where the integration limits are defined by

E� ≡ Ω
2
� jkj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

Ω2 − jkj2

s
: ðA10Þ

These were obtained by requiring that −1 < x0 < 1. After integrating over the energy, the final result reads

Im½ΣRðΩ;kÞ� ¼ −
g2

8π
ðΩ2 − jkj2 − 4m2Þ

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

Ω2 − jkj2

s
þ 2T
jkj ln

�
1þ e−βEþ

1þ e−βE−

�375ΘðΩ2 − jkj2 − 4m2Þ: ðA11Þ
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