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We revisit the change of the electric permittivity of the QED vacuum by a strong constant electric field,
motivated by the analogy between the dynamically assisted Schwinger effect in strong-field QED and the
Franz-Keldysh effect in semiconductor physics. We develop a linear-response theory based on the
nonequilibrium in-in formalism and the Furry-picture perturbation theory. Applying the developed
formalism and also utilizing the Kramers-Krönig relation, we calculate the electric permittivity for wide
values of the field strength and the probe frequency, including the supercritical field and/or high probe
frequency that the previous research has not fully covered. We discover that the electric permittivity
exhibits a characteristic oscillating feature in the high probe-frequency regime, which directly reflects the
change of the QED-vacuum structure by the strong field. We also establish a quantitative correspondence
between the electric permittivity and the number of electron-positron pairs produced by the dynamically
assisted Schwinger effect.
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I. INTRODUCTION

At the quantum level, Dirac predicted that the vacuum of
quantum electrodynamics (QED) is not just empty space,
and has a structure similar to the semiconductor, called the
Dirac sea [1]. The physics of QED, thus, has some striking
analogies with the semiconductor due to the existence of
the Dirac sea. The semiconductor exhibits nontrivial
responses when exposed to an external field because of
the interaction between the field and the particles in
the valence band. Similar responses also appear in QED
under a strong field, where the Dirac sea plays the
role of the valence band of the semiconductor. The study
of such strong-field-QED phenomena was pioneered by
Heisenberg and Euler in 1936 [2] and has been developed
by many researchers (see Refs. [3–5] for review). Strong-
field QED attracts more attention owing to the recent
availability of strong electromagnetic fields with high-
power lasers (e.g., Extreme Light Infrastructure [6]) as
well as their appearance in various physical systems under

extreme conditions such as heavy-ion collisions [7–10]
and compact stars [11].
Various strong-field QED phenomena have been pre-

dicted theoretically. Among those, the (Sauter-)Schwinger
effect [12,13] is one of the most intriguing and is important
for our motivation to revisit the problem of the vacuum
electric permittivity, which was first studied in the 1950s
[14]. The Schwinger effect is an analog of the dielectric
breakdown of the semiconductor, or the Landau-Zener(-
Stückelberg-Majorana) effect [15–18]. It states that the
QED vacuum decays spontaneously against pair produc-
tion under a strong constant electric field eE≳ eEcr ≔ m2,
where m is the mass of a charged particle of interest, e.g.,
m ¼ 511 keV and Ecr ¼ 1.32 × 1018V=m for the electron.
Observing the Schwinger effect, or the vacuum pair
production in general, is one of the biggest goals of
strong-field QED experiments. Unfortunately, the required
field strength eEcr surpasses the available field strength by
several orders of magnitude [19]. Thus, observing the
vacuum pair production is an extremely challenging task
at the moment. Nonetheless, it is proposed that the vacuum
pair production can be stimulated considerably and may be
within the reach even with the current and near-future lasers
by superimposing a time-dependent electric field onto the
constant one. This is the idea of the dynamically assisted
Schwinger effect, proposed by Schützhold, Gies, and
Dunne in 2008 [20,21]. Making a deeper understanding
of the dynamically assisted Schwinger effect is thus an
important subject of strong-field QED.
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The dynamically assisted Schwinger effect can be
understood as an analog of the Franz-Keldysh effect in
semiconductor physics [22–25]. This is an effect that
stimulates the dielectric breakdown of a semiconductor
with the same superimposed field setup. Conversely, it is
also commonly interpreted as an effect to enhance the
absorption rate of the injected time-dependent field with
frequencies below the threshold band-gap energy by the
presence of the strong constant electric field. The Franz-
Keldysh effect also predicts a characteristic oscillating
dependence in the injected probe frequency above the
threshold [26,27], which has been confirmed recently with
strong-field-QED calculations [24,28–30]. Those charac-
teristic features of the Franz-Keldysh effect below and
above the threshold are originating from the change of the
valence-band-electron distribution by the strong field (see,
e.g., Ref. [31]).
It is remarkable that the Franz-Keldysh effect was

predicted fifty years before the dynamically assisted
Schwinger effect. The Franz-Keldysh effect has also been
observed experimentally with various solid-state materials,
since the first observation by Böer et al. with bulk semi-
conductors in 1958 [32,33], and has been applied to design
electric devices such as electroabsorption modulators that
are widely used in high-speed digital communications in
our daily lives. The Franz-Keldysh effect is, thus, a well-
known and -tested phenomenon in semiconductor physics.
Therefore, it should be instructive to import the wisdom

of semiconductor physics to strong-field QED. As such, we
in this paper revisit the change of the electric permittivity of
the QED vacuum by a strong constant electric field. This is
analogous to that of the semiconductor investigated exten-
sively in the context of electroreflectance: Suppose we
have a semiconductor and inject a probe electric field onto
it. The electric response of the material to the probe can be
characterized by the so-called electric permittivity. In
general, the electric permittivity (in the frequency space)
takes complex values. The real and imaginary parts,
respectively, account for the dispersive and absorptive
phenomena due to the interaction between the valence-
band electrons and the injected probe. The material
property changes with environments such as the presence
of an external field; so does the electric permittivity. The
Franz-Keldysh effect describes the change of the absorp-
tion rate of the probe under a constant electric field, which
is directly related to the imaginary part of the electric
permittivity. The imaginary part, thus, exhibits character-
istic features originating from the Franz-Keldysh effect.
The change of the imaginary part in turn implies that the
real part should also be modified, as the imaginary and real
parts are not independent quantities but are related to each
other through the Kramers-Krönig relation because of
causality [34–36]. Meanwhile, the electric permittivity is
closely related to the refractive index of the material (e.g.,
for nonmagnetic materials, the refractive index is simply

given by the square of the electric permittivity). Therefore,
the change of the electric permittivity means the refractive
index is no longer constant and is modified significantly by
a constant electric field, which is called electroreflectance
and has been discussed widely in the semiconductor
community [37–43].
Considering the analogy between QED and a semi-

conductor and also that between the dynamically assisted
Schwinger effect and the Franz-Keldysh effect, it is natural
to expect a similar modification to the electric permittivity
of the QED vacuum should happen and can be analyzed in
an analogous manner to semiconductor physics. The main
purpose of this paper is to explore this idea. A common
strategy in semiconductor physics to calculate the electric
permittivity is first to calculate the absorption rate of the
probe, which can be converted into the imaginary part, and
then to utilize the Kramers-Krönig relation to get the real
part from the imaginary part [37–43] (cf. a similar Kramers-
Krönig approach has recently been adopted in strong-field
QED, in connection to the nonlinear Breit-Wheeler proc-
ess, in Refs. [44–46]). We shall provide a theoretical
foundation of this semiconductor approach in QED based
on the nonequilibrium in-in formalism of quantum-field
theory (see, e.g., Refs. [47–49]) and the Furry-picture
perturbation theory (see, e.g., Refs. [50,51]). We shall,
then, use the developed formalism to explicitly calculate
the electric permittivity of the QED vacuum and discuss its
quantitative features, including similarities/differences with
semiconductor physics.
We have several other motivations, besides the analogy

to semiconductor physics: (i) In the presence of an electric
field, the system becomes genuinely nonequilibrium.
Typically, what is discussed in the literature are the cases
of, e.g., magnetic fields, constant-crossed fields, and the
weak-field limit. In such situations, there is no energy
supply from the fields, and therefore the system stays
equilibrium, i.e., the situation is totally different from our
nonequilibrium electric case. In a nonequilibrium situation,
a careful distinction between the in states and out states
must be made, and the conventional in-out formalism
cannot be applied because the physical observables are
in-in expectation values and not the in-out amplitudes [52].
To the best of our knowledge, there has been no such in-in
formulation of the electric permittivity, or in general QED
response functions.
(ii) The idea of the change of the electric permittivity, or

the refractive index, in strong-field QED is actually not
new. It has been pointed out by the classical work by Toll in
1952 [14] and since then has been under intensive inves-
tigation both theoretically (see, e.g., Ref. [53]) and exper-
imentally (e.g., PVLAS [54]). Nonetheless, the previous
studies focus mainly on the equilibrium situations and also
are based typically on weak-field and low-frequency
approximations such as the Heisenberg-Euler approach
and semiclassical methods. Thus, little is known for electric
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field and beyond the weak-field and low-frequency limit
(cf. Ref. [55] for the refractive index in a very strong
electric-field limit based on the electromagnetic duality).
Our calculation does not assume such weak-field and low-
frequency conditions, and therefore is able to reveal novel
aspects of the electric permittivity in a new parameter
regime.
(iii) As far as the authors are aware, there is no clear

argument on the relation between the dynamically assisted
Schwinger effect and the electric permittivity. In semi-
conductor physics, it is well known that the imaginary part
of the electric permittivity is directly related to the dielectric
energy loss of material, which can then be related to the
number of pairs produced via the Franz-Keldysh effect.
Establishing a similar relation in QED is useful, in
particular, for experimental purpose. Namely, using the
relation, the observation of the pair production can be used
to directly quantify the response function of the QED
vacuum, i.e., the imaginary part of the electric permittivity
and in turn the real part through the Kramers-Krönig
relation. Conversely, the measurement of either the imagi-
nary or real part can be used to confirm the dynamically
assisted Schwinger effect. Note that a similar idea has
been advocated in Refs. [45,46] in the context of the
nonlinear Breit-Wheeler process. We remark that what is
relevant for the number of pairs in the dynamically
assisted Schwinger effect is the in-in expectation value,
not the in-out amplitudes, and therefore arguments based
on the in-out formalism, such as the optical theorem, are
not very appropriate to establish the relation. Therefore, a
careful in-in formulation (i) is crucial to achieve the
motivation (iii).
The organization of this paper is as follows. We first

clarify our physical setup and assumptions in Sec. II. We
then develop a linear-response theory to calculate the
electric permittivity based on the nonequilibrium in-in
formalism of quantum-field theory and the perturbation
theory in the Furry picture in Sec. III. Using this, we
explicitly calculate the electric permittivity and quantita-
tively discuss its properties in Sec. IV. We summarize our
results and discuss possible experimental implications in
Sec. V. We also have two Appendixes A and B, where some
technical details of the derivations of analytical formulas
are explained.
Notation and convention. We adopt the natural units

ℏ ¼ c ¼ 1 and ϵ0 ¼ μ0 ¼ 1, where ℏ is the Planck con-
stant and c, ϵ0, and μ0 are, respectively, the speed of light,
electric permittivity, and magnetic permeability of the
vacuum without external fields. Our metric convention is
the mostly minus gμν ≔ diagðþ1;−1;−1;−1Þ. We express
the components of the coordinate four-vector xμ as
xμ ≕ ðt; xÞ≕ ðt; x; y; zÞ. We occasionally use the Roman
letter to express the absolute value of a three vector as
X ≔ jXj. Unless otherwise stated, repeated indices are
always summed over.

II. SETUP

We consider QED in the presence of a strong electric
field and wish to understand the response, i.e., electric
permittivity, against a probe electric wave. The electron1

dynamics is determined by the Dirac equation,

0 ¼ ½i∂ − eAþm�ψ ; ð1Þ

where ψ is the electron-field operator and Aμ is the gauge
potential for the total electric field, i.e., the sum of the
strong and probe electric fields.
We assume that the strong field is constant in spacetime

and that the probe field is spatially homogeneous but is
dependent on time with a monochromatic frequency ω > 0
(which can be interpreted as a sort of timelike off shell
photon). Namely,

AðtÞ ¼ −Ētez|fflffl{zfflffl}
≕ ĀðtÞ

þ E

ω
cosðωtþ ϕÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≕AðtÞ

; ð2Þ

where we fixed the gauge as Aμ ¼ ð0;AÞ. The gauge
potentials for the strong and probe electric fields are
denoted by Ā and A, respectively. We took the direction
of the strong electric field Ē ≔ −∂tĀ along the z axis
ez ≔ Ē=Ē.
We make several more assumptions for the electric fields

for simplicity. First, we assume that the probe field is very
weak, so as to justify a perturbative treatment in jEj.
Second, we assume formally that the electric fields are
switched off adiabatically at the infinite past and future
Ā;A → const, so that the asymptotic states are well-
defined. Third, we neglect backreaction from electrons
onto the fields; otherwise, the electric field changes its
value in time, for which the electric permittivity is not well-
defined.
Although we focus on the simple field configuration

(2), it is in principle straightforward to extend our
formalism to general field configurations such as strong
fields with magnetic components and a more realistic on
shell photon probe. This shall be discussed in a future
publication. The reason why we consider the configura-
tion (2) in this paper is that it is the simplest and is widely
used in semiconductor physics. Therefore, it provides a
good starting point to pursue the analogy between QED

1Our formulation is equally valid for charged particles obeying
the Dirac equation (1). This means that the “electron” here can
actually be any charged elementary/composite/quasi fermion
such as quark and proton (so long as the external field is not
too strong that the point-like-particle treatment is justified). The
only difference is that the value of the mass m changes if we
change the particle species. Therefore, we do not specify a
specific value of the mass m nor take it to be the electron one,
unless necessary.
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and semiconductor physics. In fact, the electric permit-
tivity can be measured with dielectric spectroscopy (see,
e.g., Ref. [56]), whose typical setup corresponds to
Eq. (2): A material to be investigated is sandwiched by
a set of plates, which form up a capacitor, and an
alternating current (ac) voltage is applied to the capacitor.
Then, the measurement of the impedance of the capacitor
can determine the electric permittivity of the material. In
our case, the material corresponds to the vacuum in a
strong electric field Ē, and the ac voltage plays the role of
the probe E.

III. THEORY

We calculate the change of the electric permittivity for
the probe electric wave (2) in the presence and absence of
the strong constant electric field Ē. The calculation of the
electric permittivity is reduced to evaluating the in-in
vacuum expectation value of the electric current (see
Sec. III A). We first write down a formal expression for
the electric current, and thereby the electric permittivity,
by developing a linear-response theory based on the in-in
formalism of quantum-field theory in the Furry picture,
where the probe field is treated perturbatively while the
strong field nonperturbatively (see Sec. III B). The central
task shall be then to evaluate the formal expression, which
has two difficulties. The first difficulty is that evaluation
of the real part of the electric permittivity (corresponding
to evaluating a fermion one-loop diagram) in general
suffers from subtleties of quantum-field theory such as the
ultraviolet divergence and therefore is complicated. In
contrast, the imaginary part (corresponding to a tree
diagram, obtained by cutting the fermion loop diagram)
does not have such complications, and the evaluation is far
easier. We shall thus avoid directly evaluating the electric
permittivity; instead, we shall calculate the imaginary part
first and then make use of the Kramers-Krönig relation to
get the real part, which is much easier than the direct
evaluation. This is actually a widely adopted approach in
the semiconductor context [37–43], and therefore fits our
purpose of pursuing the QED analog of semiconductor
physics. In Sec. III C, we shall justify this treatment based
on our in-in formulation, which is manifestly causal and
naturally yields the Kramers-Krönig relation. The second
difficulty is that there appears infrared divergence in
the low-frequency limit of the probe ω → 0, implying
the need of resummation of higher-order processes in the
probe (see Sec. III D). We here deal with the infrared
divergence rather phenomenologically, without explicitly
carrying out the resummation, by relating the electric
permittivity to the number of pairs produced by the
dynamically assisted Schwinger effect (see Sec. III E)
and determining a physically reasonable counter term by
requiring the number of pairs to be finite (see Sec. III F).
Our final formula for the change of the electric permit-
tivity shall be summarized in Sec. III G.

We shall be dedicated to the theoretical foundation only
in this section and put all the quantitative and phenom-
enological discussions in Sec. IV.

A. Definition and generality of the electric permittivity

We begin with clarifying the definition and the under-
lying assumptions of electric permittivity. To define the
electric permittivity, we first need to define the electric
displacement vector. To this end, we write down the
Ampère-Maxwell law for our spatially homogeneous
configuration (2):

Ė ¼ −Jext − Jvac; ð3Þ

where E ¼ Ēþ E is the total electric field, Jext is the
external current, and

Jvac ≔ ehvac; injψ̄γψ jvac; ini ð4Þ

is the contribution from the vacuum polarization. The
state jvac; ini is the initial vacuum, and γμ ≔ ðγ0;γÞ≔
ðγ0;γ1;γ2;γ3Þ are the Dirac matrices (the precise definition
of the initial vacuum shall be clarified below in Sec. III B).
We stress that the in and out states must be distinguished
carefully. Indeed, the electric field brings time dependence
to the system by supplying energy, and hence the system is
not in equilibrium. The electric current (or physical
observables in general) is an in-in expectation value, which
is distinct from in-out amplitudes (which are not direct
physical observables) that are typically calculated in the
literature.
We can naturally introduce the total electric displace-

ment vector D as

Ḋ ≔ −Jext; ð5Þ

i.e., D is defined as a renormalized electric field such that it
absorbs the vacuum-polarization effect:

DðtÞ ¼ EðtÞ þ
Z

t

−∞
dt0Jvacðt0Þ: ð6Þ

We have implicitly imposed an initial condition D ¼ E at
t ¼ −∞, as we are physically interested in a situation
where the electric field is (adiabatically) applied at t ¼ −∞
and then the nontrivial vacuum polarization develops
from null.
As we are interested in the electric permittivity for the

probe, we need to decompose the total electric displace-
ment vector D (6) into the strong D̄ and probe D parts. To
do this, we expand the vacuum polarization Jvac in the weak
probe field E, keeping the strong field Ē exactly, as
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Jvacðt;Ē;EÞ≕Jvacðt; Ē;0Þ

þ
Z þ∞

−∞
dt0σijðt; t0; ĒÞEjðt0ÞþOðjEj2Þ: ð7Þ

To be precise, the perturbative expansion in E needs special
care in the low-frequency limit ω → 0, where nonlinear
corrections by E can become non-negligible even though
the strength jEj is weak and can lead to divergent behaviors.
We shall come back to this point in Sec. III F. We also
remark that the function σij depends on the two time
variables in general; only when the system is invariant
under the time translation, can σij become a single-variable
function. This is important for the definition of the electric
permittivity to make sense, which we shall discuss in more
detail below.
We can now naturally identify the electric displacement

vector for the probe D. Substituting Eq. (7) into Eq. (6),
picking up the probe-dependent terms, and dropping the
nonlinear term OðjEj2Þ, we find

DiðtÞ ¼ EiðtÞ þ
Z

t

−∞
dt0
Z þ∞

−∞
dt00σijðt0; t00; ĒÞEjðt00Þ: ð8Þ

The zeroth-order term Jvacðt; Ē; 0Þ is probe independent,
and hence contributes only to the electric displacement
vector for the strong field D̄ and is irrelevant to D.
We are in the position to define the electric permittivity

for the probe ϵij. It is standard to identify the electric
permittivity as a linear coefficient between the applied
probe and the corresponding displacement vector in the
Fourier space (see textbooks on electromagnetism in
matter, e.g., Ref. [57]). Namely,

D̃iðωÞ≕ ϵijðωÞẼjðωÞ; ð9Þ

where f̃ðωÞ ≔ Rþ∞
−∞ dteþiωtfðtÞ is the Fourier transforma-

tion of a single-variable function f. Note that, more
generally, the electric permittivity is defined as a function
of the wave four-vector kμ ¼ ðω; kÞ, with k being the wave
three-vector of the probe. In our setup (2), the probe field is
assumed to be spatially homogeneous, and therefore the
value of k is fixed to be k ¼ 0.
We wish to apply the definition (9) to our problem,

but this needs some discussion. Namely, the definition (9)
is not applicable for general nonequilibrium situations,
where D̃ and Ẽ are related with each other by a
convolution integral in the frequency ω, instead of the
simple product form (9). Indeed, sending Eq. (8) to the
Fourier space yields

D̃iðωÞ ¼
Z þ∞

−∞

dω0

2π

�
2πδðω − ω0Þ þ i

ω
σ̃ijðω;ω0Þ

�
Ẽjðω0Þ;

ð10Þ

where the Fourier transformation of the two-variable
function σ̃ij is defined similarly to the single-variable
case as f̃ðω;ω0Þ ≔ Rþ∞

−∞ dtdt0eþiωteþiω0t0fðt; t0Þ. From
Eq. (10), it is evident that the standard definition (9) is
applicable only when σ̃ij is sharply peaked at ω ¼ ω0 and
can be decomposed with a delta function as

σ̃ijðω;ω0Þ≕ 2πδðω − ω0Þ × σ̃ijðωÞ; ð11Þ

for which case the electric permittivity is given by

ϵijðωÞ ¼ 1þ i
ω
σ̃ijðωÞ: ð12Þ

The condition (11) is satisfied if and only if σij in the
coordinate space depends solely on the difference between
the two variables t − t0 and is independent of the sum
tþ t0, i.e., σij is invariant under the time translation. It is
achieved only if the system is in equilibrium or in a steady
state. For general strong fields, in particular under strong
time-dependent electric fields, the system is genuinely in
nonequilibrium and the condition (11) is not satisfied,
meaning that the standard definition of electric permit-
tivity (9) does not make sense.
Even though the standard definition (9) is invalid for

general electromagnetic fields, this is, fortunately, not the
case in our problem. That is, a steady state is realized for a
constant electric field Ē and hence σij can be reduced to a
single-variable function. Therefore, the definition (9), or
Eq. (12), can be applied. This seems not possible to be
shown by general arguments but requires explicit calcu-
lations, which we shall do in the next section, Sec. III B.
We are thus able to calculate the electric permittivity in

our problem according to the standard definition (12).
Before proceeding to the detailed calculations, let us, for
later use, make several remarks on the general properties of
the electric permittivity.
The first remark is that in general the electric permit-

tivity ϵij can take nonzero values even in the absence of
the strong field Ē. This is because the probe alone (i.e.,
even without Ē) can excite electron-positron pairs from
the vacuum and thus can contribute to the vacuum
polarization Jvac, once the frequency gets above the
threshold band-gap energy ω > 2m. Therefore, to see
the strong-field effects in a clearer manner, it is more
useful to look into the difference between the presence and
absence of the strong field. Thus, in what follows, we shall
focus on the difference,

Δϵijðω; ĒÞ ≔ ϵijðω; Ē ≠ 0Þ − ϵijðω; Ē ¼ 0Þ; ð13Þ

instead of the original value of the electric permittivity
ϵij. This is also advantageous to our Kramers-Krönig
approach, as the high-frequency behavior of Δϵij is better
than ϵij, resulting in better numerical convergence when
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performing the Hilbert transformation in the Kramers-
Krönig relation.
The second remark is that the tensor structure of the

electric permittivity can be constrained by symmetry. Our
system (2) has no special directions other than ez set by the
strong electric field Ē. Accordingly, the physics should not
change by rotating the system around ez (rotation sym-
metry) and by reflecting it with respect to ez (parity
symmetry). This means that the electric permittivity should
be invariant under the corresponding transformations:

ϵ ¼ RϵR†; ð14Þ

where

R¼

0
B@cosθ −sinθ 0

sinθ cosθ 0

0 0 1

1
CA and

0
B@�1 0 0

0 �1 0

0 0 1

1
CA; ð15Þ

for the rotation with an angle θ and the parity trans-
formation, respectively. Solving Eq. (14), we find that the
electric permittivity must be diagonal and that the trans-
verse components take the same value, ϵxx ¼ ϵyy ≕ ϵ⊥, as

ϵij ¼

0
B@

ϵ⊥ 0 0

0 ϵ⊥ 0

0 0 ϵk

1
CA: ð16Þ

In general, ϵ⊥ ≠ ϵzz ≕ ϵk, i.e., the vacuum is birefringent.
This is because we have the special direction Ē ∝ ez and
the response should distinguish Ekez and E⊥ez. Note that
for general field configurations, the symmetry structure can
be changed and accordingly the electric permittivity can
have a different tensor structure; e.g., in a strong magnetic
field, the off diagonal elements are not necessarily vanish-
ing, as the parity symmetry is broken.
The final remark is that the real and imaginary parts

of the electric permittivity must be even and odd functions
in ω:

ReϵðωÞ ¼ Reϵð−ωÞ and ImϵðωÞ ¼ −Imϵð−ωÞ: ð17Þ

This follows from the reality of the probe and the electric
displacement vector in the coordinate space XðtÞ∈R3

(X ¼ E;D). From reality, we find that the Fourier trans-
formations must satisfy X̃ðωÞ ¼ ½X̃ð−ωÞ��, substituting
which into the definition of ϵij (9) immediately yields the
relation (17).

B. Linear-response theory in a strong electric field

We calculate the leading-order correction to the current
σij (7) to obtain a formal expression for the electric
permittivity via Eq. (12), by developing a linear-response

theory in strong fields based on the in-in formalism of
quantum-field theory and the perturbation theory in the
Furry picture.
To calculate σij (7), we need to expand the current Jvac,

or the electron-field operator ψ in the expectation value (4),
with respect to the probe field E. Using the Green function
technique, it is straightforward to solve the Dirac equa-
tion (1) perturbatively in E as

ψðt; xÞ ¼ ψ inðt; xÞ þ e
Z

d4x0SRðt; t0; x; x0ÞAðt0Þψ inðt0; x0Þ

þOðjEj2Þ: ð18Þ

We have imposed the boundary condition ψ in ≔ limt→−∞ψ ,
with ψ in being the zeroth-order solution to the Dirac
equation only with the strong field Ē,

½i∂ − e=̄A −m�ψ in ¼ 0; ð19Þ

because the initial condition of our problem is E → 0 at
t → −∞. To achieve the boundary condition, the Green
function SR must be the retarded one such that

(
½i∂ − e=̄A −m�SRðt; t0; x; x0Þ ¼ δðt − t0Þδ3ðx − x0Þ;
SRðt; t0; x; x0Þ ¼ 0 for t − t0 < 0:

ð20Þ

To move to quantum-field theory, we need to quantize
the (asymptotic) electron-field operator ψ in. To do so, we
first expand ψ in with the mode functions ψ in

�;p;s as

ψ inðt; xÞ ¼
X
s¼�1

Z
d3p

eþip·x

ð2πÞ3=2

× ½ψ inþ;p;sðtÞainp;s þ ψ in
−;p;sðtÞbin†−p;−s�; ð21Þ

with p and s specifying (canonical) momentum and spin,
respectively. We impose a plane-wave boundary condition
onto the mode functions,

lim
t→−∞

�
ψ inþ;p;s

ψ in
−;p;s

�
¼
� up−eĀð−∞Þ;s
v−p−eĀð−∞Þ;s

�
e∓i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðp−eĀð−∞ÞÞ2

p
t;

ð22Þ

where up;s and vp;s are the usual Dirac spinors with the

normalization u†p;sup;s0 ¼ v†p;svp;s0 ¼ δs;s0 and u†p;svp;s0 ¼ 0.
Note that the normalization of the Dirac spinors automati-
cally normalizes the mode function as ψ in†

�;p;sψ
in
�0;p;s0 ¼

δ�;�0δs;s0 . Then, imposing the canonical commutation
relation onto ψ in, ainp;s and binp;s are quantized and satisfy
the standard anticommutation relations,

HIDETOSHI TAYA and CHARLIE IRONSIDE PHYS. REV. D 108, 096005 (2023)

096005-6



δs;s0δ
3ðp − p0Þ ¼ fainp;s; ain†p0;s0 g ¼ fbinp;s; bin†p0;s0 g

0 ¼ ðothersÞ: ð23Þ

As the external electric field E goes vanishing at t → −∞,
we can naturally identify the operators ainp;s and binp;s to be
the annihilation operators for an electron and a positron,
respectively, with momentum p and spin s. Accordingly,
the initial vacuum can be identified as a state such that

0 ¼ ainp;sjvac; ini ¼ binp;sjvac; ini; ð24Þ

for any p and s. The normalization of jvac; ini is arbitrary,
and we take 1 ¼ hvac; injvac; ini for our convenience.
Plugging the perturbative solution (18) with the quan-

tization (23) into the in-in expectation value (4), we get

JvacðtÞ ¼
X
s

Z
d3p
ð2πÞ3 ψ̄

in
−;p;sðtÞγψ in

−;p;sðtÞ

− 2e2
Z þ∞

−∞
dt0Θðt − t0ÞAμðt0Þ

× Imtr
X
s;s0

Z
d3p
ð2πÞ3 γS

in
−;p;sðt; t0ÞγμSinþ;p;s0 ðt0; tÞ

þOðjEj2Þ; ð25Þ

whereΘðtÞ is the Heaviside step function and we have used
the fact that the retarded Green function SR can be
expressed in terms of the mode functions ψ in

�;p;s as

SRðt; t0;x;x0Þ
¼−iΘðt− t0Þfψ inðt;xÞ; ψ̄ inðt;x0Þg

¼−iΘðt− t0Þ
X
s

Z
d3p

eþip·ðx−x0Þ

ð2πÞ3
X
�
ψ in
�;p;sðtÞψ̄ in

�;p;sðt0Þ

≕ − iΘðt− t0Þ
X
s

Z
d3p

eþip·ðx−x0Þ

ð2πÞ3
X
�
Sin�;p;sðt; t0Þ: ð26Þ

We emphasize the existence of the step function in Eq. (25),
which is mathematically originating from the retarded
boundary condition (20). Physically, it is the manifestation
of causality: the probe field cannot drive current before it is
applied.
Comparing Eq. (25) with the definition of σij (7), we find

∂t0σijðt; t0Þ ¼ ΘðτÞΠijðT; τÞ ð27Þ

where

T ≔
tþ t0

2
and τ ≔ t − t0; ð28Þ

and

ΠijðT; τÞ ≔ 2e2Imtr
X
s;s0

Z
d3p
ð2πÞ3 γ

iSin−;p;s

�
T þ τ

2
; T −

τ

2

�

× γjSinþ;p;s0

�
T −

τ

2
; T þ τ

2

�
: ð29Þ

Note that Πij is similar to the photon polarization tensor in
the in-out calculations but has a slightly different form (e.g.,
no Feynman propagator), since ours is an in-in calculation.
As stressed in Sec. III A, the standard definition of the

electric permittivity (9) makes sense only if σij does not
depend on tþ t0 ∝ T. This is the case for our constant
electric field Ē. To show this, we recall that the field
operator ψ in satisfies the Dirac equation (19), and the
corresponding mode equation is

0 ¼ ½iγ0∂t − γ⊥ · p⊥ − γ3ðpz þ eĒtÞ −m�ψ in
�;p;s: ð30Þ

The key point here is that the t dependence always appears
together with pz. This means that the time dependence of
the mode function can be absorbed into the momentum as

ψ in
�;p;sðtÞ ¼ ψ in

�;pþeĒt0;sðt − t0Þ ð31Þ

for any t0. The T dependence of Πij can then be integrated
out by shifting the momentum integration variable as

Πij ¼ 2e2Imtr
X
s;s0

Z
d3P
ð2πÞ3 γ

iSin−;P;s

�
þ τ

2
;−

τ

2

�

× γjSinþ;P;s0

�
−
τ

2
;þ τ

2

�
; ð32Þ

where

P ¼

0
B@ px

py

pz þ eĒT

1
CA: ð33Þ

Therefore, Πij is T independent and so is σij.
We now Fourier transform σij to get the electric

permittivity via Eq. (12). A straightforward calculation
yields

ϵijðωÞ ¼ 1þ 1

ω2

Z þ∞

−∞
dτeþiωτΘðτÞΠijðτÞ: ð34Þ

Unfortunately, it is a complicated task to fully evaluate the τ
integration due to the step function, which adds one more
extra frequency integration in the Fourier space and gives
rise to ultraviolet divergence in general. However, the
evaluation is rather easy and feasible if we focus on
the imaginary part, for which it is possible to rewrite the
integrand in such a way that the step function goes away
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and the calculation just reduces to evaluating the Fourier
transformation of Πij. To see this, we notice

Πij ∈R and ΠijðτÞ ¼ −Πjið−τÞ; ð35Þ

which immediately follows from the definition of Πij (29).
We then find

ImϵijðωÞ ¼
−i
ω2

Z þ∞

−∞
dτeþiωτ

× ½ΠðijÞðτÞ þ ðΘðτÞ − Θð−τÞÞΠ½ij�ðτÞ�

¼ 1

ω2
ImΠ̃ijðωÞ; ð36Þ

where ΠðijÞ ≔ ðΠij þ ΠjiÞ=2 and Π½ij� ≔ ðΠij − ΠjiÞ=2,
Π̃ij is the Fourier transformation of Πij, and we have used

ϵij ∝ δij)16 ) in the second line to drop the antisymmetric
contribution Π½ij�.

C. Kramers-Krönig relation

The real and imaginary parts of the electric permittivity
are related to each other through the Kramers-Krönig
relation, which essentially follows from causality of the
electromagnetic response. Therefore, we can immediately
obtain the real part, and thereby the whole electric
permittivity ϵij, once the imaginary part is computed via
Eq. (36). Note that the real and imaginary parts are related
to each other due to causality, and no other physical
conditions such as unitarity are required/assumed here.
Let us show how the Kramers-Krönig relation arises

from causality. Causality is manifested in our in-in formu-
lation as the step functions in the equations, e.g., ΘðτÞ in
Eq. (34). To see how the step functions lead to the Kramers-
Krönig relation, it is convenient to rewrite the integrand in
Eq. (34) by using the integration by parts as

ϵijðωÞ ¼ 1 − χ̃ijðωÞ; ð37Þ

where χ̃ is the Fourier transformation of

χijðτÞ ¼
Z

τ

−∞
dτ0
Z

τ0

−∞
dτ00Θðτ00ÞΠijðτ00Þ: ð38Þ

The point here is that χijðτÞ ¼ 0 for τ < 0, as the integra-
tion range sets the hierarchy of the times, τ > τ0 > τ00, and
the τ00 < 0 contribution is vanishing due to the step function
Θðτ00Þ, or causality of the electric permittivity. Therefore,

χijðτÞ ¼ ΘðτÞχijðτÞ ð39Þ

holds. The Fourier transformation χ̃ij must then satisfy

χ̃ijðωÞ¼
Z þ∞

−∞
dτeþiωτΘðτÞχijðτÞ

¼
Z þ∞

−∞
dτeþiωτ 1

2πi

Z þ∞

−∞
dω0 eþiω0τ

ω0− i0þ
χijðτÞ

¼ 1

2πi
P:V:

Z þ∞

−∞
dω0 1

ω0−ω
χ̃ijðω0Þþ1

2
χ̃ijðωÞ; ð40Þ

where we have used the Fourier transform of the step
function in the second line and the Sokhotski-Plemelj
formula 1=ðx − i0þÞ ¼ P:V:ð1=xÞ þ iπδðxÞ, with P. V.
meant to take the principal value, in the last line. Putting
this relation back into Eq. (37) and taking the real part of
both sides yield

ReϵijðωÞ ¼ 1þ 1

π
P:V:

Z þ∞

−∞
dω0 1

ω0 − ω
Imϵijðω0Þ; ð41Þ

which is the Kramers-Krönig relation. Note that the
imaginary part is an odd function in ω (17), and therefore
the Kramers-Krönig relation (41) can also be expressed as

ReϵijðωÞ ¼ 1þ 1

π
P:V:

Z
∞

0

dω0 2ω0

ω02 − ω2
Imϵijðω0Þ; ð42Þ

which is slightly easier to handle than Eq. (41).
We wish to apply the Kramers-Krönig relation (42) to

obtain the real part from the imaginary part. This, however,
needs caution. In the above derivation, we have implicitly
assumed that the imaginary part Imϵij goes vanishing
sufficiently fast (faster than 1=ω) at ω → ∞; otherwise
the Hilbert transformation on the right-hand side of the
Kramers-Krönig relation (42) does not exist. Unfortunately,
this is the case in our problem: the imaginary part is finite at
ω → ∞ as we see shortly below [see Eq. (43)]. Intuitively,
this is because the Dirac sea is infinitely deep, and therefore
there always exists an electron having the excitation energy
that matches the energy supplied by the probe ω, once the
threshold condition ω > 2m is satisfied.
To apply the Kramers-Krönig relation (42), we con-

sider the difference, instead of the original value, of the
electric permittivity in the presence and absence of the
strong field Δϵij (13). At ω → ∞, the energy supply
by the probe field is far superior to that by the strong
field. Accordingly, the strong-field effect becomes neg-
ligible in the limit of ω → ∞, which implies ϵijðĒÞ →
ϵijð0Þ and hence Δϵij → 0. Thus, ImΔϵij goes vanishing
sufficiently fast, to which the Kramers-Krönig relation
(42) can safely be applied. Note that there exist other
possible ways to apply the Kramers-Krönig relation (42)
for nonintegrable functions like our electric permittivity
ϵij; see Ref. [36]. We nonetheless focus on the difference
in this paper, as the difference is of more interest
physically and is the quantity that is usually studied in
the semiconductor context.
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D. Evaluation of the imaginary part Imϵ

The imaginary part of the electric permittivity (36) can
be evaluated analytically. Simply speaking, we just have to
Fourier transform Πij. This is doable, as Πij can be
expressed with known functions because it is made up
of the mode function ψ in

�;p;s, and the mode equation (30) is
analytically solvable. The evaluation is thus straightforward
but is quite involved, and therefore we put the details in
Appendix A 2.
We have found

Imϵ⊥ ¼ Imϵk

¼ α

3
Θðω − 2mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2

ω2

s �
1þ 2

m2

ω2

�
; ð43Þ

for eĒ ¼ 0 and

Imϵ⊥ ¼ 4πα

Z
∞

0

dp⊥
m

p⊥
m

e−π
m2⊥
eĒ

þ
��

m
ω

�
2
�
m⊥
ω

�
2
����M1

2
þi

m2⊥
2eĒ

;0

�
i
ω2

2eĒ

�����2
−
�
m
ω

�
4

Im

�	
M

1
2
þi

m2⊥
2eĒ

;0

�
i
ω2

2eĒ

�

2
��

; ð44aÞ

Imϵk ¼ 4πα

Z
∞

0

dp⊥
m

p⊥
m

e−π
m2⊥
eĒ
m2

eĒ

�
m⊥
ω

�
4
����Mi

m2⊥
2eĒ

;1
2

�
i
ω2

2eĒ

�����2;
ð44bÞ

for eĒ ≠ 0. The constant α ≔ e2=4π ≈ 1=137 is the fine
structure constant of QED, Mκ;μ is the Whittaker function,

and m⊥ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
is the transverse mass. The off

diagonal components ϵij (i ≠ j) can be shown explicitly
to be vanishing, as expected from the general consideration
(16). Note that we have assumed ω > 0. The values for
ω < 0 are obtained by simply multiplying (−1);
see Eq. (17).
We must discuss the infrared (i.e., low-frequency ω → 0)

behavior of ϵij (44). Taking ω → 0 yields

Imϵ⊥ →
α

π
e−π

m2

eĒ

�
eĒ
ω2

þ
�
1

π
þ 1

2

m2

eĒ

�
þOðω2Þ

�
; ð45aÞ

Imϵk →
α

π
e−π

m2

eĒ

��
1

π
þm2

eĒ
þ π

2

�
m2

eĒ

�
2
�
þOðω2Þ

�
: ð45bÞ

Thus, the (transverse) electric permittivity is divergent at
ω → 0. Remark that the divergence is proportional to the
nonperturbative factor e−πm

2=eĒ, meaning that the infrared
divergence is a strong-field effect. Such a nonperturbative
effect is dismissed in the weak-field limit [in fact, the free-
field result ϵðω; Ē ¼ 0Þ (43) is finite at ω → 0].

The infrared divergence implies that multiphoton proc-
esses of OðjEjnÞ (n > 1) need to be resummed. Indeed,
when the Keldysh parameter for the probe field
γ ¼ mω=jeEj, which controls the nonlinearity of QED,
becomes large, the lowest-order treatment is known to be
invalidated [28,58–61]. The resummation would subtract
the infrared divergence, and thereby leads to a physically
meaningful number for the linear electric permittivity at the
low-frequency regime, as is the case in the usual quantum-
field theoretic calculations of, e.g., cross section. The
subtraction is also important for our Kramers-Krönig
approach, as the Hilbert transformation does not converge
for any ω if the integrand (42) contains singularities on the
integration axis. In principle, what we need to do then is to
resum higher-order processes and to see the cancellation
among them how to yield an infrared-safe linear electric
permittivity. We, unfortunately, found it difficult, as the
infrared behavior is significantly affected by the non-
perturbative strong-field effects, and the standard resum-
mation procedure established in the free-field limit (e.g.,
Refs. [62,63]) cannot be applied. [Note that although the
removal of the infrared divergence is theoretically impor-
tant and is essential to predict physical values at the very
low-frequency regime ω ≈ 0 as explained above, it is also
true that it can give only negligible effects for most values
of ω≳ 0, and thus the bare formula (44) is quite sufficient
in practice; see the later discussions around Fig. 1].
We, therefore, deal with the infrared divergence rather

phenomenologically, without explicitly carrying out the
difficult resummation (which we leave as future work). We
shall explain the phenomenological idea to remove the
infrared divergence in the next two subsections. Briefly, we
remove the infrared divergence by introducing a counter
term, which is added by hand though presumably appears
as a result of the resummation. We fix the value of the

FIG. 1. The number of pairs produced N as a function of the
probe frequency ω. The red line corresponds to the regularized
result Nreg (61), which is compared with the unregularized result
N (59) (dotted-dashed orange) and the locally constant-field
approximation NLCFA (65) (solid black). The parameters are
eĒ=m2 ¼ 0.2, Ek=Ē ¼ 0, and E⊥=Ē ¼ 0.01.
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counter term appropriately by making use of the fact that
the imaginary part of the electric permittivity and the
number of pairs produced by the dynamically assisted
Schwinger effect are in exact agreement with each other
and by regularizing the number of pairs using the estab-
lished formula for the Schwinger effect in the low-
frequency limit.

E. Relation to the dynamically assisted Schwinger effect

We show that the imaginary part of the electric permit-
tivity of the vacuum exactly agrees with the number of pairs
produced by the dynamically assisted Schwinger effect
(i.e., the electron-positron pair production from the vacuum
in a constant electric field superimposed by a time-
dependent field), up to some unimportant factors.
To establish the relation between the number of pairs

and the imaginary part of the electric permittivity, we
begin with recalling the phenomenological argument of
electromagnetism in matter that a nonzero imaginary part
Imϵij ≠ 0 means that the injected probe E dissipates
energy, which is the so-called dielectric loss. The rate of
the dielectric energy loss per unit spacetime volume W for
the probe with the monochromatic frequency ω (2) is given
by (see, e.g., Refs. [57,64])

W ¼ 1

2
ωEiEjImϵij: ð46Þ

The dielectric energy loss (46) is, from a microscopic
viewpoint, caused by the decay of the probe field E due to
particle production. As energy ω is dissipated whenever the
probe field decays, we have

W ¼ ωΓ; ð47Þ

where Γ is the decay rate of the probe field per unit
spacetime volume. Therefore, we obtain

Γ ¼ 1

2
EiEjImϵij: ð48Þ

We conjecture that the same relation (48) holds in QED.
As a pair is produced whenever the probe decays, the decay
rate Γ may be read off from the number of produced pairs
via the dynamically assisted Schwinger effect N:

Γ ¼ NðE ≠ 0Þ − NðE ¼ 0Þ
V4

; ð49Þ

where V4 ¼
R
d4x is the whole spacetime volume of the

system. We have subtracted the E ¼ 0 contribution to
remove the Schwinger contribution without the probe,
since it is irrelevant to the decay of the probe.
Expanding Eq. (49) in E and then plugging it back into
Eq. (48), we arrive at

Imϵij ¼
1

V4

∂
2N

∂Ei∂Ej

����
E¼0

: ð50Þ

This is the relation connecting the dynamically assisted
Schwinger effect and the imaginary part of the electric
permittivity.
We remark that Eq. (50) shows that the imaginary part is

not directly related to the scattering amplitude (or its
squared) of the in-out formalism. In fact, the number of
pairs N, which is, in a quantum-field theoretical language,
defined as an in-in vacuum expectation value of the electron
number operator at the asymptotic out-state aout†p;s aoutp;s

2:

N ≔
X
s

Z
d3phvac; injaout†p;s aoutp;s jvac; ini: ð51Þ

This quantity should be clearly distinguished from the
squared amplitudes (i.e., the probabilities) to produce pairs
such as jheþe−; outjvac; inij2 in the in-out formalism. In
general, an in-in expectation value is identical to the sum of
in-out amplitudes. For the number of pairsN (51), inserting
the complete set 1 ¼PX∈ all states jX; outihX; outj inside of
the number operator, we find

N ¼
X

X∈ all states

X
s

Z
d3pjhXe−p;s; outjvac; inij2: ð52Þ

Using the Bogoliubov-transformation technique, it can be
shown that the vacuum at the in state equals to the
superposition of all the pair states at the out state (see
Ref. [65] for details):

jvac; ini ¼
Y
p;s

½1þ ðconstÞ × aout†p;s bout†−p;−s�jvac; outi; ð53Þ

where boutp;s is the out-state positron annihilation operator.
Therefore, the nonvanishing contributions to Eq. (52) are

X ¼ eþ−p;−s; eþ−p;−seþ−p0;−s0e
−
p0;s0 ;

× eþ−p;−seþ−p0;−s0e
−
p0;s0e

þ
−p00;−s00e

−
p00;s00 ; � � � : ð54Þ

Substituting this into Eq. (51) yields

N ¼
X

X0 ∈ all pairs

X
s

Z
d3pjhX0; outjvac; inij2: ð55Þ

Thus, N corresponds to the sum of all the possible squared
amplitudes to produce pairs. In the weak-field limit, the
multiple pair-production events may be suppressed, and
thus the number N can be approximately equal to the

2The number of pairs and that of electrons must be the same
because of the gauge invariance. Therefore, we do not carefully
distinguish the two quantities in this work.
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squared amplitude for the single pair production. In
general, however, this is not necessarily the case, e.g.,
for supercritical fields eĒ≳m2.
At the moment, the relation (50) is just a conjecture.

We now turn to prove Eq. (50) by explicitly calculating
the number of pairs (51) using the Furry-picture
approach for the dynamically assisted Schwinger effect
(see Refs. [24,25,28–30,66] for details). Similarly to the in-
state annihilation operators (21), the out-state ones, aoutp;s and
boutp;s , are defined by expanding the field operator ψout ≔
limt→∞ ψ with the appropriate out-state mode function
ψout
�;p;s. The out-state mode function ψout

�;p;s is identified,
similarly to ψ in

�;p;s, as a solution to the same mode
equation (30) but with a different boundary condition set
at t → þ∞:

lim
t→þ∞

�
ψoutþ;p;s

ψout
−;p;s

�
¼
� up−eĀðþ∞Þ;s
v−p−eĀðþ∞Þ;s

�
e∓i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðp−eĀðþ∞ÞÞ2

p
t:

ð56Þ

Then, using the orthonormality of the mode function
ψout†
�;p;sψ

out
�0;p;s0 ¼ δ�;�0δs;s0 and the perturbative solution to

the Dirac equation (18), we find

� aoutp;s

bout†−p;−s

�
¼
Z

d3x
e−ip·x

ð2πÞ3=2 ψ
out†
�;p;sðtÞψoutðt; xÞ

¼ lim
t→∞

Z
d3x

e−ip·x

ð2πÞ3=2 ψ
out†
�;p;sðtÞ

�
ψ inðt; xÞ

þ e
Z

d4x0SRðt; t0; x; x0ÞAðt0Þψ inðt0; x0Þ

þOðjEj2Þ
�
: ð57Þ

Inserting this into the number of pairs (51), we obtain, at the
leading order in the probe E, that

N¼V3

X
s;s0

Z
d3p
ð2πÞ3

����ψout†
þ;p;sψ

in
−;p;s0 − ie

Z
dtψ̄outþ;p;sAψ in

−;p;s0

����2:
ð58Þ

The calculation of the number of pairs is thus reduced to
evaluating the overlap between in- and out-state mode
functions. As the mode equation (30) is solvable, ψ in

�;p;s and
ψout
�;p;s can be expressed with known functions, and hence it

is possible to analytically evaluate Eq. (58) (see
Appendix A 3 for more details). We have found

N
V4

¼ 2πα

Z
∞

0

dp⊥
m

p⊥
m

e−π
m2⊥
eĒ

�
eĒ
m2

þ
�
m
ω

�
2
�
m⊥
ω

�
2
����M1
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where E2⊥ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þ E2

y

q
. Comparing this with the imagi-

nary part (44), we arrive at

NðĒÞ
V4

¼ NðĒ ¼ 0Þ
V4

þ 1

2
E2⊥Imϵ⊥ þ 1

2
E2
zImϵk; ð60Þ

which proves the relation (50).

F. Removal of the infrared divergence

We utilize the exact correspondence between the
dynamically assisted Schwinger effect and the imaginary
part of the electric permittivity (50) to remove the infrared
divergence of the electric permittivity. The correspondence
implies that the number of pairs N also suffers from the
infrared divergence, and it should be regularized consis-
tently with the imaginary part. It is easier to regularize the
number of pairs N, instead of directly dealing with the
imaginary part, as there exists an established treatment of
the Schwinger effect for slowly varying fields, namely, the
locally constant-field approximation [67–70], by which the
number of pairs in the low-frequency limit can be computed
in a well-defined manner without divergence.
To be concrete, we phenomenologically introduce a

counter term ΔN, which presumably comes as a result
of the resummation, to the bare number (59) as

Nreg ≔ N − ΔN: ð61Þ

The counter term ΔN is determined by matching the
physical number Nreg to the locally constant-field-approxi-
mation result [Eq. (64) below], which gives the accurate
number in the low-frequency limit. Once the number of
pairs regularized, we can naturally obtain the regularized
imaginary part using the correspondence (50) as

Imϵregij ¼ 1

V4

∂
2Nreg

∂Ei∂Ej

����
E¼0

: ð62Þ

Let us illustrate the matching procedure in detail. We first
recall that the number of produced particles by a constant
electric field E is given by the Schwinger(-Nikishov)
formula [13,71]:
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NSchwinger ¼ V4

jeEj2
4π3

e−π
m2

jeEj: ð63Þ

The Schwinger formula is exact for a constant electric field
and may well be applied to slow electric field E → EðtÞ
with frequency ω → 0 (the locally constant-field approxi-
mation). Namely, so long as the typical timescale for the
variation of the field ∼1=ω is much slower compared with
that for a pair production to take place ∼m=jeEj, a pair
production may be regarded as an instantaneous process
that occurs locally at each instance of time twith a constant
electric field with the instantaneous value EðtÞ. Thus,

NLCFA ¼ V3

Z
dt
jeEðtÞj2
4π3

e−π
m2

jeEðtÞj; ð64Þ

with V3 ≔
R
d3x being the spatial volume, gives the correct

number of pairs in the low-frequency limit ω → 0. For our
field configuration (2), the locally constant-field approxi-
mation (64) yields, after expanding with respect to the
probe E, that

NLCFA ¼V4
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Ē

�
2

þ
�
1

2
þπ

2

m2

eĒ
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ð65Þ
Our idea to fix the counter term ΔN is to require that the

regularized number Nreg (61) reproduces the locally con-
stant-field-approximation result NLCFA (65) at ω → 0.
Then, noticing

N⟶
ω→0
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eĒ
ω2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
xþE2

y

q
Ē
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we can uniquely fix ΔN as

ΔN ¼ V4

ðeĒÞ2
4π3

e−π
m2

eĒ
π

2

eĒ
ω2

�
E⊥
Ē

�
2

: ð67Þ

Therefore, from the correspondence (62), the imaginary
part Imϵregij should be regularized as

Imϵreg⊥ ¼ Imϵ⊥ −
α

π
e−π

m2

eĒ
eĒ
ω2

; ð68aÞ

Imϵregk ¼ Imϵk: ð68bÞ

That is, we just need to subtract the most divergent part
∝ ω−2. It is evident that the high-frequency behavior is
unmodified by the subtraction.
Before proceeding, let us mention that the infrared

divergence and the regularization procedure can affect only
the very low-frequency regime ω ≈ 0. This is illustrated in
Fig. 1, in which the bare and regularized numbers, (59) and
(61), respectively, are plotted against ω. It implies that in
practice it is sufficient to use the bareN (59), or Eq. (44) for
the imaginary part, when making a comparison with
experiments. In fact, experimentally, it is not always easy
to realize very low-frequency fields, since ω ¼ 0 is just an
idealistic limit of theory. Let us make a quantitative
estimate of when the infrared divergence can be significant.
By taking the ratio between the counter term ΔN (67) and
the locally constant-field-approximation result NLCFA (65),

ΔN
NLCFA ¼ π

2

eĒ
ω2

�
E⊥
Ē

�
2

; ð69Þ

we understand that the infrared divergence can be manifest
when

ω≲
ffiffiffi
π

2

r
eE⊥ffiffiffiffiffiffi
eĒ

p : ð70Þ

This is formally vanishing in the limit of weak probes
jEj → 0. In other words, in order for the infrared divergence
to be significant for finite ω, the probe E needs to be rather
strong (at least comparable to the strong field Ē).

G. Final formula for the change of the electric
permittivity

Let us summarize our formula for the change of the
electric permittivity Δϵij under the constant strong electric
field (2).
The imaginary part after removing the infrared diver-

gence is, from Eqs. (43) and (68), given by
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The transverse-momentum p⊥ integration can be done
numerically. Note that in the semiconductor case, the
imaginary part is given in terms of the Airy function,
rather than the Whittaker function [41,72]. This is essen-
tially because QED is relativistic, while it is nonrelativistic
in semiconductor, and therefore they have different dis-
persions. Nevertheless, from a mathematical viewpoint,
those two functions are similar to each other in the sense
that both functions obey differential equations with a single
turning point. It is a general feature of such differential
equations that the behavior of the solution changes from/to
oscillation to/from damping at the turning point. This is the
mathematical origin of the characteristic oscillating pattern
in the electric permittivity (or the Franz-Keldysh effect),
which we shall discuss in detail in the next section.
The real part can be obtained from the imaginary part

(71) by using the Kramers-Krönig relation:

ReΔϵregij ðωÞ¼
1

π
P:V:

Z
∞

0

dω0 2ω0

ω02−ω2
ImΔϵregij ðω0Þ: ð72Þ

The frequencyω0 integration can be done numerically. Note
that the Kramers-Krönig relation holds equally even after
regularizing the infrared divergence. Indeed, the subtrac-
tion of the divergent ω−2 term is equivalent to shifting Π̃ðωÞ
in Eq. (36) by a constant. In the coordinate space, this
means that ΠðτÞ is shifted by a delta function δðτÞ. The
proof of the Kramers-Krönig relation in Sec. III C remains
valid, since the essence of the proof is the step function
dependence of χðτÞ (39), which is unmodified by the shift
of ΠðτÞ.

IV. RESULT

We turn to discuss the physics of the electric permittivity
in a strong constant electric field based on the theoretical
foundation in Sec. III. We discuss the imaginary part Imϵij
in Sec. IVA and then the real part Reϵij in Sec. IV B by
numerically carrying out the integrations in Eqs. (71)
and (72).
For notational simplicity, we do not explicitly write the

superscript “reg” in what follows. All the numerical results
presented here are the regularized values.

A. Imaginary part ImΔϵij
Figure 2 shows the frequency ω dependence of the

imaginary part ImΔϵij (71). It exhibits two characteristic
features: (i) the exponential tail below the band-gap energy
ω < 2m and (ii) the oscillating behavior above ω > 2m.
Those are the QED analog of the electroreflectance in the
semiconductor, where very similar features, including the
order of the sign and magnitude of the oscillation, have
been observed, e.g., with Si [73].
Those characteristic features are directly related to the

change of the QED-vacuum (or the Dirac-sea) structure by

the strong electric field [24]. Namely, the strong electric
field Ē tilts the QED vacuum in the direction of the strong
field ez. As a consequence, the electrons in the Dirac sea can
tunnel into the gap, inside of which less energy is needed for
the probe to excite a pair, and thus the pair production is
enhanced. More particle production means more dielectric
energy loss, and hence the electric permittivity acquires a
larger imaginary part compared with the free-field limit,
which is the origin of the exponential tail below the band-gap
energy (i). On the other hand, that the quantum tunneling
into the gap occursmeans that the complementary process of
the quantum tunneling, i.e., quantum refection by the gap,
must occur. Accordingly, the electrons in the Dirac sea
interfere with those reflected by the gap. This quantum
interference leads to an oscillating distribution of the Dirac-
sea electrons. The pair production is likely to occur from
where the Dirac-sea electrons exist more, and the excitation
energyω that the probe needs to supply for pair production is
different, depending on where an electron is located in the
Dirac sea. Thus, the resulting number of pairs produced, and
therefore the imaginary part, shows an oscillating depend-
ence inω (ii). Note that an oscillatory dependence similar to
ours (similar but has different features such as square-root
divergences at thresholds) has also been obtained for strong
magnetic fields [74,75], which is also induced by the change
of the QED vacuum but is due to the Landau quantization of
the electron energy level.
As the change of the QED vacuum by the strong field Ē

is the essence of the two features, the direction of the probe
is not crucial here, and thus ImΔϵk and ImΔϵ⊥ basically
have the same ω dependencies. Nonetheless, a closer
comparison shows that they slightly deviate from each
other, which is the manifestation of the vacuum birefrin-
gence by the strong electric field.
Let us have a closer look at the oscillating peak structure;

see Fig. 3, where the peak locations and heights are
plotted against the field strength Ē. Note that we identify
the first peak as the positive sharp peak at ω=m ¼ 2 in
Fig. 2 and the second as the negative peak right after the
first one around ω=m ≈ 2.1–2.2, and successively define
the n-th peaks.
We first discuss the peak locations; see the top of Fig. 3.

The first peak appears precisely at the threshold band-gap
energy ω ¼ 2m, regardless of the field strength Ē. The
independence of Ē is simply because the first peak is
caused by the threshold behavior of the free-field result
ϵijðĒ ¼ 0Þ (43). In contrast, the subsequent peaks show
monotonically increasing behaviors in Ē and can be fit well
with a square-root function,

ω

m
¼ c1 þ c2

ffiffiffiffiffiffi
eĒ
m2

r
: ð73Þ

See the caption of Fig. 3 for the best-fit parameters ðc1; c2Þ.
The square-root Ē dependence reflects how the Dirac-sea
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FIG. 2. The change of the imaginary part of the longitudinal and transverse electric permittivities, ImΔϵk (left) and ImΔϵ⊥
(right), as functions of the probe frequency ω. The color distinguishes the strength of the strong field eĒ=m2. Note that ifm is taken to be
the usual electron mass m ¼ 511 keV in the natural units, in the physical units it corresponds to m ¼ 1.24 × 1020 Hz and
m2 ¼ 1.32 × 1018 V=m.

FIG. 3. The peak locations (with respect to ω) (top) and heights (bottom) of the change of the electric permittivities, ImΔϵk (left) and
ImΔϵ⊥ (right), plotted against the strength of the strong field eĒ=m2. The gray dashed lines show fitting results of the curves: a square-
root fit ω=m ¼ c1 þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eĒ=m2

p
(73) for each peak location on the top and a power-function fit ImΔϵij ¼ d1ðeĒ=m2Þd2 (74) for the

heights of the largest first peaks on the bottom. The best-fit parameters ðc1; c2Þ were found to be (2.00, 0.00), (1.94, 0.536), (1.75, 2.03),
(1.73, 2.82), (1.66, 3.61) (in order from the first to fifth peaks) and ðd1; d2Þ ¼ ð9.43 × 10−4; 0.368Þ for ImΔϵk and (2.00, 0.00), (1.97,
0.423), (1.83, 1.76), (1.75, 2.71), (1.70, 3.46) and ðd1; d2Þ ¼ ð6.85 × 10−4; 0.292Þ for ImΔϵ⊥.
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structure changes with Ē. Let us make a rough semi-
classical argument on this. Owing to the presence of the
constant strong electric field, the electron wave function in
the Dirac sea would acquire an additional phase factor

e�ipz → e�i
R

dzðp−eĒzÞ ∼ e∓ieĒz2 . The plus and minus signs,
respectively, specify the moving direction of the Dirac-sea
electrons heading to and receding from the gap. Those two
waves interfere with each other. Thus, the resulting
electron distribution is oscillating in the z direction
∝ cosð2eĒz2Þ, which has the period of Δz ∝ 1=

ffiffiffiffī
E

p
.

This indicates that the electron distribution, when viewed
as a function of the electron energy ε, has maxima with the
period Δε ¼ eĒΔz ∝

ffiffiffiffī
E

p
because the electron potential

energy is tied with the z coordinate as ε ¼ −eĒz. The pair
production is thus more likely to occur and develop a
larger imaginary part when the probe frequency ωmatches
the energies ε at which the distribution has maxima. This
means that the imaginary part has maxima with the period
Δω ¼ Δε ∝

ffiffiffiffī
E

p
. Therefore, the peak positions scale

roughly as ∝
ffiffiffiffī
E

p
, as observed in Fig. 3. Note that

semiconductor calculations predict Δω ∝ Ē3=2 [26]. The
difference is stemming from the nonrelativistic dispersion
of solid-state materials.
The peak locations are less sensitive to the probe

directions. Indeed, the deviations between the peak loca-
tions of the longitudinal and transverse electric permittiv-
ities in Fig. 3 are just a few percent. This is physically
reasonable, as the peak locations are essentially determined
by the modified Dirac-sea structure by the strong field, as
explained above. Therefore, the probe can only have a
minor effect on the locations.
In contrast, the heights of the peaks are sensitive to the

probe directions; see the bottom of Fig. 3. Indeed, the
heights are directly related to the size of the dielectric
energy loss, i.e., how many pairs are produced, which is
determined by how they are excited by the probe and hence
should be sensitive to the probe profile. Figure 3 shows that
the height of the first peak of the transverse electric
permittivity ImΔϵ⊥ is significantly smaller than the longi-
tudinal one ImΔϵk. We can understand this as reminiscent
of the fact that a longitudinal probe enhances the particle
production in the low-frequency regime more than a
transverse one does [see Eq. (65)]. This is because the
magnitude of the total electric field jEj ¼ jĒþ Ej is
maximized (minimized) when ĒkE (Ē⊥E). In contrast to
the first peak, the tendency is found to be the opposite for
higher peaks (n ≥ 3): the peak heights of the transverse
electric permittivity ImΔϵ⊥ are larger than the longitudinal
one ImΔϵk. This implies that it is easier with a transverse
probe to observe the change of the electric permittivity in
the high-frequency regime.
From an experimental viewpoint, the largest peaks, i.e.,

the first peaks (the red lines on the bottom of Fig. 3) are of

particular interest, as they may be the easiest to be accessed
by experiments among all the other peaks. To better
understand the parameter dependence, we have tried fitting
the curves with elementary functions and eventually found
that a power function,

ImΔϵij ¼ d1

�
eĒ
m2

�
d2
; ð74Þ

gives the best fit; see the caption of Fig. 3 for the best
fitting parameters ðd1; d2Þ. Note that the height is free from
the nonperturbative exponential suppression ∝ e−πm

2=eĒ,
which is effective only in the low-frequency regime (or
the semiclassical regime where the semiclassical approx-
imations such as the worldline instanton method
[61,68,69,76,77] can be applied). The exponent d2 roughly
equals 1=3, which agrees with the value predicted in
semiconductor calculations [78]. This compact formula (74)
enables us to discuss the weak-field regime eĒ=m2 ≪ 1
rather easily, as the direct numerical evaluation of our
formula (71) becomes difficult for small field strengths [this
is because Eq. (71) contains the nonperturbative factor
e−πm

2=eĒ, which becomes extremely small for eĒ=m2 → 0,
and therefore it becomes difficult to assure the numerical
precision]. It is also useful for making experimental
predictions (see Sec. V), for which weak fields are more
relevant owing to the current unavailability of strong fields.
Finally, we point out another important feature of Fig. 2:

the imaginary part of the electric permittivity is nonvanish-
ing even at ω ¼ 0þ.3 This is a nonperturbative strong-field
effect ∝ e−πm

2=eĒ, which is evident from Eq. (45).
Physically, the pair production occurs, and therefore non-
zero imaginary part develops, even with a zero-frequency
probe due to the additional energy supply by the strong
field. Note that the imaginary part is vanishing exactly in
the weak-field limit, where all the nonperturbative factors
are approximated to be zero. The nonzero imaginary part at
ω ¼ 0þ affects theω ¼ 0þ behavior of the real part through
the Kramers-Krönig relation, and thereby makes it deviate
from the conventional result for the weak and low-
frequency limit; see Sec. IV B.

B. Real part ImΔϵij
Figure 4 shows the frequency ω dependence of the real

part ReΔϵij (72). As the real and imaginary part are
closely related with each other through the Kramers-
Krönig relation (72), the real part also exhibits a similar
oscillating structure. Note that very similar oscillating

3The oddness of the imaginary part (17) indicates that it is
vanishing precisely at ω ¼ 0. This is compatible with the
finiteness at ω ¼ 0þ, as ω ¼ 0þ means ω is infinitely close to
zero and does not mean ω ¼ 0, though it is inevitable to have a
discontinuity at ω ¼ 0.
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behaviors have also been observed in various solid-state
materials (e.g., in Ge [37]).
We discuss details about the oscillating structure; see

Fig. 5. Note that we have identified the first peak as the
small positive bump just before the threshold band-gap
energyω < 2m [e.g.,ω ≈ 1.9 in the red lines (eĒ=m2¼0.2)
of Fig. 4] and the second peak as the largest negative sharp
peak at ω ≈ 2m, and successively define the higher peaks.
As we shall discuss later, the first peak can be absent for
strong fields, for which the real part diverges logarithmi-
cally at ω ≈ 0, and then the first peak can be hidden under
the divergence. This is the reason why the red curves in
Fig. 5 disappear at around eĒ=m2 ≈ 0.57 and ≈0.80 for ϵk
and ϵ⊥, respectively.
As the oscillating structure is reminiscent of that in the

imaginary part, the peak locations can be fit well by the
square-root function (73); see the top of Fig. 5.
Nevertheless, although it can be fit by the same function
(73), the fitting parameters ðc1; c2Þ and thus the values of
the locations are different. The peak locations of the real
part are roughly in the middle of those for the imaginary
part [e.g., the location of the third peak of the real part at
eĒ=m2 ¼ 1.0 is ω=m ≈ 3.1, which is just around the
middle of the second (ω=m ≈ 2.5) and third (ω=m ≈ 3.9)
peaks of the imaginary part]. From the viewpoint of the
Kramers-Krönig analysis, this is because the Hilbert trans-
formation is a transformation such that it splits a peak of the
integrand into two. To understand this, let us consider, as an
example, the Lorentz model of dielectrics [79], which is
widely used in the phenomenological modeling of the
electric permittivity in solid-state physics. The imaginary
part in this model is

ImΔϵLorentz ≔ ω2
p

Γω
ðω2 − ω2

0Þ2 þ ðΓωÞ2 ; ð75Þ

where ω2
p is some constant (identified as the plasma

frequency in the original context). The imaginary part

ImΔϵLorentz has a single positive peak at ω ¼ ω0 with the
width Γ. Now, we Hilbert transform Eq. (75) to see how the
Hilbert transformation acts on a peak. This is exactly
doable and yields

ReΔϵLorentz ¼ −ω2
p

ω2 − ω2
0

ðω2 − ω2
0Þ2 þ ðΓωÞ2 : ð76Þ

Differentiating with respect to ω, we immediately
understand that the real part (76) has two peaks around
ω ¼ ω0 separated by the distance Γ; namely, a positive
peak atω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0ðω0 − ΓÞp
≈ ω0 − Γ=2 and a negative peak

at ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðω0 þ ΓÞp

≈ ω0 þ Γ=2. This confirms our
statement that the Hilbert transformation splits a peak into
two. Now, we consider applying the Lorentz-model argu-
ment to our problem. In general, including our electric
permittivity, the imaginary part of the electric permittivity
can have several peaks, which can be modeled by super-
imposing the Lorentz models (75) with various peak
profiles. We can, thus, understand the peaks of the real
part in Fig. 5 as a collection of those of the imaginary part
in Fig. 3 after the splitting by the Hilbert transformation.
For example, the first positive peak of the imaginary part at
ω=m ¼ 2 splits into two, one of which gives a positive peak
below the threshold band-gap energy, and the other is a
negative peak above it,4 and those peaks are separated
roughly by the peak width of the imaginary part. The
location of the peak of the real part below the band gap
decreases its value as the field strength increases. This is
because, as the field strength becomes larger, the width
becomes larger (see Fig. 2), which is essentially because the

FIG. 4. A similar plot to Fig. 2 but for the real part. Namely, the change of the real part of the longitudinal and transverse electric
permittivities, ReΔϵk (left) and ReΔϵ⊥ (right), are shown as functions of the probe frequency ω.

4The first peak of the imaginary part is very sharp and skewed
in our case, and therefore the application of the Lorentz model is
actually a bit naive. In fact, the second peak of the real part is
always sticked at ω=m ≈ 2 and does not clearly show the positive
shift from the original peak position of the imaginary part.
Nonetheless, it is still useful to get an intuition of the peak
locations of the real part, as we explain in the main text.
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Schwinger effect at ω ¼ 0 creates more particles and
accordingly the exponential tail below the band gap
develops more. A similar argument applies to the second
and higher peaks: the peak locations of the real part are
basically shifted from those of the imaginary part by the
peak widths. Consequently, the peak locations of the real
part are roughly in the middle of those for the imagi-
nary part.
We turn to discuss the peak heights; see the bottom of

Fig. 5. The basic features are qualitatively similar to the
imaginary case because the real part is tied with the
imaginary part through the Kramers-Krönig relation
(72). Namely, (i) the heights are more sensitive to the
probe direction than the locations are, i.e., the real part also
exhibits the birefringent nature of the vacuum in strong
fields. (ii) Except for the largest second peak, the heights
are relatively larger in the transverse electric permittivity
than in the longitudinal one. The heights of the second
peaks are roughly comparable between the longitudinal
and transverse cases, though the transverse one is slightly

smaller (≈10%) than the longitudinal one, which is
reasonable as the largest peak of the imaginary part (which
gives the dominant contribution to the second peak of the
imaginary part, as we have explained in the last paragraph)
of the transverse electric permittivity is smaller than the
longitudinal one. (iii) The largest second peak can be fit
well by the power function (74); see the caption of Fig. 5
for the best fitting parameters ðd1; d2Þ. Compared with the
largest peak of the imaginary part (see Fig. 3), the values of
the exponent d2 are somewhat increased (≈10%) but stay
around 1=3, indicating that the eĒ=m2 dependence is
essentially unchanged. Contrarily, the overall factor d1 is
significantly increased (≈100%), and thus the real part has
larger peak heights than the imaginary part.
Next, let us discuss the low-frequency behavior of the

real part of the electric permittivity. We have found it to be
logarithmically divergent; see Fig. 4. This is originating
from the finiteness of the imaginary part at ω ¼ 0þ [see
Eq. (45) and Fig. 2], which yields from the Kramers-Krönig
relation (72) that

FIG. 5. A similar plot to Fig. 3 but for the real part. Namely, the peak locations (with respect to ω) (top) and heights (bottom) of the
change of the electric permittivities, ReΔϵk (left) and ReΔϵ⊥ (right), are shown as functions of the strength of the strong field eĒ=m2.

The gray dashed lines show fitting results of the curves, i.e., square-root fits ω=m ¼ c1 þ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eĒ=m2

p
for each peak location on the top

and a power-function fit ReΔϵij ¼ d1ðeĒ=m2Þd2 for the heights of the second peaks, which are the largest among the peaks, on the
bottom. The best-fit parameters ðc1; c2Þ are found to be ð2.18;−1.27Þ; ð2.00; 0.00Þ; ð1.82; 1.38Þ; ð1.73; 2.46Þ; ð1.70; 3.21Þ (in order from
the first to fifth peaks) and ðd1; d2Þ ¼ ð−1.51 × 10−3; 0.382Þ for ReΔϵk and ð2.19;−1.21Þ; ð2.00; 0.00Þ; ð1.90; 1.13Þ; ð1.79; 2.27Þ;
ð1.72; 3.10Þ and ðd1; d2Þ ¼ ð−1.35 × 10−3; 0.340Þ for ReΔϵ⊥.
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ReΔϵijðωÞ⟶ω→0 −2ImΔϵijð0Þ
π

lnω

¼
8<
:

−2α
π2

e−π
m2

eĒ

�
1
π þ 1

2
m2

eĒ

�
lnω for ⊥;

−2α
π2

e−π
m2

eĒ

�
1
π þ m2

eĒ þ π
2

�
m2

eĒ

�
2
�
lnω for k:

ð77Þ

Equation (77) clearly shows that the logarithmic divergence
is a nonperturbative strong-field effect ∝ e−πm

2=eĒ, and
hence is dismissed in the weak-field calculations.
To get a better understanding of the logarithmic diver-

gence and also the relation between the known result in the
literature and ours, we made Fig. 6, where the known result
based on the Heisenberg-Euler effective Lagrangian [see
Eq. (79) below] is compared with ours (72) and that with
subtracting the logarithmic divergence (77) by hand,

ReΔϵlog subij

≔

8<
:

ReΔϵ⊥ − −2α
π2

e−π
m2

eĒ

�
1
πþ 1

2
m2

eĒ

�
lnω for ⊥;

ReΔϵk − −2α
π2

e−π
m2

eĒ

�
1
πþ m2

eĒþ π
2

�
m2

eĒ

�
2
�
lnω for k:

ð78Þ

As shown in Fig. 6, the subtracted number (78) is
finite at ω → 0. It also shows that the subtraction does
not change the value significantly for weak fields, meaning
that the logarithmic divergence can be significant only for
strong fields.
In the literature, the electric permittivity has been

typically calculated with the Heisenberg-Euler effective
Lagrangian and found to be (see Appendix B for the
derivation) [80,81]

ReΔϵHEij ¼
8<
:

þ α
π

2
45

�
eĒ
m2

�
2

for ⊥;

þ α
π

2
15

�
eĒ
m2

�
2

for k;
ð79Þ

which is valid in the weak and slow limit Ē, ω → 0. Note
that the imaginary part is strictly zero in this approach.
Figure 6 shows that our result, which is valid even to strong
fields and finite frequencies, coincides with the
Heisenberg-Euler result (79) at and only at Ē, ω → 0
(the same applies to the imaginary part; see Fig. 2, which
shows that our results go to zero at Ē, ω → 0). The
agreement becomes better if we drop the logarithmic
divergence, as this is a part of the weak-field approxima-
tion made in the Heisenberg-Euler approach. Our results
deviate from the Heisenberg-Euler one for strong fields
eĒ=m2 ≳ 0.2 at ω ≈ 0. Meanwhile, for weak fields below
this value, we observe good agreements between the two
for wide values of the frequency below the threshold
band-gap energy ω=m≲ 1. Thus, we conclude that our
result is consistent with the conventional Heisenberg-
Euler result in the weak and slow limit, while significant
deviations appear for strong or fast fields, for which the
Heisenberg-Euler result (79) is invalid and ours (72) must
be used instead.

V. SUMMARY AND DISCUSSION

In summary, we have revisited the change of the electric
permittivity, as a response of the vacuum against a probe
electric wave, in the presence and absence of a strong
constant electric field. As described in Sec. III, our
calculation is based on a linear-response theory in the
strong electric field, which we have formulated using the
nonequilibrium in-in formalism and the Furry-picture
perturbation theory. Our in-in formulation is manifestly
causal, which naturally yields the Kramers-Krönig relation.
By subtracting the infrared divergence appropriately, we

FIG. 6. A comparison between our results (thick and dashed color lines) and the Heisenberg-Euler result (79) (dotted gray lines),
which is valid in the weak and zero-frequency limit. The thick and dashed lines represent the real part with and without subtracting the
logarithmic divergence, Eqs. (72) and (78), respectively.
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have first calculated the imaginary part of the change of the
electric permittivity (71) and then made use of the Kramers-
Krönig relation to numerically obtain the real part (72) and
thereby the whole electric permittivity. We have also
established a clear relation between the electric permittivity
and the number of pairs produced by the dynamically
assisted Schwinger effect (50). Our approach is beyond the
conventional weak-field and zero-frequency-probe limit,
and has revealed intriguing features for strong fields and/or
probes with finite frequencies; see Sec. IV. In particular, we
have found (for the first time in the context of strong-field
QED to the best of our knowledge) that both the real and
imaginary parts of the electric permittivity exhibit charac-
teristic oscillating patterns with respect to the probe
frequency. This is quite analogous to what has been
observed in semiconductor experiments in the context of
the Franz-Keldysh effect and electroreflectance. The oscil-
lating structure is directly related to the change of the QED-
vacuum structure (cf. the square-root Ē dependence of the
peak locations). This implies that the measurement of the
electric permittivity serves as a probe to quantitatively
diagnose the QED vacuum. Another notable feature is that
the low-frequency behavior is modified due to a non-
perturbative strong-field effect. This modification is sup-
pressed strongly by the field strength, e−πm

2=eĒ, and
therefore is just a minor effect for weak fields but can
have significant impacts for strong fields such as the
logarithmic divergence in the real part.
Let us discuss possible experimental and phenomeno-

logical implications. As mentioned in the Introduction,
strong electromagnetic fields can be realized in extreme
physical systems such as heavy-ion collisions and compact
stars and also with recent/near-future high-power lasers
under laboratory conditions. Unfortunately, the direct
application of our results to the extreme physical systems
is premature, since the electromagnetic-field configurations
realized there are very different from our simple constant-
electric-field configuration (2). For example, the electro-
magnetic fields in heavy-ion collisions have extremely
small spacetime volume, for which our constant-field
approximation cannot be applied. Compact stars such as
magnetars and charged black holes may have strong
electric fields, but other strong-field effects including
magnetic and/or gravitational ones are more significant.
Therefore, our present calculation with the simple con-
figuration (2) is premature for discussing anything concrete
in those extreme physical systems, which we leave as future
work. Nonetheless, we expect that the essence of the
physics should not change depending on the field con-
figurations. That is, our basic finding that the change of the
QED vacuum structure by a strong field leads to intriguing
frequency- and polarization-dependent changes in the
electric permittivity, or the refractive index in general,
should be valid. Such a change would be the most
significant at around the gap energy ω ∼m. It is interesting

and worthwhile to try observing the change with, e.g., the
recent and future photon- and/or dilepton-polarization
measurements in heavy-ion collisions and astronomical
x-ray observations (e.g., with IXPE and XL-Calibur).
Let us next discuss implications with high-power lasers

in a quantitative manner. High-power lasers are advanta-
geous than the extreme physical systems in that the field
configuration can be designed rather easily, and thus in
principle our simple field configuration (2) can be realized.
It would also be advantageous in that experimental noise is
suppressed and can be controlled. Therefore, it is more
motivating to consider the case of high-power lasers than
the extreme physical systems. In short, however, it seems
difficult to observe our frequency-dependent change of
the electric permittivity within the current experimental
technology. The most difficult part (but at the same time
only the problem) is that extremely fast coherent-light
sources of the order of the zeptosecond, ω≳m ¼ 1.24 ×
1020 Hz (for electrons), are needed as probes. Such a
zeptosecond light source is still unavailable,5 though
there have been significant developments in ultrafast
lasers in the attosecond regime in the last decade [82–
85] and exist various proposals to achieve the zeptosecond
order (e.g., Ref. [86–88]). To proceed, let us suppose
anyway that such an extremely fast light source is
available and discuss what we can say then. The easiest
to be observed is the largest peak at ω ≈ 2m. The peak
height can be approximated well by Eq. (74). In physical
units, it reads as

ImΔϵk ¼ ð1.1×10−4Þ×
�

I
1×1023 W=cm2

�
0.15

;

ImΔϵ⊥ ¼ð0.98×10−4Þ×
�

I
1×1023 W=cm2

�
0.18

; ð80Þ

and

ReΔϵk≈ ð−1.4×10−4Þ×
�

I
1×1023 W=cm2

�
0.19

;

ReΔϵ⊥≈ ð−1.7×10−4Þ×
�

I
1×1023 W=cm2

�
0.17

; ð81Þ

5Instead of using coherent lights, it may be possible to use
high-energy incoherent photons as the fast probe field such as
bremsstrahlung photons emitted from and highly Lorentz-
boosted Coulomb field of high-energy electrons (or charged
particles such as proton or heavy ions). This is an interesting
possibility, but our setup (2) is too idealistic for such a situation
(we need to consider incoherent photons rather than the coherent
ones, finite photon momentum k ≠ 0, and so on), and also we
need to reformulate our theory to extract the information of the
electric permittivity from incoherent photons. Thus, we do not
make any quantitative discussion for this possibility.
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where I ≔ Ē2=2 is the intensity of a tightly focused laser
pulse. As an example, let us consider the state-of-art
strongest pulse with a 4-PW laser [19]: I ¼ 1 ×
1023 W=cm2 (or Ē ¼ 9 × 1014 V=m) with σ ¼ 1 μm and
τ ¼ 20 fs being the spot size and the time duration of the
pulse, respectively. The estimates, (80) and (81), indicate
that the order of the change is Δϵij ¼ 1 × 10−2% and
the difference between the longitudinal and transverse
ones (i.e., the signature of the vacuum birefringence) is
jΔϵk − Δϵ⊥j ¼ 2 × 10−3%. Those are not large numbers
but are significantly larger compared with the weak-
field and low-frequency limit (79), ΔϵHEij ¼ Oð10−5%Þ.
We emphasize that the estimates, (80) and (81), depend
on the intensity very weakly Δϵij ∝ Id2=2 ≈ I1=6. This
means that sizable signals can remain even for weak
fields. Namely, to lower the magnitude of the change
by 1 order, we need to change the intensity by about 6
orders. For example, even for a GW laser, we still have
a sizable magnitude of the changes, Δϵij ¼ 1 × 10−3%

and jΔϵk − Δϵ⊥j ¼ 2 × 10−4%. Those changes may be
measured directly with the standard technique of
dielectric spectroscopy (see, e.g., Ref. [56]), or indi-
rectly through measurement of other observables. One
possible observable is the change of the speed of light
in the vacuum c, which is related to the electric
permittivity as c ¼ 1=

ffiffiffiffiffi
ϵμ

p
(with μ being the magnetic

permeability), and therefore the change of ϵ immedi-
ately means that of c. Our result is, however, premature
to discuss anything quantitative about the change of the
speed of light (e.g., need to calculate the change of the
magnetic permeability, to include photon momentum
k ≠ 0, and so on); nonetheless, we may naively expect a
similar order of the change appears in the speed of light
as well. If so, we have Δc ¼ Oð10−2%Þ and jΔck −
Δc⊥j ¼ Oð10−3%Þ for photons around the threshold
band-gap energy ω ≈ 2m, which may be tested with,
e.g., the photon polarimeter (e.g., PVLAS [54]) and the
Michelson-Morley interferometer [89]. Another inter-
esting observable is the number of pairs produced by
the dynamically assisted Schwinger effect, which is
related to the imaginary part through Eq. (50). In
physical units, it reads as6

N ≈
1

6α
m4σ3τ

��
eE⊥
m2

�
2

ImΔϵ⊥þ
�
eEz

m2

�
2

ImΔϵk
�

≈ 0.20×

�
σ

μm

�
3
�
τ

fs

�

×

�
0.98×

�
E⊥

1×1015 V=m

�
2
�

I
1×1023 W=cm2

�
0.18

þ1.1×
�

Ez

1×1015 V=m

�
2
�

I
1×1023 W=cm2

�
0.15
�
ð82Þ

per a single shot of a laser pulse. Suppose we have
pulses with a repetition rate of f ¼ 0.1 Hz and take
the probe-field strength to be E ¼ 1 × 1012 V=m (corre-
sponding to the GW regime with the same focusing
parameters). Then, the total number of pairs produced
per unit time with the 4-PW-laser configuration is
the order of N= sec≈ð4 × 10−5Þ × f ≈ 4 × 10−6, indicat-
ing that a pair is produced per three days. For the difference
between the longitudinal and transverse probes,
ðNk − N⊥Þ= sec≈ð6 × 10−6Þ × f ≈ 6 × 10−7, it roughly
requires three weeks to observe. As was the case in
Δϵij, the number of pairs is also suppressed weakly in I
as N∝

∼
I1=6, and therefore even for weak fields we still have

a chance to observe the pair production and thereby the
change of the electric permittivity. Note that for a fixed
peak power P, the intensity scales as I ∝ P=σ2 ⇒ N∝

∼
I1=6σ3 ∝ σ8=3. Thus, a looser focusing is more beneficial
for the pair production (e.g., for σ ¼ 10 μm, the rateN= sec
is enhanced by a factor of about 500, N= sec≈2 × 10−3,
which means about 200 pairs are produced in a day). We,
thus, conclude in this discussion that the observation of our
predicted change of the electric permittivity is not easy at
the moment but should be feasible once a zeptosecond
light source becomes available.
We conclude this paper by again emphasizing the

usefulness of the analogy between strong-field QED and
semiconductor physics (and also other physical systems).
Although there are subtle differences between semicon-
ductor and QED [semiconductor has smallerOð1 eVÞmass
gap, the (effective) speed of light deviating from the
vacuum one, impurities, lattice structure, dimensionality,
etc; see, e.g., Ref. [90]], they essentially have the same
band structure and hence respond against electromagnetic
fields in a very similar manner. Previously, the analogy
between the dynamically assisted Schwinger effect in QED
and the Franz-Keldysh effect was discussed and was
successful [24,25]. Motivated by this success, we in this
paper have pursued the QED analog of the electroreflec-
tance in semiconductor physics and succeeded in finding
the novel behaviors in QED (e.g., the oscillation in the
high-frequency regime) and the useful relation connecting
the Schwinger effect and the electric permittivity (50). This

6To be precise, the left-hand side of Eq. (82) should be
understood as NðE ≠ 0Þ − NðE ¼ 0Þ, i.e., the number of pairs
produced solely by the probe field. For weak fields eĒ ≪ m2,
which are relevant for the current experimental technology, the
Schwinger contribution without the probe is negligible
NðE ¼ 0Þ ≈ 0. Therefore, NðE ≠ 0Þ − NðE ¼ 0Þ ≈ NðE ≠ 0Þ,
i.e., we do not need to carefully distinguish the total number
of produced pairs and those solely by the probe.
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clearly demonstrates that importing the wisdom of semi-
conductor physics is useful in developing a better under-
standing of strong-field QED. Although we have mainly
focused on importing semiconductor knowledge to QED,
the converse (i.e., export) should also be useful. For
example, topological insulators can effectively be described
in terms of the Dirac equation [91,92]. Relativistic
dispersion is realized in, e.g., graphene [93] and Weyl/
Dirac semimetal [94]. In those materials, our relativistic
QED calculation is more relevant than the conventional
nonrelativistic semiconductor one. Our results indicate that,
although the qualitative features remain the same, the
quantitative ones must change, e.g., the different scaling
of the peak locations Δω ∝

ffiffiffiffī
E

p
for relativistic and ∝ Ē3=2

for nonrelativistic (see Figs. 3 and 5). To make a more
realistic prediction regarding condensed-matter experi-
ments, however, it is crucially important to carefully take
into account the matter properties, and therefore we do not
make any further predictions here; we leave them as future
work. Finally, let us mention that the analogy may also be
extended to other physical systems such as in the presence
of strong color fields as realized in the early-stage
dynamics of heavy-ion collisions (e.g., glasma [95])
and gravitational fields in the Universe. As we have
learned from the analogy, the change of the vacuum
structure is the essence for modifying vacuum response
functions. Such a change can equally be induced by strong
fields other than an electromagnetic one, and therefore it is
natural to expect similar modifications to vacuum
response functions. It is an interesting topic to study such
cases, to which our in-in formalism can be generalized
straightforwardly, and discuss possible phenomenological
consequences, e.g., modification of jets in heavy-ion
collisions by the strong color fields and vacuum birefrin-
gence in curved spacetime.
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APPENDIX A: DETAILS OF THE EVALUATIONS

In this appendix, we describe some calculation details of
the imaginary part Imϵij (36) and the number of pairs
produced by the dynamically assisted Schwinger effect N
(58). The essential part of the calculations is the evaluation
of the Fourier transformations of bispinor products of the
mode functions ψ as

�;p;s (as ¼ in, out). We begin with
recalling the exact forms of the mode functions ψ as

�;p;s in
Appendix A 1 and then perform the Fourier transformations

for the imaginary part and the number in Appendixes A 2
and A 3, respectively.

1. Solution of the Dirac equation in a
constant electric field

The analytical expressions of the mode functions ψ as
�;p;s

are known [24,28,65]. To display them, we decompose the
mode functions ψ as

�;p;s in the spinor space as

ψ asþ;p;sðtÞ ¼
�
Aas
p ðtÞ þ Bas

p ðtÞγ0
mþ γ⊥ · p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2⊥
p �

Γs;

ψ as
−;p;sðtÞ ¼

�
Bas�
p ðtÞ − Aas�

p ðtÞγ0 mþ γ⊥ · p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p �
Γs: ðA1Þ

Substituting this spinor decomposition into the mode
equation (30), it can be shown that the scalar functions
Aas
p ; Bas

p obey the Weber equation, which is analytically
solvable. For the boundary conditions (22) and (56), the
solutions read as

8<
:Ain

p ðtÞ ¼ e−
iπ
8 e−

πap
4
ffiffiffiffiffiapp Diap−1ð−e−

iπ
4ξpðtÞÞ

Bin
p ðtÞ ¼ eþ

iπ
8e−

πap
4 Diapð−e−

iπ
4ξpðtÞÞ

;

8<
:Aout

p ðtÞ ¼ e−
iπ
8e−

πap
4 D−iapðe

iπ
4ξpðtÞÞ

Bout
p ðtÞ ¼ eþiπ

8e−
πap
4
ffiffiffiffiffiapp D−iap−1ðe

iπ
4ξpðtÞÞ

; ðA2Þ

where DνðzÞ is the parabolic cylinder function and

ap ≔
m2 þ p2⊥
2eĒ

and ξpðtÞ ≔
ffiffiffiffiffiffi
2

eĒ

r
ðeĒtþ pzÞ: ðA3Þ

The four component spinors Γs, with s ¼ �1 specifying
the spin direction with respect to ez, are defined as the two
eigenvectors of γ0γ3 with the eigenvalue 1; e.g., in the Dirac
representation, Γs read as

Γþ1 ≔
1ffiffiffi
2

p

0
BBB@

1

0

1

0

1
CCCA; Γ−1 ≔

1ffiffiffi
2

p

0
BBB@

0

1

0

−1

1
CCCA: ðA4Þ

For Ē ¼ 0, the spinor decomposition (A1) needs not be
modified, but the scalar functions Aas

p and Bas
p change.

Substituting the spinor decomposition (A1) into the free
Dirac equation, we immediately find that Aas

p and Bas
p satisfy

the usual free Klein-Gordon equation and, after imposing
the boundary conditions (22) and (56), get
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8>><
>>:

Ain
p ¼ Aout

p ¼ 1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pzffiffiffiffiffiffiffiffiffiffi

m2þp2
pq

e−i
ffiffiffiffiffiffiffiffiffiffi
m2þp2

p
t

Bin
p ¼ Bout

p ¼ 1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pzffiffiffiffiffiffiffiffiffiffi

m2þp2
pq

e−i
ffiffiffiffiffiffiffiffiffiffi
m2þp2

p
t
: ðA5Þ

Below, we focus on the case of Ē ≠ 0. The Ē ¼ 0 case
can be done in the same manner just by replacing the scalar

functions for Ē ≠ 0 (A2) to those for Ē ¼ 0 (A5). Or, the
Ē ¼ 0 results should be able to be obtained by taking the
Ē → 0 limit of the Ē ≠ 0 results.

2. Imaginary part Imϵij
From Eq. (36), what we need to evaluate is the Fourier

transformation of Πij, i.e.,

Π̃ijðωÞ ¼ 2e2
Z þ∞

−∞
dτeþiωτImtr

X
s;s0

Z
d3p
ð2πÞ3 γ

iSin−;p;s

�
þ τ

2
;−

τ

2

�
γjSinþ;p;s0

�
−
τ

2
;þ τ

2

�

¼ −ie2
X
s;s0

Z
d3P
ð2πÞ3

Z þ∞

−∞

dk
2π

½½Γ̃i
P;s;s0 ðkÞ�†Γ̃j

P;s;s0 ð−ω − kÞ − ½Γ̃j
P;s;s0 ðþω − kÞ�†Γ̃i

P;s;s0 ðkÞ�; ðA6Þ

where

Γ̃i
P;s;s0 ðωÞ ≔

Z þ∞

−∞
dτeþiωτΨ̄in

−;P;s

�
τ

2

�
γiΨin

þ;P;s0

�
τ

2

�
: ðA7Þ

We first use Eq. (31) and factor out the dependence on Pz of Γ̃i
P;s;s0 as

Γ̃i
P;s;s0 ðωÞ ¼

ffiffiffiffiffiffi
2

eĒ

r
e−2i

ωPz
eĒ

Z þ∞

−∞
dξeþiω

ffiffiffi
2
eĒ

p
ξψ̄ in

−;P−Pzez;s
ðξÞγiψ in

þ;P−Pzez;s0
ðξÞ

≕
ffiffiffiffiffiffi
2

eĒ

r
e−2i

ωPz
eĒ × Γ̃0i

p⊥;s;s0

�
ω

ffiffiffiffiffiffi
2

eĒ

r �
; ðA8Þ

where we changed the integration variable τ to ξ ≔ ξPðτ=2Þ. The function Γ̃0i
p⊥;s;s0 is independent of Pz. We can then carry

out the Pz integration in Eq. (A6) to obtain

Π̃ijðωÞ¼−2iα
X
s;s0

Z
d2p⊥
ð2πÞ2

��
Γ̃0i
p⊥;s;s0

�
−

ωffiffiffiffiffiffiffiffi
2eĒ

p
��†

Γ̃0j
p⊥;s;s0

�
−

ωffiffiffiffiffiffiffiffi
2eĒ

p
�
−
�
Γ̃0j
p⊥;s;s0

�
þ ωffiffiffiffiffiffiffiffi

2eĒ
p

��†
Γ̃0i
p⊥;s;s0

�
þ ωffiffiffiffiffiffiffiffi

2eĒ
p

��
: ðA9Þ

Thus, our central task is to evaluate Γ̃0i
p⊥;s;s0 (A8). Using the solutions of the Dirac equation (A1) and by simplifying the

spinor structure, we find

½Γ̃01
p⊥;s0;sðωÞ�† ¼ −

�
px þ ispy

m⊥
I½Ain�

p Ain�
p ;ω�−px − ispy

m⊥
I½Bin�

p Bin�
p ;ω�

�
δs;s0 − s

m
m⊥

½I½Ain�
p Ain�

p ;ω� þ I½Bin�
p Bin�

p ;ω��δs;−s0 ;

ðA10aÞ
½Γ̃02

p⊥;s0;sðωÞ�† ¼ þis

�
px þ ispy

m⊥
I½Ain�

p Ain�
p ;ω�þpx − ispy

m⊥
I½Bin�

p Bin�
p ;ω�

�
δs;s0 þ i

m
m⊥

½I½Ain�
p Ain�

p ;ω� þ I½Bin�
p Bin�

p ;ω��δs;−s0 ;

ðA10bÞ

½Γ̃03
p⊥;s0;sðωÞ�† ¼ −2I½Ain�

p Bin�
p ;ω�δs;s0 ; ðA10cÞ

where

I½XY;ω� ≔
Z

dξeþiωξXðξÞYðξÞ: ðA11Þ
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Using Eq. (A2), the integrals I½Ain�
p Ain�

p �; I½Ain�
p Bin�

p �, and
I½Bin�

p Bin�
p � can be expressed as

I½Ain�
p Bin�

p ;ω� ¼ e−
πap
2
ffiffiffiffiffi
ap

p
I1;0ðωÞ; ðA12aÞ

I½Bin�
p Bin�

p ;ω� ¼ e−
πap
2 e−iπ=4I0;0ðωÞ; ðA12bÞ

I½Ain�
p Ain�

p ;ω� ¼ e−
πap
2 apeþiπ=4I1;1ðωÞ; ðA12cÞ

where

Iλ;λ0 ðωÞ≔
Z

dξeþiωξD−iap−λ

−eþiπ

4ξ
�
D−iap−λ0


−eþiπ

4ξ
�
:

ðA13Þ

The evaluation of the integral Iλ;λ0 is a bit tedious but is
analytically doable. Using the integral representation of the
parabolic cylinder function [96],

Dνð−eþiπ=4ξÞ¼ e−iξ
2=4

eþiπν=4Γð−νÞ
Z

∞

0

dyy−ν−1eþiξy−iy2=2; ðA14Þ

we can exactly carry out the ξ integration in I λ;λ0 (A13).
The remaining two y integrations can also be done, and the
result can be expressed in terms of the Kummer’s and
Tricomi’s confluent hypergeometric functions, denoted by

1F1ða; b; zÞ and Uða; b; zÞ, respectively:

Iλ;λ0 ðωÞ ¼
ffiffiffiffiffiffi
2π

p
eþiπðλ−λ0−1Þ=4jωjλ−λ0Γð−iap − λ0 þ 1Þ

�
Θð−ωÞ

	
e−πapeiπλ

0

Γðiap þ λÞ e
−iω2

2 Uð−iap − λ0 þ 1; λ − λ0 þ 1;þiω2Þ

þ 1

Γðλ − λ0 þ 1Þ e
þiω2

2 ×1 F̃1ðiap þ λ; λ − λ0 þ 1;−iω2Þ



þ ΘðþωÞ e−πapeiπλ
0

Γð−iap − λ0 þ 1Þ e
þiω2

2 Uðiap þ λ; λ − λ0 þ 1;−iω2Þ
�
: ðA15Þ

Now, all the integrations [except for the transverse-
momentum p⊥ integration in Π̃ij (A6), which seems
infeasible analytically] have been done. The remaining
task is quite straightforward (though quite bothersome):
just substitute the obtained I λ;λ0 (A15) into Π̃ij (A6) and
simplify it using identities of the confluent hypergeometric
functions [96]. Doing this yields Eq. (44) in the main text.

3. Number of pairs N

The evaluation of the number of pairs N (58) can be
done in a similar manner to Imϵij (see Sec. A 2).

We just have to plug the mode functions (A1) into
Eq. (58) and then calculate the corresponding Fourier
transformations of the products among the scalar func-
tions Aas

p and Bas
p .

To be concrete, we substitute Eq. (A1) into Eq. (58). The
first term in the brackets can be evaluated to [65,71]

ψout†
þ;p;sψ

in
−;p;s0 ¼ e−πapδs;s0 : ðA16Þ

The remaining second term gives

Z
dtψ̄outþ;p;sAψ in

−;p;s0 ¼ δs;s0
Z

dω
2π

e−i
ωpz
eĒffiffiffiffiffiffiffiffi

2eĒ
p

�
ðÃ1ð−ωÞ − isÃ2ð−ωÞÞ px þ ispyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2⊥
p I

�
Ain�
p Aout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�

− ðÃ1ð−ωÞ þ isÃ2ð−ωÞÞ px − ispyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p I

�
Bin�
p Bout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�
− Ã3ð−ωÞ

�
I

�
Ain�
p Bout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�

þ I

�
Bin�
p Aout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
���

þ ð1 − δs;s0 Þs
Z

dω
2π

e−i
ωpz
eĒffiffiffiffiffiffiffiffi

2eĒ
p ðÃ1ð−ωÞ − isÃ2ð−ωÞÞ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2⊥
p

×

�
I

�
Ain�
p Aout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�
þ I

�
Bin�
p Bout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
��

: ðA17Þ

The functions I½� � �� are defined in the same manner as Eq. (A11). Using the integral representation of the parabolic cylinder
function (A14), it is possible to exactly carry out the ξ integration in I, which yields [28]

KRAMERS-KRÖNIG APPROACH TO THE ELECTRIC … PHYS. REV. D 108, 096005 (2023)

096005-23



I

�
Ain�
p Aout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�
¼ 2πeiπ=4ΘðωÞ ffiffiffiffiffi

ap
p

e−πap
ffiffiffiffiffiffiffiffi
2eĒ

p

ω
M1

2
þiap;0

�
i
ω2

2eĒ

�
; ðA18aÞ

I

�
Ain�
p Bout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�
¼ I

�
Bin�
p Aout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�
¼ 2πiΘðωÞape−πap

ffiffiffiffiffiffiffiffi
2eĒ

p

ω
Miap;

1
2

�
i
ω2

2eĒ

�
; ðA18bÞ

I

�
Bin�
p Bout�

p ;
ωffiffiffiffiffiffiffiffi
2eĒ

p
�
¼ 2πe−iπ=4ΘðωÞ ffiffiffiffiffi

ap
p

e−πap
ffiffiffiffiffiffiffiffi
2eĒ

p

ω
M1

2
−iap;0

�
−i

ω2

2eĒ

�
: ðA18cÞ

Note that the Whittaker function Mκ;μðzÞ is related to the Kummer’s confluent hypergeometric function 1F1ða; b; zÞ as
Mκ;μðzÞ ¼ exp½−z=2�zμþ1=2

1F1ðμ − κ þ 1=2; 1þ 2μ; zÞ.
Putting everything together and carrying out the pz integration in Eq. (58), we obtain

N ¼ m2

2π2

Z
∞

0

dp⊥p⊥e−2πap
�
V4

eE
m2

þ e2
4π2

m2
V3

Z
∞

0

dω
2π

m2⊥
ω2

ðjÃ1ðωÞj2 þ jÃ2ðωÞj2Þ×
����M1

2
þiap;0

�
i
ω2

2eE

�����2
þ e2

4π2

m2
V3

Z
∞

0

dω
2π

m2⊥
eE

m2⊥
ω2

����Ã3ðωÞj2
����Miap;

1
2

�
i
ω2

2eE

�����2 − e2
4π2

m2
V3

Z
∞

0

dω
2π

m2

ω2
ðjÃ1ðωÞj2 þ jÃ2ðωÞj2Þ

× Im

�	
M1

2
þiap;0

�
i
ω2

2eE

�

2
��

: ðA19Þ

Note that we have assumed ω ≠ 0 and used an identity
R
dpz ¼ eĒV4=V3 [71]. Equation (59) in the main text is for the

setup (2), i.e.,

Ã ¼ E

ω
π½eþiϕδðω − ωÞ þ e−iϕδðωþ ωÞ�: ðA20Þ

APPENDIX B: HEISENBERG-EULER ANALYSIS

The Heisenberg-Euler effective Lagrangian is the one-
loop effective action of QED in the presence of constant
electric E and magnetic B fields [2]:

L ¼ −F −
1

8π2

Z
∞

0

ds
s3

e−m
2s

×

�
ðesÞ2Re cosh ðes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðF þ iGÞp Þ

Im cosh ðes ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðF þ iGÞp ÞG−

2

3
ðesÞ2F − 1

�
;

ðB1Þ

where F ≔ ðB2 − E2Þ=2 and G ≔ E · B. For the purely
electric case B ¼ 0, Eq. (B1) can be simplified to

L¼ 1

2
E2−

1

8π2
ðeEÞ2

Z
∞

0

dy
y3

e−
m2

eEy

�
y

tany
þy2

3
−1

�
; ðB2Þ

where y ≔ eEs. Assuming the electric field is weak, it is
possible to (formally) expand Eq. (B2) in terms of the field
strength eE=m2. Expanding the terms in the square brack-
ets in y and then performing the y integration,

L¼ 1

2
E2−

m4

8π2
X∞
l¼0

ð−4Þlþ2ð2lþ1Þ!
ð2lþ4Þ! B2lþ4

�
eE
m2

�
2lþ4

¼ 1

2
E2þ m4

8π2

�
1

45

�
eE
m2

�
4

þ 4

315

�
eE
m2

�
6

þ�� �
�
; ðB3Þ

where Bn is the Bernoulli number. Note that Eq. (B3) does
not contain any nonperturbative factors e−nπm

2=eE (n∈N),
which are implicitly dropped when doing the expansion.
Owing to the absence of the nonperturbative factor, the
Lagrangian (B3) is purely real, i.e., there is no dynamical
process (i.e., the Schwinger effect), and the system is
implicitly assumed to be in equilibrium.
We are interested in a situation where the constant

electric field E can be divided into two as

E ¼ Ēþ E; ðB4Þ

which corresponds to the ω → 0 limit of the field configu-
ration in the main text (2). The electric displacement vector
for the probe electric field E is given by [2,57]

D ¼ δL
δE

: ðB5Þ
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We emphasize that it is implicitly assumed here that the
electric field must be weak. For a strong electric field, the
Heisenberg-Euler effective Lagrangian acquires a nonzero
imaginary part ∝ e−πm

2=eE [2,13]. If so, i.e., the nonpertur-
bative factor is non-negligible e−πm

2=eE ≈ =0, the corre-
sponding electric displacement vector (B5) becomes
complex, which is not allowed by the definition. Note
also that Eq. (B5) is consistent with our identification
of the displacement vector (5). Indeed, Eq. (B5) indicates
∂tðδL=δȦÞ ¼ −Ḋ. Also, the external current Jext is related
to the effective Lagrangian L as Jext ¼ δL=δA because of
the gauge invariance. Combining those two, we understand
that theEuler-Lagrange equation gives our identification (5).
The electric permittivity can now be obtained straight-

forwardly from the standard definition (9). Now that the
electric field and the displacement vectors are constants in
the coordinate space, i.e.,XðtÞ ¼ X (X ¼ E andD), their
Fourier components are simply given by X̃ðωÞ ¼ XδðωÞ
and hence δD̃=δẼ ¼ δD=δE holds. Then, from Eqs. (9)
and (B5), we obtain

ϵij ¼
δD̃i

δẼj

����
E→0

¼ δDi

δEj

����
E→0

¼ δ2L
δEiδEj

����
E→0

: ðB6Þ

Substituting the weak-field expansion (B3) into the
electric permittivity (B6), we get

ϵij ¼ δij −
α

2π

X∞
l¼0

�
eĒ
m2

�
2lþ2

B2lþ4

ð−4Þlþ2

ð2lþ 3Þð2lþ 2Þ

×

�
δij þ ð2lþ 2Þ ĒiĒj

Ē2

�

¼ δij þ
α

2π

�
4

45

�
δij þ 2

ĒiĒj

Ē2

��
eĒ
m2

�
2

þ 8

105

�
δij þ 4

ĒiĒj

Ē2

��
eĒ
m2

�
4

� � �
�
: ðB7Þ

The lowest-order expression was derived independently by
Klein-Nigam [80] and Baier-Breitenlohner [81] in the
1960s. Notice that the electric permittivity is purely real, i.e.,

Imϵij ¼ 0; ðB8Þ

because, as we have stressed, the weak-field expansion is
assumed implicitly in the Heisenberg-Euler approach.
Setting E ¼ Ēez and subtracting the Ē ¼ 0 contribution,
we find that the change Δϵij is given by

Δϵ⊥ ¼ ReΔϵ⊥

¼ −
α

2π

X∞
l¼0

�
eĒ
m2

�
2lþ2

B2lþ4

ð−4Þlþ2

2lþ 2

1

2lþ 3

¼ þ α

π

�
2

45

�
eĒ
m2

�
2

þ 4

105

�
eĒ
m2

�
4

þ � � �
�
: ðB9aÞ

Δϵk ¼ ReΔϵk

¼ −
α

2π

X∞
l¼0

�
eĒ
m2

�
2lþ2

B2lþ4

ð−4Þlþ2

2lþ 2

¼ þ α

π

�
3
2

45

�
eĒ
m2

�
2

þ 5
4

105

�
eĒ
m2

�
4

þ � � �
�
: ðB9bÞ

The lowest-order terms correspond to Eq. (79) in the
main text.
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