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In this paper, we investigate the time-dependent angular analysis of B0
s → ϕϕ decay to search for new

physics signals via CP-violating observables. We work with a new physics Hamiltonian containing both
left- and right-handed chromomagnetic dipole operators. The hierarchy of the helicity amplitudes in this
model gives us a new scheme of experimental search, which is different from the ones LHCb has used in its
analysis. To illustrate this new scheme, we perform a sensitivity study using two pseudo datasets generated
using LHCb’s measured values. We find the sensitivity of CP-violating observables to be of the order of
5–7% with the current LHCb statistics. In addition, we present a revised version of the table of coefficients
of time-dependent terms in the angular decay distribution with precisely defined quantities. Moreover, we
show that Belle(II)’s B0

d → ϕKs and LHCb’s B0
s → ϕϕ measurements could be coupled within our model

to obtain the chirality of the new physics.

DOI: 10.1103/PhysRevD.108.096002

I. INTRODUCTION

Currently, the only confirmed source of CP violation is
the Kobayashi-Maskawa (KM) phase present in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2], which
arises when we move the quarks from flavor to mass
eigenstate in the Standard Model (SM). However, we
expect to find more sources of CP violation owing to the
observed matter-antimatter asymmetry in the Universe [3].
Thus, it is imperative to look for CP-violating observables,
especially those which are very small or zero in the SM,
because if they deviate even slightly from zero (which can
be checked by a null test), it would not just be a discovery
of a new source of CP violation, but also be a smoking-gun
signal of new physics (NP).
In this article, we study the B0

s → ϕϕ decay [where
ϕð1020Þ is implied throughout this paper], which is a
B → VV-type pure penguin process. B → VV type proc-
esses have been extensively studied in the literature [4–18].
The presence of penguin quantum loop makes it an
excellent probe to search for new heavy particles and
being a purely penguin-type decay keeps it free from tree-
penguin interference contamination, making it a clean
observable to search for NP [16–18]. The object of interest
is going to be the phase in the interference of the direct

decay of B0
s mesons and decay via mixing of B0

s − B̄0
s to CP

eigenstates, which is a CP-violating parameter. This phase
is expected to be very small in SM ½−2βs ≈Oðλ2Þ�. In
this paper, we will be presenting a new scheme for the
interference phases of different helicities within the frame-
work of our chosen model of study, which is constructed by
adding the chromomagnetic dipole operator (and its chir-
ally flipped counterpart) to our Hamiltonian.
The objective of this article is threefold. The first is to

show the power of angular decay distribution; it can help
segregate the final state when it is a mixture of different
helicities. Combining it with a P → VV-type decay
(P-pseudoscalar particle and V-vector particle) gives us
access to three (helicity) amplitudes instead of one,
meaning we can go beyond the assumption of helicity-
independent phases to probe three CP-violating phases,
and possibly three new indicators of NP.
Secondly, we present a new scheme for the interference

phases, based on the hierarchy of helicity amplitudes
arising in our model, which is different from the ones
LHCb used in its fits [19]. We also note the fact that
LHCb’s objective is to do a null test of the interference
phase, without any regard to its origin (decay or mixing).
However, we specifically assume that the weak phase is
coming from decay amplitude, not mixing amplitude.
Consequently, we change the form of helicity/transversity
amplitude to include a CP-violating decay phase. This
modifies the coefficients of time-dependent part of ampli-
tude, which we present in Table V. In addition, we
investigate the B0

d → ϕKs decay amplitude with our NP
Hamiltonian. We show that the Belle(II)’s B0

d → ϕKs decay
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measurement along with the LHCb’s B0
s → ϕϕ measure-

ment can provide the chirality of NP in our model, as long
as the signs of cosine of strong phases of these decays can
be obtained from the theory.
Lastly, we perform a sensitivity study to illustrate the

new scheme of experimental analysis we are proposing. We
perform a fit with two pseudo datasets (based on two sets of
result of LHCb) to calculate the sensitivities of the CP-
violating parameters, which also act as null test parameters
for new physics.
The organization of the article is as follows: In Sec. II,

we describe the angular decay distribution of the B0
s →

ϕð→ KþK−Þϕð→ KþK−Þ. In Sec. III, we talk about the
CP-violating parameters in SM and in the presence of a NP
amplitude. In Sec. IV, we introduce our NP Hamiltonian
and do a helicity/transversity analysis in order to pinpoint
the effect of NP in the correct transversity amplitude, based
on which we present our new phase scheme in Sec. V.
Following this phase scheme, we do a sensitivity study on
the CP-violating parameters with two pseudodatasets in
Sec. VI. Finally, we show that under certain conditions, the
results of B0

d → ϕKs from Belle(II) can be used to comple-
ment the results of B0

s → ϕϕ to find the chirality of NP.

II. ANGULAR DECAY DISTRIBUTION

The angular decay distribution for B0
s → ϕð→ KþK−Þ×

ϕð→ KþK−Þ decay can be described by the help of three
angles as shown in Fig. 1. A random choice is made for
which ϕ meson is used to determine θ1 and θ2.
The power of angular analysis is that it can disentangle

the final states of B0
s → ϕϕ decay (which is a mixture

of CP eigenstates) and we get access to three (helicity/
transversity) amplitudes instead of one, meaning we can
probe three CP-violating phases, and possibly three new
indicators of NP. We will neglect the contribution of scalar
f0ð980Þ resonance, as it can be removed by appropriate
experimental cuts [19,20]. The amplitude then for this
process is given by

Aðt; θ1; θ2;ΦÞ ¼ A0ðtÞ cos θ1 cos θ2
þ AkðtÞffiffiffi

2
p sin θ1 sin θ2 cosΦ

þ i
A⊥ðtÞffiffiffi

2
p sin θ1 sin θ2 sinΦ; ð1Þ

where A0 is the longitudinal CP-even, Ak is the transverse-
parallel CP-even, and A⊥ is the transverse-perpendicular
CP-odd transversity amplitude. The resulting angular
decay distribution is proportional to square of the amplitude
in Eq. (1) and has six terms [21],

d4Γ
dtd cos θ1d cos θ2dΦ

∝ jAðt; θ1; θ2;ΦÞj2

¼ 1

4

X6
i¼1

KiðtÞfiðθ1; θ2;ΦÞ: ð2Þ

The angular dependence contained in fiðθ1; θ2;ΦÞ is as
follows:

jAðt; θ1; θ2;ΦÞj2 ¼ 1

4

�
4K1ðtÞ cos2 θ1 cos2 θ2 þ K2ðtÞ sin2 θ1 sin2 θ2ð1þ cos 2ΦÞ þ K3ðtÞ sin2 θ1 sin2 θ2ð1 − cos 2ΦÞ

− 2K4ðtÞ sin2 θ1 sin2 θ2 sin 2Φþ
ffiffiffi
2

p
K5ðtÞ sin 2θ1 sin 2θ2 cosΦ −

ffiffiffi
2

p
K6ðtÞ sin 2θ1 sin 2θ2 sinΦ

�
: ð3Þ

FIG. 1. Decay angles for the B0
s → ϕð→ KþK−Þϕð→ KþK−Þ decay, where θ1ð2Þ is the angle between the Kþ momentum in the ϕ1ð2Þ

meson rest frame and the ϕ1ð2Þ momentum in the B0
s rest frame. Φ is the angle between the two ϕ meson decay planes. The angular

conventions used are defined in detail in Appendix A.
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The time dependence is contained in KiðtÞ which is
defined as

KiðtÞ ¼ Nie−Γst

�
ai cosh

�
1

2
ΔΓst

�
þ bi sinh

�
1

2
ΔΓst

�

þ ci cosðΔmstÞ þ di sinðΔmstÞ
�
: ð4Þ

The coefficients ai, bi, ci and di are the LHCb experimental
observables given in Table V. The structure of these
coefficients depend on the form of amplitudes A0;k;⊥ðtÞ,
defined in Sec. III B. ΔΓs ≡ ΓL − ΓH is decay-width
difference between the light and heavy B0

s mass eigenstate,
Γs ≡ ðΓL þ ΓHÞ=2 is the average decay width and Δms ≡
mH −mL is the mass difference between the heavy and
light B0

s mass eigenstate, and also the B0
s − B̄0

s oscillation
frequency. Their values are ΔΓs ¼ 0.086� 0.006 ps−1 and
Γs ¼ 0.6646� 0.0020 ps−1 [20], and the oscillation fre-
quency is constrained by the LHCb measurement to be
Δms ¼ 17.768� 0.023ðstatÞ � 0.006ðsystÞ ps−1 [22].

III. SEARCH FOR NEW PHYSICS VIA CP
OBSERVABLES

A. CP-violating quantities in the Standard Model

Before looking at how to search for NP, we must know
the SM predictions [23]. The phase in the interference of
decay with and without mixing is almost zero in SM in
B0
s → ϕϕ decays because the KM phase in B0

s decay
amplitude cancels the one arising from the B0

s − B̄0
s mixing

box diagram (considering the dominant t-quark contribu-
tion). This makes B0

s → ϕϕ decay a very attractive null-test
channel. But for a more accurate prediction of phase (to
higher orders in λ), we need to consider the contribution of
u and c-quarks too. These contributions can arise due to
QCD rescattering cc̄ → qq̄ and uū → qq̄ (q ¼ d, s) from
tree operators b̄ → c̄cs̄ and b̄ → ūus̄, respectively, and may
have a contribution up to around 20–30% [24] of the
dominant top amplitude. Taking into account these con-
tributions, the SM amplitude for b̄ → s̄ decay for a given
helicity ‘k’ can be written as

ASM
k ¼ λtPt;k þ λcRc;k þ λuRu;k; ð5Þ

where λq ¼ V�
qbVqs is the CKM matrix element. Here,

while Pt;k arises due to gluonic penguin with a t̄-quark in
the loop, Rc;k and Ru;k are the rescattering contribution.
The existence of these contributions prevents the above-
mentioned cancellation from occuring. In the following
sections, we neglect the rescattering contributions; still, let
us look at their possible impact.
Using the unitarity of the CKM matrix to eliminate the

c-quark contribution in Eq. (5) and writing strong phases
explicitly, we get

ASM
k ¼jV�

tbVtsje−iβs jPRtc;kjeiδtc;k þjV�
ubVusjeiγjRRuc;kjeiδuc;k

¼jV�
tbVtsje−iβs jPRtc;kjeiδtc;k ½1þrSMk eiðγþβsÞeiðδuc;k−δtc;kÞ�;

ð6Þ

where PRtc;k ¼ Pt;k − Rc;k, RRuc;k ¼ Ru;k − Rc;k, δ denote

the SM strong phases, βs ¼ argð−VtsV�
tb

VcsV�
cb
Þ ≈ ηλ2, and rSMk ¼

jV�
ubVusjjRRuc;kj

jV�
tbVtsjjPRtc;kj . Assuming that the rescattering contribution is

around 20–30% of the dominant penguin amplitude, we

can write jRRuc;kj
jPRtc;kj ¼ OðλÞ, as λ ≈ 0.22. Therefore, we have

rSMk ¼ Oðλ3Þ. Thus, by defining ASM
k ≡ jASM

k jeiϕSM
eiδ

SM
k ,

we find ϕSM ¼ −βs þOðλ3Þ and δSMk ¼ δtc;k þOðλ3Þ.
This implies that the following discussion (and this form
of amplitude) is valid for NP searches of order λ2.

B. CP-violating quantities in the presence of new
physics: Parametrization

In this study, as mentioned before, we are only probing
CP-violating phases in the decay; thus, our parametrization
is done accordingly. Here, for generality, we include both
left- and right-handed currents (which could arise from
several NP models), which could give rise to new CP-
violating phase(s). Also, we assume j qp j ¼ 1 [25].
The helicity/transversity amplitudes, with helicity/

transversity “k” are written as [26]

AkðtÞ ¼ hðϕϕÞkjHeff jB0
sðtÞi ¼ gþðtÞAk þ

q
p
g−ðtÞĀk;

ĀkðtÞ ¼ hðϕϕÞkjHeff jB̄0
sðtÞi ¼ gþðtÞĀk þ

p
q
g−ðtÞAk: ð7Þ

where gþðtÞ and g−ðtÞ describe the time evolution of B0
s and

B̄0
s , respectively. Using Eq. (6) and adding a NP compo-

nent, the amplitude at t ¼ 0 can be written as

Akð0Þ≡ Ak ¼ ASM
k þ ANP

k

¼ jASM
k jeiδSMk eiϕ

SM þ jANP
k jeiδNPk eiϕ

NP
k

¼ jASM
k jeiδSMk eiϕ

SM	
1þ rNPk eiðϕ

NP
k −ϕSMÞeiðδ

NP
k −δSMk Þ


¼ jASM
k jeiδSMk eiϕ

SM
Xkeiθk ; ð8Þ

where in the last line, we denote the quantity in the

parenthesis as Xkeiθk and rNPk ¼ jANP
k j

jASM
k j. The phase θk is a

mixture of weak and strong phases.1 Similarly, for the
CP-conjugate amplitude, the expression is (ηk is the CP

1Notice that if we assume δSMk ¼ δNPk , then the phase θk would
be a purely weak phase. In such a case the interference phase in
Eq. (10) would not just tell us about the presence of NP, it would
also tell us the value of CP-violating (weak) phase in the decay
amplitude. However, we work in the most general case in this
calculation, as we only wish to probe for NP.
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eigenvalue of the transversity state, with η⊥ ¼ −1 and
η0;k ¼ 1)

Āk ¼ ηkjASM
k jeiδSMk e−iϕ

SMð1þ rNPk e−iðϕ
NP
k −ϕSMÞeiðδ

NP
k −δSMk ÞÞ

¼ ηkjASM
k jeiδSMk e−iϕ

SM
Xc
ke

iθck : ð9Þ

Recalling that argðq=pÞ ¼ 2βs ≈ 2ϕSM, we finally get

q
p
Āk

Ak
¼ ηkλke

−iðθk−θckÞ; ð10Þ

where λk ≡ jĀkj
jAkj ¼

Xc
k

Xk
becomes the direct CP violation

measurement parameter; λk ≠ 1 implies direct CP violation
is present in the decay. Since in SM, λk ¼ 1 for all
helicities, the deviation of this value from 1 [by more than
Oðλ3Þ] would be a clear signal for NP, i.e., λk − 1 is a null-
test parameter for NP. Another quantity that can be used for
NP search is the interference phase θk − θck. In SM, this
quantity is zero, as explained in Sec. III A. Therefore, the
deviation of this quantity from zero [by more than Oðλ3Þ]
would be a signal of NP, i.e., θk − θck is also a null-test
parameter for NP. One must note that there is one special
case when neither of these two parameters would be able to
detect the presence of NP; it is the case when ϕNP

k ¼ ϕSM.
In this case, λk ¼ 1 and θk − θck ¼ 0 and NP cannot be
detected by CP-violating observables.
Here, we take a moment to explain the ηk factors used.

When we write the CP-conjugate decay, we replace the
particles by their antiparticles. The effect of this replace-
ment on the helicity angle is ϕ → 2π − ϕ, which gives rise
to a negative sign in those terms which contain amplitudes
having a negative CP parity (A⊥ in our case). Therefore,
using ηk in the definition of amplitude allows us to use

the same angular functions for B0
s and B̄0

s decays, which
facilitates calculations in untagged samples [23].
The time-dependent amplitude is given by

AkðtÞ ¼ Ak

�
gþðtÞþ g−ðtÞ

q
p
Āk

Ak

�
;

AkðtÞ ¼ jASM
k jXke

iδSMk eiϕ
SM
eiθk
�
gþðtÞþ g−ðtÞηkλke−iðθk−θckÞ

�
:

ð11Þ

The coefficients of the time-dependent terms in Eq. (4),
obtained by using Eq. (11), are given in Table V. Our time-
dependent amplitude differs from the one given by LHCb,
because while LHCb has used the amplitude Ak ¼ jAkjeiδk ,
our amplitude contains both SM and NP contribution, and
both contain strong and weak phases [see Eq. (8)].2 Thus,
we have the phase ϕSM þ θk along with δSMk (contrary to
LHCb equation where there only is δSMk outside the
bracket). In addition, because we have both SM and NP
amplitudes, we get two different mixed phases (θk and θck)
coming from Ak and Ak, and thus the interference phase is
θk − θck, contrary to LHCb’s equation, where the interfer-
ence phase is simply ϕs;k.

3 This changes the coefficients in
Table V with respect to the ones given by LHCb [19].4 For
simplicity of notation, we simply denote δSMk as δk in the
rest of the paper.
Another probe for measuring CP violation are the triple-

product asymmetries. This arises from the fact that the
scalar triple product of three-momentum or spin vectors are
odd under time reversal. In B0

s → ϕϕ decay, we have two
triple productsU and V, and we measure the corresponding
asymmetries AU and AV as follows [26],

U≡ sinΦ cosΦ;

AU ≡ ΓðU > 0Þ − ΓðU < 0Þ
ΓðU > 0Þ þ ΓðU < 0Þ ∝

Z
∞

0

ImðA⊥ðtÞA�
kðtÞ þ A⊥ðtÞĀ�

kðtÞÞdt;

V ≡ sinð�ΦÞ;

AU ≡ ΓðV > 0Þ − ΓðV < 0Þ
ΓðV > 0Þ þ ΓðV < 0Þ ∝

Z
∞

0

ImðA⊥ðtÞA�
0ðtÞ þ Ā⊥ðtÞĀ�

0ðtÞÞdt; ð12Þ

2The mixing-induced CP violation (i.e., the CP violation in interference of decay with and without mixing) cannot tell us if the
original source of this effect is coming from the dynamics of ΔB ¼ 2 (mixing) sector or that of ΔB ¼ 1 (decay) sector, as long as we are
working with only one final state (or one pair of CP-conjugate final state). We need information from at least one more final state to
decide unambiguously the presence of direct CP violation and/or CP violation in mixing [27].

3This increase in number of parameters will make the search more sensitive to NP. However, this comes at a price; it becomes more
difficult to make the fit converge. Thus, we need model-dependent simplifying assumptions to reduce the free parameters, as we will
show in the subsequent sections, to make the fit converge.

4If θk and θck are helicity independent, they will cancel out when we write terms of type AiðtÞA�
kðtÞ or jAiðtÞj2. Then our formula and

that of LHCb would exactly be the same.
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Putting the amplitudes, and comparing it with Eq. (4) and
Table V, we see that these triple products are related to the
K4ðtÞ and K6ðtÞ terms in the decay amplitude.

IV. NEW PHYSICS MODEL

In this section, we see the new physics model and
perform an helicity analysis on it to pinpoint its effect on
the relevant CP observables. The model we choose to use
in our study is that of the chromomagnetic dipole operator
O8g, which, for b̄ → s̄g process, is given as follows:

O8g ¼
gs
8π2

mbb̄ασμνð1þ γ5Þ λ
a
αβ

2
sβGa

μν: ð13Þ

Though the chromomagnetic operator is a SM operator, it is
suppressed by b-quark mass mb (and its chirally flipped
counterpart is suppressed by s-quark mass ms). However,
it is very sensitive to several NP models, like the left-
right symmetric class of models or SUSY, where it can
undergo chiral enhancement to overcome the quark mass
suppression [28–35]. In addition, there are some NP
models that give the same contribution to both decay
and mixing amplitudes. This causes the contribution to
cancel out in the interference phase, and they remain
undetectable in B0

s → ϕϕ decay. However, since the chro-
momagnetic operator only contributes to the decay ampli-
tudes, a NP contribution manifesting itself through this
operator can be very well detected via this channel (the
B0
s − B̄0

s mixing amplitude has already been well con-
strained by previous measurements [36,37], so we do not
focus on it in this work).
Starting from the effective Hamiltonian for ΔB ¼ 1

decay, it is given by ðq∈ fd; sgÞ

Heff ¼ −
GFffiffiffi
2

p V�
tbVtq

"X6
i¼3

ðCSM
i OiÞ þ C8gO8g þ C̃8gÕ8g

#

þ H:c: ð14Þ

The operators are given by ðq0 ∈ fu; d; s; cgÞ

O3 ¼ ðb̄αqαÞV−A
X
q0
ðq̄0βq0βÞV−A;

O4 ¼ ðb̄βqαÞV−A
X
q0
ðq̄0αq0βÞV−A;

O5 ¼ ðb̄αqαÞV−A
X
q0
ðq̄0βq0βÞVþA;

O6 ¼ ðb̄βqαÞV−A
X
q0
ðq̄0αq0βÞVþA; ð15Þ

with the notation ðābÞV�Aðc̄dÞV�A ¼ āγμð1� γ5Þb×
c̄γμð1� γ5Þd.

Here, we only include the gluonic penguin operators.
The operator with tilde is obtained by changing the sign of
γ5 term in the definition ofO8g to obtain the chirally flipped
counterpart.

A. Helicity analysis

Once we have the model clearly defined with Hamiltonian
and amplitudes, we can move on to the helicity analysis. As
mentioned before, the advantage in P → VV type decays is
that the final state can be split into three helicity states, which
gives us access to three amplitudes, whose summakes up the
total amplitude. The general form of helicity amplitude for
the process BðM;pÞ → V1ðϵ1;M1; k1Þ þ V2ðϵ2;M2; k2Þ is
given by [38]5

Hλ ¼ aðϵ�1ðλÞ · ϵ�2ðλÞÞ þ
b

M1M2

ðϵ�1ðλÞ · k2Þðϵ�2ðλÞ · k1Þ

þ ic
M1M2

ϵμνρσϵ
�μ
1 ðλÞϵ�ν2 ðλÞkρ1kσ2; ð16Þ

where λ ¼ fþ;−; 0g is the polarization of final state. a; b,
and c are the invariant amplitudes. Putting the polarization
vectors for the three different polarizations, we get

H0 ¼ axþ bðx2 − 1Þ; H� ¼ a� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
; ð17Þ

where x ¼ M2
B−M

2
1
−M2

2

2M1M2
. A more convenient basis to work than

helicity basis is transversity basis [21]. To go there, we first
note that by angular momentum conservation, the final-state
helicities could only be j þ þi; j − −i, and j00i. Since
Pj þ þi ¼ j − −i and Pj00i ¼ j00i, we can define parity
eigenstates with eigenvalues �1 as [27]

jki ¼ 1ffiffiffi
2

p ðj þ þi þ j − −iÞ;

j⊥i ¼ 1ffiffiffi
2

p ðj þ þi − j − −iÞ: ð18Þ

These are called transversity amplitudes, denoted byAk, with
k ¼ f0; k;⊥g, as given in Eq. (1). Clearly

Ak;⊥ ¼ 1ffiffiffi
2

p ðHþ �H−Þ; A0 ¼ H0: ð19Þ

Thus,

A0 ¼ axþ bðx2 − 1Þ; Ak ¼
ffiffiffi
2

p
a;

A⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx2 − 1Þ

q
c: ð20Þ

5We use the convention ϵ0123 ¼ 1. The opposite convention
would simply interchange the definition of Hþ and H−, without
affecting H0.
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Let us see the hierarchy of amplitudes predicted by the
V − A structure of current. The hierarchy is H0 > Hþ >
H− (interchangeþ and − signs for B̄0

s decay) [39], with the
approximate ratio H0∶ Hþ∶H− ∼ 1∶ðmϕ

mB
Þ∶ðmϕ

mB
Þ2 [39,40].

However, it is well known that this hierarchy is not
observed experimentally in B → VV decays. A large trans-
verse polarization was first observed in Bd → ϕK� [41]
(and then later in Bd → J=ψϕ [37], Bs → ϕϕ [19], etc.)
which gave rise to intense theoretical and experimental
studies of charmless B → VV decays. Several theoretical
papers have been written to go beyond the naive factori-
zation method and use more sophisticated tools (like QCDf,
pQCD, SCET, etc.) to compute these decays more accu-
rately [16–18,39]. It has been pointed out in [17,39,42]
that a major contributor to transverse amplitudes are the
annihilation diagrams which can explain the large fraction
of transverse amplitudes observed experimentally.
On the other hand, the contribution from the chromo-

magnetic operator is suppressed in transverse penguin
amplitudes (originally pointed out in [39], and verified
by pQCD approach in [43]). Therefore, the NP contribu-
tions manifesting via the chromomagnetic operator should
predominantly contribute to longitudinal polarization
amplitude. This is a key point, that we would use in the
subsequent sections for our fit.
The total amplitude for SM, left- and right-handed

currents can be written as follows, where, as discussed
above, we neglect the transverse contributionsML;R

k;⊥ in NP

amplitudes:

MSM;Total
ϕϕ ¼MSM

0;ϕϕ þMSM
k;ϕϕ þMSM⊥;ϕϕ

¼ −
GFffiffiffi
2

p V�
tbVts

	
ξSM0 F SM

0 þ ξSMk F SM
k þ ξSM⊥ F SM⊥



;

ML;Total
ϕϕ ¼ML

0;ϕϕ

¼ −
GFffiffiffi
2

p V�
tbVts

	
ξL0F

NP
0



;

MR;Total
ϕϕ ¼MR

0;ϕϕ

¼ −
GFffiffiffi
2

p V�
tbVts

	
−ξR0FNP

0



; ð21Þ

where F SM and FNP contains the contribution from the
matrix elements for SM and NP case, respectively. The ξpk
(k ¼ f0; k;⊥g and p∈ fSM;L;Rg) are combinations of
Wilson coefficients, and contain the weak phases. The
actual form of ξ and F depend upon the model chosen to
compute the matrix elements, but it is not important for our
purposes. The important thing to notice is the sign change
in the longitudinal component of right-handed amplitude.
This sign change occurs due to the sign change in the axial
part of the current; we have verified this for longitudinal
amplitude by both naive factorization and pQCD approach.

V. NEW PHASE SCHEME FROM THE
CHROMOMAGNETIC OPERATOR

Let us now clarify the observables which are sensitive to
our NP model. Following Eq. (21), the total longitudinal
transversity amplitude in the presence of NP manifested via
the chromomagnetic operator is now given by

MTotal
0;ϕϕ ¼ −

GFffiffiffi
2

p V�
tbVts

	
ξSM0 F SM

0 þ ξL0F
NP
0 − ξR0F

NP
0



¼ MSM

0;ϕϕ

	
1þ rLeiðωLþσÞ − rReiðωRþσÞ
; ð22Þ

where we parametrize the NP contribution as follows:

ξL0F
NP
0

ξSM0 F SM
0

¼ rLeiðωLþσÞ ξR0F
NP
0

ξSM0 F SM
0

¼ rReiðωRþσÞ: ð23Þ

ωL;R are the weak=CP-odd phases and σ is a strong=CP-
even phase. Recalling the definition of interference phase
from Eq. (10) and putting Eq. (22) in it, we can write

q
p

M̄Total
0;ϕϕ

MTotal
0;ϕϕ

¼ λ0e
−iðθ0−θc0Þ

¼ 1þ 2 cos σðrLe−iωL − rRe−iωRÞ
1þ 2rL cosðωL þ σÞ − 2rR cosðωR þ σÞ :

ð24Þ

Therefore, only λ0 and θ0 − θc0 would get contributions
from NP, while other transversities CP-violating parame-
ters would assume their SM values, i.e., θk ¼ θck ¼ θ⊥ ¼
θc⊥ ¼ 0 and λk ¼ λ⊥ ¼ 1. As we can see, the five theo-
retical parameters (rL;R;ωL;R and σ) cannot be determined,
as we do not have sufficient observables (only λ0 and
θ0 − θc0). Nevertheless, an observation of nonzero value
of λ0 − 1 and/or θ0 − θc0 would clearly indicate the pre-
sence of NP.
Let us now compare the phase scheme that LHCb used

in their fit to ours. Before comparing with our parametri-
zation, we note that the interference phase in LHCb is
defined as

q
p

M̄Total
k;ϕϕ

MTotal
k;ϕϕ

¼ ηkλke
−iϕLHCb

k ; ð25Þ

where k is the transversity and ηk is the CP parity of the
transversity state. Comparing Eq. (25) with Eq. (10), we
find ϕLHCb

k ≡ θk − θck. LHCb uses the following two differ-
ent fit configurations:

(i) LHCb helicity-dependent (HD) scheme: ϕLHCb
0 ¼ 0,

λk ¼ 1 ∀ k (ϕLHCb⊥ and ϕLHCb
k are the CP-violating

fit parameters).
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(ii) LHCb helicity-independent (HI) scheme: ϕ ¼
ϕLHCb
k ∀ k, λ ¼ λk ∀ k (ϕ and λ are the CP-

violating fit parameters).
The new fit configuration we are proposing is

(i) NP manifested via the chromomagnetic operator:
ϕLHCb⊥ ¼ ϕLHCb

k ¼ 0 or equivalently θk ¼ θck ¼
θ⊥ ¼ θc⊥ ¼ 0, λ⊥ ¼ λk ¼ 1 (ϕLHCb

0 and λ0 are the
CP-violating fit parameters).

The LHCb fit configuration does not match to ours, and
a new fit of LHCb data with this new scheme based on
our model would be very interesting. We emphasize that
neither of the two LHCb schemes above fit ϕLHCb

0 and λ0
simultaneously; therefore, our phase scheme is a new
avenue to search for NP manifesting itself via the chro-
momagnetic operator.

VI. SENSITIVITY STUDY WITH THE NEW FIT
CONFIGURATION

In this section, we illustrate an analysis with the new
phase scheme we proposed in Sec. V. To start, let us list all
the possible fit parameters before considering any model
assumptions; ðjA0;⊥;kj2; δ0;⊥;k; θ0;⊥;k; θc0;⊥;k,λ0;⊥;k). First,

using the relation jA0j2 þ jA⊥j2 þ jAkj2 ¼ 1, we remove
one of the amplitudes, e.g., jAkj2. Next, we notice that in
Table V, the phases always appear as combinations of θk −
θck and ψ i − ψ j where ψk ≡ θk þ δk. For example, the
combination θck þ δk can be rewritten as ψk − ðθk − θckÞ.
Now, let us use the results of our model introduced in
Sec. IV; the chromomagnetic operator contributes predomi-
nantly to longitudinal polarization, giving us θk ¼ θck ¼
θ⊥ ¼ θc⊥ ¼ 0. Then, the arguments of trigonometric func-
tions in Table V can be expressed by the three parameters,
(θ0 − θc0; δk − δ⊥; δk − δ0 − θ0). As explained in Sec. III B,
the first parameter is the phase in the interference of decay
with and without mixing, which is a CP-violating quantity,
while the last two contain strong phases. Thus, only the first
one can be used for a null test. Finally, our model also
imposes λ⊥;k ¼ 1. As a result, we are left with six
parameters to fit

ðλ0; θ0 − θc0; δk − δ⊥; δk − δ0 − θ0; jA0j2; jA⊥j2Þ:

Only the first two can be used for a null test; λ0 ≠ 1 and/or
θ0 − θc0 ≠ 0 are/is a clear signal of new physics.
To illustrate the fit, we first construct two pseudodatasets

by using the LHCb best-fit values, denoted as Data HI
and Data HD for the LHCb helicity-independent and
helicity-dependent fit, respectively. The details of the
statistical procedure applied in this study are given in
Appendix B.
Our fit results are shown in Table I, and the correlation

matrices are given in Tables III and IV in Appendix C. We

note that the results using Data HI and Data HD agree
relatively well. The obtained uncertainty of σðλ0Þ ¼ 6–7%
and σðθ0 − θc0Þ ¼ 5–6% with the currently available
LHCb statistics (5 fb−1) may be used as an indication
for future studies.

VII. LEFT OR RIGHT: B0
d → ϕKS DECAY

A decay very similar to B0
s → ϕϕ decay is the B0

d → ϕKs

decay, since at the quark level, both contain a b̄ → s̄ss̄
decay. We thus expect the weak interaction to be the same
in both the decays, while strong interaction may differ. In
this section, we investigate how the experimental results of
B0
d → ϕKs complements the B0

s → ϕϕ results, within the
left- and right-handed chromomagnetic operator model.
We start with the B0

d → ϕKs decay. The phase in the
interference of decay with and without mixing in SM is
2ϕ1, where ϕ1 is the unitary triangle angle. However, NP
contributions may deviate its value from ϕ1, and what we
measure experimentally should then be called 2ϕeff

1 . Using
Eq. (D3), we can thus write

q
p

M̄Total
ϕKs

MTotal
ϕKs

¼−λϕKs
e−2iϕ

eff
1

¼−e−2iϕ1

�
1þ r̂Leið−ω̂Lþσ̂Þ þ r̂Reið−ω̂Rþσ̂Þ

1þ r̂Leiðω̂Lþσ̂Þ þ r̂Reiðω̂Rþσ̂Þ

�
; ð26Þ

where the negative sign is present as ϕKs is a CP-odd state.
Rearranging and rationalising the right-hand side, we get

λϕKs
e−2iðϕeff

1
−ϕ1Þ ¼ 1þ 2 cos σ̂ðr̂Le−iω̂L þ r̂Re−iω̂RÞ

1þ 2r̂L cosðω̂L þ σ̂Þ þ 2r̂R cosðω̂R þ σ̂Þ :

ð27Þ
We can now compare Eqs. (24) and (27). As mentioned
before, we assume the weak interaction contribution from
NP to be the same for both the decays, thus making
ωL;R ¼ ω̂L;R. In addition, we assume that rL;R and r̂L;R are

TABLE I. Fit results based on our model assumptions, i.e.,
longitudinal component dominance for NP contributions coming
from the chromomagnetic operator (θck ¼ θk ¼ θc⊥ ¼ θ⊥ ¼ 0 and

λk ¼ λ⊥ ¼ 1).

Data HD Data HI

Fit parameter Central value σ Central value σ

λ0 0.978 0.058 0.984 0.070
jA0j2 0.386 0.025 0.385 0.032
jA⊥j2 0.287 0.018 0.288 0.036
θ0 − θc0 −0.002 0.055 0.066 0.053
δk − δ⊥ −0.259 0.054 −0.261 0.056
δk − δ0 − θ0 2.560 0.071 2.589 0.079
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small and positive. This implies that the sign of the strong

interaction (coming from the ratio of matrix elements
FNP

0

F SM
0

and
FNP

ϕKs

F SM
ϕKs
) is contained in the terms cos σ and cos σ̂,

respectively. In addition, we see in Eqs. (24) and (27) that
the right-handed contribution from NP has opposite signs
for the two cases in the denominator. Therefore, if we can
theoretically predict the sign of cos σ and cos σ̂ (which
could be done, for example, by pQCD approach [44]), we
can tell the chirality of NP in the following two cases:

Case 1: Only left-handed NP is present (rR ¼ r̂R ¼ 0)
Taking the ratio of real and imaginary parts of

Eqs. (24) and (27), and expanding in rL and r̂L, we get

tanðθ0 − θc0Þ≈ 2rL sinωL cosσþOððrLÞ2Þ;
tanð2ϕeff

1 − 2ϕ1Þ≈ 2r̂L sin ω̂L cos σ̂þOððr̂LÞ2Þ: ð28Þ

At this point we can define a quantity
Σ≡ ½tanðθ0 − θc0Þ tanð2ϕeff

1 − 2ϕ1Þ�. As we defined
rL and r̂L to be positive and the chromomagnetic
operator leads to ωL ¼ ω̂L, we obtain the relation

signðΣÞ ¼ signðcos σ cos σ̂Þ: ð29Þ

Case 2: Only right-handed NP is present (rL ¼ r̂L ¼ 0)
Taking the ratio of real and imaginary parts of

Eqs. (24) and (27), and expanding in rR and r̂R, we get

tanðθ0 − θc0Þ≈−2rR sinωR cosσþOððrRÞ2Þ;
tanð2ϕeff

1 − 2ϕ1Þ≈ 2r̂R sin ω̂R cos σ̂þOððr̂RÞ2Þ: ð30Þ

Thus, in this case, we find an opposite relative sign
with respect to the left-handed model,

signðΣÞ ¼ −signðcos σ cos σ̂Þ: ð31Þ

Hence, if the experiments show nonzero CP-violating
phase results, one can test the chirality of the NP
contribution by combining the B0

s → ϕϕ and B0
d →

ϕKs decay measurements, along with the relative sign
of cos δ and cos δ̂, which might be obtained theoreti-
cally. This conclusion is summarized in Table II.

VIII. CONCLUSIONS

In this article, we investigate a new physics search with
the CP-violation measurements of the B0

s → ϕϕ decay.
The large statistics of the LHCb experiment allows one to
perform the time-dependent angular analysis of this decay
channel. Such an analysis gives access to the information
of the helicity amplitudes, which are sensitive to different
types of NP effects. In the LHCb analysis, two types of NP
scenarios have been investigated, called helicity-dependent
and helicity-independent assumptions. In this work, we
propose a new search scenario based on the NP model
induced by the left- and right-handed chromomagnetic
operators, producing a new quark level b → ss̄s diagram
with an extra source of CP violation. Using the fact that the
NP coming from this type of operator is dominated by the
longitudinal amplitude, we derive a new scheme of phase
assumptions which can be tested by the LHCb experiment.
The same NP effects can manifest itself in the time-
dependent CP asymmetry measurement of B0

d → ϕKs

decay. We found that Belle(II)’s B0
d → ϕKs decay mea-

surements could complement LHCb’s B0
s → ϕϕ measure-

ment to obtain the chirality of NP operator, under the
condition that the signs of the strong phases of these decays
can be predicted by the theory. Finally, we present a
sensitivity study of the CP-violating parameters of our
proposed model in order to illustrate how the fit can
actually be performed. We show that on top of the two
CP-violating parameters, there are four extra parameters to
be fitted simultaneously; two amplitudes and two phases.
The theoretical predictions for these extra parameters
depend heavily on the models describing the strong
interaction. On the other hand, a nonzero measurement
of the former two CP violating parameters can be inter-
preted immediately as a signal of NP. Our sensitivity study
shows that LHCb with current statistics can determine these
two parameters at 5–7% precision. These numbers are
obtained using two pseudodatasets and they might not
reflect the reality, though, the sensitivities obtained could
be used as an indication for future studies. Even though the
current measurements do not show a clear signal of NP,

TABLE II. Table demonstrating the chirality of NP arising
from different combinations of signs of cos σ, cos σ̂ and Σ≡
½tanðθ0 − θc0Þ tanð2ϕeff

1 − 2ϕ1Þ�, under the assumption that only
left-handed or right-handed NP is present. σ and σ̂ denote the
strong-phase difference between NP and SM in B0

s → ϕϕ and
B0
d → ϕKs decays, respectively [see Eq. (23)]. θ0 − θc0 and 2ϕeff

1

are the phase in the interference of decays with and without
mixing in B0

s → ϕϕ and B0
d → ϕKs decays, respectively. ϕ1 is the

unitary triangle angle.

cos σ cos σ̂ Σ NP chirality

þ þ þ LH
þ − þ RH
þ þ − RH
þ − − LH
− þ − LH
− − − RH
− þ þ RH
− − þ LH
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further theoretical and experimental efforts would shed
more light on these results, and would pave the way for
future studies.
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APPENDIX A: ANGULAR CONVENTIONS

In B0
s → ϕϕ decay, since the two ϕ0s are indistinguish-

able, we can randomly assign them (and their decay
products) the subscripts 1 and 2. θ1ð2Þ is the angle between
the Kþ

1ð2Þ meson momentum in the ϕ1ð2Þ meson rest frame

and ϕ1ð2Þ meson momentum in B0
s meson rest frame.

Mathematically, we can write it as

cos θ1ð2Þ ¼ p̂
ðϕ1ð2ÞÞ
Kþ

1ð2Þ
:p̂ðB0

sÞ
ϕ1ð2Þ ; ðA1Þ

where the notation p̂ðxÞ
y means momentum of particle y in

the frame of particle x. The angle Φ, which is the angle
between the two decay planes (or between the perpendic-
ulars of the planes), can be defined as follows:

cosΦ ¼ ðp̂Kþ
1
× p̂Kþ

1
Þ · ðp̂Kþ

2
× p̂Kþ

2
Þ;

sinΦẑ ¼ �ðp̂Kþ
1
× p̂K−

1
Þ × ðp̂Kþ

2
× p̂K−

2
Þ�; ðA2Þ

where we choose to define the z-direction by the direction
of ϕ1 momentum [26].

APPENDIX B: STATISTICAL PROCEDURE

The LHCb experimental observables (ai, bi, ci, and di)
are given in Table V; they are the LHCb observables.
The only available information from LHCb is the result
of fit of those measurements to the theory parameters
(jAkj2; δk;ϕk), given in [19]. Therefore, in our study, we
first construct pseudodataset, i.e., the central values and the
covariance matrices for the LHCb observables, from this
available information. The covariance matrix is obtained by
using

V−1
ij ¼ N

Z �
∂f̂ðxÞv⃗
∂vi

∂f̂ðxÞv⃗
∂vj

1

f̂ðxÞv⃗

�����
v⃗¼v⃗�

dx ðB1Þ

where

(i) f̂ is the normalized probability distribution function,
which in our case is the angular decay distribution
given by Eq. (2). Integration over x represents
integration over the complete phase space and time.

(ii) v⃗ is the vector of LHCb observables (ai, bi, ci and
di) that LHCb measures.

(iii) v⃗� is the values of v⃗ obtained by using the best-fit
values of the theoretical parameters obtained by
LHCb [19]. Note that there are two fits performed by
LHCb with the so-called helicity-independent and
helicity-dependent assumptions, and we use both to
construct two pseudodatasets.

(iv) N is the number of events.
Finally, using this pseudodataset, we perform a χ2 fit

using v⃗i with our model assumptions, which we call v⃗model
i ,

χ2 ¼
X
i;j

	
v⃗model
i − v⃗�i



V−1
ij

	
v⃗model
j − v⃗�j



: ðB2Þ

APPENDIX C: CORRELATION MATRICES

TABLE IV. Correlation matrix based on our model assump-
tions, i.e., longitudinal component dominance for NP contribu-
tions from the chromomagnetic operator (θck ¼ θk ¼ θc⊥ ¼
θ⊥ ¼ 0 and λk ¼ λ⊥ ¼ 1). Pseudodataset used; Data HI.

θ0 − θc0 δk − δ⊥ δk − δ0 − θ0 jA0j2 jA⊥j2 λ0

θ0 − θc0 1.00 −0.02 −0.37 0.03 −0.04 −0.01
δk − δ⊥ −0.02 1.00 0.40 −0.06 0.07 −0.04
δk − δ0 − θ0 −0.37 0.40 1.00 −0.19 0.21 −0.04
jA0j2 0.03 −0.06 −0.19 1.00 −0.85 −0.76
jA⊥j2 −0.04 0.07 0.21 −0.85 1.00 0.65
λ0 −0.01 −0.04 −0.04 −0.76 0.65 1.00

TABLE III. Correlation matrix based on our model assump-
tions, i.e., longitudinal component dominance for NP contribu-
tions from the chromomagnetic operator (θck ¼ θk ¼ θc⊥ ¼
θ⊥ ¼ 0 and λk ¼ λ⊥ ¼ 1). Pseudodataset used; Data HD.

θ0 − θc0 δk − δ⊥ δk − δ0 − θ0 jA0j2 jA⊥j2 λ0

θ0 − θc0 1.00 0.01 −0.33 0.00 0.00 −0.03
δk − δ⊥ 0.01 1.00 0.38 −0.11 0.13 −0.01
δk − δ0 − θ0 −0.33 0.38 1.00 −0.24 0.23 −0.03
jA0j2 0.00 −0.11 −0.24 1.00 −0.72 −0.67
jA⊥j2 0.00 0.13 0.23 −0.72 1.00 0.49
λ0 −0.03 −0.01 −0.03 −0.67 0.49 1.00
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APPENDIX D: B0
d → ϕKS DECAY

The amplitude for B0
d → ϕKS for SM, left-handed NP

and right-handed NP case respectively, can be written as

MSM
ϕKs

¼ −
GFffiffiffi
2

p V�
tbVtsξ̂

SMF SM
ϕKs

;

ML
ϕKs

¼ −
GFffiffiffi
2

p V�
tbVtsξ̂

LFNP
ϕKs

;

MR
ϕKs

¼ −
GFffiffiffi
2

p V�
tbVtsξ̂

RFNP
ϕKs

; ðD1Þ

where ξ̂pðp∈ fSM;L;RgÞ are combination of the Wilson
coefficients, which contain weak phases, and their exact
form depends upon the model chosen to evaluate the
matrix elements. Like for the case of B0

s → ϕϕ decay, the
variables F SM

ϕKs
and FNP

ϕKs
contain all the information about

the matrix elements. Note that K0 is a flavor eigenstate,
which, by Kaon oscillation, oscillates between K0 and K̄0

and we see the mass eigenstate KS in detectors.
Now the total amplitude, which is the sum of all three

amplitudes, can be written as

MTotal
ϕKs

¼ MSM
ϕKs

 
1þ ξ̂LFNP

ϕKs

ξ̂SMF SM
ϕKs

þ ξ̂RFNP
ϕKs

ξ̂SMF SM
ϕKs

!
: ðD2Þ

Using similar parametrization for NP as in Eq. (23) (but
putting hats to differentiate from B0

s → ϕϕ case), we get

MTotal
ϕKs

¼ MSM
ϕKs

	
1þ r̂Leiðω̂Lþσ̂Þ þ r̂Reiðω̂Rþσ̂Þ
: ðD3Þ

APPENDIX E: COEFFICIENTS OF TIME-
DEPENDENT TERMS

The terms in the Table V are the coefficients of
time-dependent terms in Eq. (4), which are functions of
CP-violating parameters. The various quantities used here
are defined as follows (k ¼ fk;⊥; 0g):

(i) jAkj: magnitude of the complete transversity am-
plitude [see Eqs. (8) and (9)].

(ii) δk: strong phase of SM transversity amplitude.
(iii) θk: a mixture of weak and strong phase, as defined

in Eqs. (8) and (9), arising due to presence of NP
strong and weak phases.
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