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The chiral and deconfinement phase transitions under rotation have been simultaneously investigated
in the Polyakov-Nambu-Jona-Lasinio (PNJL) model. An interesting observation has been found that the
chiral phase transition is catalyzed and the deconfinement phase transition is decelerated by rotation,
therefore a chiral symmetric but confined phase is induced by rotation, which indicates that chiral dynamics
and gluon dynamics can be split by rotation.
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I. INTRODUCTION

The quark dynamics and gluon dynamics of quantum
chromodynamics (QCD) describing the internal structure
of hadrons and are responsible for 99% mass of the visible
matter in the universe, and the interplay between chiral and
deconfinement phase transitions has been the main theme
of QCD phase diagram at finite temperature and density
and other extreme conditions including external strong
magnetic field and vortical field.
The rotation effect is a fascinating subject of QCDmatter

in heavy-ion collision phenomenology nowadays. QCD
matter created through noncentral heavy ion collisions
carries a finite angular momentum at the order of 104 ∼
105ℏ with local angular velocity in the range 0.01 ∼
0.1 GeV [1–6], which affects both the spin and orbital
angular momentum of quarks and gluons [7–12].
Experimentally, the global spin polarizations of Λ and Λ̄
have been measured by the STAR collaboration in
Auþ Au collisions over a wide range of beam energiesffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV and by ALICE collaboration in
Pbþ Pb collisions at 2.76 TeV and 5.02 TeV [10,13,14].
The observation of hadron polarization and spin alignment
opens a new window to study the properties of quark-gluon
plasma (QGP) under rotation created in Relativistic Heavy
Ion Collider (RHIC) and Large Hadron Collider (LHC).

QCD matter under rotation has been studied by using
effective QCD models as well as lattice simulations. It has
been also attracted much interest of investigating rotation
effect on other physical situations, e.g., the mesonic
condensation of isospin matter with rotation in hadron
physics [15], the trapped nonrelativistic bosonic cold atoms
in condensed matter physics [16–20], and the rapidly
spinning neutron stars in astrophysics [21–23].
Dynamical chiral symmetry breaking (DCSB) and con-

finement are two of the most basic features of QCD.
Theoretically, the non-Abelian nature of QCD makes it
difficult to have a thorough understanding of DCSB and
many effective models have been proposed. In the past,
much attention has been paid on the phase diagram in the
plane of temperature and density. For example, The Nambu
and Jona-Lasinio (NJL) model, quark-meson (QM) model,
holographic QCD model, functional renormalization group
(FRG), Dyson-Schwinger equations (DSE) as well as their
extending models [24–47] have been used to investigate the
QCD phase transition. In fact, the phase transition has been
already examined extensively in the presence of finite
temperature and chemical potential, in addition to the usual
temperature and density affect the QCD phase transition. In
recent years, much efforts have been paid on QCD phase
transitions and QCD matter properties induced by rotation.
A lot of theoretical efforts have been dedicated to the

study of rotational phenomena. Apart from transport
properties, such as the chiral vortical effect and chiral
vortical wave [48–51], it is also of significant interest to
explore the effects of rotation on the phase transitions, since
the rotation plays a crucial role in shaping the behavior of
the phase diagram both for the chiral and deconfinement
transition of QCD matter. The chiral phase transition
has been explored under rotation and it is found that the
chiral condensate is suppressed by the rotation [52–62].
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It is natural to ask how the rotation affects another
important feature of QCD, i.e., the confinement-
deconfinement phase transition. There is still controversy
in the literature on how rotation affects the deconfinement
transition. Based on the holographic QCD approach,
it is found in Ref. [63] that the deconfinement critical
temperature Td

c decreases with growing angular velocity,
which is confirmed by other holography studies [64–77].
Besides, the lattice QCD [78] simulation indicates that the
critical temperature of the confinement/deconfinement
transition in gluodynamics increases with increasing
angular velocity, which is in contradiction with the results
obtained in holography models.
In a hadron resonance gas model [79], the critical

temperature of the confinement/deconfinement phase tran-
sition decreases with rotation, which is in agreement with
the results in holographic QCD models. Therefore it calls
for further studies on how rotation affects the gluodynamics
and the confinement/deconfinement phase transition. In
this work we will investigate the effect of rotation on chiral
phase transition and confinement/deconfinement phase
transition in the framework of the Polyakov-Nambu-
Jona-Lasinio (PNJL) model. The PNJL model [80–86]
shows features of both chiral symmetry restoration and
deconfinement phase transition. So it is natural to ask what
are the influences of rotation on the QCD phase structure,
and how does the interplay between chiral and deconfine-
ment phase transitions in this effective model. In this paper,
we extend the PNJL model in the presence of rotation
effect, and both chiral condensate and Polyakov loop
modified by rotation are under considered, in particular,
we are going to address the question how the rotation that in
the coupling term influences the chiral transition and
deconfinement transition.
Our work is organized as follows. We first give a brief

description of the PNJL model and then consider the
PNJL model in the presence of rotation in Sec. II, by using
the mean-field approximation and the finite temperature
field methods we obtain the grand thermodynamic poten-
tial. In Sec. III we present numerical results and dis-
cussions on the chiral and deconfinement phase transition
under rotation. Section IV summarizes and concludes
the paper.

II. FORMALISM

Here we give a very brief sketch of the basis for studying
the rotating matter. For the rotating frame, the space-time
metric reads

gμν ¼

0
BBB@

1 − v⃗2 −v1 −v2 −v3
−v1 −1 0 0

−v2 0 −1 0

−v3 0 0 −1

1
CCCA; ð1Þ

where vi is the velocity and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p
. The

Lagrangian in the two-flavor NJL model under rotation
can be written as follows:

LNJL¼
X
f

ψ̄f½iγ̄μð∂μþΓμÞ−mþγ0μ�ψfþGðψ̄ψÞ2; ð2Þ

here, ψ is the quark field, γ̄μ ¼ e μ
a γa with e μ

a being the
tetrads for spinors and γa represents the gamma matrix,
Γμ is defined as Γμ ¼ 1

4
× 1

2
½γa; γb�Γabμ which is the spinor

connection, where Γabμ ¼ ηacðecσGσ
μνe ν

b − e ν
b ∂μe

c
νÞ, and

Gσ
μν is the affine connection determined by gμν, m is the

bare quark mass matrix, μ denotes the chemical potential,
and G represents the coupling constants.
It should be noted that the NJL model lacks gluon

degrees of freedom. In order to effectively account for the
contribution from gluodynamics, we use the PNJLmodel in
the following, where the Lagrangian takes the form:

LPNJL ¼ LNJL þ ψ̄γμAμψ − UðΦ; Φ̄; TÞ; ð3Þ

here, we have included the coupling between the fermion
fields and the gauge fields and the effective gluonic
potential UðΦ; Φ̄; TÞ, whose explicit expression will be
given later.
When extending to the case of rotating fermions with

nonzero chemical potential, considering a system with an
angular velocity along the fixed z-axis, then v⃗ ¼ ω⃗ × x⃗. By
choosing eaμ ¼ δaμ þ δai δ

0
μvi and eμa ¼ δμa − δ0aδ

μ
i vi (details

can be found in Refs. [6,16]), the Lagrangian can be
expanded to the first order of angular velocity. Finally, the
Lagrangian is given as follows:

LPNJL ¼ ψ̄ ½iγμDμ −mþ γ0μ

þ ðγ0Þ−1ððω⇀ × x
⇀Þ · ð−i∂

⇀
Þ þ ω

⇀
· S
⇀

4×4Þ�ψ
þ Gðψ̄ψÞ2 − UðΦ½A�;Φ½A�; TÞ; ð4Þ

where the covariant derivative Dμ ¼ ∂μ − iAμ determines
the coupling between the Polyakov loop and quarks, ω is

the angular velocity and S
⇀

4×4 ¼ 1
2
ðσ⇀
0
0

σ
⇀Þ is the spin

operator. From the equation above, it can be observed
that due to the gluon field and the rotation, the free Dirac
Lagrangian has been modified. The first term corresponds
to the coupling between the quark field and gluon field,
the fourth term corresponds to the orbital-rotation cou-
pling effect and the spin-rotation coupling effect. The
last term in the Lagrangian represents the effective
Polyakov loop potential, and the Polyakov loops Φ; Φ̄
are obtained by:

Φ ¼ 1

Nc
htrLi; Φ̄ ¼ 1

Nc
htrL†i; ð5Þ
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here, the Polyakov line is defined as,

Lðx̄Þ ¼ P exp

�
i
Z
0

β
dτA4ðx̄; τÞ

�
; ð6Þ

where β ¼ 1
T, P denotes path ordering, and A4 ¼ iA0 is the

temporal component of Eucledian gauge field ðĀ; A4Þ. In
this model, the quarks couple to a background (temporal)
gauge field representing Polyakov loop dynamics. When
performing the mean field approximation and employing
the technique of path integral formulation for Grassmann

variables theory, the Lagrangian is linearized to a 4-quark
interaction, and the logarithm of the partition function is
expressed as follows:

logZ ¼ −
1

T

Z
d3x

�ðM −mÞ2
4G

�
þ 2 log det

D−1

T
ð7Þ

here the effective quark mass M ¼ m − 2Ghq̄qi and hq̄qi
is the so-called chiral condensate.
The inverse fermion propagator D−1 in Eq. (7) needs its

trace to be taken in color, flavor, and Dirac spaces. In
momentum space, it is given as follows:

D−1 ¼
 
−iωl þ ðnþ 1

2
Þωþ μ − iA4 −M −σ

⇀
:p
⇀

σ
⇀
:p
⇀ −ð−iωl þ ðnþ 1

2
Þωþ μ − iA4Þ −M

!
; ð8Þ

here we have omitted the flavor index, ωl is Matsubara
frequency, n is the z-angular-momentum quantum number.
The expression for log det D̂

−1

T is given as:

log det
D̂−1

T
¼ tr log

D̂−1

T

¼
Z

d3x
Z

d3p
ð2πÞ3

�
ψpðxÞ

���� log D̂−1

T

����ψpðxÞ
	
:

ð9Þ

The Dirac fields can be defined in terms of the wave
functions uðxÞ, vðxÞ

ψpðxÞ ¼
X
n;s;p

ðuðxÞ þ vðxÞÞ: ð10Þ

To find solutions of the Dirac equation, we start by
choosing a complete set of commutating operators con-
sisting of Ĥ, which can be obtained from Eq. (4), the
momentum in the z-direction p̂z, the square of transverse
momentum p̂2

t , the z-component of the total angular
momentum Ĵz and the transverse helicity ĥt, here

ĥt ¼ γ5γ3p
⇀

t · S
⇀
. Note that in our calculations, we use

cylindrical spatial coordinates. By solving the eigenvalue
equations of the complete set of commuting operators
fĤ; p̂z; p̂2

t ; Ĵz; ĥtg, we obtain the positive and negative
energy solutions of the Dirac field as follows:

u ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
E

r
eipzzeinθ

0
BBBBB@

JnðptrÞ
seiθJnþ1ðptrÞ
pz−ispt
Eþm JnðptrÞ

−spzþipt
Eþm eiθJnþ1ðptrÞ

1
CCCCCA;

v ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
E

r
e−ipzzeinθ

0
BBBBB@

pz−ispt
Eþm JnðptrÞ

−spzþipt
Eþm eiθJnþ1ðptrÞ

JnðptrÞ
−seiθJnþ1ðptrÞ

1
CCCCCA ð11Þ

Here, we have chosen the overall normalization of these
solutions, and s ¼ �1 is the transverse helicity quantum
number. After the summation of all the Matsubara frequen-
cies and the general approach of the finite temperature
fields [87] is carried out, it can be shown that the
thermodynamic grand potential Ω ¼ − T

V logZ takes the
following form:

ΩPNJL ¼ Ghq̄qi2 − T
4π2

X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzðJnþ1ðptrÞ2 þ JnðptrÞ2Þ

× Trc½logð1þ Le−
εn−μ
T Þ þ logð1þ L†e−

εnþμ
T Þ þ logð1þ L†e

εn−μ
T Þ þ logð1þ Le

εnþμ
T Þ� þ UðΦ; Φ̄; TÞ; ð12Þ

finally, the grand potential reads,
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ΩPNJL ¼ Ghq̄qi2 − T
4π2

X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzðJnþ1ðptrÞ2 þ JnðptrÞ2Þ

×
h
log


1þ 3Φe−

εn−μ
T þ 3Φ̄e−2

εn−μ
T þ e−3

εn−μ
T
�þ log



1þ 3Φ̄e

εn−μ
T þ 3Φe2

εn−μ
T þ e3

εn−μ
T
�

þ log


1þ 3Φ̄e−

εnþμ
T þ 3Φe−2

εnþμ
T þ e−3

εnþμ
T
�þ log



1þ 3Φe

εnþμ
T þ 3Φ̄e2

εnþμ
T þ e3

εnþμ
T
�iþ UðΦ; Φ̄; TÞ: ð13Þ

Here, for simplicity, we have introduced the quark
quasiparticle energy εn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2

t þp2
z

p
−ð1

2
þnÞω with

the dynamic quark mass M ¼ m − 2Ghq̄qi. The Polyakov
loop potential gives a deconfinement phase transition at
T ¼ T0 in the pure gauge theory. The function UðΦ; Φ̄; TÞ
is fixed by comparison with pure-gauge lattice QCD and
reads as follows,

U
T4

¼ −
1

2
b2ðTÞΦΦ̄ −

b3
6
ðΦ3 þ Φ̄3Þ þ b4

4
ðΦΦ̄Þ2; ð14Þ

where b2ðTÞ ¼ a0 þ a1
T0

T þ a2ðT0

T Þ2 þ a3ðT0

T Þ3. As a pre-
liminary study, we restrict our analysis to the influence of
the coupling term on the critical behavior, which means the
Polyakov loop potential used here does not have an explicit
rotational dependence. In the PNJL model, quarks couple
with gauge fields through the covariant derivative [see

Eq. (3)], and we will investigate the influence of coupling
between quarks and gluons on the quark mass and
Polyakov loop, the chiral phase transition and the decon-
finement phase transition.
Then, we consider the gap equations that will be required

to minimize the grand thermodynamical potential, the
values are determined by solving the stationary condition,
namely,

∂Ω
∂hq̄qi ¼ 0;

∂Ω
∂Φ

¼ 0;
∂Ω
∂Φ̄

¼ 0: ð15Þ

This set of coupled equations is then solved as functions
of temperature T, quark chemical potential μ, and angular
velocity ω. The corresponding detailed expressions for
these gap equations are listed below:

0 ¼ 2Ghq̄qi − 3

2π2
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzðJnþ1ðptrÞ2 þ JnðptrÞ2Þ

×

�
1 −

1þ 2e
μþεn
T Φþ e

2ðμþεnÞ
T Φ̄

1þ e
3ðμþεnÞ

T þ 3e
μþεn
T Φþ 3e

2ðμþεnÞ
T Φ̄

−
1þ e

2ðεn−μÞ
T Φþ 2e

εn−μ
T Φ̄

1þ e
3ðεn−μÞ

T þ 3e
2ðεn−μÞ

T Φþ 3e
εn−μ
T Φ̄

��
−

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t þ p2

z þM2
p �

; ð16Þ

0 ¼ −
3

2π2
T
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpz

�
ðJnþ1ðptrÞ2 þ JnðptrÞ2Þ

× e
μþεn
T

�
1

e
3μ−εn

T þ e
2εn
T þ 3e

μþεn
T Φþ 3e

2μ
T Φ̄

þ 1

1þ e
3ðμþεnÞ

T þ 3e
μþεn
T Φþ 3e

2ðμþεnÞ
T Φ̄

��

þ T4

�
−
1

2
b3Φ2 þ 1

2
b4ΦΦ̄2 −

1

2
b2ðTÞΦ̄

�
; ð17Þ

0 ¼ −
3

2π2
T
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpz

�
ðJnþ1ðptrÞ2 þ JnðptrÞ2Þ

× e
2μþεn

T

�
e
εn
T

1þ e
3ðμþεnÞ

T þ 3e
μþεn
T Φþ 3e

2ðμþεnÞ
T Φ̄

þ 1

e
3μ
T þ e

3εn
T þ 3e

μþ2εn
T Φþ 3e

2μþεn
T Φ̄

��

þ T4

�
−
1

2
b3Φ̄2 þ 1

2
b4Φ2Φ̄ −

1

2
b2ðTÞΦ

�
: ð18Þ
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III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our numerical results for the
PNJL model under rotation. For the Fermionic sector, the
parameters are chosen as m ¼ 0.005 GeV, Λ ¼ 0.65 GeV,
and G ¼ 4.93 GeV−2, as reported in Ref. [24], which are
fixed to reproduce the physical observations. For the
Polyakov loop sector, we list the parameters in Table I,
which are taken from Ref. [85]. Additionally, the z-angular-
momentum quantum number is denoted by n ¼ 0;�1;
�2…. In principle, we should sum over all the values of n;
fortunately, these expressions converge rapidly, allowing us
to limit the sum over n from −5 to 5. We set the radius to
r ¼ 0.1 GeV−1 and ensure that ωr < 1 in all calculations.
The quark condensate, related to the dynamical quark

mass, is often considered as an order parameter for sponta-
neous chiral symmetry breaking, while the Polyakov
loop serves as an order parameter for the confinement-
deconfinement phase transition. In Fig. 1, we present the
evolution of the light quark effective mass and the Polyakov
loop at μ ¼ 0 for different angular velocities as functions of
temperature in Figs. 1(a) and 1(b), respectively. It can be
observed that the effective mass of the light quark decreases
with increasing temperature, indicating the restoration of
chiral symmetry at high temperatures. The dynamical quark
mass is seen to be suppressed by the angular velocity. On the
other hand, the Polyakov loop increases as the temperature
rises, showing a behavior similar to the general PNJL model.
Notably, the quark mass is strongly affected by the presence
of angular velocity at low temperatures, while the Polyakov
loop is less affected, especially compared to the quark mass.
The restoration of chiral symmetry is realized at rapid
rotation in the low-temperature region. A transition from
the confinement regime at low temperatures to the decon-
finement regime at high temperatures is evident, and the
rotation effect enhances the Polyakov loop at low temper-
atures but suppresses it at high temperatures. It can be
observed that the Polyakov loop’s dependence on rotation is
mild when only considering the coupling term contribution.
Next, we consider a nonzero chemical potential where

μ ¼ 0.1 GeV, and the results of light quark dynamical mass
and the Polyakov loop Φ and Φ̄ are presented in Figs. 2(a)
and 2(b), respectively. Comparing with Fig. 1(a), we
observe that in the presence of a finite quark chemical
potential, the light quark dynamical mass curves become
smoother for all different angular velocities, indicating
that the quark chemical potential suppresses the chiral
condensate in the rotating system. Furthermore, we find
that Φ and Φ̄ differ from each other due to the quark

chemical potential. Although the Polyakov loop and its
conjugate have some small quantitative differences for the
same angular velocity, they both exhibit the same quali-
tative behavior, and at high temperatures, they almost
coincide again.
When including the quark field, the center symmetry is

explicitly broken, which means there is no strict order
parameter. However, the Polyakov loop can be considered
as an approximate order parameter and serves as an
indicator of a rapid crossover toward the deconfinement
transition. Pseudocritical temperatures of the quark and
Polyakov loop at zero chemical potential are depicted in
Fig. 3(a). We observe that the pseudocritical temperatures
of the Polyakov loop are only mildly dependent on the
angular velocity compared to those of the light quark. In the
small angular velocity region, there is a slowly declining
trend for the pseudocritical temperatures of the Polyakov
loop. As the angular velocity increases, the crossover
transitions for the chiral condensate and the Polyakov loop
coincide at Tpc ≃ 0.235 GeV and ω ≃ 0.3 GeV. After
reaching this point, the pseudocritical temperature experi-
ences a sharp jump, and the pseudocritical temperatures of

FIG. 1. The light quark effective mass and Polyakov loop as
functions of temperature T at μ ¼ 0 GeV for different angular
velocities.

TABLE I. Parameters of the Polyakov loop sector of the model.

a0 a1 a2 a3 b3 b4 T0

6.75 −1.95 2.625 −7.44 0.75 7.5 0.27 GeV
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the Polyakov loop moderately increase with increasing
angular velocity. In the mid-range of angular velocity, the
data show a jumplike feature, the origin of which is not
completely understood, but it probably indicates some
form of competition between temperature and rotation.
To better understand how rotation influences a phase
transition, we plot dΦ=dT as a function of temperature at
zero chemical potential for different angular velocities in
Fig. 3(b). In this figure, the definition of Tpc is determined
by the maximum of the derivative of Φ with respect to T.
The figure shows that, initially, the peak position moves to
a lower temperature as the angular velocity increases, and
then moves to a higher temperature with further increase
in angular velocity. Moreover, we find that the angular
velocity increases as the peak height becomes lower. It
appears that the maximum of the black dashed curve is
flattening, which means the Polyakov loop linearly
changes with the angular velocity in this region. Once
exceeding this region, there is a jump in the pseudocritical
temperatures, reflecting the competition between temper-
ature and angular velocity. Thus, the present approach
suggests that the coupling term has a soft influence on the

Polyakov loop, and the behavior of the critical temper-
ature for confinement is nonmonotonic.
From Fig. 3, it is evident that the deconfinement phase

transition occurs at lower temperatures compared to the
chiral phase transition in the region of small angular
velocity. However, this is not a universal property of the
transition under rotation. It should be emphasized that the
value of T0 can be rescaled over a large range. When we
change T0 to 0.32 GeV, a perfect coincidence of the chiral
and deconfinement transitions is achieved at μ ¼ 0, ω ¼ 0,
but the critical temperatures are shifted relative to each
other by several tens of MeV at finite ω as shown in Fig. 4
clearly, indicating that a chiral symmetric but confined
phase can be induced by rotation, and the splitting between
the two transitions becomes wider with increasing angular
velocity. Thus, the rotation effect, arising from the coupling
between quarks and the Polyakov loop (or the contribution
from rotating quarks to the Polyakov loop), has a strong
impact on the splitting of the chiral transition and decon-
finement transition.

FIG. 3. The pseudocritical temperatures of the dynamical quark
mass and Polyakov loop according to the angular velocity at zero
chemical potential (a). Susceptibilities dΦ=dT as a function of
temperature at zero chemical potential for different angular
velocities (b).

FIG. 2. The light quark effective mass and the Polyakov loop as
functions of temperature T at μ ¼ 0.1 GeV for different angular
velocities.
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It would be intriguing to investigate the dependence of
the deconfinement transition on both quark chemical
potential and rotation. Figure 5 displays the pseudocritical
temperatures of the Polyakov loop Φ at different angular
velocities as a function of quark chemical potential. Here,
we fix T0 ¼ 0.27 GeV and vary the quark chemical
potential for three different values of ω ¼ 0.1, 0.3,
0.5 GeV. When the angular velocity is small, the pseu-
docritical temperature initially decreases and then increases
with increasing quark chemical potential. However, for
sufficiently large angular velocities, the kink in the curve
disappears, and at very high angular velocities, the pseu-
docritical temperature is almost unaffected by the quark
chemical potential.

IV. CONCLUSIONS

This work aims to develop a general model suitable for
studying confinement and chiral symmetry breaking under
rotation. By combining the NJL model under rotation with

the Polyakov loop, we have formulated and explored QCD
matter under rotation using the Polyakov loop-extended
NJL model. We derived explicit analytical expressions for
the PNJL model under rotation and provided detailed
calculation procedures. From a phenomenological perspec-
tive, this framework offers a possibility for the theoretical
study of QCD matter under rotation.
In this article, we focus on the rotational effect of the

coupling between quarks and the gauge field on the chiral
transition and deconfinement transition. Our findings
indicate that rotation plays a significant role in the chiral
transition. At low temperatures and small angular velocity,
chiral symmetry is spontaneously broken, and as the
angular velocity increases, the chiral symmetry gradually
restores. As for the Polyakov loop, at low-temperature
regions, its magnitude is enhanced by rotation, whereas
at high-temperature regions, the magnitude is suppressed.
Our calculations provide a physical picture of the transition
under rotation, showing that the deconfinement phase
transition is insensitive to the rotating effect compared to
the chiral transition. We also find that rotation decreases the
critical temperature of the chiral transition and increases the
critical temperature of the deconfinement transition at large
angular regions. Additionally, our calculations suggest that
the rotation effect may induce the splitting of chiral and
deconfinement phase transition thus leads to a chiral
symmetric but confined phase and has a strong impact
on the splitting of the chiral phase transition and deconfine-
ment phase transition, which arises from the coupling of the
chiral order parameter to the Polyakov loop.
It should be noted that, for simplicity, we did not

consider the boundary effect of the system. Since any
uniformly rotating system should be spatially bounded,
the boundaries could modify the properties of the rotating
system [52,55,56,64,77]. In addition, In Ref. [77], an
inhomogeneity of plasmas was predicted due to the
Tolman-Ehrenfest effect, so the inhomogeneity should
also be regarded. We leave the finite volume boundary
effect and the inhomogeneity effect for further study.
Furthermore, the vector interactions [88–90] may play
an important role in the chiral transition of the PNJL
model in the presence of rotation. Additionally, the rota-
tional influence on the equation of state may also be
intriguing and requires further investigation.
We would like to point out that in the PNJL model, the

insensitivity of the deconfinement phase transition under
rotation, which is similar to that of at finite chemical
potential. This behavior might be caused by the model
itself, where the thermodynamic effect of gluodynamics is
introduced through the Polyakov loop potential. In order to
fully understand the gluodynamics under rotation, we may
need to consider the dynamical gluons as a vector field,
which should be sensitive to the rotation like the vector
meson field under rotation as shown in [91]. Therefore, the
behavior of full QCDmatter under rotation remains an open

FIG. 4. The pseudocritical temperatures of the dynamical quark
mass and Polyakov loop according to the angular velocity at zero
chemical potential with T0 ¼ 0.32 GeV.

FIG. 5. The pseudocritical temperatures of the Polyakov loopΦ
according to the quark chemical potential for different angular
velocities with T0 ¼ 0.27 GeV.
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question, and the effect of rotation on the deconfinement
phase transition is still highly debated and warrants
further research. In essence, the behavior of rotating
QCD matter may be quite intricate. A clearer picture may
emerge as more experimental data on QCD matter under
rotation are accumulated. Furthermore, some recent
lattice QCD calculations [92–96] show that the solidly
rotating gluon plasma experiences instability, which
demonstrate that the behavior of rotating QCD is com-
plicated, and Ref. [93] demonstrates analytically that
this effect is linked to the thermal melting of the magnetic
part of the gluonic condensate, which gives a negative
moment of inertia to the gluonic component of the
plasma. So, considering the contribution of the dynamical
gluon from further investigations in the effective model
would be helpful. As research progresses, we believe that
our understanding of this issue will deepen, providing

more clues to the unconventional properties of the QCD
matter under rotation.

ACKNOWLEDGMENTS

Wewould like to thankMaxim Chernodub, Jinfeng Liao,
Xuguang Huang, Anping Huang, Jie Mei, Rui Wen, Shijun
Mao for useful discussions. The work has been supported
by the National Natural Science Foundation of China
(NSFC) with Grant No. 12235016, No. 12221005 and
the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant No. XDB34030000,
the start-up funding from University of Chinese Academy
of Sciences (UCAS), and the Fundamental Research Funds
for the Central Universities, and the Science Research
Foundation of China Three Gorges University with Grant
No. KJ2015A007.

[1] Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301
(2005); 96, 039901(E) (2006).

[2] X.-G. Huang, P. Huovinen, and X.-N. Wang, Phys. Rev. C
84, 054910 (2011).

[3] F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C 77,
024906 (2008).

[4] L. P. Csernai, V. K. Magas, and D. J. Wang, Phys. Rev. C 87,
034906 (2013).

[5] W.-T. Deng and X.-G. Huang, Phys. Rev. C 93, 064907
(2016).

[6] Y. Jiang, Z.-W. Lin, and J. Liao, Phys. Rev. C 94, 044910
(2016); 95, 049904(E) (2017).

[7] F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del
Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chandra,
Eur. Phys. J. C 75, 406 (2015); 78, 354(E) (2018).

[8] S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019).
[9] L.-G. Pang, H. Petersen, Q. Wang, and X.-N. Wang, Phys.

Rev. Lett. 117, 192301 (2016).
[10] L. Adamczyk et al. (STAR Collaboration), Nature (London)

548, 62 (2017).
[11] F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin,

Phys. Rev. C 95, 054902 (2017).
[12] X.-L. Xia, H. Li, Z.-B. Tang, and Q. Wang, Phys. Rev. C 98,

024905 (2018).
[13] J. Adam et al. (STAR Collaboration), Phys. Rev. C 98,

014910 (2018).
[14] S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 101,

044611 (2020); 105, 029902(E) (2022).
[15] H. Zhang, D. Hou, and J. Liao, Chin. Phys. C 44, 111001

(2020).
[16] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
[17] M. Urban and P. Schuck, Phys. Rev. A 78, 011601

(2008).
[18] M. Iskin and E. Tiesinga, Phys. Rev. A 79, 053621

(2009).

[19] R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Chudo, S.
Okayasu, J. Ieda, S. Takahashi, S. Maekawa, and E. Saitoh,
Nat. Phys. 12, 52 (2016).

[20] J. Gooth et al., Nature (London) 547, 324 (2017).
[21] A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016).
[22] I. A. Grenier and A. K. Harding, C.R. Phys. 16, 641 (2015).
[23] E. Berti, F. White, A. Maniopoulou, and M. Bruni, Mon.

Not. R. Astron. Soc. 358, 923 (2005).
[24] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[25] M. Buballa, Phys. Rep. 407, 205 (2005).
[26] H. Kohyama, D. Kimura, and T. Inagaki, Nucl. Phys. B896,

682 (2015).
[27] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys.

33, 477 (1994).
[28] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001).
[29] I. C. Cloet and C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1

(2014).
[30] T. M. Schwarz, S. P. Klevansky, and G. Papp, Phys. Rev. C

60, 055205 (1999).
[31] P. Zhuang, M. Huang, and Z. Yang, Phys. Rev. C 62,

054901 (2000).
[32] J.-W. Chen, J. Deng, and L. Labun, Phys. Rev. D 92, 054019

(2015).
[33] J.-W. Chen, J. Deng, H. Kohyama, and L. Labun, Phys. Rev.

D 93, 034037 (2016).
[34] W. Fan, X. Luo, and H.-S. Zong, Int. J. Mod. Phys. A 32,

1750061 (2017).
[35] W. Fan, X. Luo, and H. Zong, Chin. Phys. C 43, 033103

(2019).
[36] W.-j. Fu and Y.-l. Wu, Phys. Rev. D 82, 074013 (2010).
[37] E. S. Bowman and J. I. Kapusta, Phys. Rev. C 79, 015202

(2009).
[38] H. Mao, J. Jin, and M. Huang, J. Phys. G 37, 035001 (2010).
[39] B. J. Schaefer and M. Wagner, Phys. Rev. D 85, 034027

(2012).

FEI SUN, KUN XU, and MEI HUANG PHYS. REV. D 108, 096007 (2023)

096007-8

https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1103/PhysRevC.84.054910
https://doi.org/10.1103/PhysRevC.84.054910
https://doi.org/10.1103/PhysRevC.77.024906
https://doi.org/10.1103/PhysRevC.77.024906
https://doi.org/10.1103/PhysRevC.87.034906
https://doi.org/10.1103/PhysRevC.87.034906
https://doi.org/10.1103/PhysRevC.93.064907
https://doi.org/10.1103/PhysRevC.93.064907
https://doi.org/10.1103/PhysRevC.94.044910
https://doi.org/10.1103/PhysRevC.94.044910
https://doi.org/10.1103/PhysRevC.95.049904
https://doi.org/10.1140/epjc/s10052-015-3624-1
https://doi.org/10.1140/epjc/s10052-018-5810-4
https://doi.org/10.1016/j.physletb.2018.09.066
https://doi.org/10.1103/PhysRevLett.117.192301
https://doi.org/10.1103/PhysRevLett.117.192301
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1103/PhysRevC.95.054902
https://doi.org/10.1103/PhysRevC.98.024905
https://doi.org/10.1103/PhysRevC.98.024905
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevC.101.044611
https://doi.org/10.1103/PhysRevC.101.044611
https://doi.org/10.1103/PhysRevC.105.029902
https://doi.org/10.1088/1674-1137/abae4d
https://doi.org/10.1088/1674-1137/abae4d
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/PhysRevA.78.011601
https://doi.org/10.1103/PhysRevA.78.011601
https://doi.org/10.1103/PhysRevA.79.053621
https://doi.org/10.1103/PhysRevA.79.053621
https://doi.org/10.1038/nphys3526
https://doi.org/10.1038/nature23005
https://doi.org/10.1103/RevModPhys.88.021001
https://doi.org/10.1016/j.crhy.2015.08.013
https://doi.org/10.1111/j.1365-2966.2005.08812.x
https://doi.org/10.1111/j.1365-2966.2005.08812.x
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1016/j.nuclphysb.2015.05.015
https://doi.org/10.1016/j.nuclphysb.2015.05.015
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1103/PhysRevC.60.055205
https://doi.org/10.1103/PhysRevC.60.055205
https://doi.org/10.1103/PhysRevC.62.054901
https://doi.org/10.1103/PhysRevC.62.054901
https://doi.org/10.1103/PhysRevD.92.054019
https://doi.org/10.1103/PhysRevD.92.054019
https://doi.org/10.1103/PhysRevD.93.034037
https://doi.org/10.1103/PhysRevD.93.034037
https://doi.org/10.1142/S0217751X17500610
https://doi.org/10.1142/S0217751X17500610
https://doi.org/10.1088/1674-1137/43/3/033103
https://doi.org/10.1088/1674-1137/43/3/033103
https://doi.org/10.1103/PhysRevD.82.074013
https://doi.org/10.1103/PhysRevC.79.015202
https://doi.org/10.1103/PhysRevC.79.015202
https://doi.org/10.1088/0954-3899/37/3/035001
https://doi.org/10.1103/PhysRevD.85.034027
https://doi.org/10.1103/PhysRevD.85.034027


[40] B.-J. Schaefer and M. Wagner, Central Eur. J. Phys. 10,
1326 (2012).

[41] S.-x. Qin, L. Chang, H. Chen, Y.-x. Liu, and C. D. Roberts,
Phys. Rev. Lett. 106, 172301 (2011).

[42] J. Luecker, C. S. Fischer, L. Fister, and J. M. Pawlowski,
Proc. Sci., CPOD2013 (2013) 057 [arXiv:1308.4509].

[43] W.-j. Fu, J. M. Pawlowski, F. Rennecke, and B.-J. Schaefer,
Phys. Rev. D 94, 116020 (2016).

[44] L. A. H. Mamani, C. V. Flores, and V. T. Zanchin, Phys.
Rev. D 102, 066006 (2020).

[45] Y. Chen, D. Li, and M. Huang, Commun. Theor. Phys. 74,
097201 (2022).

[46] X. Chen, D. Li, D. Hou, and M. Huang, J. High Energy
Phys. 03 (2020) 073.

[47] X. Yu, L. Wu, L. Yu, and X. Wang, arXiv:2306.12036.
[48] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A797, 67

(2007).
[49] D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601

(2009).
[50] D. E. Kharzeev and D. T. Son, Phys. Rev. Lett. 106, 062301

(2011).
[51] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog.

Part. Nucl. Phys. 88, 1 (2016).
[52] H.-L. Chen, K. Fukushima, X.-G. Huang, and K. Mameda,

Phys. Rev. D 93, 104052 (2016).
[53] Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302 (2016).
[54] S. Ebihara, K. Fukushima, and K. Mameda, Phys. Lett. B

764, 94 (2017).
[55] M. N. Chernodub and S. Gongyo, J. High Energy Phys. 01

(2017) 136.
[56] M. N. Chernodub and S. Gongyo, Phys. Rev. D 95, 096006

(2017).
[57] X. Wang, M. Wei, Z. Li, and M. Huang, Phys. Rev. D 99,

016018 (2019).
[58] F. Sun and A. Huang, Phys. Rev. D 106, 076007 (2022).
[59] N. Sadooghi, S. M. A. Tabatabaee Mehr, and F. Taghinavaz,

Phys. Rev. D 104, 116022 (2021).
[60] F. Becattini, J. Liao, and M. Lisa, Lect. Notes Phys. 987, 1

(2021).
[61] K. Xu, F. Lin, A. Huang, and M. Huang, Phys. Rev. D 106,

L071502 (2022).
[62] S.M. A. T. Mehr and F. Taghinavaz, Ann. Phys. (Amsterdam)

454, 169357 (2023).
[63] X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, J. High

Energy Phys. 07 (2021) 132.
[64] H.-L. Chen, Z.-B. Zhu, and X.-G. Huang, Phys. Rev. D 108,

054006 (2023).
[65] N. R. F. Braga and O. C. Junqueira, arXiv:2306.08653.
[66] Z. Li, J. Liang, S. He, and L. Li, Phys. Rev. D 108, 046008

(2023).
[67] V. E. Ambruş and M. N. Chernodub, arXiv:2304.05998.
[68] Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li, J. High Energy

Phys. 04 (2023) 115.

[69] A. A. Golubtsova and N. S. Tsegelnik, Phys. Rev. D 107,
106017 (2023).

[70] Y. Chen, D. Li, and M. Huang, Phys. Rev. D 106, 106002
(2022).

[71] S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev. Lett.
129, 242002 (2022).

[72] G. Yadav, Phys. Lett. B 841, 137925 (2023).
[73] N. R. F. Braga, L. F. Faulhaber, and O. C. Junqueira, Phys.

Rev. D 105, 106003 (2022).
[74] V. Giantsos and D. Giataganas, Phys. Rev. D 106, 126012

(2022).
[75] C. Cartwright, M. G. Amano, M. Kaminski, J. Noronha, and

E. Speranza, Phys. Rev. D 108, 046014 (2023).
[76] A. A. Golubtsova, E. Gourgoulhon, and M. K. Usova, Nucl.

Phys. B979, 115786 (2022).
[77] M. N. Chernodub, Phys. Rev. D 103, 054027 (2021).
[78] V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A.

Roenko, Phys. Rev. D 103, 094515 (2021).
[79] Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett. B

816, 136184 (2021).
[80] P. N. Meisinger and M. C. Ogilvie, Phys. Lett. B 379, 163

(1996).
[81] P. N. Meisinger, T. R. Miller, and M. C. Ogilvie, Phys. Rev.

D 65, 034009 (2002).
[82] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[83] A. Mocsy, F. Sannino, and K. Tuominen, Phys. Rev. Lett.

92, 182302 (2004).
[84] E. Megias, E. Ruiz Arriola, and L. L. Salcedo, Phys. Rev. D

74, 065005 (2006).
[85] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73,

014019 (2006).
[86] K. Fukushima, Phys. Rev. D 77, 114028 (2008); 78, 039902

(E) (2008).
[87] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory:

Principles and Applications, 2nd ed., Cambridge
Monographs on Mathematical Physics (Cambridge Univer-
sity Press, Cambridg, England, 2006), 10.1017/
CBO9780511535130.

[88] M. Asakawa and K. Yazaki, Nucl. Phys. A504, 668 (1989).
[89] S. Klimt, M. F. M. Lutz, and W. Weise, Phys. Lett. B 249,

386 (1990).
[90] M. Buballa, Nucl. Phys. A611, 393 (1996).
[91] M. Wei, Y. jiang, and M. Huang, Chin. Phys. C 46, 024102

(2022).
[92] V. V. Braguta, A. Kotov, A. Roenko, and D. Sychev, Proc.

Sci., LATTICE2022 (2023) 190 [arXiv:2212.03224].
[93] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phys.

Rev. D 107, 114502 (2023).
[94] V. V. Braguta, M. N. Chernodub, A. A. Roenko, and D. A.

Sychev, arXiv:2303.03147.
[95] V. V. Braguta, I. E. Kudrov, A. A. Roenko, D. A. Sychev,

and M. N. Chernodub, JETP Lett. 117, 639 (2023).
[96] J.-C. Yang and X.-G. Huang, arXiv:2307.05755.

SPLITTING OF CHIRAL AND DECONFINEMENT PHASE … PHYS. REV. D 108, 096007 (2023)

096007-9

https://doi.org/10.2478/s11534-012-0115-y
https://doi.org/10.2478/s11534-012-0115-y
https://doi.org/10.1103/PhysRevLett.106.172301
https://doi.org/10.22323/1.185.0057
https://arXiv.org/abs/1308.4509
https://doi.org/10.1103/PhysRevD.94.116020
https://doi.org/10.1103/PhysRevD.102.066006
https://doi.org/10.1103/PhysRevD.102.066006
https://doi.org/10.1088/1572-9494/ac82ad
https://doi.org/10.1088/1572-9494/ac82ad
https://doi.org/10.1007/JHEP03(2020)073
https://doi.org/10.1007/JHEP03(2020)073
https://arXiv.org/abs/2306.12036
https://doi.org/10.1016/j.nuclphysa.2007.10.001
https://doi.org/10.1016/j.nuclphysa.2007.10.001
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1103/PhysRevD.93.104052
https://doi.org/10.1103/PhysRevLett.117.192302
https://doi.org/10.1016/j.physletb.2016.11.010
https://doi.org/10.1016/j.physletb.2016.11.010
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevD.95.096006
https://doi.org/10.1103/PhysRevD.95.096006
https://doi.org/10.1103/PhysRevD.99.016018
https://doi.org/10.1103/PhysRevD.99.016018
https://doi.org/10.1103/PhysRevD.106.076007
https://doi.org/10.1103/PhysRevD.104.116022
https://doi.org/10.1007/978-3-030-71427-7
https://doi.org/10.1007/978-3-030-71427-7
https://doi.org/10.1103/PhysRevD.106.L071502
https://doi.org/10.1103/PhysRevD.106.L071502
https://doi.org/10.1016/j.aop.2023.169357
https://doi.org/10.1016/j.aop.2023.169357
https://doi.org/10.1007/JHEP07(2021)132
https://doi.org/10.1007/JHEP07(2021)132
https://doi.org/10.1103/PhysRevD.108.054006
https://doi.org/10.1103/PhysRevD.108.054006
https://arXiv.org/abs/2306.08653
https://doi.org/10.1103/PhysRevD.108.046008
https://doi.org/10.1103/PhysRevD.108.046008
https://arXiv.org/abs/2304.05998
https://doi.org/10.1007/JHEP04(2023)115
https://doi.org/10.1007/JHEP04(2023)115
https://doi.org/10.1103/PhysRevD.107.106017
https://doi.org/10.1103/PhysRevD.107.106017
https://doi.org/10.1103/PhysRevD.106.106002
https://doi.org/10.1103/PhysRevD.106.106002
https://doi.org/10.1103/PhysRevLett.129.242002
https://doi.org/10.1103/PhysRevLett.129.242002
https://doi.org/10.1016/j.physletb.2023.137925
https://doi.org/10.1103/PhysRevD.105.106003
https://doi.org/10.1103/PhysRevD.105.106003
https://doi.org/10.1103/PhysRevD.106.126012
https://doi.org/10.1103/PhysRevD.106.126012
https://doi.org/10.1103/PhysRevD.108.046014
https://doi.org/10.1016/j.nuclphysb.2022.115786
https://doi.org/10.1016/j.nuclphysb.2022.115786
https://doi.org/10.1103/PhysRevD.103.054027
https://doi.org/10.1103/PhysRevD.103.094515
https://doi.org/10.1016/j.physletb.2021.136184
https://doi.org/10.1016/j.physletb.2021.136184
https://doi.org/10.1016/0370-2693(96)00447-9
https://doi.org/10.1016/0370-2693(96)00447-9
https://doi.org/10.1103/PhysRevD.65.034009
https://doi.org/10.1103/PhysRevD.65.034009
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1103/PhysRevLett.92.182302
https://doi.org/10.1103/PhysRevLett.92.182302
https://doi.org/10.1103/PhysRevD.74.065005
https://doi.org/10.1103/PhysRevD.74.065005
https://doi.org/10.1103/PhysRevD.73.014019
https://doi.org/10.1103/PhysRevD.73.014019
https://doi.org/10.1103/PhysRevD.77.114028
https://doi.org/10.1103/PhysRevD.78.039902
https://doi.org/10.1103/PhysRevD.78.039902
https://doi.org/10.1017/CBO9780511535130
https://doi.org/10.1017/CBO9780511535130
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/0370-2693(90)91003-T
https://doi.org/10.1016/0370-2693(90)91003-T
https://doi.org/10.1016/S0375-9474(96)00314-4
https://doi.org/10.1088/1674-1137/ac338e
https://doi.org/10.1088/1674-1137/ac338e
https://doi.org/10.22323/1.430.0190
https://doi.org/10.22323/1.430.0190
https://arXiv.org/abs/2212.03224
https://doi.org/10.1103/PhysRevD.107.114502
https://doi.org/10.1103/PhysRevD.107.114502
https://arXiv.org/abs/2303.03147
https://doi.org/10.1134/S0021364023600830
https://arXiv.org/abs/2307.05755

