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We provide a formulation of potential nonrelativistic quantum chromodynamics (pNRQCD) suitable
for calculating binding energies and matrix elements of generic hadron and multihadron states made of
heavy quarks in SUðNcÞ gauge theory using quantum Monte Carlo techniques. We compute masses of
quarkonium and triply heavy baryons in order to study the perturbative convergence of pNRQCD and
validate our numerical methods. Further, we study SUðNcÞ models of composite dark matter and provide
simple power series fits to our pNRQCD results that can be used to relate dark meson and baryon masses to
the fundamental parameters of these models. For many systems comprised entirely of heavy quarks, the
quantumMonte Carlo methods employed here are less computationally demanding than lattice field theory
methods, although they introduce additional perturbative approximations. The formalism presented here
may therefore be particularly useful for predicting composite dark matter properties for a wide range of Nc

and heavy fermion masses.

DOI: 10.1103/PhysRevD.108.096004

I. INTRODUCTION

Heavy quark systems provide a theoretically clean labo-
ratory for studying quantum chromodynamics (QCD)
because of the large separation of scales between the heavy
quark mass and the confinement scale. Spurred initially by
the discovery of doubly heavy mesons J=ψ [1,2] and ϒ [3],
the use of nonrelativistic (NR) effective field theory (EFT)
to study heavy quarkonium in QCD [4–7], analogous to the
previous treatment of positronium in NR quantum electro-
dynamics (NRQED) [8], has been investigated extensively
[5,6,9–13]. Prior to this first principles treatment of quarko-
nia with EFTs derived from QCD, studies mainly relied
on potential quark models [14–19]. Such models rely on
phenomenological input whose connection with QCD
parameters is obscure and thus cannot be systematically
improved.
Beyond quarkonium, there has been recent excitement

about understanding the properties of baryons and exotic
hadrons containing heavy quarks including tetraquarks,
pentaquarks, hadronic molecules, hybrid states containing
explicit gluon degrees of freedom (d.o.f.), and more
[20–24]. Theoretically calculating the spectra of baryons
and exotic states experimentally observed so far and
predicting the presence of other states provide tests of

our understanding of QCD in more complex systems than
quarkonium. In particular, doubly heavy baryons have
recently been experimentally observed [25–27], and triply
heavy baryons, although not yet observed experimentally,
have long been of theoretical interest as probes of confining
QCD dynamics that are free from light-quark degrees of
freedom requiring relativistic treatment [28].
Additionally, one can consider generic composite

states analogous to QCD, bound under a confining
SUðNcÞ gauge theory. Such states have received particular
attention recently as attractive dark matter (DM) candidates
[29–51]. Motivated by the stability of the proton in the
Standard Model (SM), a dark sector with non-Abelian
gauge interactions can give rise to a stable, neutral dark
matter candidate. Simple models of an SUðNcÞ dark
sector with one heavy quark can provide UV-complete
and phenomenologically viable models of composite
DM [50,51]. It would therefore be interesting to probe
masses, lifetimes, and self-interactions in composite DM
theory to make predictions for experiments.
In this work, we study the description of generic

hadronic bound states composed entirely of heavy quarks
that are well-described by the EFT of potential NRQCD
(pNRQCD) [4,6,8,9,52]. This EFT takes advantage of
the experimental evidence that heavy quark bound state
splittings are smaller than the quark mass, mQ. Thus, all
dynamical scales are small relative to mQ. Assuming quark
velocity is therefore small, v ≪ 1, one can exploit the
hierarchy of scales mQ ≫ pQ ∼mQv ≫ EQ ∼mQv2 in the
system [8]. NRQCD is obtained from QCD by integrating
out the hard scale, mQ, and pNRQCD is obtained from
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integrating out the soft scale pQ ∼mQv. The inverse of
the soft scale gives the typical size of the bound state,
analogous to the Bohr radius in the hydrogen atom. In
QCD, one has to consider the confinement scale ∼ΛQCD,
below which nonperturbative effects other than resumma-
tion of potential gluons must be included. Here, we will
work in the so-called weak-coupling regime [13],
mQv ≫ ΛQCD, which is valid for treatment of top- and
bottom-bound states and starts to become less reliable
for charmlike masses and below. Both the weak- and
strong-coupling regimes can be studied using lattice
QCD (LQCD), and in particular lattice calculations of
NRQCD are useful for studying heavy quark systems. The
advantage of using pNRQCD to study the weak-coupling
regime is that precise results can be obtained using modest
computational resources; the quantumMonte Carlo (QMC)
calculations below use ensembles of 5,000 configurations
with 3NQ degrees of freedom representing the spatial
coordinates of NQ heavy quarks in contrast to LQCD
calculations that commonly use ensembles of hundreds or
thousands of configurations with 108 or more degrees of
freedom representing the quark and gluon fields at each
lattice site.
In many previous studies of pNRQCD, the main focus

was heavy quarkonia in QCD [9,10,13,53,54]. The heavy
quarkonium spectrum, as well as other properties such as
decay widths, were studied in detail to next-to-next-to-next-
to leading order ðN3LOÞ. Ultrasoft effects were also con-
sidered as they play a role beyond next-to-next-to leading
order (NNLO) [11]. Additionally, pNRQCD was extended
for doubly and triply heavy baryons in QCD [55]. The three-
quark potential was also recently determined for baryon
states and was shown to contribute at NNLO [56,57].
In this work, we employ a pNRQCD formalism pre-

viously developed for the case of heavy quarkonia [9,13],
in which we take the operators to be dependent on heavy
quark and antiquark fields. In particular, we generalize this
formalism to apply to arbitrary hadronic systems comprised
totally of heavy quarks. Thus, we can probe exotic states
and multihadron systems such as tetraquarks, meson-
meson molecules, and the deuteron in the heavy quark
limit. Moreover, we generalize all the components of the
EFT to treat arbitrary bound systems of heavy fermions
charged under SUðNcÞ. We determine the operators and
matching coefficients describing the action of two- and
three-quark potentials on arbitrary hadronic states up to
NNLO for general Nc.
Our formalism is then applicable to extract properties

of the bound states such as binding energies and
matrix elements with the use of variational Monte Carlo
(VMC) and Green’s function Monte Carlo (GFMC) meth-
ods [58–60]. Both VMC and GFMC are state-of-the-art
in nuclear physics simulations, and we apply them to
study heavy-quark bound states in QCD and SUðNcÞ gauge
theories in general. Recently, VMC was employed to

determine the binding energy and mass spectra of triply
heavy bottom and charm baryons in QCD [61,62]. The
results are mass-scheme dependent, and in this work, we tie
our heavy quark mass to the spin-averaged mass of the
measured 1S state of the associated quarkonia. After tuning
the charm and bottom quark masses to reproduce the
quarkonia masses, we predict the mass spectrum of triply
heavy bottom and charmed baryons and compare with
previous LQCD results for the same masses.
As for the dark sector, we study the spectra of heavy

dark mesons and baryons in SUðNcÞ gauge theory for
Nc ∈ f3;…; 6g and extrapolate to large Nc. We demon-
strate that QMC calculations using pNRQCD can provide
predictions for composite DM observables that enable
efficient scanning over a wide range of mass scales. The
computational simplicity of this approach is beneficial for
studying composite DM, in which the fundamental param-
eters of the underlying theory are not yet known. Further,
we fit our QMC pNRQCD results for dark meson and
baryon masses to power series in the dark strong coupling
constant and 1=Nc that provide analytic approximations
that can be used straightforwardly in phenomenological
studies of composite DM.
The remainder of this work is organized as follows.

Section II introduces pNRQCD in a formulation suitable
for studying multihadron systems. Section III reviews
QMCmethods that can be used to compute matrix elements
of the Hamiltonian and other operators. In Sec. IV, we
describe and justify the choice of initial trial wave functions
used as inputs for VMC and GFMC calculations of heavy
quarkonium and triply heavy baryons. Results of these
calculations for heavy mesons and baryons in QCD are
described in Sec. V, and results for SUðNcÞ dark mesons
and baryons are described in Sec. VI. We discuss some
prospects for future investigations in Sec. VII.

II. pNRQCD FOR MULTIHADRON SYSTEMS

SUðNcÞ gauge theory with nf light fermions and nh
heavy fermions is a straightforward generalization of QCD
at the perturbative level. In this section, this theory will be
referred to as QCD with “quark” and “gluon” degrees
of freedom; however, all the formalism we present is
relevant for the more general case of SUðNcÞ gauge theory
discussed for dark hadrons in Sec. VI.

A. pNRQCD formalism

The QCD Lagrange density is given by

LQCD ¼ Lg þ Ll þ Lh; ð1Þ

where the gluon, light-quark, and heavy-quark terms are

LgðxÞ ¼ −
1

2
tr½GμνðxÞGμνðxÞ�; ð2Þ
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LlðxÞ ¼
Xnf
f¼1

q̄fðxÞ½i=Dþmf�qfðxÞ; ð3Þ

LhðxÞ ¼
Xnh
h¼1

Q̄hðxÞ½i=DþmQ�QhðxÞ; ð4Þ

where Gμν ¼ ½Dμ; Dν� ¼ Ga
μνTa is the gluon field-strength

tensor, Dμ ¼ ∂μ þ igsAa
μTa is the gauge-covariant deriva-

tive, Aa
μ is the gluon field, gs is the strong coupling, mf and

mh are light and heavy quark masses respectively, and the
Ta are generators of suð3Þ normalized as tr½TaTb� ¼ 1

2
δab.

Light quarks with mf ≪ ΛQCD contribute to the renorm-
alization-group (RG) evolution of αsðμÞ ¼ gðμÞ2=ð4πÞ and
will be approximated as massless below. Heavy quarks
with mh ≫ ΛQCD have negligible effects on the RG
evolution of αs for μ ≲mh, and in systems where heavy
quarks are nonrelativistic EFT methods can be used to
expand observables in power series of ΛQCD=mh. The MS
renormalization scheme is used throughout this work for
simplicity. In the MS scheme, effective interactions
between heavy quarks only depend on nf and nh through
the number of flavors with mass less than μ in the RG
evolution of αsðμÞ and in the values of other EFT couplings,
defining this number to be nf leads to a decoupling of
heavy quarks from one another, and we, therefore, omit
heavy flavor indices and denote the heavy quark mass
by mQ below.
NRQCD is the EFT employed to study systems of two

or more heavy quarks. The Lagrangian is determined
by integrating out degrees of freedom with the energy of
the order of the heavy-quark masses [4,8,63,64]. The
Lagrangian operators are determined by QCD symmetries
and are organized as a power series in inverse quark mass,
mQ, withmQ ≫ ΛQCD. The NRQCD Lagrangian including
light quarks reads [8,12],

LNRQCD ¼ Lψ þLχ þLψχ þLψψ þLχχ þLg þLl; ð5Þ

where ψ and χc ¼ −iσ2χ� are the Pauli spinors that
annihilate a quark and create an antiquark, respectively,
which are related to the QCD heavy quark field by

QðxÞ ¼
ffiffiffiffi
Z

p �
e−imQtψðxÞ
eimQtχðxÞ

�
; ð6Þ

in the Dirac basis in which γ0 ¼ diagð1; 1;−1;−1Þ; for
further discussion see Ref. [13]. In Eq. (5), the NRQCD
gauge and light quark terms LNRQCD

g and LNRQCD
l are

identical to their QCD counterparts Lg and Ll in Eq. (4)
up to Oð1=m2

QÞ corrections. Interaction terms with light
degrees of freedom are suppressed by Oðαs=m2

QÞ and are
given in Ref. [5]. The effects of these heavy-light

interactions on heavy-heavy interactions are suppressed
by the square of this factor and are therefore Oðα2s=m4

QÞ
and neglected below; however, these interactions could be
relevant for studies of heavy-light systems. The heavy
quark one-body term is given by

Lψ ¼ ψ†
�
iD0 þ c2

D2

2mQ
þ c4

D4

8m3
Q
þ cFgs

σ ·B
2mQ

þ cDgs
½D · E�
8m2

Q
þ icSgs

σ · ðD ×E −E ×DÞ
8m2

Q

�
ψ ;

ð7Þ

where c2 ¼ c4 ¼ 1 is guaranteed by reparametrization
invariance [65], and the remaining Wilson coefficients
to Oð1=m3

QÞ are given in [64]. The corresponding heavy
antiquark one-body terms Lχ are equal to Lψ with ψ → χ.
There are also four-quark operators involving the heavy
quark and antiquark [5,52],

Lψχ ¼
d11
m2

Q
ψ†
iψ jχ

†
kχlδijδkl þ

d13
m2

Q
ψ†
i σψ jχ

†
kσχlδijδkl

þ d81
m2

Q
ψ†
i T

a
ijψ jχ

†
kT

a
klψ l þ

d83
m2

Q
ψ†
i T

a
ijσψ jχ

†
kT

a
klσχl;

ð8Þ

as well as operators involving either quarks or antiquarks,

Lψψ ¼ d3̄1
m2

Q
ψ†
iψ

†
jψkψ lϵijmϵklm þ d3̄3

m2
Q
ψ†
i σψ

†
jψ

†
kσψ lϵijmϵklm

þ d61
m2

Q
ψ†
iψ jψ

†
kψ lðδilδjk þ δjlδikÞ

þ d63
m2

Q
ψ†
i σψ jψ

†
kσψ lðδilδjk þ δjlδikÞ;

Lχχ ¼ Lψψðψ ↔ χcÞ: ð9Þ

The Wilson coefficients, drr0 , subscripted by color and
spin representations, are given for both equal and unequal
mass cases in Ref. [52]. The covariant derivative is Dμ ¼
∂
μ þ igsA

μ
aTa ≡ ðDt;−DÞ, such that iDt ¼ i∂t − gsA0 and

iD ¼ i∂þ gsA. The chromoelectric and magnetic fields
are defined as Bi ¼ i

2gs
ϵijk½Dj;Dk� and E ¼ − i

gs
½Dt;D�,

respectively. The matching coefficients ci, and drr0 for the
equal and unequal mass cases are known to two- and one-
loop order in QCD and the SM, respectively [52,66,67].
Note that Eqs. (7) and (8) are constructed by including all
parity-preserving, rotationally invariant, Hermitian combi-
nations of iDt, D, E, iB, and iσ.
Although NRQCD is a powerful tool for studying heavy

quarkonium, it fails to exploit the entire hierarchy of scales
in such a system, namely momentum, jpj ∼mQjvj ≪ mQ

BARYONS, MULTIHADRON SYSTEMS, AND COMPOSITE DARK … PHYS. REV. D 108, 096004 (2023)

096004-3



and binding energy, E∼mQjvj2 ≪ jpj. As we are interested
in physics at the scale of the binding energies, we can
further expand NRQCD in jpj ≫ E. The resulting EFT is an
expansion in powers of E=jpj known as potential NRQCD
(pNRQCD) [9,52]. Interactions in the pNRQCD Lagrangian
that are suppressed by powers of E=jpj are local in time
but nonlocal in space and are therefore equivalent to non-
relativistic (two- or more-body) potentials. Nonpotential
quark-gluon interactions are also present in pNRQCD but
are suppressed by powers of αsðμÞ. The renormalization
scale μ should ideally be chosen in the range jpj < μ < mQ

for typical momentum scales since logarithms of p=μ arise
in matching NRQCD to pNRQCD and logarithms of mQ=μ
are present from matching QCD to NRQCD.
There are two different kinematic regions with different

pNRQCD descriptions: the weak (jpj ≫ ΛQCD) and strong
(jpj ∼ ΛQCD) coupling regimes. In the strong-coupling
regime, matching between NRQCD and pNRQCD must
be performed nonperturbatively and has been studied by
using lattice QCD results in matching calculations to
determine pNRQCD potentials; for a review see [5]. In
this work, we will consider only the weak-coupling regime,
where matching between NRQCD and pNRQCD can be
performed perturbatively in a dual expansion in αs and
1=mQ, as reviewed in Ref. [13]. Weak-coupling pNRQCD
has been used extensively to study heavy quarkonium with
the degrees of freedom typically taken to be a composite
field describing the heavy QQ̄ system, light quarks, and
gluons. Analogous composite QQQ fields have been used
in pNRQCD studies of baryons [55,56]. It is also possible
to use the nonrelativistic quark spinor degrees of freedom
of NRQCD as the heavy quark degrees of freedom of
pNRQCD [13]. This latter choice of degrees of freedom is
not commonly used. However, it permits a unified con-
struction of the pNRQCD operators relevant for describing
arbitrary multihadron states composed of heavy quarks, and
the construction of the pNRQCD Lagrangian with explicit
heavy quark degrees of freedom is therefore pursued below.
With this choice of degrees of freedom, the fields of

pNRQCD are identical to those of NRQCD. The theories
differ in that pNRQCD includes spatially nonlocal heavy
quark “potential” interactions in its Lagrangian,

LpNRQCD ¼ Lus
NRQCD þ Lpot: ð10Þ

The potential piece, Lpot, is given by a sum of a quark-
antiquark potential as well as quark-quark, three-quark, and
higher-body potentials relevant for baryon and multihadron
systems composed of heavy quarks,

Lpot ¼ Lpot
ψχ þ Lpot

ψψ þ Lpot
3ψ þ…: ð11Þ

The different terms in Lpot will be discussed below. The
remaining term Lus

NRQCDðtÞ corresponds to LNRQCDðtÞ≡R
d3xLðt; xÞ with only ultrasoft gluon modes included:

in other words a multipole expansion of the quark-gluon
vertices is performed, and contributions which are not
suppressed by E=jpj are explicitly removed since they
correspond to the soft modes whose effects are described
by Lpot [6,11,68]. The remaining subleading multipole
contributions correspond to ultrasoft modes, and since they
do not include infrared singular contributions by construc-
tion, they can be included perturbatively. Ultrasoft con-
tributions to meson and baryon masses in pNRQCD have
been studied and found to be N3LO effects suppressed by
Oðα3sÞ compared to the leading-order (LO) binding ener-
gies [6,11]. The state-dependence of ultra-soft gluon effects
arises through integrals over coordinate space involving
the initial- and final-state wave functions and are therefore
N3LO for arbitrary color-singlet hadron or multihadron
systems. Ultrasoft gluon effects will be neglected below
since we work to NNLO accuracy. We note, however, that
they could be included as perturbative corrections to the
binding energies computed in Secs. V and VI by determin-
ing the baryonic analogs of ultrasoft gluon corrections to
quarkonium energy levels, as discussed in Refs. [11,13].
The same construction could be applied in the alternative
velocity NRQCD (vNRQCD) power counting [69,70].
Differences between the power countings first appear in
the N3LO ultrasoft contributions that are neglected here,
and therefore all results of this work are immediately
applicable to vNRQCD [5,13,69–72]

B. Quark-antiquark potential

A sum of color-singlet and color-adjoint terms gives the
quark-antiquark potential for arbitrary Nc,

Lpot
ψχ ¼ −

Z
d3r1d3r2ψ

†
i ðt; r1Þχjðt; r2Þχ†kðt; r2Þψ lðt; r1Þ

×

�
1

Nc
δijδklV

ψχ
1 ðr12Þ þ

1

TF
Ta
ijT

a
klV

ψχ
Adðr12Þ

�
; ð12Þ

where r12 ≡ r1 − r2, TF ¼ 1=2, and the fermion spin
indices are implicitly contracted with indices of the
potential. The potential depends on the renormalization
scale μ as well as pa ¼ −i∇a and Sa ¼ σa=2, but these
dependencies will generally be kept implicit except where
otherwise noted. Here and below, i; j; k;… represent
fundamental color indices, and a; b; c;… index adjoint
color indices. The color-singlet potential is expanded as a
power series in 1=mQ,

Vψχ
1 ðrÞ ¼ Vψχ;ð0Þ

1 ðrÞ þ Vψχ;ð1Þ
1 ðrÞ
mQ

þ Vψχ;ð2Þ
1 ðrÞ
m2

Q
þOð1=m3

QÞ:

ð13Þ

The Oð1=m0
QÞ and Oð1=mQÞ potentials are given by
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Vψχ;ð0Þ
1 ðr; μÞ ¼ −CF

αV1
ðr; μÞ
r

; ð14Þ

Vψχ;ð1Þ
1 ðr; μÞ ¼ −

CFCA

2mQr2
Dð1ÞðμÞ; ð15Þ

where μ dependence is shown explicitly, the perturbative
expansion of αV1

ðr; μÞ is discussed below, CA ¼ Nc,
CF ¼ ðN2

c − 1Þ=ð2NcÞ, and Dð1ÞðμÞ ¼ αsðμÞ2 þOðα3sÞ in
Coulomb gauge as discussed in in Refs. [5,73]. At
Oð1=m2

QÞ there are spin-independent and spin-dependent
potentials that arise,

Vψχ;ð2Þ
1 ðrÞ ¼ Vψχ;ð2Þ

1;SI ðrÞ þ Vψχ;ð2Þ
1;SD ðrÞ; ð16Þ

Vψχ;ð2Þ
1;SI ðrÞ ¼ −

CFD
ð2Þ
1

2m2
Q

�
1

r
;p2

�
þ CFD

ð2Þ
2

2m2
Qr

3
L2

þ πCFD
ð2Þ
δ

m2
Q

δð3ÞðrÞ; ð17Þ

Vψχ;ð2Þ
1;SD ðrÞ ¼ 4πCFD

ð2Þ
S2

3m2
Q

S2δð3ÞðrÞ þ 3CFD
ð2Þ
LS

2m2
Qr

3
L · S

þ CFD
ð2Þ
S12

4m2
Qr

3
S12ðr̂Þ; ð18Þ

where S¼S1þS2, S12ðr̂Þ¼3r̂ ·σ1r̂ ·σ2−σ1 ·σ2, L¼ r×p,
and the Dð2Þ coefficients are given in [5,74]. The singlet
potential is known to N3LO in QCD and NLO in the
SM [10,75]. The adjoint (octet for Nc ¼ 3) potential is also
known to N3LO and is given in Ref. [76].

The potentials such as Vð0Þ
1 ðrÞ appearing in Eq. (15) are

Wilson coefficients in pNRQCD, which can be obtained by
matching with NRQCD. By considering matching with a

color-singlet quarkonium state, it can be seen that Vð0Þ
1 ðrÞ is

identical to the color-singlet potential present in traditional
formulations of pNRQCD with a Langrangian including
hadron-level interpolating operators. The color-singlet
potential has been computed to N3LO in the MS scheme
for the case of heavy quarks with equal masses (the
unequal mass case is not fully known to Oð1=m2

QÞ,
although various pieces have been computed [77]) and
has the perturbative expansion

αV1
ðr; μÞ ¼ αsðμÞ

�
1þ

X3
n¼1

�
αsðμÞ
4π

�
n
ãnðr; μÞ

�
; ð19Þ

where

ã1ðr; μÞ ¼ a1 þ 2β0 lnðrμeγEÞ;

ã2ðr; μÞ ¼ a2 þ
π2

3
β20 þ ð4a1β0 þ 2β1Þ lnðrμeγEÞ

þ 4β20ln
2ðrμeγEÞ;

ã3ðr; μÞ ¼ a3 þ a1β20π
2 þ 5π2

6
β0β1 þ 16ζ3β

3
0

þ
�
2π2β30 þ 6a2β0 þ 4a1β1 þ 2β2

þ 16

3
C3
Aπ

2

�
lnðrμeγEÞ þ ð12a1β20

þ 10β0β1Þln2ðrμeγEÞ þ 8β30ln
3ðrμeγEÞ: ð20Þ

The coefficients up to N3LO are given in Ref. [10]. The
numerical calculations presented below are carried out to
NNLO accuracy and therefore require the coefficients

β0 ¼
11

3
CA −

4

3
TFnf; ð21Þ

β1 ¼
34

3
C2
A − 4CFTFnf −

20

3
CATFnf; ð22Þ

and

a1 ¼
31

9
CA −

20

9
TFnf; ð23Þ

a2 ¼
�
4343

162
þ 4π2 −

π4

4
þ 22

3
ζ3

�
C2
A

−
�
55

3
− 16ζ3

�
CFTFnf þ

400

81
T2
Fn

2
f

−
�
1798

81
þ 56

3
ζ3

�
CATFnf: ð24Þ

Note that in obtaining the pNRQCD Lagrangian presented
here, a single fixed renormalization scale μ is assumed to be
used during matching from QCD to NRQCD and NRQCD
to pNRQCD. This renormalization scale, therefore, acts
as an effective cutoff for both heavy-quark momenta p
satisfying jpj ≪ mQ as well as the four-momenta lμ of the
light degrees of freedom satisfying lμ ∼ p2=mQ ≪ jpj.
Further refinements to pNRQCD can be achieved by RG
evolving the NRQCD Wilson coefficients to resum loga-
rithms of mQ=μ or performing renormalization group
improvement of the pNRQCD potentials to resum loga-
rithms of jpj=μ [13]. However, such improvement is not
straightforward to implement in the QMC approaches to
studying multiquark systems in pNRQCD discussed below,
and it is not pursued in this work.
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C. Quark-quark potential

The quark-quark potential appearing in Eq. (11) is given
by a sum of color-antisymmetric and color-symmetric
terms,

Lpot
ψψ ¼ −

Z
d3r1d3r2ψ

†
i ðt; r1Þψ†

jðt; r2Þψkðt; r2Þψ lðt; r1Þ

×

�
Nc − 1

4
ðFAm

ij Þ�FAm
kl Vψψ

A ðr12Þ

þ 1

2
ðF Sη

ij Þ�F Sη
kl V

ψψ
S ðr12Þ

�
; ð25Þ

where Vψψ
ρ ðrÞ with ρ ¼ A and ρ ¼ S denote the poten-

tials for quark-quark states in antisymmetric and sym-
metric representations, respectively, which are presented
explicitly below. The antisymmetric and symmetric color
tensors FAm

ij ¼ −FAm
ji and F Sη

ij ¼ F Sη
ji are orthogonal

and satisfy FAm
ij FAm0

ij ¼ δmm0
and F Sη

ij F
Sη0
ij ¼ δηη

0
where

η∈ f1;…; NcðNc þ 1Þ=2g. Explicit representations for
FAm

ij and F Sη
ij can be found in Appendix B of Ref. [55]

but will not be needed below; the products appearing in
Eq. (25) are given by

FAm
ij FAm

kl ¼ 1

ðNc − 1Þ! ϵijo1…oNc−2
ϵklo1…oNc−2

; ð26Þ

F Sη
ij F

Sη
kl ¼

1

2
ðδilδjk þ δjlδikÞ: ð27Þ

The coefficients of the operators appearing in Eq. (25) are
chosen so that the action of Lpot

ψψ on a quark-quark state
in either the antisymmetric or symmetric representation,
jψ iðx1Þψ jðx2ÞiFAm

ij or jψ iðx1Þψ jðx2ÞiF Sδ
ij , is equivalent to

multiplying that state by Vψψ
A ðr12Þ or Vψψ

S ðr12Þ respectively,
as detailed in Sec. II F below.
The pNRQCD quark-quark potentials Vψψ

ρ ðrÞ have the
same shape as the quark-antiquark potential up to NLO
and differ only in the color factors governing the sign and
normalization of the potential. To determine the appropriate
color factors, the tensors associated with the two quark and
antiquark fields in each operator, F ρζ

ij and F ρζ
kl , can be used

as creation and annihilation operators for initial and final
states in particular representations (here ζ denotes a generic
irrep row index). The color factor for this representation is
obtained by contracting these initial- and final-state color
tensors with the color structure resulting from a given
NRQCD Feynman diagram, denoted D2ψ ;d

ijkl , where the
superscript d labels the particular diagram and normalizing
the result [78],

Cψψ ;dρ ¼ F ρζ
ijD

2ψ ;d
ijkl ðF ρζ

kl Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF ρζ0

i0j0 Þ�F ρζ0
i0j0 ðF ρζ00

k0l0 Þ�F ρζ00
k0l0

q : ð28Þ

Summing over all relevant diagrams gives

Cψψρ ¼
X
d

Cψψ ;dρ : ð29Þ

This color factor can be determined by applying Eq. (28) to
the tree-level diagram

Dψψ ;tree
ijkl ¼ ðTaÞijðTaÞkl; ð30Þ

to give [55,56]

Cψψ ;tree
A ¼ −

CF

Nc − 1
; ð31Þ

Cψψ ;tree
S ¼ CF

Nc þ 1
: ð32Þ

The antisymmetric quark-quark potential is therefore
attractive, while the symmetric quark-quark potential is
repulsive. No further representation-dependence arises in
the potential at NLO, and so, for example, the antisym-
metric quark-quark potential is related to the quark-
antiquark potential by [56]

Vψψ
A ¼ 1

Nc − 1
Vψχ
1 þOðα3sÞ: ð33Þ

The same proportionality holds at NLO for generic color
representations,

Vψψ
ρ ¼ −

Cψψ ;tree
ρ

CF
Vψχ
1 þOðα3sÞ: ð34Þ

At NNLO, the correction to the two body potential
of a general color representation ρ is known to have the
form [79],

Vψψ
ρ ðrÞ ¼ −Cψψ ;treeρ

�
1

CF
Vψχ
1 ðrÞ − α3s

ð4πÞ2
δaρ
r

�
: ð35Þ

The NNLO correction, δaρ has been determined for various
color representations [79,80], and varies based on the color
factor of the H diagram in Fig. 1, first computed in
Ref. [81]. The value of this diagram, modulo coupling
and color structure, is 1=r times H ¼ 2π2ðπ2 − 12Þ. The
color tensor of the H diagram shown in Fig. 1 is

D2ψ ;H
ijkl ¼ ðTaTcÞijðTeTbÞklfabdfced: ð36Þ

The color factors Cψψ ;Hρ can be determined by projecting
into the color symmetric and antisymmetric representations
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using Eq. (28). The NNLO correction factor is then given
by δaρ ¼ HCψψ ;Hρ =Cψψ ;treeρ as

δaA ¼ NcðNc − 2Þ
2

π2ðπ2 − 12Þ; ð37Þ

δaS ¼ NcðNc þ 2Þ
2

π2ðπ2 − 12Þ: ð38Þ

This completes the two-body potentials needed to study
generic multihadron systems in pNRQCD at NNLO. What
remains are higher-body potentials, which, as discussed in
Ref. [56] and below, also arise at NNLO.

D. Three-quark potentials

Three-quark forces first appear in NRQCD at Oðα3sÞ.
Nonzero contributions in Coulomb gauge arise from the
two diagrams shown in Fig. 2 and their permutations as
discussed in Ref. [56]. Specializing first to Nc ¼ 3, the
three-quark potential for a generic representation ρ arising
in 3 ⊗ 3 ⊗ 3 ¼ ð3̄ ⊕ 6Þ ⊗ 3 ¼ 1 ⊕ 8A ⊕ 8S ⊕ 10 is
given by

V3ψ
ρuv ¼ α

�
α

4π

�
2h
C3ψ ;1ρuv v3ðr12; r13Þ

þ C3ψ ;2ρuv v3ðr12; r23Þ þ C3ψ ;3ρuv v3ðr13; r23Þ
i
; ð39Þ

where rIJ ≡ rI − rJ, the indices u; v∈ fA; Sg label the
octet color tensors, which are antisymmetric or symmetric
respectively in their first two indices, and should be
neglected for ρ∈ f1; 10g where only one operator appears,
and C3ψ ;qρuv is the color factor for the permutation of the three-
quark diagrams shown in Fig. 2 and discussed further
below. Here, v3ðr; r0Þ describes the spatial structure of the
three-quark potential diagrams, which takes a universal
form given by [56]

v3ðr; r0Þ ¼ 16π

Z
1

0

dxdy½r̂ · r̂0I1 þ r̂ir̂0jI2�; ð40Þ

where I1 and I2 are defined in terms of R ¼ xr − yr0,
R ¼ jRj, and A ¼ jrj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp þ jr0j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp

by

I1 ¼
1

R

��
1 −

A2

R2

�
arctan

R
A
þ A
R

�
; ð41Þ

I2 ¼
R̂iR̂j

R

��
1þ 3A2

R2

�
arctan

R
A
− 3

A
R

�
: ð42Þ

The color factors in Eq. (39) can be expressed as con-
tractions of the tensors associated with the three-quark and
antiquark fields in each operator, F ρuζ

ijk and F ρvζ
lmn, with the

color tensor relevant for a particular diagram

C3ψ ;qρuv ¼ ðF ρuζ
ijk Þ�D3ψ ;q

ijklmnF
ρvζ
lmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF ρuζ0
i0j0k0 Þ�F ρuζ0

i0j0k0 ðF ρvζ00
l0m0n0 Þ�F ρvζ00

l0m0n0

q : ð43Þ

Octet color tensors that are antisymmetric or symmetric
respectively in their first two indices are defined by

F 8Aa
ijk ¼ 1ffiffiffiffiffiffiffiffi

2TF
p ϵijpTa

pk; ð44Þ

F 8Sa
ijk ¼ 1ffiffiffiffiffiffiffiffi

6TF
p ðϵikpTa

pj þ ϵjkpTa
piÞ; ð45Þ

FIG. 1. NRQCD Feynman diagram that contributes to the
representation-dependent potential δaρ when matching to
pNRQCD. Dotted and curly lines correspond to longitudinal
and transverse gluons in Coulomb gauge.

FIG. 2. Leading NRQCD Feynman diagrams in Coulomb gauge that lead to nonvanishing contributions to the 3-body potential when
matching to pNRQCD. Dotted and curly lines correspond to longitudinal and transverse gluons, respectively.
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and satisfy F 8ua
ijk F

8vb
ijk ¼ δuvδab. Totally antisymmetric and

totally symmetric color tensors F 1
ijk and F 10δ

ijk satisfying

F 1
ijkF

1
ijk ¼ 1 and F 10δ

ijkF
10δ0
ijk ¼ δδδ

0
with δ∈ f1;…; 10g are

explicitly presented in Appendix B of Ref. [55]; below we
only need the products

F 1
ijkF

1
lmn ¼

1

6
ϵijkϵlmn; ð46Þ

F 10δ
ijkF

10δ
lmn ¼

1

6
ðδilδjmδkn þ δilδjnδkm þ δimδjlδkn

þ δimδjnδkl þ δinδjmδkl þ δinδjlδkmÞ: ð47Þ

The color tensor relevant for the particular diagram shown
in Fig. 2 is

D3ψ ;3
ijklmn ¼

1

2

	
Td
imT

a
jlT

b
krT

e
rnfbdcfaec

þ Td
imT

a
jlT

e
krT

b
rnfbdcfaec



; ð48Þ

and the tensors for its permutations can be obtained using
D3ψ ;3

ijklmn¼D3ψ ;1
mnklij andD

3ψ ;2
ijklmn¼D3ψ ;3

ijmnkl. Evaluating Eq. (43)
for these diagrams shows that the 1 and 10 color factors
do not depend on the permutation label q and are given by
C3ψ ;q1 ¼ − 1

2
and C3ψ ;q10 ¼ − 1

4
[56]. Evaluating Eq. (43) for

the adjoint operators leads to

0
@ C3ψ ;18AA C3ψ ;18AS

C3ψ ;18SA C3ψ ;18SS

1
A ¼

0
@ 1

16
−

ffiffi
3

p
8

−
ffiffi
3

p
8

5
16

1
A; ð49Þ

0
@ C3ψ ;28AA C3ψ ;28AS

C3ψ ;28SA C3ψ ;28SS

1
A ¼

0
@ 1

16

ffiffi
3

p
8ffiffi

3
p
8

5
16

1
A; ð50Þ

0
@ C3ψ ;3MAA C3ψ ;38AS

C3ψ ;38SA C3ψ ;38SS

1
A ¼

0
@ 7

16
0

0 − 1
16

1
A; ð51Þ

which completes the construction of Lpot;Nc¼3
3ψ to NNLO.

The potential for three-quark states in the adjoint repre-
sentation is computed at LO in Ref. [55], and the presence
of mixing between states created with 8A and 8S operators
are discussed in Ref. [56]. The NNLO 3ψ potentials for
the adjoint representation are reported here for the first
time. While the 1 and 10 three-quark potentials are always
attractive, the adjoint three-quark potentials are repulsive
for some configurations.
The action of this three-quark potential can be repro-

duced using the pNRQCD Lagrangian term

Lpot;Nc¼3
3ψ ¼ −

Z
d3r1d3r2d3r3ψ

†
i ðt; r1Þψ†

jðt; r2Þψ†
kðt; r3Þ

× ψ lðt; r3Þψmðt; r2Þψnðt; r1Þ

×

�
F 1

ijkF
1
lmn

1

6
V3ψ
1 þ F 10

ijkF
10
lmn

1

6
V3ψ
10

þ F 8Aa
ijk F 8Aa

lmnW
3ψ
8A þ F 8Sa

ijk F
8Sa
lmnW

3ψ
8S

�
; ð52Þ

where the functions W3ψ
8u defined below are related to but

not identical to the adjoint potentials V3ψ
8uv. The action of

either the symmetric or antisymmetric adjoint potential
operator on the corresponding symmetric or antisymmetric
adjoint state leads to a linear combination of symmetric and
antisymmetric adjoint states arising from nontrivial Wick
contractions. Direct computation of the matrix elements of
the adjoint operators in Lpot;Nc¼3

3ψ between states creates by

operators involving F 8Aa
ijk and F 8Sa

ijk shows that the desired

potentials V3ψ
8u are reproduced using

W3ψ
8A ¼ α

�
α

4π

�
2
�
−

1

48
v3ðr12; r13Þ

−
1

48
v3ðr12; r23Þ þ

11

48
v3ðr13; r23Þ

�
ð53Þ

and

W3ψ
8S ¼ α

�
α

4π

�
2
�
7

48
v3ðr12; r13Þ

þ 7

48
v3ðr12; r23Þ −

5

48
v3ðr13; r23Þ

�
: ð54Þ

This construction can be generalized1 to Nc ≥ 3. Mixed-
symmetry color-adjoint tensors satisfying the same nor-
malization condition as the Nc ¼ 3 case above can be
defined in general by

FMAa
ijkq1…qNc−3

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TfðNc − 1Þ!p ϵijpq1…qNc−3

Ta
pk; ð55Þ

FMSa
ijkq1…qNc−3

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TfNcðNc − 2Þ!p �

ϵikpq1…qNc−3
Ta
pj

þ ϵjkpq1…qNc−3
Ta
pi

�
: ð56Þ

The totally antisymmetric and totally symmetric tensors
satisfy [56]

1The case of Nc ¼ 2 must be treated separately and is not
considered here.
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FA
ijkF

A
lmn ¼

1

Nc!
ϵijko1…oNc−3

ϵlmno1…oNc−3
; ð57Þ

F Sδ
ijkF

Sδ
lmn ¼ SðNcÞðδilδjmδkn þ δilδjnδkm

þ δimδjlδkn þ δimδjnδkl

þ δinδjmδkl þ δinδjlδkmÞ; ð58Þ

where

SðNcÞ ¼
1

N3
c þ 3N2

c þ 2Nc

�
2Nc − 1

Nc

�

¼ ð2Nc − 1Þ!
ðNc!Þ2ðN2

c þ 3Nc þ 2Þ : ð59Þ

The structure of the potential in all cases is given by
Eq. (39). Color factors can be obtained for general Nc ≥ 3
using Eq. (43) with the results

C3ψ ;qA ¼ −
Nc þ 1

8
; ð60Þ

C3ψ ;qS ¼ −
Nc − 1

8
; ð61Þ

which agree with the general Nc results of Ref. [56], and

0
@C3ψ ;1MAA C3ψ ;1MAS

C3ψ ;1MSA C3ψ ;1MSS

1
A¼

0
BB@

1
8ðNc−1Þ −

ffiffiffiffi
Nc

p

4
ffiffi
2

p ffiffiffiffiffiffiffiffi
Nc−1

p

−
ffiffiffiffi
Nc

p

4
ffiffi
2

p ffiffiffiffiffiffiffiffi
Nc−1

p Ncþ2
16

1
CCA; ð62Þ

0
@ C3ψ ;2MAA C3ψ ;2MAS

C3ψ ;2MSA C3ψ ;2MSS

1
A ¼

0
BB@

1
8ðNc−1Þ

ffiffiffiffi
Nc

p

4
ffiffi
2

p ffiffiffiffiffiffiffiffi
Nc−1

p
ffiffiffiffi
Nc

p

4
ffiffi
2

p ffiffiffiffiffiffiffiffi
Nc−1

p Ncþ2
16

1
CCA; ð63Þ

0
@ C3ψ ;3MAA C3ψ ;3MAS

C3ψ ;3MSA C3ψ ;3MSS

1
A ¼

0
@ 2Ncþ1

8ðNc−1Þ 0

0 Nc−4
16

1
A: ð64Þ

These potentials are attainable with a pNRQCD Lagrangian
term

Lpot
3ψ ¼ −

Z
d3r1d3r2d3r3ψ

†
i ðt; r1Þψ†

jðt; r2Þψ†
kðt; r3Þ

× ψ lðt; r3Þψmðt; r2Þψnðt; r1Þ

×

�
Nc

36
ðNc − 1ÞðNc − 2ÞFA

ijkF
A
lmnV

3ψ
A

þ 1

36SðNcÞ
F Sδ

ijkF
Sδ
lmnV

3ψ
S

þ FMAa
ijk FMAa

lmn W3ψ
MA þ FMSa

ijk FMSa
lmn W

3ψ
MS

�
: ð65Þ

Direct computation of the matrix elements involving FMAa
ijk

and FMSa
ijk shows that the desired potentials V3ψ

MAu and V
3ψ
MSu

are reproduced using

W3ψ
MA ¼ α

�
α

4π

�
2
�
−

Nc − 1

16ððNc − 2ÞNc þ 3Þv3ðr12;r13Þ

−
Nc − 1

16ððNc − 2ÞNc þ 3Þv3ðr12; r23Þ

þ ðNc − 1Þð2ðNc − 2ÞNc þ 5Þ
16ððNc − 2ÞNc þ 3Þ v3ðr13; r23Þ

�
; ð66Þ

and

W3ψ
MS ¼ α

�
α

4π

�
2
�
Nc þ 4

48
v3ðr12; r13Þ þ

Nc þ 4

48
v3ðr12; r23Þ

þ Nc − 8

48
v3ðr13; r23Þ

�
: ð67Þ

This completes the construction of the pNRQCDLagrangian
required to describe three-quark forces in generic hadron or
multihadron states at NNLO.
Three-antiquark potentials are identical to three-quark

potentials by symmetry. However, it is noteworthy that
additional ψψψ† and ψψ†ψ† potentials with distinct color
factors are required to describe tetraquarks and other
multihadron states containing both heavy quarks and heavy
antiquarks at NNLO. Even higher-body potentials involv-
ing combinations of four quark and antiquark fields are also
relevant for such systems and are discussed next.

E. Four- and more-quark potentials

Four-quark and higher-body potentials that do not
factorize into iterated insertions of two-quark and three-
quark potentials must arise at some order in αs during
matching between pNRQCD and NRQCD and will need to
be included in pNRQCD calculations of multihadron states
at that order. Perhaps surprisingly, the OðαsÞ suppression
of three-quark potentials in comparison with quark-quark
potentials does not extend to four-quark potentials; for
generic multihadron systems, four-quark potentials arise at
NNLO and therefore at the same order at three-quark
potentials. This can be seen by considering the diagrams in
Fig. 3. The transverse gluon propagator in the four-quark
analog of the H diagram shown leads to momentum
dependence that does not factorize into products of
fewer-body potentials, and for both diagrams shown, the
color structures of all four quarks are correlated by the
gluon interactions in a way that does not factorize.
Matching the contributions from these diagrams in
pNRQCD therefore requires the introduction of four-quark
potentials at NNLO. Barring unexpected cancellations
between diagrams, this four-quark potential—and analo-
gous four-body potentials involving one or more heavy
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antiquarks—must be obtained and included in pNRQCD
calculations of generic multihadron systems at NNLO.
Although a complete determination of the NNLO four-

quark potential is beyond the scope of this work, it is
straightforward to show that the potentials relevant for
quarks in SUðNcÞ single-baryon systems greatly simplify
and that for four-quark potentials vanish at NNLO for these
special cases. For Nc ≤ 3, there are fewer than four quarks
in a baryon, and it follows trivially that four-quark forces do
not contribute to single-baryon observables.2 For Nc ≥ 4,
the absence of four-quark forces at NNLO for single-
baryon systems is nontrivial, and we argue below that it
follows from the color structure of single-baryon states.
These single-baryon states contain Nc quarks in a color-
singlet configuration and can therefore be constructed from
linear combinations of states of the form

jBðr1;…; rNc
Þi≡ ϵi1…iNcffiffiffiffiffiffiffiffi

Nc!
p ψ†

ii
ðr1Þ � � �ψ†

iNc
ðrNc

Þj0i: ð68Þ

The antisymmetry of ϵi1…iNc
implies that contributions from

any potential operator to single-baryon observables will be
totally antisymmetrized over the color indices of all ψ i and
ψ†
i fields arising in the operator. This means that only Vψψ

A

and V3ψ
A contribute to the quark-quark and three-quark

potentials for single-baryon states, respectively. Further, the
color structures of the four-quark potential diagrams shown
in Fig. 3 involve factors of

Ta
ikT

b
jlf

abc; ð69Þ

where i and j (k and l) label the color indices of any two
of the incoming (outgoing) quark lines. Contracting with
the color tensors for single-baryon initial and final states
leads to

Ta
ikT

b
jlf

abcϵikm1…mNc−2ϵjlm1…mNc−2

¼ −Tb
ikT

a
jlf

abcϵikm1…mNc−2ϵjlm1…mNc−2

¼ −Tb
jlT

a
ikf

abcϵikm1…mNc−2ϵjlm1…mNc−2

¼ 0; ð70Þ
where the antisymmetry of fabc has been used in going
from the first to the second line, and the antisymmetry
of ϵi1…iNc

has been used in subsequently going to the
third line.
For Nc ≥ 4 single-baryon systems, diagrams with addi-

tional gluon propagators3 lead to four-body forces at N3LO
that are not expected to vanish. For multihadron systems,
including tetraquarks and bound or scattering states of
heavy baryons, total color antisymmetry of initial and final
state quarks does not apply, and we emphasize that these
four-quark potentials that have not yet been determined are
required for complete NNLO calculations.
Five-quark (and higher-body) interactions require an

additional gluon propagator compared to four-quark inter-
actions and do not arise until N3LO.

F. pNRQCD Hamiltonian

The Lagrangian formulation of pNRQCD described
above can be readily converted to a nonrelativistic
Hamiltonian form. The generic kinetic and potential oper-
ators needed to construct the pNRQCD Hamiltonian are
explicitly defined below. The action of the potential operator
greatly simplifies when acting on quarkonium states and
baryon states, and the particular structures of these states
are also discussed in this section. For concreteness, unit-
normalized quarkonium states are defined by

jQQ̄ðr1; r2Þi ¼
1ffiffiffiffiffiffi
Nc

p jψmðr1Þ; χ†nðr2Þiδmn; ð71Þ

FIG. 3. Example NNLO diagrams for N ¼ 4 which contribute to the 4-body potential and demonstrate that αNs suppression at each
higher body order is not necessarily respected beyond 3-body.

2Three- and four-body forces do not contribute to single-
meson observables for any Nc for the same reason.

3An example of such a diagram can be obtained from Fig. 2 by
adding a fourth quark interacting with a potential gluon that is
connected to the transverse gluon by a three-gluon interaction.
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while baryon states are defined by Eq. (68). At LO in
pNRQCD the ground state of quarkonium must take the
form of Eq. (71) because there are no other ways to construct
a color-singlet from a product of Q and Q̄ fields, but at
higher orders additional terms including ultrasoft fields are
present. In general, Eq. (71) should be viewed as a “trial
wave function” with the correct quantum numbers for
describing quarkonium and both the spatial wave function

and additional contribution to the ground-state can be
obtained by solving for the lowest-energy state of the
pNRQCD Hamiltonian with these quantum numbers.
The nonrelativistic potential operator V̂ψχ appearing in

the pNRQCD Hamiltonian is just −Lpot
ψχ with fermion fields

replaced by Hilbert space operators. Its action on a quark-
antiquark state is given by

V̂ψχ jψmðr1Þ; χ†nðr2Þi ¼
Z

d3s1d3s2

�
1

Nc
δijδklV

ψχ
1 ðs12Þ þ

1

TF
Ta
ijT

a
klV

ψχ
Adðs12Þ

�

× ψ†
i ðt; s1Þχjðt; s2Þχ†kðt; s2Þψ lðt; s1Þjψmðr1Þ; χ†nðr2Þi

¼
�
1

Nc
δijδklV

ψχ
1 ðr12Þ þ

1

TF
Ta
ijT

a
klV

ψχ
Adðr12Þ

�
jψ iðr1Þ; χ†jðr2Þiδkmδln: ð72Þ

The action of the potential operator on quarkonium states therefore simplifies to

V̂ψχ jQQ̄ðr1; r2Þi ¼ V̂ψχ jψmðr1Þ; χ†nðr2Þiδmn

¼
�
1

Nc
δijδklV

ψχ
1 ðr12Þ þ

1

TF
Ta
ijT

a
klV

ψχ
Adðr12Þ

�
jψ iðr1Þ; χ†jðr2Þiδkmδlnδmn

¼ Vψχ
1 ðr12Þ

1

Nc
δijδklδkljψ iðr1Þ; χ†jðr2Þi

¼ Vψχ
1 ðr12Þδijjψ iðr1Þ; χ†jðr2Þi

¼ Vψχ
1 ðr12ÞjQQ̄ðr1; r2Þi; ð73Þ

where Ta
klδkl ¼ 0 has been used to eliminate the color-adjoint term.

The action on a color-adjoint QQ̄ state jψ iðr1Þ;
χ†jðr2ÞiTa

ji=
ffiffiffiffiffiffi
TF

p
analogously eliminates the color-singlet

piece and is equivalent to multiplying the state by Vψχ
Adðr12Þ

because Ta
klT

b
lk ¼ TFδ

ab. This establishes that the terms
in −Lpot

ψχ are correctly normalized to reproduce pNRQCD
matching calculations for color-singlet and color-adjoint
quark-antiquark states [76,79,80].

The action of the quark-antiquark potential on
more complicated multihadron states is given by
applying the same operator V̂ψχ to these states. For
instance, the potential for a heavy tetraquark state is
given by a color contraction of the action of the potential
on a generic state with two heavy quarks and two heavy
antiquarks,

V̂ψχ jψn1ðr1Þ; χ†n2ðr2Þψn3ðr3Þ; χ†n4ðr4Þi ¼
Z

d3s1d3s2

�
1

Nc
δijδklV

ψχ
1 ðs12Þ þ

1

TF
Ta
ijT

a
klV

ψχ
Adðs12Þ

�

× ψ†
i ðt; s1Þχjðt; s2Þχ†kðt; s2Þψ lðt; s1Þjψn1ðr1Þ; χ†n2ðr2Þψn3ðr3Þ; χ†n4ðr4Þi

¼
�
1

Nc
δijδn2n3V

ψχ
1 ðr12Þ þ

1

TF
Ta
ijT

a
n2n3V

ψχ
Adðr12Þ

�
jψ iðr1Þ; χ†jðr2Þψn3ðr3Þ; χ†n4ðr4Þi

þ
�
1

Nc
δijδn1n4V

ψχ
1 ðr14Þ þ

1

TF
Ta
ijT

a
n1n4V

ψχ
Adðr14Þ

�
jψ iðr1Þ; χ†n2ðr2Þψn3ðr3Þ; χ†jðr4Þi

þ
�
1

Nc
δijδn1n2V

ψχ
1 ðr32Þ þ

1

TF
Ta
ijT

a
n1n2V

ψχ
Adðr32Þ

�
jψn1ðr1Þ; χ†jðr2Þψ iðr3Þ; χ†n4ðr4Þi

þ
�
1

Nc
δijδn3n4V

ψχ
1 ðr34Þ þ

1

TF
Ta
ijT

a
n3n4V

ψχ
Adðr34Þ

�
jψn1ðr1Þ; χ†n2ðr2Þψ iðr3Þ; χ†jðr4Þi:

ð74Þ
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The action of a generic SUðNcÞ quark-quark potential operator V̂ψψ on an NQ quark state is analogously given by −Lpot
ψψ

in Eq. (25) with fermion fields replaced by Hilbert-space operators and has the color decomposition

V̂ψψ jψ1ðr1Þ;…;ψNq
ðrNq

Þi¼
X

ρ∈fA;Sg

Z
d3s1d3s2V

ψψ
ρ ðs12ÞðF ρ

ijÞ�F ρ
klψ

†
i ðt;s1Þψ†

jðt;s2Þψkðt;s2Þψ lðt;s1Þjψn1ðr1Þ;…;ψnNq
ðrNq

Þi

¼
X
I≠J

X
ρ∈fA;Sg

Vψψ
ρ ðrIJÞðF ρ

mImJÞ�F ρ
nInJ jψn1ðr1Þ;…;ψmI

ðrIÞ;…;ψmJ
ðrJÞ;…;ψnNq

ðrNq
Þi; ð75Þ

The action of a three-quark potential operator is analogous,

V̂3ψ jψ1ðr1Þ;…;ψNq
ðrNq

Þi ¼
X

ρ∈ fA;S;MA;MSg

Z
d3s1d3s2d3s3V

3ψ
ρ ðs12; s13; s23ÞðF ρ

ijkÞ�F ρ
lmnψ

†
i ðt; s1Þψ†

jðt; s2Þψ†
kðt; s3Þ

× ψ lðt; s3Þψmðt; s2Þψnðt; s1Þjψn1ðr1Þ;…;ψnNq
ðrNq

Þi
¼

X
I≠J≠K

X
ρ∈ fA;S;MA;MSg

V3ψ
ρ ðrIJ; rIK; rJKÞðF ρ

mImJmK
Þ�F ρ

nInJnK

× jψn1ðr1Þ;…;ψmI
ðrIÞ;…;ψmJ

ðrJÞ;…;ψmK
ðrKÞ;…;ψnNq

ðrNq
Þi: ð76Þ

The four-quark potential operator V̂4ψ can be defined
analogously, although its explicit form at NNLO has not yet
been computed. These can be combined to define a total
potential operator

V̂ ¼ V̂ψχ þ V̂ψψ þ V̂3ψ þ V̂4ψ þ Vψψχ þ Vψψψχ

þ Vψψχχ þ ψ ↔ χ þ…; ð77Þ

where five-quark and higher-body potentials that do not
contribute at NNLO are omitted, and ψ ↔ χ refers to
antiquark-antiquark, three-antiquark, and four-antiquark
potentials obtained by taking ψ ↔ χ in the quark-quark,
three-quark, and four-quark potential operators. Note that
besides the three-quark and four-quark operators described
above there are analogs of three-quark and four-quark
potentials where only some of the quarks are replaced with
antiquarks that enter the total potential at NNLO and arise
for example in heavy tetraquark systems. In conjunction
with the usual nonrelativistic kinetic energy operator

T̂jψn1ðr1Þ;…;ψnNq
ðrNq

Þi

¼
X
I

p2
I

2mQ
jψn1ðr1Þ;…;ψNq

ðrnNq
Þi

¼ −
X
I

∇2
I

2mQ
jψn1ðr1Þ;…;ψnNq

ðrNq
Þi; ð78Þ

this potential operator can be used to construct the
pNRQCD Hamiltonian operator

Ĥ ¼ T̂ þ V̂; ð79Þ

which is the basic ingredient used in the many-body
calculations discussed below.
The eigenvalues of the nonrelativistic Hamiltonian Ĥ are

equal to the total energies of the corresponding eigenstates
minus the rest masses of any heavy quarks and antiquarks
appearing in the state, since the rest mass is removed from
the Hamiltonian by the transformation in Eq. (6). The ground
state of the sector of pNRQCD Hilbert space containing
NQ heavy quarks, denoted jQ1…QNQ

; 0i, with mass or total
energy MQ1…QN

therefore has Hamiltonian matrix elements

ΔEQ1…QN
≡ hQ1…QNQ

; 0jĤjQ1…QNQ
; 0i

¼ MQ1…QN
− NQmQ: ð80Þ

The pNRQCD Hamiltonian and therefore ΔEQ1…QN
will

depend on the definition of mQ above and, in particular,
whether it is a bare or renormalized mass. Although the
unphysical nature of the pole mass mQ appearing in
Eq. (6) and the pNRQCD Hamiltonian, therefore, leads to
ambiguities in the definition of the nonrelativistic energy
ΔEQ1…QN

, the total energy MQ1…QN
is independent of the

prescription used to define mQ up to perturbative truncation
effects. Analogous considerations apply to pNRQCD states
containing heavy quarks and antiquarks (assuming their
separate number conservation), for example,

ΔEQQ̄ ≡ hQQ̄; 0jĤjQQ̄; 0i ¼ MQQ̄ − 2mQ: ð81Þ

Once the value of mQ in a given scheme is determined, for
example by matching MQQ̄ or another hadron mass to
experimental data or lattice QCD calculations, it can be used
to predict other physical hadron masses from pNRQCD
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calculations of Ĥ eigenvalues and for example predict
MQ1…QN

from ΔEQ1…QN
.

For baryon states, the quark-quark potential involves
the color-tensor contraction F ρ

mImJF
ρ
nInJϵn1…nNc

, which

vanishes for the symmetric potential involving F S
nInJ and

is equal to ϵn1…mI…mJ…nNc
=2 for the antisymmetric poten-

tial using the color tensors defined in Eq. (27). Inserting this
in into Eq. (75) applied to the baryon state defined in
Eq. (68) gives

V̂ψψ jBi ¼ 1

2

X
I≠J

Vψψ
A ðrIJÞjBi

¼
X
I<J

Vψψ
A ðrIJÞjBi; ð82Þ

where the coordinate dependence of jBðr1;…; rNc
Þi has

been suppressed for brevity and the I ↔ J symmetry of
the potential has been used in going from the first to the
second line. The analogous contraction for the three-quark
potential F ρ

mImJmKF
ρ
nInJnKϵn1…nNc

vanishes for all potentials
except the totally antisymmetric case with ρ ¼ A. In
this case the color-tensor contraction is equal to
ϵn1…mI…mJ…mK…nNc

=3!, which gives

V̂3ψ jBi ¼ 1

3!

X
I≠J≠K

V3ψ
A ðrIJ; rIK; rJKÞjBi

¼
X

I<J<K

V3ψ
A ðrIJ; rIK; rJKÞjBi: ð83Þ

Since the four-quark interaction color tensors are orthogo-
nal to ϵij… as discussed in Sec. II E

V̂4ψ jBi ¼ 0; ð84Þ
at NNLO with nonzero contributions possible at N3LO.
These results establish that the color-antisymmetric two-
and three-quark potential operators are correctly normal-
ized to reproduce the pNRQCD matching calculations
performed using baryon-level Lagrangian operators in
Refs. [55,56]. It can be shown similarly that the mixed-
symmetry adjoint potential operators defined above are
correctly normalized so that their action on an adjoint
baryon state is equivalent to matrix multiplication by V3ψ

ρuv.
We end this section with an interesting cross-check

discussed for Nc ¼ 3 in Ref. [56]; the antisymmetric
two-quark potential can be obtained to NNLO (including
two-loop diagrams) using the NNLO three-body potential
(which only includes one-loop diagrams) and setting
Nc − 1 quarks to be at the same position. These Nc − 1
quarks then behave as an antiquark in color space, and thus
a color-singlet quarkonium state arises. Baryon states with
Nc − 1 colocated quarks can be defined by

jMðr1; r2Þi≡ jBðr1; r2 ¼ … ¼ rNc
Þi: ð85Þ

The correspondence between an Nc − 1 quark color source
and an antiquark color source suggests that matrix elements
can be equated between quarkonium states jQQ̄i and heavy
baryon states with Nc − 1 quark positions identified,

hQQ̄jV̂jQQ̄i ¼ hMjV̂jMi; ð86Þ

at least to leading order in 1=mQ where heavy quarks are
equivalent to static color sources. This provides a relation
between the quark-antiquark and multiquark potentials in
each representation that make nonzero contributions in
quarkonium and baryon states,

hQQ̄ðr1; r2ÞjV̂ψχ
1 jQQ̄ðr1; r2Þi

¼ hMðr1; r2ÞjV̂ψψ
A þ V̂3ψ

A jMðr1; r2Þi
¼

X
I

Vψψ
A ðr1IÞ þ

X
I<J

V3ψ
A ðr1I; r1J; 0Þ; ð87Þ

where potentials with all quark fields located at the same
point have been removed since these correspond to local
counterterms. There is only one four-quark separation
r ¼ r12 ¼ r13 ¼ …, and so the sums can be evaluated as

Vψχ
1 ðrÞ ¼ ðNc− 1ÞVψψ

A ðrÞþ 1

2
ðNc− 1ÞðNc− 2ÞV3ψ

A ðr;r;0Þ;
ð88Þ

where the counting factor arises from the ðNc−1
2
Þ ¼

ðNc − 1ÞðNc − 2Þ=2 three-body interactions between the
Nc − 1 identically located quarks and the quark at a specific
position. Solving for the quark-quark antisymmetric poten-
tial, inserting the form of the three-quark potential in
Eq. (39) with singular factors of v3ðr; 0Þ removed (by
local counterterms), and noting that the three-quark color
factor given in Eq. (61) and the quark-antiquark color
factor −CF are related by

C3ψ ;q
A ¼ −CF

�
Nc

4ðNc − 1Þ
�
; ð89Þ

the quark-quark potential can be obtained in terms of the
quark-antiquark potential and the three-quark potential
function as

Vψψ
A ðrÞ ¼ 1

Nc − 1

�
Vψχ
1 ðrÞ

þ CFαs

�
αs
4π

�
2 NcðNc − 2Þ

8
v3ðr; rÞ

�
: ð90Þ

The three-quark potential function with equal arguments
simplifies to

v3ðr; rÞ ¼ −
4π2ðπ2 − 12Þ

jrj ; ð91Þ
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which relates the quark-quark and quark-antiquark poten-
tials at NNLO as

Vψψ
A ðrÞ ¼ 1

Nc − 1

�
Vψχ
1 ðrÞ

−
αsCF

jrj
�
αs
4π

�
2 NcðNc − 2Þ

2
π2ðπ2 − 12Þ

�
: ð92Þ

This is consistent with the antisymmetric quark-quark
potential attained previously in Eq. (38) and matches the
result obtained for the case of Nc ¼ 3 in Ref. [56]. Note
that forNc ≥ 4, this agreement is further consistent with the
result above that four-quark potentials do not contribute to
Nc-color baryon states at NNLO.

III. MANY-BODY METHODS

A wide range of techniques have been developed for
solving nonrelativistic quantum many-body problems
in nuclear and condensed matter physics. Quantum
Monte Carlo methods provide stochastic estimates of energy
spectra and other observables of quantum many-body states
with systematic uncertainties that can be quantified and
reduced with increased computational resources [58–60].
In particular, the variational Monte Carlo approach allows
upper bounds to be placed on many-body ground state
energies that can be numerically optimized using a para-
metrized family of trial wave functions. The Green’s
function Monte Carlo approach augments VMC by includ-
ing imaginary time evolution that exponentially suppresses
excited-state contributions and allows exact ground-state
energy results to be obtained from generic trial wave
functions (more precisely any trial wave function not
orthogonal to the ground state) in the limit of large
imaginary-time evolution. The statistical precision of
GFMC calculations is greatly improved by a good choice
of the trial wave function that has a large overlap with the
ground state, and often the optimized wave functions
resulting from VMC calculations are used as the initial trial
wave functions in subsequent GFMC calculations [58,60].
Ground-state energy results obtained using GFMC are
themselves variational upper bounds on the true ground-
state energy, as discussed further below. This combination
of methods leverages the desirable features of VMC while
using GFMC to remove hard-to-quantify systematic
uncertainties associated with the Hilbert space truncation
induced by a wave function parametrization with a finite
number of parameters.
Previous works have used few-body methods, for exam-

ple based on Fadeev equations, and variational methods to
calculate quarkonium and baryon masses using potential
models [82–86]. Two previous works have applied varia-
tional methods to calculate baryon masses using pNRQCD
potentials: Ref. [61] uses the LO potential and a one-
parameter family of analytically integrable variational wave

functions, and Ref. [62] uses potentials up through NNLO
with a two-parameter family of variational wave functions.
Here, we extend these results by performing GFMC
calculations with trial wave functions obtained using
VMC in order to obtain reliable predictions for quarkonium
and triply heavy baryon masses across a wide range of mQ

for QCD as well as SUðNcÞ gauge theories of dark mesons
and baryons with Nc ∈ f2;…; 6g. The methods used
here are very computationally efficient—by generating
Monte Carlo ensembles for VMC and GFMC by applying
the Metropolis algorithm with optimized trial wave func-
tions used for importance sampling, we achieve more than
an order of magnitude more precise results than previous
calculations with modest computational resources. The
techniques developed here can further be applied straight-
forwardly to systems with more than three heavy quarks.
The remainder of this section discusses the formalism
required to apply VMC and GFMC methods to pNRQCD
for these systems and beyond.

A. Variational Monte Carlo

The quantum mechanical state jΨi of a system contain-
ing NQ heavy quarks/antiquarks can be described by a
coordinate space wave function ΨðRÞ≡ hRjΨi where
R≡ ðr1;…; rNQ

Þ is a vector of coordinates. The normali-
zation condition

1 ¼ hΨjΨi ¼
Z

dRhΨjRihRjΨi

¼
Z

dRjΨðRÞj2; ð93Þ

will be used throughout this work. The LO pNRQCD
Hamiltonian is simply the Coulomb Hamiltonian, which is
known to be bounded from below, and this boundedness
will be assumed for the pNRQCD Hamiltonian at higher
orders below and verified a posteriori. This implies that
there is a set of unit-normalized energy eigenstates jni with
Hjni ¼ ΔEnjni (note that we continue using ΔE to denote
nonrelativistic energies here and below) that can be ordered
such that ΔE0 ≤ ΔE1 ≤ …, from which the well-known
Rayleigh-Ritz variational bound follows,

hΨjHjΨi ¼
X
n

jhΨjnij2ΔEn ≥ ΔE0: ð94Þ

This variational principle is the starting point for VMC
methods.
Any trial wave function ΨðR;ωÞ depending on a set of

parameters ω ¼ ðω1;…Þ satisfies the variational principle,

ΔE0 ≤ hΨTðωÞjHjΨTðωÞi

¼
Z

d3RΨTðR;ωÞ�HðRÞΨTðR;ωÞ; ð95Þ
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where hRjHjR0i ¼ HðRÞδðR −R0Þ. By iteratively varying
ω using a numerical optimization procedure, the upper
bound on ΔE0 provided by a parametrized family of trial
wave functions can be successively improved. If the trial
wave function is sufficiently expressive as to describe the
true ground-state wave function for some set of parameters,
then the true ground-state energy and wave function can
be determined using such an optimization procedure.
This is generally not the case for complicated many-body
Hamiltonians and numerically tractable trial wave func-
tions, and in this generic case, variational methods provide
an upper bound on ΔE0 rather than a rigorous determi-
nation of the ground-state energy.
The integral in Eq. (95) is 3NQ dimensional and is

challenging to compute exactly for many-body systems.
Instead, VMC methods apply Monte Carlo integration
techniques to stochastically approximate the integral in
Eq. (95). The magnitude of the trial wave function can be
used to define a probability distribution,

PðR;ωÞ ¼ jΨTðR;ωÞj2; ð96Þ
from which coordinates R can be sampled. The standard
Metropolis algorithm can then be used to approximate the
integral in Eq. (95); coordinates R0 are sampled from
PðR;ωÞ, updated coordinates R1 ¼ R0 þ εx are chosen
using, for example, zero-mean and unit-variance Gaussian
random variables x and a step size ε discussed further
below. The updated coordinates are accepted with proba-
bility w1 ¼ PðR1;ωÞ=PðR0;ωÞ or with probability 1 if
w1 > 1, and they are rejected otherwise. If the coordinates
are accepted, thenR1 is added to an ensemble of coordinate
values, while if they are rejected, then R0 is added. This
procedure is repeated with coordinates Riþ1 updated
analogously from the latest coordinates Ri in the ensemble.
The new coordinates are accepted with probability wiþ1 ¼
PðRiþ1;ωÞ=PðRi;ωÞ (or probability 1 if wiþ1 > 1). The
resulting ensemble is approximately a set of random
variables drawn from PðR;ωÞ if the coordinates from
an initial thermalization period of Ntherm updates are
omitted, and they are approximately statistically indepen-
dent if Nskip update steps are skipped between successive
members of the final coordinate ensemble, where Nskip is
chosen to be longer than the autocorrelation times of
observables of interest.4

An ensemble of Nvar such coordinates can then be used
to approximate the integral in Eq. (95) as

hΨTðωÞjHjΨTðωÞi ≈
1

Nvar

XNvar

i¼1

HðRiÞ: ð97Þ

In VMCmethods, this approximation of hΨTðωÞjHjΨTðωÞi
is used as a loss function to be minimized using numerical
optimization techniques. For a complete review of VMC and
its implementation, see Ref. [58].
In the VMC calculation below, we use the Adam

optimizer [87] to update our trial wave function parameters
iteratively. Default Adam hyperparameters are used with a
step size initially chosen to be 10−2. After the change in
loss function fails to improve for 10 updates, the step size is
reduced by a factor of 10. After two such reductions of the
step size, optimization is restarted using the best trial wave
function parameters from the previous optimization round
and step sizes of 10−3 and subsequently 10−4 in order to
refresh the Adam momenta and improve convergence to
optimal parameters without overshooting. Gradients of the
loss function are stochastically estimated in analogy to
Eq. (97) using autodifferentiation techniques implemented
in the Python package PyTorch [88].

B. Green’s function Monte Carlo

The optimal trial wave functionΨTðR;ωÞ obtained using
VMC methods still may not provide an accurate determi-
nation of ΔE0 because of the limited expressiveness of a
finite-parameter function suitable for numerical optimiza-
tion. To overcome this limitation, we use the standard QMC
strategy of taking the optimal trial wave function obtained
from VMC as the starting point for subsequent GFMC
calculation [58,60]. GFMC calculations use evolution5 in
imaginary time τ to exponentially suppress excited-state
components of jΨTi, which is analogous to the imaginary-
time evolution used in lattice QCD calculations. In the limit
of infinite imaginary-time evolution, the ground state with a
given set of quantum numbers can be obtained from any trial
wave function with the same quantum numbers,

j0i ¼ lim
τ→∞

e−HτjΨTi: ð98Þ

In our case, imaginary-time evolution can be used to
determine the ground-state energy and wave function of a
system with NQ heavy quarks/antiquarks using a pNRQCD
Hamiltonianwith conserved heavy quark/antiquark numbers.
In general, directly computing the propagator in (98) is

not feasible for arbitrary τ. However, taking small imagi-
nary time, δτ ¼ τ=N for N ≫ 1 and recovering the full
projection in large time can be achieved by a Lie-Trotter
product [89],

Ψðτ;RNÞ ¼
Z YN−1

i¼0

dRihRN je−HδτjRN−1i

× � � � × hR1je−HδτjR0ihR0jΨTi; ð99Þ
4Below, we find Nskip ≳ 100 to be sufficient to achieve

negligible autocorrelations in hΨTðωÞjHjΨTðωÞi using ϵ on
the order of the Bohr radius of the Coulombic trial wave functions
discussed in Sec. IV.

5This evolution is often described as diffusion because the free
particle nonrelativistic imaginary-time Schrödinger equation is
the diffusion equation.
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making the computation feasible. We can then define
the GFMC wave function in integral form at an imaginary
time τ þ δτ

Ψðτ þ dτ;RÞ ¼
Z

dR0GδτðR;R0ÞΨðτ;R0Þ; ð100Þ

in terms of a Green’s function,

GδτðR;R0Þ ¼ hRje−HδτjR0i: ð101Þ

Practically, one approximates short-time propagation with
the Trotter-Suzuki expansion,

GδτðR;R0Þ ¼ e−VðRÞδτ=2hRje−TδτjR0i
× e−VðR0Þδτ=2 þOðδτ2Þ; ð102Þ

where V is the potential in configuration space and T is the
kinetic energy which defines the free-particle propagator,
which for nonrelativistic systems is expressible as a
Gaussian distribution in configuration space,

hRje−TδτjR0i ¼
�

1

λ3π3=2

�
NQ

e−ðR−R0Þ2=λ2 ; ð103Þ

where λ2 ¼ 2δτ=mQ [58,60]. The integral in Eq. (100)
describing the action of a single Trotter step to the wave
function is therefore computed by sampling R −R0 from
Eq. (103) and then explicitly multiplying by the potential
factors appearing in Eq. (102). In order to reduce the
variance of GFMC results, a further resampling step is
applied in which R −R0 and −ðR −R0Þ are both proposed
as possible updates, and a Metropolis sampling step is used
to select one proposed update as described in more detail
in Ref. [60].
If the action of the pNRQCD potential on a given

state can be described by a spin- and color-independent
potential depending only on R, then it is straightforward
to exponentiate the potential as indicated in Eq. (102).
Conveniently, precisely this situation arises for meson and
baryon states at Oðm0

QÞ as shown in Sec. II F. In applica-
tions of pNRQCD to multihadron systems, this will not
usually be the case because generic states are not eigen-
states of a single-color tensor operator but instead will
include contributions from multiple-color tensor operators
in the potential. Calculations including Oð1=m2

QÞ effects
will also have spin-dependent potentials even in the single-
meson and single-baryon cases. In generic applications
including color- and spin-dependent potentials it will be
necessary to expand the exponential, for instance as a
Taylor series e−Vδτ=2≈1−Vδτ=2þV2ðδτÞ2=8þ���. Since
the potential appearing in these expressions is a 2NcNQ ×
2NcNQ matrix, the accuracy of this expansion will have to
be balanced against the computational cost of its evaluation

when deciding how many terms to include. More details on
including matrix-valued potentials in GFMC calculations
can be found in Refs. [58,60]. Different treatment will be
required for momentum-dependent potentials at Oð1=m2

QÞ.
Applying an operator O to the imaginary-time-evolved

wave function ΨTðR; τÞ leads to the mixed expectation
values

hΨT jOjΨTðτÞi ¼ hΨT jOe−HτjΨTi: ð104Þ

Expectation values involving symmetric insertions of
imaginary-time evolution operators can also be computed
from the mixed expectation values hΨT jOjΨTðτÞi and
hΨTðτÞjOjΨTi [58,90]. Since H commutes with e−Hτ,
Hamiltonian matrix elements are automatically symmetric,

hΨT jHjΨTðτÞi ¼ hΨT je−Hτ=2He−Hτ=2jΨTi
¼ hΨTðτ=2ÞjHjΨTðτ=2Þi: ð105Þ

By Eq. (95), this implies that GFMC binding-energy
determinations provide variational upper bounds on the
energy of the ground state E0 with quantum numbers ofΨT .
It further implies that GFMC Hamiltonian matrix elements
have the spectral representation

hΨT jHjΨTðτÞi ¼
X
n

ΔEnjZnj2e−ΔEnτ; ð106Þ

where Zn ¼ hnjΨTi. In the large-τ limit, dependence on Z0

can be removed by dividing by hΨT jΨTðτÞi since

hΨT jΨTðτÞi ¼
X
n

jZnj2e−ΔEnτ: ð107Þ

Defining the GFMC approximation to the Hamiltonian
matrix element as

hHðτÞi≡ hΨT jHjΨTðτÞi
hΨT jΨTðτÞi

; ð108Þ

and the excitation gap

δ≡ ΔE1 − ΔE0; ð109Þ

this shows that in the large-τ limit

hHðτÞi ¼
P

nΔEnjZnj2e−ΔEnτP
njZnj2e−ΔEnτ

¼ ΔE0 þ




Z1

Z0






2

δe−δτ þ…; ð110Þ

where … denotes terms exponentially suppressed by e−δτ

for n > 1. Corrections to hHðτÞi ≈ ΔE0 are therefore
exponentially suppressed by δτ, and GFMC calculations
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can achieve accurate ground-state energy estimates even if
Z1=Z0 is not small as long as τ ≫ 1=δ.
The computational simplicity of pNRQCD, particularly

for mesons and baryons atOðm0
QÞ, makes it straightforward

to achieve τ ≫ 1=δ in the numerical calculations below.
Constant fits to hHðτÞi using correlated χ2 minimization are
therefore used below to fit ground-state energies from
GFMC results. To avoid contamination from Oðe−δτÞ
excited-state effects, the minimum imaginary time used
for fitting τmin was varied, and in particular 30 different τmin
were chosen from ½0; Lτ − 1�. The covariance matrices for
these fits are ill-conditioned due to the large number
of imaginary time steps used, and results are therefore
averaged over windows of consecutive τ before performing
fits. Linear shrinkage [91,92] is used with the diagonal of
the coviance matrix as the shrinkage target in order to
further improve the numerical stability of covariance matrix
estimation. The results ΔEf obtained from χ2 minimization
for each choice of fit range ½τfmin; Lτ − 1� enumerated by
f ¼ 1;…; 30 with corresponding χ2 minima χ2f are then
averaged in order to penalize fits with poor goodness-of-fit
(arising from non-negligible excited-state effects) using the
Bayesian model averaging method of Ref. [93] with flat
priors. This corresponds to

ΔE ¼
X
f

wfΔEf; ð111Þ

where the normalized weights wf are defined by

w̃f ¼ exp

�
−
1

2
ðχ2f þ 2τfminÞ

�
;

wf ¼ w̃fP
gw̃g

; ð112Þ

where a constant factor of two times the number of
parameters that cancels from the weighted average defined
in Eq. (111) below has been omitted. The model averaged
fit uncertainties δΔE are then given in terms of the
individual fit uncertainties δΔEf by [93]

δΔE ¼
X
f

wfδΔEf þ
X
f

wfðΔEfÞ2 −
X
f

ðwfΔEfÞ2;

ð113Þ

where the terms on the second line provide a measure of
systematic uncertainty arising from the variance of the
ensemble of fit results. Finally, the size of the τ averaging
window is varied in order to test the stability of covariance
matrix determination, and stability of the final fit results
after model averaging is tested for different choices of τ
averaging window size starting with 2 and 4 and then
continuing by doubling the window size until 1σ

consistency between consecutive window-size choices is
achieved. In this manner, the model-averaged ΔE from the
first τ window size consistent with the previous τ window
size is taken as the final GFMC result quoted for all
parameter choices below.

IV. COULOMBIC TRIAL WAVE FUNCTIONS

The QMC methods above require a parametrized family
of trial wave functions ψTðR;CÞ as the starting point for
VMC. At LO, the color-singlet quark-antiquark potential is
identical to a rescaled Coulomb potential, and the ground-
state wave function is known analytically. Beyond LO,
there are logarithmic corrections to the Coulombic shape of
the potential. To assess how accurately a given variational
family of trial wave functions has described the ground
state of these higher-order potentials, GFMC calculations
are performed using these variationally optimized trial
wave functions. The amount of imaginary-time evolution
required to converge toward the true ground-state energy,
as well as the statistical precision of the GFMC calculations
with a given trial wave function, provide quantitative
measures of how close a given trial wave function is to
the true ground state. Several families of trial wave
functions are considered for these systems below. A simple
variational ansatz corresponding to Coulomb ground-state
wave functions with appropriately tuned Bohr radii pro-
vides relatively stringent variational bounds on NLO and
NNLO quarkonium energies while also leading to compu-
tationally efficient GFMC calculations. Analogous varia-
tional and GFMC calculations for baryons show that
products of Coulomb ground-state wave functions with
appropriately tuned Bohr radii provide simple but remark-
ably effective trial wave functions for heavy baryons.

A. Quarkonium

The pNRQCD potential for quarkonium states is given at
Oðm0

QÞ from Eqs. (16) and (73) by

V̂jQQ̄ðr1; r2Þi ¼ Vψχ;ð0Þ
1 ðr12ÞjQQ̄ðr1; r2Þi

¼ −
CFαVðjr12j; μÞ

jr12j
jQQ̄ðr1; r2Þi: ð114Þ

At LO, αVðjr12j; μÞ ¼ αsðμÞ and Eq. (114) takes the
Coulombic form

V̂ðLOÞjQQ̄ðr1; r2Þi ¼ −
CFαs
jr12j

jQQ̄ðr1; r2Þi: ð115Þ

Therefore, the pNRQCD Hamiltonian for quarkonium at
LO is identical to a rescaled version of the Hamiltonian
for positronium [94]. The energy eigenstate wave functions
ψnlmðr12Þ can therefore be classified by the same quantum
numbers as the hydrogen atom, n∈N, l ¼ 0;…; n − 1 and
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m ¼ −l;…; l. They further share the same functional form
as the hydrogen atom wave functions with

ψ100ðr; aÞ ¼
1ffiffiffi
π

p
a3=2

e−jrj=a; ð116Þ

where a is a constant analogous to the hydrogen atom
Bohr radius that for quarkonium at LO is equal to

aðLOÞ ¼ 2

αsCFmQ
: ð117Þ

The corresponding quarkonium ground-state energy is
equal to

ΔEðLOÞ
QQ̄ ¼ −

α2sC2
FmQ

4
: ð118Þ

Knowledge of the exact ground-state wave function for
this case provides a powerful test of numerical QMC
methods because

ĤðLOÞjψ iðr1Þχiðr2Þiψ100

�
r12;a¼

2

αsCFmQ

�

¼ΔEðLOÞ
QQ̄ jψ iðr1Þχiðr2Þiψ100

�
r12;a¼

2

αsCFmQ

�
; ð119Þ

for any r1, and r2. Therefore QMC results must reproduce

ΔEðLOÞ
QQ̄ with zero variance when using ψ100 with

a ¼ 2=ðαsCFmQÞ as a trial wave function.
A generic quarkonium wave function can be expanded in

a basis of hydrogen wave functions as

ΨTðr1; r2;C; aÞ ¼
XΛ
n¼1

Xn−1
l¼0

Xl

m¼−l
Cnlmψnlmðr12; aÞ; ð120Þ

where Λ provides a truncation of the complete infinite
family of wave functions, leading to a finite-dimensional
family of trial wave functions suitable for VMC calcu-
lations. We have verified that variational calculations using
the LO potential and Λ∈ f1; 2; 3g reproduce the exact LO
ground-state energy within uncertainties and are consistent
with Cnlm ∝ δn1δl0δm0 and a ¼ 2=ðαsCFmQÞ. Beyond LO,
we find that over a wide range of αs ∈ ½0.05; 0.5� the
best variational bounds obtained using generic wave
functions withΛ∈ f1; 2; 3g are consistent with those where
Cnlm ∝ δn1δl0δm0. Since the Oðm0

QÞ potential is a central
potential only depending on jr12j, orbital angular momen-
tum is a conserved quantum number, and it is not surprising
that the ground state is S-wave with only l ¼ 0 wave
functions present. Contributions to the ground-state from
wave functions with n > 1 should arise in principle beyond
LO; however, we find that including n > 1 wave functions
in our variational calculations leaves variational bound on

ΔEQQ̄ unchanged with few percent precision over a wide
range of αs. Similarly, we find that trial wave functions
described by sums of 2–3 exponentials or Gaussians do
not achieve lower variational bounds than those with a
single n ¼ 1 Coulomb wave function at the level of a few
percent precision.
These results motivate the simple one-parameter wave

function ansatz

ΨTðr1; r2; aÞ ¼ ψ100ðr12; aÞ: ð121Þ

Using VMC to determine the optimal a for NLO and
NNLO leads to significantly lower ground-state energies
than those obtained with aðLOÞ. The optimal a are smaller
than aðLOÞ, which is to be expected if the NLO potential is
approximately Coulombic because αVðjr12j; μÞ > αsðμÞ at
NLO and beyond. Assuming that μ is chosen to be on the
order of 1=jr12j for distances where the wave function is
peaked, contributions to the NLO potential proportional to
lnðμjr12jeγEÞ can be approximated as a constant denoted
Lμ. This corresponds to an approximation of the NLO
potential as a Coulomb potential with αsðμÞ replaced by the
jr12j-independent constant αVðjr12j; μ ¼ eLμ−γE=jr12Þ. The
ground-state wave function under the approximation is
ψ100ðjr12; aðLμÞÞ with

aðLμÞ ¼
2

αVðjr12j; μ ¼ eLμ−γE=jr12jÞCFmQ
: ð122Þ

Without assuming any approximation for the potential,
ψ100ðjr12; aðLμÞÞ can be viewed as a variational ansatz
that is equivalent to ψ100ðjr12; aÞ with the only difference
being that Lμ is the variational parameter to be explicitly
optimized instead of a. The advantage of the aðLμÞ
parametrization is that the dependence of the ground-state
Bohr radius on αs is approximately incorporated into aðLμÞ
with constant Lμ. Empirically, ψ100ðjr12; aðLμÞÞ with
Lμ ¼ 0 is found to give ground-state energy results that
are consistent at the few-percent level with optimal
VMC results over a range of αs ∈ ½0.1; 0.3� (somewhat
larger Lμ ∼ 0.5 are weakly preferred for small αs). We are
therefore led to the simple trial wave function ansatz

ΨTðr1; r2Þ ¼ ψ100ðr12; aðLμ ¼ 0ÞÞ: ð123Þ

GFMC results using the VMC trial wave functions
ΨTðr1; r2Þ are shown in Figs. 4 and 5 for quark masses
corresponding to αsðμpÞ ¼ 0.2 and αsðμpÞ ¼ 0.3 respec-
tively, using the renormalization scale choice μp ¼
4αsðμpÞmQ discussed further below. Results using the
exact LO wave function with a ¼ 2=ðαsCFmQÞ as
GFMC trial wave functions are also shown for comparison.
Both results are identical at LO and reproduce the exact
result, Eq. (118), with zero variance at machine precision.
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At NLO, the VMCwave functions give 3% and 4% lower
variational bounds than LO wave functions for αs ¼ 0.2 and
αs ¼ 0.3, respectively. After GFMC evolution, both results
approach energies 2% lower than the VMC variational
bounds for both αs. Slightly less imaginary-time evolution
is required to achieve ground-state saturation at a given level

of precision for VMC wave functions than LO wave
functions. At NNLO, the VMC wave functions achieve
more significant 7% and 11% lower variational bounds
than LO wave functions for αs ¼ 0.2 and αs ¼ 0.3, respec-
tively. GFMC evolution again leads to 2% lower energies
than optimized variational wave functions for both αs.
Significantly less imaginary-time evolution is required to
achieve ground-state saturation using optimized variational
wave functions at NNLO. For NLO potentials, the variance

FIG. 5. Heavy quarkonium binding energy GFMC results for
hHðτÞi with αs ¼ 0.3 analogous to those in Fig. 4.

FIG. 4. Heavy quarkonium binding energy GFMC results for
hHðτÞi with αs ¼ 0.2 as functions of τmQ using LO trial wave
functions (green) and the trial wave functions obtained using
VMC calculations (purple). The Hamiltonian includes theOðm0

QÞ
pNRQCD potential with the different perturbative orders in αs
indicated.
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of hHðτÞi computed using VMC trial wave function is
similar to that obtained using LO trial wave functions. For
NNLO potenitals, the corresponding variance is 50%
smaller using VMC trial wave functions than using LO
trial wave functions.
Notably, significantly more imaginary-time evolution is

required to achieve ground-state saturation with αs ¼ 0.2
than with αs ¼ 0.3. At both NLO and NNLO, 1σ agree-
ment between model-averaged fit results and Hamiltonian
matrix elements at particular τ is seen for τ ≳ 25=mQ with
αs ¼ 0.3 and is only seen for τ ≳ 50=mQ with αs ¼ 0.3.
This scaling is consistent with theoretical expectations for a
Coulombic system; the energy gap between the ground-
and the first excited state at LO is

δðLOÞ ¼ 3α2sC2
FmQ

16
; ð124Þ

and excited-state contributions to GFMC results are sup-
pressed by e−δτ. The observed scaling of δ in our GFMC
results is consistent with δ ∼ α2smQ holding approximately
at higher orders.
These GFMC results include discretization effects

arising from the Trotterization of the imaginary-time
evolution operator e−Ĥτ discussed in Sec. III B and were
performed using δτ ¼ 0.4=mQ. We repeated GFMC cal-
culations using a wide range of δτ∈ ½0.2=mQ; 6.4=mQ� in
order to study the size of these discretization effects;
results for αs ¼ 0.2 are shown in Fig. 6. Discretization
effects are found to be subpercent level and smaller than
our GFMC statistical uncertainties for τmQ ≲ 2 with
evidence for few-percent discretization effects at larger
δτ. Similar results are found for other αs with the smallest
δτ where discretization effects are visibly found to
increase with decreasing αs roughly as 1=αs. To validate
this determination, we computed the expectation value
of ½V̂; T̂� and found that the δτ scales where discretization
effects become visible are roughly consistent with
ΔEQQ̄=hQQ̄j½V̂; T̂�jQQ̄i as expected from the Baker-
Campbell-Hausdorff commutator corrections arising from
approximating eðT̂þV̂Þδτ as e−T̂δτe−V̂δτ [95].

B. Baryons

The pNRQCD quark-quark potential acting on baryon
states is given at Oðm0

QÞ by Eqs. (33) and (82) by

V̂ψψ jBi ¼
X
I<J

Vψψ ;ð0Þ
A ðrIJÞjBi

¼ −
X
I<K

CBαVðjrIJj; μÞ
jrIJj

jBi; ð125Þ

where CB ¼ CF=ðNc − 1Þ. As discussed above, three-
quark potentials arise for baryons at NNLO; however the

quark-quark potential arises at LO and can therefore be
expected to play a dominant role.
The baryon quark-quark potential has a similar

Coulombic form to the quarkonium potential, except that
for the baryon case, there is a sum over Coulomb potentials
for all relative coordinate differences. A similar (though not
identical) summation arises in the kinetic term if the baryon
wave function is taken to be a linear combination of
products of Coulomb wave functions,

ΨTðR;C; aÞ ¼
YNc

I¼1

X
J<I

XΛ
n¼1

Xn−1
l¼0

Xl

m¼−l
CnlmψnlmðrIJ; aÞ;

ð126Þ

where R ¼ ðr1;…; rNc
Þ. Although VMC calculations are

performed using Λ∈ f1; 2; 3g, the variational energy
bounds obtained for Nc ¼ 3 baryons are consistent with
those obtained using ground-state wave functions where

FIG. 6. Heavy quarkonium binding energy results obtained
from fits to the hHðτÞi results in Fig. 4 are shown for GFMC
calculating with several different choices of Trotterization
scale δτ as functions of δτmQ for NLO and NNLO pNRQCD
potentials. The LO results are not shown since the results are
exact and therefore δτ independent.
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Cnlm ∝ δn1δl0δm0. Similarly, results using sums of one or
two exponential or Gaussian corrections to a product of
n ¼ 1 Coulomb wave functions are found to give consistent
variational bounds at the one percent level across a wide
range of αs. This motivates the simple one-parameter
family of trial wave functions

ΨTðR; aÞ ¼
YNc

I¼1

X
J<I

ψ100ðrIJ; aÞ: ð127Þ

Analogous results are found for (less systematic) VMC
studies with Nc ∈ f4; 5; 6g. This VMC ansatz is similar to
the exponential wave function ansatz used in variational
calculations of pNRQCD baryons at LO in Ref. [61].
However, it differs significantly from the ansatz used in
analogous NNLO calculations in Ref. [62], which used a
product of momentum-space exponentials that therefore
have power-law decays at large separations to describe
Nc ¼ 3 baryons. It is perhaps surprising that baryon
ground-state energies are accurately described using a
product of Coulomb ground-state wave functions even at
NNLO with three-quark potentials present; however, as
discussed in Sec. V B the three-quark potentials lead to
subpercent corrections to results using just quark-quark
potentials for αs ≲ 0.3.
At LO, the optimal variational bounds obtained from

VMC with this one-parameter trial wave function family
are consistent with

aðLOÞ ¼ 2

αsCBmQ
; ð128Þ

which is the same Bohr radius appearing in the exact LO
quarkonium result rescaled by the color factor applying
in the baryon potential. Beyond LO, we again parametrize
the Bohr radius by aðLμÞ defined in Eq. (122) where Lμ

corresponds to the value of lnðμreμEÞ if logarithmic r
dependence is approximated as constant. The optimal value
of Lμ increases mildly with increasing mQ, but across the
range, 0.1 ≤ αs ≤ 0.3 ground-state energy results with a
constant value of Lμ ¼ 0.5 are within a few percent
of optimal VMC ground-state energies (somewhat larger
Lμ ∼ 1 are weakly preferred for small αs). The GFMC
calculations of QCD and SUðNcÞ baryons below therefore
use the simple trial wave function ansatz

ΨTðRÞ ¼
YNc

I¼1

X
J<I

ψ100ðrIJ; aðLμ ¼ 0.5ÞÞ: ð129Þ

GFMC results using the VMC trial wave functions
ΨTðr1; r2Þ are shown in Figs. 7 and 8 for the same quark
masses and renormalization scales as for quarkonium
above. Although the LO baryon wave function is not an
eigenstate of ĤðLOÞ, it provides remarkably precise and

approximately τ-independent Hamiltonian matrix elements
with excited-state contamination not visible within 0.1%
statistical uncertainties. Similar results are found with
Nc ∈ f4; 5; 6g. This suggests that the product form of
the baryon trial wave function used here is suitable for
describing multiquark states with identical attractive
Coulomb interactions between all quarks.
Beyond LO, similar patterns arise as in the quarkonium

case above, but excited-state effects are more pronounced
for baryons before VMC optimization. VMC wave func-
tions give 6% and 10% lower variational bounds than LO

FIG. 7. Triply heavy baryon-binding energy results for hHðτÞi
with αs ¼ 0.2 analogous to those in Fig. 4.
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wave functions for NLO potentials with αs ¼ 0.2 and
αs ¼ 0.3, respectively. Excited-state contamination is still
visible in GFMC results using VMC wave functions for
τ ≲ 50=mQ with αs ¼ 0.2 and τ ≲ 25=mQ with αs ¼ 0.3,
which is similar to the corresponding τ required for similar
suppression of quarkonium excited states and shares the
same 1=ðα2smQÞ scaling expected for Coulombic excited-
state effects. At least a factor of two larger τ is required to

achieve the same level of excited-state suppression using
LO baryon wave functions. The fitted GFMC ground-state
energy is 1% and 2% lower than the VMC wave function
results for αs ¼ 0.2 and αs ¼ 0.3, respectively.
At NNLO, VMC wave functions give 10% and 17%

lower variational bounds than LO wave functions with
αs ¼ 0.2 and αs ¼ 0.3, respectively. Excited-state effects
are mild and similar to NLO using VMC wave functions
with 1% differences between VMC and fitted GFMC
ground-state energy results, but very large excited-state
effects and large variance increase with τ are both visible
using LO baryon wave functions with NNLO potentials.
The reduction in variance between VMC and LO baryon
wave functions is more than an order of magnitude for
some τ, and for large τ, the signal using LO wave functions
is lost while VMC wave functions have relatively mild
variance increases. It is perhaps not surprising that LO
baryon wave functions do not provide a suitable trial wave
function for GFMC calculations at NNLO, where in
particular three-quark potentials enter. However, it is
remarkable that simple VMC optimization of the Bohr
radius of a product of Coulomb wave functions is sufficient
to provide a trial wave function leading to high-precision
GFMC results with few-percent excited-state effects only
for τ ≲ 2=ðα2smQÞ.
The dependence of fitted GFMC results on δτ is

shown in Fig. 9 for the example of Nc ¼ 3 baryons
with αs ¼ 0.2. Interestingly, LO baryon ground-state
energy results are observed to be independent of δτ to
percent-level precision for δτ ≲ 100=mQ even though
the LO baryon wave function is not exactly a LO
energy eigenstate. Discretization effects are also not
clearly resolved at NLO for δτ ≲ 6=mQ, although more
significant effects appear for larger δτ. At NNLO, there
are clear signals of percent-level discretization effects
of δτ ≳ 1=mQ, but negligible subpercent discretization
effects are seen for smaller δτ. The calculations below
target percent-level determinations of ground-state (non-
relativistic) energies and therefore use δτ ¼ 0.4=mQ for
QCD and δτ∈ ½0.4=mQ; 0.8=mQ� for exploring strongly
coupled dark sectors for which these discretization effects
are expected to be negligible.

V. QCD BINDING-ENERGY RESULTS

The heavy quarkonium mass MQQ̄ ¼ 2mQ þ ΔEQQ̄ is
one of the simplest pNRQCD observables, and matching
its calculated value to experimental results provides a
way to fix the pNRQCD parameter mQ. The heavy
quarkonium spectrum has been previously computed in
pNRQCD for b and c mesons to N3LO [10,54] using
perturbative quark mass definitions such as the 1S mass.
Here, we use an alternative quark-mass definition, analo-
gous to definitions used in lattice QCD, in which we tune
the pole mass mQ to reproduce experimental quarkonium

FIG. 8. Triply heavy baryon-binding energy results for hHðτÞi
with αs ¼ 0.3 analogous to those in Fig. 4.
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masses. Once mQ is determined using this tuning pro-
cedure, pNRQCD can be used to make predictions for
other hadron masses and matrix elements. Below, the
masses of triply heavy baryons containing b and c quarks
are computed and compared with lattice QCD results
[96,97] in order to validate the methods discussed
above. Further, it is straightforward and relatively

computationally inexpensive to extend pNRQCD calcu-
lations over a wide range of mQ, which allows the
dependence of meson and baryon masses on mQ to be
studied for a wide range of mQ ≫ ΛQCD.
For each choice of mQ, the renormalization scale μ is

chosen to be in the range αmQ < μ < mQ so that neither the
logs of μ=mQ arising in NRQCDmatching or the logs of μr
explicitly appearing in the potential are too large [5,13]
since on average r ∼ 1=ðvmQÞ ∼ 1=ðαmQÞ as supported
by the success of hydrogen wave function with this value
of the Bohr radius discussed above. In particular, the
GFMC results below use a central value of the renormal-
ization scale

μp ¼ 4αsðμpÞmQ; ð130Þ

which can be solved using iterative numerical methods to
determine μp for a given value of mQ. In order to study the
dependence on this choice of scale, GFMC calculations
are performed with μ ¼ 2μp and μ ¼ μp=2 as well as with
μ ¼ μp. The renormalization group evolution of αsðμÞ is
solved using the β-function calculated at one order higher
in perturbation theory than the pNRQCD potential, and in
particular, the one-, two-, and three-loop β functions are
used along with the LO, NLO, and NNLO potentials. The
β-function coefficients, the values of the Landau pole scale
ΛQCD required to reproduce the experimentally precisely
constrained value αsðMZÞ ¼ 0.1184ð7Þ for the three-loop
αs, and the quark threshold matching factors related
theories with Nf and Nf − 1 flavors are reviewed in
Ref. [98]; the same initial condition is used to determine
the values of ΛQCD used for one- and two-loop αs in the LO
and NLO results of this work.
Numerical results in this section use GFMC calculations

with the trial wave function discussed in Sec. IV. Calculations
use 8 equally spaced values ofmQ ∈ ½mc;mb� (using the MS
masses [99]) for which the Nf ¼ 4 potential is used (the
renormalization scale satisfies μp > mc for this range) and
another eight equally spaced values of mQ ∈ ½mb;mt� for
which the Nf ¼ 5 potential is used. The Trotterization
scale δτ ¼ 0.4=mQ is chosen, which is expected to lead to
subpercent discretization effects on binding energies
according to the results of Sec. IV. The total imaginary-
time length of GFMC evolution is chosen to be Nτδτ ¼
8=ðα2smQÞ in order to ensure that imaginary times much
larger than the expected inverse excitation gap δ ∼
1=ðα2smQÞ are achieved, which the results of Sec. IV
indicate are sufficient to reduce excited-state contamina-
tion to the subpercent level. This corresponds to
Nτ ∈ ½200; 1400� for mQ ∈ ½mc;mt�. Relatively modest
GFMC ensembles with Nwalkers ¼ 5; 000 are found to be
sufficient to achieve subpercent precision on binding
energy determinations.

FIG. 9. Triply heavy baryon-binding energy results obtained
from fits to the hHðτÞi results in Fig. 7 are shown for GFMC
calculating with several different choices of Trotterization scale
δτ as functions of δτmQ for each perturbative order studied.
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A. Heavy quarkonium

Results for the heavy quarkonium binding energy ΔEQQ̄

for the ranges of αs above with Nf ¼ 4 and Nf ¼ 5 at LO,
NLO, and NNLO in pNRQCD are obtained from fits to
GFMC results as described above and shown as functions

of αs in Fig. 10. At LO, the exact result ΔEðLOÞ
QQ̄ =mQ=α2s ¼

−C2
F=4 is reproduced as discussed above. At NLO

and NNLO clear dependence on αs can be seen in
ΔEQQ̄=mQ=α2s . For a Coulombic system, NLO corrections
of OðαsÞ would lead to OðαsÞ and Oðα2sÞ corrections to the

quarkonium binding energy. Further corrections arise
from the logarithmic differences between pNRQCD and
Coulomb potentials, but as discussed in Sec. IV, these
differences are relatively mild for αs ≲ 0.3 and the renorm-
alization scale μp discussed above. Quadratic fits to the
NLO results in Fig. 10 with constant terms fixed to −C2

F=4
achieve χ2=d:o:f: ∼ 0.7 for Nf ¼ 5 results and χ2=d:o:f: ∼
2.1 for Nf ¼ 4 results with μ ¼ μp, indicating that loga-
rithmic effects are not well-resolved for couplings in the
Nf ¼ 5 range but may be apparent for couplings in the
Nf ¼ 4 range. Similarly, NNLO corrections to the potential
should be approximately described by an Oðα4sÞ polyno-
mial with constant term −C2

F=4 and the same linear term as
arises at NLO. Fits of this form to the NNLO results
in Fig. 10 achieve χ2=d:o:f: ∼ 0.8 for Nf ¼ 5 results and
χ2=d:o:f: ∼ 2.0 for Nf ¼ 4 results with μ ¼ μp. Performing
analogous fits to results with μ ¼ 2μp leads to slightly
better goodness-of-fit for Nf ¼ 4 results with χ2=d:o:f: ∼ 1

and slightly worse goodness-of-fit with χ2=d:o:f: ∼ 2 for
Nf ¼ 5 results. On the other hand, identical fits to results
with μ ¼ μp=2 achieve similar goodness of fit for Nf ¼ 5

results, and unacceptably bad χ2=d:o:f: for NNLO results at
Nf ¼ 4. These results suggest that the choice μ ¼ μp is
effective at minimizing the size of logarithmic effects over
the range of mQ ∈ ½mc;mt� and in particular that large
logarithmic effects arise for mQ ∼mc and μ ¼ μp=2.
The same results for ΔEQQ̄=mQ=α2s at each order of

pNRQCD and with μ∈ fμp; 2μp; μp=2g are shown as
functions of mQ in Fig. 11. Large differences are visible
between LO and NLO results, with smaller but still
significant differences between NLO and NNLO results.
The (exact) LO result is independent of the renormalization

scale, ΔEðLOÞ
QQ̄ =mQ=α2s ¼ −C2

F=4. Nontrivial dependence

FIG. 10. Heavy quarkonium binding-energy results as functions
of αs (excluding points with Nf ¼ 5 and mq ¼ mc for clarity).

FIG. 11. Heavy quarkonium binding-energy results as func-
tions of mQ. Fitted GFMC results are shown as points with error
bars showing the statistical plus fitting systematic uncertainties
discussed in the main text. Shaded bands connect results with
renormalization scale choices μ∈ fμp; 2μp; μp=2g.
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on the renormalization scale enters at NLO. The depend-
ence on the renormalization scale is somewhat more

significant at NNLO, with a sharp increase in ΔEðNNLOÞ
QQ̄ =

mQ=α2s at small mQ arising with μ ¼ μp=2.
The relative sizes of differences in quarkonium binding

energies computed at different orders of pNRQCD are
shown in Fig. 12. Large differences of 40–70% are seen
between LO and NLO over the range of αs studied here.

Smaller but still significant differences of 20–50% are seen
between NLO and NNLO results. This suggests that the
perturbative expansion in αsðμpÞ does not converge rapidly
over the range of mQ studied here, and even for mQ ∼mt,
NLO and NNLO effects on the relation between ΔEQQ̄ and
mQ are still 40% and 20% of LO results respectively.
These results for ΔEQQ̄ do not provide physical pre-

dictions until mQ has been specified. The parameter mQ

appearing in the pNRQCD Lagrangian is a pole mass that
can be fixed once it is related to a known observable.
Perturbation theory generally leads to slowly converging
relations between pole mass definitions and physical
observables due to infrared renormalon ambiguities
[100,101]. Better convergence can be expected for pre-
dictions of relationships between physical observables
where renormalon effects cancel. We, therefore, use the
nonperturbative (in terms of treatment of the potential)
results for ΔEQQ̄ provided by the GFMC calculations
above to relate MQQ̄ and mQ at each order of pNRQCD.
In particular, we define mc and mb by the values of mQ for
which MQQ̄ agrees with experimental determinations of
the spin-averaged quarkonium mass combinations MQQ̄ ¼
3=4M

3S1
QQ̄ þM

1S0
QQ̄. An iterative tuning procedure is used to

determine mb, and mc in which fits to the GFMC results
above are used to provide initial guesses for the masses that
are then refined by performing additional GFMC calcu-
lations with the current best-fitmb andmc and then refitting
including these results. This is repeated until the procedure
has converged within our GFMC statistical uncertainties,
which leads to the values of mb and mc at each order of
pNRQCD shown in Table I. Large order-by-order shifts in
the values of mb and mc needed to reproduce experimental
quarkonium results are seen, as expected from the poor
perturbative convergence of relations between quark pole
masses and quarkonium masses. Analogous effects arise in
relations between quark pole masses and other hadron
masses. With mb and mc fixed to reproduce quarkonium
masses, further pNRQCD hadron mass predictions are
effectively relations between hadron masses that should

TABLE I. Spin-averaged 1S heavy quarkoniummasses computed in this work for cc̄ and bb̄ systems are compared
with experimental results. The errors quoted in the MQQ̄ column show combined statistical and fitting systematic
uncertainties (LO results are exact). The quark masses shown in the mQ column are tuned in order to achieve
agreement between calculated and measured masses. The quoted χ2=d:o:f: is a weighted average using the weights
in Eq. (112) of the individual χ2=d:o:f: from each fit to GFMC results performed as described in the main text.

1S mesons Order αsðμÞ mQ χ2=d:o:f. MQQ̄ Measured MQQ̄ [99]

ðJ=ψ ; ηcÞ LO (exact) 0.282678 1.56206 3.06865 3.06865(10)
ðJ=ψ ; ηcÞ NLO 0.313613 1.65413 1.1 3.0684(3) 3.06865(10)
ðJ=ψ ; ηcÞ NNLO 0.297100 1.77159 0.8 3.0690(4) 3.06865(10)
ðϒ; ηbÞ LO (exact) 0.214850 4.77041 9.44295 9.44295(90)
ðϒ; ηbÞ NLO 0.227325 4.86831 1.1 9.4430(5) 9.44295(90)
ðϒ; ηbÞ NNLO 0.222492 4.96974 1.2 9.4422(5) 9.44295(90)

FIG. 12. Relative differences between heavy quarkonium bind-
ing energies calculated at different orders of pNRQCD (excluding
points with Nf ¼ 5 and mq ¼ mc for clarity).
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have better convergence than the relations between the
individual hadron masses and the quark pole masses.

B. Triply heavy baryons

Results for triply heavy baryon-binding energies ΔEQQQ

over the same ranges of αs with Nf ¼ 4 and Nf ¼ 5 are
shown in Fig 13. The same results for ΔEQQQ=mQ=α2s at
each order of pNRQCD and with μ∈ fμp; 2μp; μp=2g are

shown as functions of mQ in Fig. 14. The order-by-order
differences in the relation between ΔEQQQ=mQ=α2s andmQ

are similar to the case of heavy quarkonium discussed
above. Although LO results are not exactly renormalization
scale independent for baryons, numerical results are found
to be scale independent to better than 0.1% precision.
Visible scale dependence appears at NLO, with slightly
large scale dependence appearing at NNLO.
The similarities between Figs. 11 and 14 suggest that

the large order-by-order shifts in the relations between the
pole mass mQ and both the quarkonium and baryon masses
are highly correlated and that predictions of the ratio of the
baryon and quarkonium binding energies as a function of
mQ have much better perturbative convergence than either
binding energy individually. This is confirmed by directly
calculating the perturbative differences of these ratios
shown in Fig. 15. Although both quarkonium and baryon
binding energies individually have 40–70% differences
between LO and NLO over the range of αs studied here,
the corresponding change in the ratio of baryon and meson
binding energies,

RQQQ ≡ ΔEQQQ

ΔEQQ̄
; ð131Þ

is 5–10%. Similarly, both quarkonium and baryon binding
energies have 20–50% differences between NNLO and
NLO, but RQQQ differences by only 3–8%.
It is further possible to separate the contributions to

ΔEQQQ arising from three-quark potentials from those
arising from quark-quark potentials only. The effects of
three-body potentials, which first arise at NNLO, are
isolated by performing GFMC calculations using only
the NNLO quark-quark potentials and taking the difference
with results obtained with three-quark potentials included.
The relative size of this difference is shown as a function of

FIG. 13. Triply heavy baryon-binding energy results as functions
of αs (excluding points with Nf ¼ 5 and mq ¼ mc for clarity).

FIG. 14. Triply heavy baryon-binding energy results as func-
tions of mQ with shaded bands connecting results with renorm-
alization scale choices μ∈ fμp; 2μp; μp=2g.
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αs in Fig. 16. Interestingly, including three-body potentials
leads to subpercent changes to NNLO heavy baryon
binding energies for αs ≲ 0.3, which is much smaller than
the overall difference between NLO and NNLO binding

energies. Still, three-body potential effects of around
0.25–1% of NNLO binding energy results are well-
resolved from zero and seen to lower baryon masses in
comparison with results obtained using only quark-quark
potentials, as expected since the color-antisymmetric three-
quark potential is attractive.
The binding-energy ratio RQQQ results are shown in

Fig. 17. It is clear that RQQQ is approximately independent
of mQ over the entire range of quark masses studied here.
At LO, constant fits to GFMC results with Nf ¼ 5 and
μ ¼ μp give

RðLOÞ
QQQ ≈ 1.0717ð1Þ; ð132Þ

with χ2=d:o:f: ¼ 1.6 with consistent results obtained for
other choices of μ and for Nf ¼ 4. Beyond LO, mild mQ

dependence can be resolved in RQQQ that can be described
by an OðαsÞ linear correction. At NLO, a linear fit to
GMFC results with Nf ¼ 5 and μ ¼ μp gives

RðNLOÞ
QQQ ≈ 1.114ð3Þ þ 0.33ð2Þαs; ð133Þ

with χ2=d:o:f: ¼ 1.0. Results with other choices of μ lead
to consistent constant terms withOðαsÞ terms ranging from
0.31–0.4. Fits to Nf ¼ 4 results are consistent with Nf ¼ 5

results but have larger uncertainties and somewhat worse
χ2=d:o:f: ∼ 2. At NNLO, an analogous linear fit to Nf ¼ 5

results with μ ¼ μp gives

RðNNLOÞ
QQQ ≈ 1.116ð2Þ þ 0.60ð2Þαs; ð134Þ

with χ2=d:o:f: ¼ 1.4. Other NNLO results are generally
described similarly or slightly worse by linear fits.
However, NNLO results with Nf ¼ 4 and μ ¼ μp=2 show

FIG. 16. Relative differences between triply heavy baryon-
binding energies calculated using NNLO two-quark potentials
only and full NNLO results including both two- and three-quark
potentials.

FIG. 17. Ratios of triply heavy baryon and heavy quar-
konium binding-energy results as functions of mQ with shaded
bands connecting results with renormalization scale choices
μ∈ fμp; 2μp; μp=2g.

FIG. 15. Relative differences between triply heavy baryon
binding energies calculated at different orders of pNRQCD
(excluding points with Nf ¼ 5 and mq ¼ mc for clarity).
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nonlinear features for small mQ in Fig. 17 that are not
accurately described by an OðαsÞ polynomial, which is not
surprising because the corresponding results for ΔEQQ̄

and ΔEQQQ show evidence for significant non-Coulombic
effects at small mQ.
These pNRQCD results can be compared with general

constraints from QCD inequalities. The Weingarten
inequality, MN ≥ mπ [102], was extended by Detmold to
MN ≥ 3=2mπ [103] by showing that all maximal isospin
multimeson interactions are repulsive or vanishing at
threshold and do not lead to bound states. The same
arguments apply for QQ̄ multimeson states if quark-
antiquark annihilation is neglected because identical pat-
terns of quark contractions arise in this case as for ud̄. Since
neglecting QQ̄ annihilation is a valid approximation for
heavy quarks up to Oð1=m2

QÞ [52], the corresponding
heavy-quark meson and baryon mass inequality is

MQQQ ≥
3

2
MQQ̄ þOð1=m2

QÞ: ð135Þ

These bounds can be directly compared with the pNRQCD
results obtained here. Comparisons can also be made at the
level of the meson and baryon binding energies, since

MQQQ

MQQ̄
¼ 3mQ þ ΔEQQQ

2mQ þ ΔEQQ̄
≥
3

2
; ð136Þ

leads after multiplying by MQQ̄ to

ΔEQQQ

ΔEQQ̄
≤
3

2
; ð137Þ

where MQQ̄ > 0 and ΔEQQ̄ < 0 have been assumed when
forming ratios and Oð1=m2

QÞ effects have been neglected.

Note that Eq. (136) is necessarily saturated as mQ → ∞,
where αs at scales proportional to mQ vanishes and there-
foreMQQQ→3mQ,MQQ̄→2mQ, andMQQQ=MQQ̄ → 3=2.
However, the lack of saturation of Eq. (137) for arbitrary
mQ implies that the saturation of Eq. (136) is only
logarithmic as mQ → ∞. Equations (132)–(134) show that
ΔEQQQ=ΔEQQ̄ is predicted to be 72–74% of the way to
saturating the Detmold inequality at LO-NNLO in
pNRQCD, demonstrating that in the mQ → ∞ limit bary-
ons in QCD are almost but not entirely as bound as is
allowed by the positivity of the QCD path integral measure.
Precise pNRQCD predictions for ccc, ccb, bbc, and bbb

baryon masses can be made using the values of mc and mb
tuned to reproduce Mcc̄ and Mbb̄ and given in Table I.
Due to the exchange symmetry of the Coulomb trial wave
functions used here, ∇2

IΨTðr1; r2; r3Þ is independent of a.
The correct kinetic energy operator for bbc baryons is
therefore obtained by considering three equal-mass quarks
with mass equal to

mbbc ¼
3

2

�
1

2mb
þ 1

mc

�
−1

¼ 3mbmc

2mb þmc
: ð138Þ

An analogous ccb reduced mass mccb is obtained by
taking b ↔ c in Eq. (138). Corresponding renormalization
scales are defined as usual and for example μbbc ¼
4αsðμbbcÞmbbc. GFMC results for triply heavy baryon
masses using mQ ∈ fmc;mccb; mbbc; mbbbg therefore lead
to pNRQCD predictions for Ωccc, Ωccb, Ωbbc, and Ωbbb
baryon masses shown in Table II. These pNRQCD pre-
dictions are compared with LQCD results [96,97,104,105]
for these baryon masses and found to underpredict LQCD
by about 200 MeV at LO and 100 MeV at NNLO for
all baryon masses considered. The differences between
NNLO and NLO results are significantly smaller than those

TABLE II. Comparison of the triply heavy baryon mass results obtained here with results from other pNRQCD and LQCD
calculations. All masses are given in GeVand obtained using αs andmQ from Table I and the χ2=d:o:f: correspond to weighted averages
analogous to the quarkonium results.

Baryon This work: MQQQ This work: χ2=d:o:f: Variational methods (MQQQ) Lattice QCD (MQQQ)

Ωccc LO: 4.62670(2) LO: 1.0 LO: 4.76(6) [61] 4.796(8)(18) [97]
NLO: 4.6718(7) NLO: 1.4 NNLOþmNLO: 4.97(20) [62]
NNLO: 4.7070(9) NNLO: 0.9

Ωccb LO: 7.81522(2) LO: 1.5 LO: 7.98(7) [61] 8.007(9)(20) [97]
NLO: 7.8667(6) NLO: 1.1 NNLOþmNLO: 8.20(15) [62] 8.005(6)(11) [104]
NNLO: 7.919(1) NNLO: 1.0

Ωcbb LO: 11.03593(2) LO: 1.3 LO: 11.48(12) [61] 11.195(8)(20) [97]
NLO: 11.0957(8) NLO: 1.1 NNLOþmNLO: 11.34(26) [62] 11.194(5)(12) [104]
NNLO: 11.116(1) NNLO: 1.0

Ωbbb LO: 14.20641(3) LO: 1.2 LO: 14.76(18) [61] 14.371(4)(12) [96]
NLO: 14.2573(7) NLO: 1.4 NNLOþmNLO: 14.57(25) [62] 14.366(9)(20) [97]
NNLO: 14.287(1) NNLO: 1.4 14.366(7)(9) [105]
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between NLO and LO results, suggesting good conver-
gence for the αs expansion of the pNRQCD potential. The
remaining differences between NNLO and LQCD results
likely arise primarily from the 1=mQ effects neglected
in this work. In particular, the calculations of Ωbbb in
Refs. [96,97,105] employ lattice NRQCD actions with
Oð1=m2

QÞ terms included, and therefore the differences
in Ωbbb mass predictions must arise from Oð1=mQÞ,
Oð1=m2

QÞ, and higher-order αs corrections. Relative
differences between pNRQCD and LQCD baryon mass
predictions decrease with increasing quark mass as roughly
1=mQ and at NNLO ranges from 2% for the Ωccc to 0.7%
for the Ωbbb. It is noteworthy that our GFMC pNRQCD
predictions have 10-100 times smaller statistical uncertain-
ties than LQCD results with both relativistic and NR quark
actions; however, it is clear that systematic uncertainties
from neglected effects in the pNRQCD potential are much
larger than statistical uncertainties in either case and require
the inclusion of 1=mQ effects to be reduced.
A further measure of the size of systematic uncertainties

arising from perturbative truncation effects is provided by
comparing predictions for heavy baryon and meson masses
with different choices of μ∈ fμp; 2μp; μp=2g. As seen in
Fig. 18, the perturbative convergence of MQQQ=MQQ̄ as a
function of MQQ̄ is better than the convergence of either
mass individually, and differences between different scales
are reduced. However, significant μ dependence arises at
NNLO for mQ ∼mc due to the nonlinear dependence of
both MQQ̄ and MQQQ on αs for μ ¼ μp=2 with relatively
small mQ. Since mQ does not enter this comparison, it is
straightforward to compare to LQCD results, and the
differences between NNLO pNRQCD results and LQCD
results are seen to be comparable to the differences between
pNRQCD results with different μ choices. Both pNRQCD
and LQCD results obey Eq. (136).

VI. DARK HADRONS

Inspired by the stability of the proton, a dark sector
with non-Abelian gauge interactions can give rise to a
stable, neutral dark matter candidate—the dark baryon—as
reviewed in Refs. [43,44,48,49]. A simple UV-complete
model of dark baryons is a hidden SUðNcÞ dark sector with
Nc dark colors. If one includes dark quarks, then a dark
QCD sector, charged under SUðNcÞ or GSM × SUðNcÞ
with nd dark flavors arises. The pure hidden-sector
Lagrangian is then given by

LD ¼ −
1

2
TrG2

μν þ
Xnd
i¼1

Qi
d½i=Dþmi

d�Qi
d ð139Þ

with masses mi
d and coupling αd ¼ g2d=ð4πÞ, dark gauge

fields Ad and dark fermions, Qi
d, and D

μ ¼ ∂
μ − igdA

μ;a
d Ta.

A global Uð1Þ symmetry leads to a conserved dark baryon

number and, therefore, the stability of dark baryons,
denoted Bd below. A dark composite sector also arises
naturally for BSM extensions in which the Higgs boson is
composite [106,107].
As in QCD, at renormalization scales μ well above the

dark confinement scale, μ ≫ Λd, the perturbative relation,

ΛðLOÞ
d ¼ μ exp

�
−

2π

βdαdðμÞ
�
; ð140Þ

defines the relationship between αd and Λd at the lowest
order, where βd is the one-loop dQCD beta function,
with analogous expressions arising at higher order [98].
For nd ≪ 4Nc the theory is confining. Below we consider
nd ¼ 1 for simplicity and denote the dark quark mass as
md. In the regime md ≫ Λd, the pNRQCD formalism and
numerical methods discussed above can be used to make
reliable perturbative predictions for the masses, lifetimes,

FIG. 18. The top panel shows triply heavy baryon masses
MQQQ as functions of MQQ̄ with renormalization scale choices
μ∈ fμp; 2μp; μp=2g. The bottom panel shows the ratio
MQQQ=MQQ̄ analogously. The LQCD results of Ref. [97] calcu-
lated using NRQCD including Oð1=m2

QÞ effects are shown for
comparison as red points with error bands showing total statistical
plus systematic uncertainties. Experimental results for MN=mπ

are also shown for reference on the top panel as a purple triangle.
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and other properties of hidden-sector composite particles
referred to as dark hadrons below.
One can further weakly couple the dark sector to the

visible sector in various ways, leading to direct detection
signatures [31,108,109]. If dark sector quarks are
changed under parts of the SM, production, and decay
of dark quarks can result in striking collider phenom-
enology [110–112]. If md ∼

ffiffiffi
s

p
, dark fermions are fre-

quently produced via Drell-Yan and other SM processes. If
the dark quark mass is much larger than the dark confine-
ment scale,md ≫ Λd, the dark color strings do not fragment,
and the dark fermions are bound by a dark color string for
macroscopic distances. This results in exotic tracks, depen-
dent on the SM charges of the dark fermions, which are
unique and not producible by the SM alone [110,111].
Searches for such long-lived particles have been rapidly
increasing at the LHC and beyond [113,114].
Lattice gauge theory calculations have been performed

for dQCD models with several choices of Nc: SUð2Þ
[32,35,115–117], SUð3Þ [36], SUð4Þ [37], and higher
Nc [48,118–120], as well as other gauge groups including
SOðNcÞ and SpðNcÞ [34,121]. The primary challenge for
using lattice gauge theory to explore dQCD is that there
is a vast space of possibilities to explore depending on the
gauge group and matter content [44]. The utility of
pNRQCD is that precise results can be obtained quickly
with very modest computational resources, which enables
scans over wide ranges of parameters such as md and Nc.
The major downside of pNRQCD is its restriction to
theories with dark quark masses md ≫ Λd; however, there
are phenomenologically viable dQCD models of DM that
land firmly in this regime [45,50,51].
Models of composite DM with md ≪ Λd and models

with md ≫ Λd have distinct phenomenological features.
In the regime md ≪ Λd, if one assumes that all BdBd
annihilation channels scale simply with the dark baryon
mass MBd

as σv ∼ 100=m2
Bd
, then matching to thermal

freeze-out cross section [122,123], requires cross sections
nearly as strong as allowed by unitarity and mBd

∼
200 TeV [124–126]. In the heavy dark-quark mass regime
md ≫ Λd, thermal freezeout occurs before the confinement
transition in the dark sector. The confinement transition’s
subsequent dynamics involve trapping dark quarks inside
pockets of the deconfined phase that significantly reduce
the resulting DM relic abundance [50]. Studies of the
dynamics of this phase transition for the case of Nc ¼ 3
show that the correct relic abundance for dark baryons to
account for all of DM can be achieved with md=Λd ∈
½100; 104� and in particularmd ∈ ½1; 100� PeV [50,51]. This
motivates more detailed studies of the dynamics and
possible detection signatures of SUðNcÞ composite DM
with md ≫ Λd.
Dark baryon masses,MBd

, and dark meson masses,MΠd
,

can be calculated for generic SUðNcÞ gauge theories in the
md ≫ Λd regime using GFMC calculations of pNRQCD

that are entirely analogous to the SUð3Þ calculations above.
These results can be used to relate these dark hadron
observables to the dark-sector Lagrangian’s fundamental
parameters, particularly md and αd. Since the relation
between the pole mass md appearing in the pNRQCD
Hamiltonian and observables such as hadron masses do not
show good convergence in αd as discussed for the QCD
case above, these relations can then be used to replace
dependence on md with dependence on MΠd

in other dark
hadron quantities and enable better-converging predictions
relating different dark-sector observables. Dependence on
αd can similarly be exchanged with dependence on Λd
using Eq. (140) and its higher-order analogs. In particular,
perturbative expansions for meson and baryon masses as
functions of Nc and αd obtained by fitting to GFMC results
are used below to predict the ratios of dark baryon and
meson masses for SUðNcÞ dark sectors as a function of Nc
and MΠd

=Λd below. Other observables, such as the dark-
sector matching coefficients relating Nc and MΠd

=Λd

to interaction rates in dark matter direct detection experi-
ments [127–131], can be studied in future pNRQCD
calculations of dark-baryon matrix elements using the
optimized wave functions obtained here.

A. Dark mesons

The dark meson binding energy ΔEΠd
and mass MΠd

¼
2md þ ΔEΠd

can be calculated as functions of md=Λd by
applying GFMC methods to the pNRQCD Hamiltonian
with the appropriate value of Nc and the corresponding
zero-flavor strong-coupling αd. As above, calculations
are performed for renormalization scales μd ≡ 4mdαsðμdÞ
as well as scales μd=2 and 2μd in order to study scale
dependence. We considered a wide range of dark
quark masses md=Λd ∈ f2; 4; 8; 16; 32; 64; 128; 256g for
Nc ∈ f3; 4; 5; 6g. Our GFMC calculations used6 δτ ≤
0.8mQ and Nτδτ ≥ 2=α2d with statistical ensembles of size
Nwalkers ¼ 5, 000. The results for ΔEΠd

with are shown as
functions of md=Λd for each Nc ∈ f3;…; 6g in Fig. 19.
Similar qualitative features arise as in the QCD results for
ΔEQQ̄: significant scale dependence arises beyond LO,
large order-by-order changes in dependence on md=Λd are
apparent, and for the smallestmd=Λd considered the results
with μ ¼ μd=2 begin to show significant curvature arising
from logarithmic effects in the potential.
Although precise predictions for dark hadron observ-

ables with md ≫ Λd require pNRQCD calculations with
particular choices of md=Λd, phenomenological estimates
of the dependence of dark-sector observables on md=Λd
can be made more conveniently using analytic parametri-
zations that have been fit to pNRQCD results over
the relevant range of md=Λd. To provide such a

6These bounds were saturated except that δτ ¼ 0.4mQ was
used for Nc ∈ f3; 4g and Nτδτ ¼ 4=α2d was used for Nc ¼ 3.
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parametrization, we perform fits to power series expansions
in αd and 1=Nc of these GFMC results for ΔEΠd

=md=α2d.
At LO, the exact result

ΔEðLOÞ
Πd

¼ −
C2
F

4
mdα

2
d; ð141Þ

can be cast into this form by dividing by N2
c to remove the

leading large-Nc dependence of CF,

ΔEðLOÞ
Πd

mdα
2
dN

2
c
¼ C2

F

4N2
c
¼ 0.0625 −

0.0125
N2

c
þ 0.0625

N4
c

: ð142Þ

At NLO, OðαdÞ corrections can be expected to lead to
OðαdÞ and Oðα2dÞ corrections to binding energies for
an approximately Coulombic potential and we adopt the
power series ansatz,

ΔEðNLOÞ
Πd

mdα
2
dN

2
c
≈ −

C2
F

4N2
c
− αdA

ðNLO;1Þ
Πd

− α2dA
ðNLO;2Þ
Πd

: ð143Þ

The coefficients AðNLO;1Þ and AðNLO;2Þ can be further
expanded as power series in 1=Nc that are truncated to
include at most three terms since calculations are only
performed for four values of Nc. Fits to GFMC results are
performed using χ2-minimzation with results with all
md=Λd for Nc ¼ 3 and all md=Λd ≥ 4 for Nc ∈ f4; 5; 6g,
which corresponds to a total of 25 points. Fit parameter
uncertainties are determined using bootstrap resampling
methods. The Akaike information criterion [132] (AIC) is
used to determine whether one, two, or three terms are
included in the 1=Nc expansion for each coefficient. This
leads to the results

AðNLO;1Þ
Πd

≈ 1.1801ð23Þ − 3.051ð25Þ
Nc

þ 2.59ð4Þ
N2

c
;

AðNLO;2Þ
Πd

≈ 0.487ð6Þ − 0.721ð18Þ
Nc

; ð144Þ

with χ2=d:o:f: ¼ 1.3.

FIG. 19. Dark meson binding-energy results as functions of md=Λd with shaded bands connecting results with renormalization scale
choices μ∈ fμd; 2μd; μd=2g and SUðNcÞ gauge groups with Nc ∈ f3;…; 6g as indicated.
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Analogous fits can be performed at NNLO using a series
expansion, including two additional orders in αd,

ΔEðNNLOÞ
Πd

mdα
2
dN

2
c
≈ −

C2
F

4N2
c
− αdA

ðNLO;1Þ
Πd

− α2dA
ðNNLO;2Þ
Πd

− α3dA
ðNNLO;3Þ
Πd

− α4dA
ðNNLO;4Þ
Πd

: ð145Þ

The constant and OðαdÞ terms should be unaffected by
NNLO corrections to the potential, and we, therefore, fix
these terms to their lower order values as indicated in
Eq. (145). It is not possible to obtain a fit with χ2=d:o:f: ∼ 1

using Oð1=N3
cÞ power series expansions, and in particular

an Oð1=N4
cÞ term in AðNNLO;2Þ

Πd
is required to achieve

χ2=d:o:f:≲ 2. Since such a term would lead to interpolation
rather than fitting of 1=Nc dependence, we do not include
such a term and take this to indicate that a simple power
series ansatz is not able to describe the Nc dependence

of ΔEðNNLOÞ
Πd

in pNQRCD to the level of precision of our
GFMC results. We therefore multiply our GFMC uncer-

tainties on ΔEðNNLOÞ
Πd

by a factor of 5 so that the best

Oð1=N3
cÞ fit for AðNNLO;2Þ

Πd
obtains a χ2=d:o:f: ∼ 1. This fit

corresponds to

AðNNLO;2Þ
Πd

≈ 25.5ð3Þ − 126ð2Þ
Nc

þ 178ð6Þ
N2

c
;

AðNNLO;3Þ
Πd

≈ 13.6ð8Þ − 32ð9Þ
Nc

;

AðNNLO;4Þ
Πd

≈ −1ð5Þ: ð146Þ

Comparisons of GFMC results with these fit results for
each order are shown in Fig. 20.
The Nc scaling behavior of meson masses has previously

been studied using LQCD in Refs. [120,133]. However,
without computing the relationship between either Λd or the
pole mass md used here and another dimensionful observ-
able such as the pion decay constant, it is not possible to
compare results for MΠd

=Λd or MΠd
=md directly with the

LQCD results of these works. Such comparisons are there-
fore deferred to future studies, including dark meson matrix-
element calculations in pNRQCD.

B. Dark baryons

Dark baryon binding energies ΔEBd
and massesMBd

are
computed by applying GFMC methods to SUðNcÞ baryon
states with the pNRQCD Hamiltonian at LO, NLO, and
NNLO with the same range of masses md=Λd ∈ ½2; 256�
and Nc ∈ ½3; 6� as in the dark meson case discussed above.
The trial wave functions described in Sec. IV are found to
provide suitable initial states for GFMC evolution using the
same relation between the Bohr radius and αd as the QCD
case shown in Eq. (129). Excited-state effects are found to

increase only mildly with Nc using this prescription.
Results for ΔEBd

obtained from single-state fits as
described above are shown for each Nc as functions of
md=Λd in Fig. 21.

FIG. 20. Dark meson binding-energy GFMC results as func-
tions of md=Λd wth μ ¼ μd and Nc ∈ f3;…; 6g are shown in
comparison with the power series fit results described in the
main text.
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As in the dark meson case above, we can analytically
parametrize our GFMC dark baryon binding-energy
results as a power series in αd and 1=Nc [134,135].
These power series expressions cannot capture the com-
plete nonanalytical structure of pNRQCD, but they can
provide convenient estimates and accurately describe our
pNRQCD results to a relatively high level of precision
over the range of quark masses, and Nc studied. At LO, it
is sufficient to parametrize ΔEBd

=md=α2d as a constant that
only depends on Nc,

ΔEðLOÞ
Bd

mdα
2
dN

4
c
≈ −AðLO;0Þ

Bd
ðNcÞ: ð147Þ

The factor of 1=N4
c is included to ensure that the result is

finite as Nc → ∞ and the following (naive) argument for
the scaling of the binding energy with Nc; the quark-quark
potential is proportional to CF=ðNc − 1Þ ∼ N0

c and the
total potential, therefore, scales as

P
I<J ∼N2

c. Since the

binding energy for a Coulombic system is proportional to
the square of the prefactor of 1=r in the potential, it can
therefore be expected to scale as N4

c. However, fits to a
constant plus Oð1=NcÞ and/or Oð1=N2

cÞ corrections lead
to a vanishing constant term at LO. Including two addi-
tional powers of 1=Nc and fitting to the same set of 25
GFMC results with varying md=Λd and Nc as in the dark
meson case using the same χ2-minimization and boot-
strap-resampling techniques leads to

AðLO;0Þ
Bd

≈
0.0132814ð16Þ

Nc
þ 0.020772ð34Þ

N2
c

−
0.02307ð5Þ

N3
c

; ð148Þ

with a χ2=d:o:f: ¼ 1.4. This observed scaling ΔEBd
=md ∼

α2dN
3
c is consistent with Witten’s large-Nc arguments in

Ref. [136]. Since the strong coupling is taken to scale as

FIG. 21. Dark baryon binding-energy results as functions of md=Λd with shaded bands connecting results with renormalization scale
choices μ∈ fμd; 2μd; μd=2g and SUðNcÞ gauge groups with Nc ∈ f3;…; 6g as indicated.
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αd ∼ 1=Nc [134] this leads to the usual result that
ΔEBd

=md ∼ Nc while ΔEΠd
=md ∼ N0

c.
At NLO, an Oðα2dÞ power series analogous to the one

used in the dark meson case is given by

ΔEðNLOÞ
Bd

mdα
2
dN

4
c
≈ −AðLO;0Þ

Bd
− αdA

ðNLO;1Þ
Bd

− α2dA
ðNLO;2Þ
Bd

; ð149Þ

where AðLO;0Þ
Bd

is fixed to it’s LO value. Expanding
the OðαdÞ term to Oð1=N2

cÞ and the Oðα2dÞ term to
Oð1=NcÞ gives

AðNLO;1Þ
Bd

≈ 0.01917ð10Þ þ 0.2073ð8Þ
Nc

−
0.24181ð5Þ

N2
c

;

AðNLO;2Þ
Bd

≈ 0.0456ð6Þ þ 0.002ð1Þ
Nc

; ð150Þ

where GFMC uncertainties have been inflated by a factor of
two before fitting in order to obtain a χ2=d:o:f: ∼ 1 since, as
in the NNLO dark meson case, deviations from a simple
power series ansatz can be seen at the high level of
precision of our GFMC results. In this case N4

c scaling
is observed for fixed αd; however, since αd ∼ 1=Nc in the
large Nc scaling of Ref. [136] the expected scaling
ΔEBd

=md ∼ α2dN
3
c ∼ Nc is reproduced by pNRQCD at

NLO. The same arguments apply at higher orders since
further powers of αd contribute additional powers of 1=Nc
and are, therefore, further subleading corrections in the
large Nc limit.
At NNLO, an analogous power series expansion to the

dark meson case is used,

ΔEðNNLOÞ
Bd

mdα
2
dN

4
c
≈ −AðLO;0Þ

Bd
− αdA

ðNLO;1Þ
Bd

− α2dA
ðNNLO;2Þ
Bd

− α3dA
ðNNLO;3Þ
Bd

− α4dA
ðNNLO;4Þ
Bd

; ð151Þ

and fits to our GFMC results give

AðNNLO;2Þ
Bd

≈ 0.985ð4Þ − 2.35ð3Þ
Nc

þ 2.41ð10Þ
N2

c
;

AðNNLO;3Þ
Bd

≈ 1.34ð2Þ − 1.34ð17Þ
Nc

;

AðNNLO;4Þ
Bd

≈ −1.00ð8Þ; ð152Þ

where uncertainties have again been inflated by a factor of
two to achieve χ2=d:o:f: ∼ 1. Comparisons of these power
series fit results with GFMC results forNc ∈ f3;…; 6g dark
baryon masses at each perturbative order are shown
in Fig. 22.
The ratio MBd

=MΠd
is shown as a function of MΠd

=Λd

for GFMC results in Fig. 23 and compared with power

series fits in Fig. 24. To obtain hadron mass ratios as
functions of MΠd

=Λd, the functions MΠd
ðmdÞ ¼ mdð2 −

α2dC
2
F=4 −…Þ defined at NLO and NNLO by the series

expansions in Eqs. (143) and (145), which implicitly

FIG. 22. Dark baryon binding-energy GFMC results as
functions of md=Λd with μ ¼ μd and Nc ∈ f3;…; 6g are shown
in comparison with the power-series fit results described in the
main text.
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depend on md through αdðμ ¼ 4αdmdÞ, are inverted
numerically to obtain mdðMΠd

Þ and subsequently
αdðμ ¼ 4αdmdðMΠd

ÞÞ at each order. The md and αd
determined in this way can be inserted in Eqs. (147)–(151)
to obtain MBd

ðMΠd
Þ. These results have the advantage of

only depending on dark hadron masses and the MS Landau
pole scale Λd and are free from ambiguities in the scheme
used to define md, apart from the renormalization scale
dependence arising in fixed-order results from perturbative
truncation effects.
These results can be compared with generalizations

of the QCD inequalities discussed in Sec. V B. The proof
in Ref. [103] that there are no multimeson bound states
with maximal isospin is valid for SUðNcÞ gauge theory
with generic Nc, and if 1=m2

Q effects are neglected
are valid for heavy-quark hadrons in SUðNcÞ gauge
theory with generic Nf. By the arguments in Sec. 10
of Ref. [137], this is sufficient to establish that meson and
baryon masses in SUðNcÞ gauge theory satisfy the
inequality

MBd
≥
Nc

2
MΠd

: ð153Þ

This bound holds for the lightest meson and baryon con-
structed from quarks of a given flavor and, therefore, to
generic SUðNcÞ dark sectors. As discussed after Eq. (136),
this leads to an equivalent bound on binding energies

ΔEBd
≥
Nc

2
ΔEΠd

: ð154Þ

Both Eqs. (153) and (154) are respected by all GFMC results
of this work where Λd=md corrections are expected to be
perturbative,7 as seen in Fig. 24. It is noteworthy that

FIG. 23. Ratios of dark baryon and meson masses as functions of the dark meson mass with shaded bands connecting results with
renormalization scale choices μ∈ fμd; 2μd; μd=2g and SUðNcÞ gauge groups with Nc ∈ f3;…; 6g as indicated.

7For sufficiently small md=Λd, corrections to the static
potential considered here from effects suppressed by 1=mQ will
be significant and pNRQCD results using only the static potential
may not satisfy general features of the QCD. Indeed, our
pNRQCD results with Nc ¼ 6, md=Λd ¼ 8, and μ ¼ μp=2
predict ΔEQQ̄ < −2mQ and therefore lead to unphysical pre-
dictions of negative meson masses as well as unphysical
violations of Eqs. (153) and (154).
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pNRQCD results approximately saturate Eq. (153) with
MBd

=MΠd
=ðNc=2Þ within 5% of unity for md=Λd ≳ 5 for

Nc ∈ f3;…; 6g. As in the QCD case discussed above,
ΔEBd

=ΔEΠd
is approximately independent of md and

Eq. (154) is not saturated in themd → ∞ limit, which means

thatMBd
=MΠd

approachesNc=2 logarithmically asmd → ∞.
The degree towhich Eq. (153) is saturated for a givenmd=Λd
is further seen todecreasewith increasingNc. This behavior is
unsurprising because for Nc ¼ 2 meson and baryon masses
areguaranteed to be identical and therefore saturate Eq. (153),
while saturation is not exact for Nc ¼ 3.
In the large Nc limit, the NLO and NNLO results above

provide subleading corrections, and the LO result above
simplifies to

MBd
¼ Ncmdð1 − 0.0132814ð16Þα2dN2

cÞ þO
�

1

Nc

�
:

ð155Þ

An analogous formula was derived using mean-field results
in the joint large quark mass and large Nc limit in
Ref. [138]. Identical scaling with quark mass, strong
coupling, and Nc is obtained here and in Ref. [138];
however, the numerical value of the coefficient obtained
there is 0.05426, which is larger than our result by roughly
a factor of four. The corresponding LO meson result is
known analytically,

Mπd ¼ 2md

�
1 −

C2
F

8
α2d

�
þO

�
1

Nc

�
; ð156Þ

and so the SUðNcÞ heavy-quark Detmold bound implies
that the numerical coefficient in Eq. (155) must be smaller
in magnitude than C2

F=ð8N2
cÞ ¼ 0.03125þOð1=NcÞ. This

bound is satisfied by Eq. (155) but not by the results of
Ref. [138], which indicates that the discrepancy must arise
from uncertainties in the mean-field approach used there.
The large-Nc behavior of baryon masses has also

been studied in lattice gauge theory calculations
[37,118–120,139,140]. The baryon-to-meson mass ratio
provides a well-defined dimensionless observable that can
be matched to lattice gauge theory results for each Nc,
allowing us to select the mq=Λd that reproduces lattice
gauge theory results with any particular quark mass.
However, other observables must be calculated to make
nontrivial predictions to compare with SUðNcÞ lattice
gauge theory, which is left to future work.

VII. OUTLOOK

We have presented a formulation of pNRQCD suit-
able for calculating binding energies and matrix ele-
ments of generic hadron and multihadron states made of
heavy quarks in SUðNcÞ gauge theory using quantum
Monte Carlo techniques. The complete two- and three-
quark potentials required for generic multihadron systems
are constructed up to NNLO in the strong coupling. The
appearance of four-quark potentials arising at NNLO is
pointed out, and a complete construction of these potentials
should be pursued in future work.

FIG. 24. Ratios of dark baryon and meson masses as functions
of the dark meson mass with Nc ∈ f3;…; 6g computed using
μ ¼ μd are shown in comparison with the power series fit results
described in the main text.
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We further employed VMC and GFMC to compute
quarkonium and triply heavy baryon binding energies in
pNRQCD at Oðm0

QÞ. Precise results are obtained with
modest computational resources, but we underpredict the
baryon masses computed using LQCD by 1–2% for all
baryons comprised of b and c quarks. Differences between
perturbative orders demonstrate good convergence for the
αs expansion of the pNRQCD potential. The remaining
differences between NNLO and LQCD results likely arise
primarily from 1=mQ and 1=m2

Q effects in the pNRQCD
potential that are neglected in this work. Extending this
work by incorporating spin-dependent potentials and
determining suitable trial wave functions with these poten-
tials included will be an essential step toward improving
the predictive power of this framework. It will also be
interesting to extend these studies towards heavy exotics
such as tetraquarks and multibaryon systems, as well as
quarkonium and baryon excited states.
Applying quantum Monte Carlo methods to pNRQCD

may be particularly useful for studies of composite dark
matter. A SUðNcÞ dark sector with one heavy dark quark
provides a simple, UV-complete, phenomenological viable
model of composite DM [50,51]. QMC calculations using

pNRQCD can provide computationally simple predictions
for composite DM observables that enable efficient scan-
ning over a wide range of mass scales. This is particularly
useful in the composite DM context, where the underlying
theory’s actual parameters are not yet known. The works
provide pNRQCD results and simple analytic parametriza-
tions of the dark meson and dark baryon masses in SUðNcÞ
gauge theory as functions of Nc and the dark sector
parameters md and Λd. The properties and interactions
of these dark hadrons should be studied in future applica-
tions of QMC to pNRQCD.
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