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The front form of Hamiltonian dynamics provides a framework within QCD in which interaction terms
are invariant under seven of ten Poincaré transformations and the vacuum structure is simple. However,
canonical expressions are divergent and must be regulated before attempting to define an eigenvalue
problem. The renormalization-group procedure for effective particles (RGPEP) provides a systematic way
of renormalizing Hamiltonians and obtaining counterterms. One of its achievements is the description of
asymptotic freedom with a running coupling defined as the coefficient of the three-gluon-vertex operators
in the renormalized Hamiltonian. Yet, the results we obtain need a deeper understanding, since the
coefficient function shows a finite cutoff dependence, at least in the third-order terms of the perturbative
expansion. In this work, we present an RGPEP computation of the three-gluon vertex with a different
regularization scheme based on massive gluons. Our calculation shows that the three-gluon Hamiltonian
interaction term has a finite limit as the gluon mass vanishes, but the finite function hðxÞ that was obtained
in previous calculations as a consequence of the finite dependence on the regularization is different. This
result indicates a need for understanding how to eliminate finite regularization effects from Hamiltonians
for effective quarks and gluons in QCD. Nevertheless, it is remarkable that all terms depending on the gluon
mass cancel out in the limit of vanishing gluon mass in a nontrivial way, even when each term individually
diverges in such a limit.
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I. INTRODUCTION

The fundamental description of hadronic phenomena
in quantum chromodynamics (QCD) presents severe and
long-standing problems. The mathematical complexity of
the theory, the impossibility of applying perturbation theory
in the infrared regime, and the unapproachable need to deal
with an infinite number of degrees of freedom have led
many researchers to focus on phenomena that take place
in a narrow energy range, adopting approximations and
constructing effective theories or models valid for specific
regimes. Indeed, it is not trivial how to reproduce QCD
features of hadrons that occur at different energy scales
within the same approach. While at low energy quantum

numbers of hadrons seem to be well explained by a
small number of constituents, at high energies asymptotic
freedom [1–4] of many weakly interacting particles
dominates [5].
The renormalization-group procedure for effective par-

ticles (RGPEP) was developed to solve bound states in
QCD. The method stems from the similarity renormaliza-
tion group, formulated by Głazek and Wilson [6,7]. It is
formulated in the front form of Hamiltonian dynamics [8]
and introduces the notion of effective particles in quantum
field theory [9].
The RGPEP provides a means for constructing a family

of equivalent effective Hamiltonians depending on a scale
parameter, which allows connecting different energy scales,
and selecting the range of interest without truncating
significant matrix elements. It introduces the concept of
effective particles [9], which are related to canonical or
pointlike ones by means of a unitary transformation.
The method has been applied to several theories [10–15],

some of them simple enough to be solved exactly [16,17].
In the case of QCD, only perturbative solutions in powers
of the coupling constant have been considered so far in the
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renormalization-group equation. For instance, the eigen-
value problems for heavy quarkonium and heavy baryons
have been derived starting from QCD with only heavy
quarks using the second-order Hamiltonian solution to the
RGPEP equation. The quark-(anti)quark effective poten-
tial for effective quarks and gluons has been obtained, and
the spectra of hadrons have been computed with unex-
pected accuracy [9,15].
Third-order calculations allowed us to analyze the

structure of the three-gluon vertex [18,19]. From the
coefficient of such structure, the running of the coupling
constant was defined as its variation with the renormaliza-
tion-group scale λ. The method turned out to reproduce
correctly the property of asymptotic freedom [18,19].
Moreover, it was shown that the running of the coupling
had a similar or identical form to the variation with virtual
momenta that is obtained using Feynman diagrams for off-
shell Green’s functions. However, in Refs. [18,19], three
different regularizations were considered, and a certain
finite dependence on the choice of the regulating function
was encountered, which needs deeper understanding.
This article concerns the study of a new regularization

method for the QCD Hamiltonian within the RGPEP.
Namely, we introduce an infinitesimal gluon-mass parameter
mg to regulate singularities that appear for gluons carrying a
small longitudinal momentum fraction x. In other words,
we allow gluons to have a nonzero canonical mass. This
regularization allows us to circumvent the vacuum problem
which appears only in cases pþ ¼ 0, producing infinity
eigenvalues formg → 0, a feature which is welcome because
no free, colored particles are found in nature.
In particular, we consider again the third-order three-

gluon-vertex Hamiltonian in the SU(3) Yang-Mills theory
and explore the effect of such a regularization in the
asymptotic freedom result. On a similar basis to what
was done in [19], the running coupling is identified as the
coefficient in front of the effective three-gluon-vertex
Hamiltonian operator, which is derived by solving the
RGPEP equation perturbatively.
Previous works collect a detailed description of formulas

appearing at every step taken in perturbative RGPEP
calculations [19,20]. In this document, we summarize
the main steps and focus our attention on the new element
considered here: the new regularization and its conse-
quence in the interaction terms and running coupling.
We see clearly how the dependence on the gluon mass
cancels once all contributions to the three-gluon vertex
in the limit mg → 0 are added, even though separate
contributions diverge.
The regularization treated here was initially introduced

in other problems addressed within the RGPEP [11,12,21].
Given the success of such studies and aiming at future high-
order solutions to the RGPEP equation in QCD, we apply it
here to the most difficult physical problem considered so
far using this approach.

Other methods also include a canonical gluon mass for
different considerations. For example, a Faddeev-Popov
Lagrangian in the Landau gauge with a tree-level mass
term [22] can reproduce the pion decay constant [23] and
lattice gluon and ghost correlation functions [24] by means
of perturbative calculations extended to the infrared regime.
This is different from other studies on dynamical gluon-
mass generation which is broadly explored from different
approaches [25–32], including RGPEP [14,15,33].
The article is organized as follows. Section II presents

the main and general steps of the RGPEP and the
regularization method employed in this particular work.
Section III provides the derivation of the three-gluon vertex
and the resulting running coupling. Section IV concludes
the article. Appendixes A and B with extended formulas are
available at the end of the document.

II. THE METHOD

A. Front form of dynamics

The RGPEP uses the front form of dynamics [8,34]. In
this form, four vectors in Minkowski space-time are denoted
by xμ¼ðxþ;x−;x⊥Þ, where xþ¼x0þx3, x−¼x0−x3, and
x⊥ ¼ ðx1; x2Þ. We use the Brodsky-Lepage notation [34];
the inner product is defined as

a · b ¼ aμbνgμν ¼
1

2
aþb− þ 1

2
a−bþ − a⊥b⊥; ð1Þ

where summation over repeated indices is assumed. The “−”
component of the four momentum pμ is then

p− ¼ p⊥2 þm2

pþ ð2Þ

and represents the energy of the particle.
Our starting point is the front-form Hamiltonian of QCD

without quarks. The Hamiltonian density can be derived
from the T þ− component of the energy-momentum tensor
T μν associated with the corresponding Lagrangian density.
Integration of T þ− over the hypersurface xþ ¼ 0 leads to
the (classical) front-form Hamiltonian

P− ¼ 1

2

Z
xþ¼0

dx−d2x⊥H: ð3Þ

Canonical quantization requires replacing the field Aμ by
the quantum operator Âμ, defined by its Fourier expansion
on the surface xþ ¼ 0:

Âμ ¼
X
σc

Z
½k��tcεμkσâkσce−ikx þ tcεμ�kσâ

†
kσce

ikx
�
xþ¼0

; ð4Þ

where ½k� ¼ dkþd2k⊥=ð16π3kþÞ. For simplicity, we omit
hats in operators in what follows. Creation and annihilation

GÁLVEZ-VIRUET and GÓMEZ-ROCHA PHYS. REV. D 108, 096001 (2023)

096001-2



operators a†kσc and akσc, satisfy the canonical commutation
relation

½akσc; a†k0σ0c0 � ¼ kþδ̃ðk − k0Þδσσδcc0 ; ð5Þ

where σ and c are spin and color indices, respectively.
The momentum delta function is given by δ̃ðpÞ ¼
16π3δðpþÞδðp1Þδðp2Þ, and the polarization four vectors
have the components

εμkσ ¼ ðεþkσ ¼ 0; ε−kσ ¼ 2k⊥ε⊥σ =kþ; ε⊥σ Þ: ð6Þ

The quantum canonical Hamiltonian is obtained after
normal ordering of operators, represented by

P̂− ¼ 1

2

Z
dx−d2x⊥∶ HðÂÞ∶: ð7Þ

Details of P̂− can be found in [18,19,35].
For pure gluonic QCD, only products of fields Aμ and of

its derivatives are involved:

H ¼ HA2 þHA3 þHA4 þH½∂AA�2 ; ð8Þ

where HA2 is the free Hamiltonian, HA3 is the three-
gluon vertex, HA4 is the four-gluon vertex, and H½∂AA�2
appears due to the constraint imposed on A− by the
Lagrange equations in the light-cone gauge Aþ ¼ 0
(cf. Refs. [18,19,34] for details):

A− ¼ 2
1

∂
þ ∂

⊥A⊥ − g
2i
∂
þ2

½∂þA⊥; A⊥�: ð9Þ

We will use the following notation. Hamiltonian terms
with one creation and one annihilation operators are
written using subscripts H11. Likewise, terms with two
creation and one annihilation operators are denoted byH21.
More generally, Hij denotes a term with i creation and j
annihilation operators.
The kinetic energy of free particles is independent of the

coupling constant g:

H11 ¼
1

2

Z
xþ¼0

dx−d2x⊥∶ HA2∶

¼
X
1

Z
½1� k

⊥2
1 þm2

g

kþ1
a†1a1; ð10Þ

where we have used the abbreviation ½1� ¼ ½k1�. The
subscript 1 in particle operators stands for spin s1, color
c1, and momentum k1 of particle 1. The parametermg is the
canonical gluon mass, added to the QCD Hamiltonian.
An extended discussion about this parameter will be given
in the next section, where the regularization method is
explained.

The three-gluon vertex is proportional to g and has
the form

H21 þH12 ¼
1

2

Z
xþ¼0

dx−dx⊥∶ HA3∶

¼ g
X
123

Z
½123�ftr δ̃ðk† − kÞY123a

†
1a

†
2a3 þ H:c:;

ð11Þ

where numbers 1, 2, and 3 in the creation and annihilation
operators represent all quantum numbers of particles
1, 2, and 3, respectively, and the shortcut notation ½123� ¼
½1�½2�½3� is used. The argument of the Dirac delta function
ðk† − kÞ denotes differences of momenta of created par-
ticles minus annihilated ones in an interaction, respectively.
These terms are represented in Fig. 1.
The momentum carried together by all annihilated or all

created particles in a single interaction is called parent
momentum. Conservation of momentum allows us to write
kþ1 ¼ x1k

þ
3 , kþ2 ¼ x2k

þ
3 , with x1 þ x2 ¼ 1; and k⊥1 ¼

x1k⊥3 þ κ⊥12, k⊥2 ¼ x3k⊥3 − κ⊥12, so that κ⊥12 ¼ x2k⊥1 − x1k⊥2 .
We use the subscript i=p to denote the momentum of
the daughter particle i relative to the parent p. For example,
in a vertex a†1a

†
2a3, the parent momentum is k3 and

k⊥;þ
3 ¼ k⊥;þ

1 þ k⊥;þ
2 . We write k⊥1 ¼ x1=3k⊥3 þ κ⊥1=3, where

x1=3 denotes x1=x3 and κ⊥1=3 ¼ κ⊥12.
The factor Y123 is a polarization function:

Y123 ¼ ifc1c2c3
�
ε�1ε

�
2 · ε3κ − ε�1ε3 · ε

�
2κ

1

x2=3

− ε�2ε3 · ε
�
1κ

1

x1=3

�
ð12Þ

with ε≡ ε⊥ and κ ≡ κ⊥. Finally, ftr in Eq. (11) is a
regularization function described in the next section.
The subscript tr is a cutoff parameter. For complete-
ness, let us mention that terms HA4 and H½∂AA�2 give
rise to Hamiltonian terms with four particle
operators [18,19].

FIG. 1. First-order three-gluon vertex diagram. Left: term
with two annihilation and one creation operators, Y�

123a
†
3a2a1.

Right: term with one annihilation and two creation operators,
Y123a

†
1a

†
2a3.
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B. Effective Hamiltonians

The RGPEP introduces the concept of effective particles.
Canonical operators are transformed into effective ones by
means of a similarity transformation

at ¼ U ta0U
†
t ; ð13Þ

where U t is an anti-Hermitian operator and t the
renormalization-group parameter, which can be related to
s and λ by

s ¼ 1=λ ¼ t1=4: ð14Þ

The parameter s has units of length and is associated with
the size of effective particles; λ has units of mass and is

associated with the energy scale. While bare operators að†Þ0

annihilate (create) bare, pointlike particles, effective par-

ticle operators að†Þt annihilate (create) particles of size s.
The RGPEP is based on the demand that

H0ða0Þ ¼ HtðatÞ; ð15Þ

where Ht is the effective Hamiltonian. Denoting Ht ¼
Htða0Þ and differentiating Eq. (15), one can derive the
RGPEP equation

dHt

dt
¼ ½½Hf;HPt�;Ht�; ð16Þ

with the generator Gt ¼ ½Hf;HPt� defining the unitary
transformation in Eq. (13). The operator Hf is the
Hamiltonian term that does not contain interactions
[Eq. (10)]. The operator HPt is identical to Ht, but it
contains a factor equal to ðPi p

þ
i Þ2, with i denoting all

particles involved in the interaction [20]. Equation (16) can
be solved order by order using a perturbative expansion
of Ht in powers of the coupling constant g:

Ht ¼ H0 þ gHt1 þ g2Ht2 þ g3Ht3 þ g4Ht4 þ � � � : ð17Þ

The description of the three-gluon vertex considered here
involves powers not larger than third. Following the
notation explained above Eq. (10), this requires terms of
the type

Ht ¼ H11;0;t þH21;g;t þH12;g;t þH11;g2;t þH22;g2;t

þH12;g3;t þH21;g3;t; ð18Þ

where an additional subscript indicates the power of the
coupling constant each term contains. Introducing Eq. (18)
in the RGPEP Eq. (16) yields products of Hamiltonians of
different orders. The equation can be then solved order by
order (see Appendix A). From all terms involved in third-
order solutions, we will focus only on those relevant in the

calculation of the three-gluon vertex, namely, on the ones
with two creation and one annihilation operators and
vice versa.

C. Regularization and counterterms

The canonical Hamiltonian presents ultraviolet and
small-x divergences that have to be treated through the
RGPEP. Integration of the RGPEP equation yields expo-
nential functions called form factors (cf. Appendix A):

fab;t ¼ e−ab
2t; ð19Þ

where ab ≔ M2
a −M2

b represents differences of invariant
masses of particle configurations a and b associated,
respectively, with all creation and annihilation operators
in a vertex. For example, in a vertex a†1a

†
2a3 (cf. Fig. 1), the

form factor is

ft12.3 ¼ exp ½−tðM2
12 −M2

3Þ2�; ð20Þ

with invariant masses defined as M2
i…j¼ðpiþ���þpjÞ2.

For single gluons M2
i ¼ m2

g, and for pairs M2
ij ¼

κ2ijþm2
g

xi=pxj=p
,

where xi=p ¼ xi=xP and xp ¼ xi þ xj. Note that, in dis-
tinction to the previous work [19], M2

3 is not zero, and,
thus, form factors change from

ftij:l ¼ exp

 
−t

κ4ij
x2i x

2
j

!
ð21Þ

to

ftij:l ¼ exp

�
−t
�
κ2ij þm2

g

xixj
−m2

g

�2�
: ð22Þ

These factors remove all ultraviolet divergences present in a
single interaction term.
On the other hand, to tackle the more subtle small-x

divergences appearing in loop integrals, we introduce
a regulating function depending on a small cutoff tr in
each vertex:

ftr12.3 ¼ exp ½−trðM2
12 −M2

3Þ2�: ð23Þ

The behavior of form factors with and without a gluon
mass is different around κij ¼ 0 and xi; xj ¼ 0, precisely
the region in which loop integrals diverge. The gluon mass
and tr remove all small-x divergences.
The result in the limit tr → 0 and mg → 0 must be then

analyzed, and any possible remaining divergence should be
canceled by counterterms.
Thus, the counterterms provide the initial condition of

the differential equation (16) and are such that, in the limit
in which the cutoffs are lifted, the canonical Hamiltonian
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must be recovered and any cutoff dependence must be
removed. Therefore, the initial Hamiltonian consists of the
(regularized) canonical Hamiltonian plus counterterms.
To illustrate the procedure in a simple case, consider the

self-energy contribution resulting from the product of two
first-order vertices (cf. Fig. 2):

μ̂2t;ab ¼ 2
X
1

Z
½1� 1

pþ
1

×

�Z
½xκ� κ2PðxÞ

2xð1 − xÞ
f2tþtr − f2tr
M2 −m2

g

	
a†1a1 þ μ̂20;ab;

ð24Þ

where PðxÞ is the Altarelli-Parisi gluon splitting
function [36].
Ultraviolet divergences are regularized by form factors

ft that suppress interactions with changes of invariant
masses greater than about λ ¼ t−1=4. But terms that do not
contain such functions may diverge, and a counterterm is
required to cancel the cutoff dependence introduced by
regulating functions. In Eq. (24), the counterterm is
represented by μ̂20;ab.

There are also small-x divergences that cannot be
regulated by the RGPEP and that arise from zero modes.
The presence of a gluon mass avoids the appearance of
such infinities. On the other hand, the divergence of the
self-energy due to small-x singularities is not a problem,
because an isolated gluon is not a physical state, and, thus,
its mass is not an observable.
The counterterm is

μ̂20;ab ¼ 2
X
1

Z
½1� 1

pþ
1

�Z
½xκ� κ2PðxÞ

2xð1 − xÞ
f2tr

M2 −m2
g

þ μ20;mg

	
a†1a1; ð25Þ

and the self-energy term can be finally written as

μ̂2t;ab ¼ 2
X
1

Z
½1� μ

2
t

pþ
1

a†1a1

¼ 2
X
1

Z
½1� 1

pþ
1

�Z
½xκ� κ2PðxÞ

2xð1 − xÞ
f2tþtr

M2 −m2
g

þ μ20;mg

�
a†1a1: ð26Þ

The remaining dependence on tr vanishes, because this
parameter appears in addition to t in form factors [11].
In contrast, note that the gluon mass is still necessary to
regulate small-x divergences, as it is shown in Fig. 3, where
the integrand of Eq. (26) is plotted after numerical
integration in κ⊥ for different values of the gluon-mass
parameter mg. Finally, μ20;mg

is an ultraviolet finite remnant

that cannot be fixed by the RGPEP procedure alone, and, as
the subscriptmg indicates, it can be divergent in the small-x
limit and, thus, used to cancel the divergence on μ2t , in case
we need it to be finite [37].
Equation (26) can be integrated analytically in the limit

of small mass mg using the procedure described in
Appendix B. After the integration, one can identify
divergent and finite terms in the resulting expression:

μ2t ¼ −
ffiffiffi
π

2

r
1

4
ffiffi
t

p
�
log ðtm4

gÞ þ log ð8eγEÞ þ 23

6

�
þ μ20;mg

;

ð27Þ

where γE is the Euler-Mascheroni constant. Note how
clearly μ2t → ∞ when mg → 0.

III. THREE-GLUON VERTEX
AND RUNNING COUPLING

From the expansion of Eqs. (17) and (18), we identify the
three-gluon-vertex structure in those terms that annihilate
(create) one effective gluon and create (annihilate) two
ones. Indeed, the expression (cf. Fig. 4)

FIG. 2. Second-order self-energy diagram resulting from the
product of two first-order three-gluon vertices (cf. Fig. 1). Thick
lines represent effective gluons, and thin lines represent creation
and annihilation operators that have been eliminated in the
normal ordering.

FIG. 3. Integrand of Eq. (26) after numerical integration over
κ⊥ for different values of the parameter mg. The gluon mass acts
as a regulator: The smaller its value, the more the tendency to
infinity of the integrand for x close to 0. The behavior is
symmetric for 0.5 < x < 1.
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V21t ¼ gY21t þ g3K21t

¼
X
123

Z
½123�δ̃ðp† − pÞft;abfgỸ21t

þ g3ðK̃21t þ K̃210Þga†t1a†t2at3 ð28Þ

has first- and third-order terms.
The first-order term is given by Eq. (11) but including

now the form factor ft and with the additional difference
that particle operators are of type t and have a width s.
The third-order term is a sum of products of interactions
that result from introducing Eq. (17) in Eq. (16) and its
associated counterterm K̃210. We can distinguish ten differ-
ent types of contributions depending on the operator
product contained in them. They are represented diagram-
matically in Fig. 5.
In terms of these diagrams, the third-order component in

Eq. (28) is written as

K̃21t þ K̃210 ¼
P

nγtðnÞ
2 · 16π3

þ γ0ðjÞ
2 · 16π3

; ð29Þ

where n ranges from a to i and j corresponds to the third-
order counterterm, which is independent of t.
By inspection of the three-gluon vertex, the effective

coupling depending on the RGPEP parameter t can be
defined [18,19]. The running coupling is identified as the
coefficient in front of the canonical color-, spin-, and
momentum-dependent factor Y123ðx1; κ12; σÞ in the limit
κ12 ≈ 0 for some value of x1 [18,19].
The coupling constant gt must be set to a specific value

g0 at some arbitrary scale t ¼ t0 in agreement with experi-
ments describing data using the effective Hamiltonian
at t ¼ t0. Such a scale of reference can be introduced by
means of the counterterm.
Recalling the procedure presented in Sec. II C, the third-

order counterterm can be written as [19]

K̃210 ¼
1

2 · 16π3

�
−
X
n

γt0ðnÞ þ γfinite

�
; ð30Þ

and contains terms that cancel all possible UV divergences,
since the difference γtðnÞ − γt0ðnÞ is ultraviolet finite
regardless of the values of t and t0. Equation (29) can
be expressed as

K̃21t þ K̃210 ¼
1

2 · 16π3

�X
n

½γtðnÞ − γt0ðnÞ� þ γfinite

	

ð31Þ

with the finite part γfinite undetermined.
Similarly to the self-energy Hamiltonian term, μ2t in

Eq. (26), each γðnÞ involves three-dimensional loop inte-
grals over the longitudinal momentum fractions x and
relative transverse momenta κ⊥ of the internal virtual

FIG. 4. Illustration of the three-gluon vertex as a sum of
structures with annihilation of one and creation of two effective
gluons. The first term is proportional to g, and the second one is
proportional to g3. The latter is a sum of different structures
represented in Fig. 5.

FIG. 5. Third-order diagrams resulting from products of first-order terms [diagrams (a), (d), and (g)] and from products of first-order
times second-order terms [diagrams (b), (c), (e), (f), (h), and (i)]. The thick dots in (f) and (i) represent self-energy counterterms.
Diagram (j) is the third-order counterterm that removes loop divergences arising at this order when the cutoff is lifted. Thicker lines
represent effective creation and annihilation operators. Thin internal lines represent operators that are eliminated in the normal ordering.
Dotted lines with a transverse dash indicate instantaneous interactions present in the canonical Hamiltonian due to the constraint Eq. (9).
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particles. A detailed expression for the integrand of each
of these structures can be found in [19], with the unique
difference that in this work all invariant masses contain the
canonical gluon mass mg, which makes the integration
procedure much more involved.
The approximation κ12 ≈ 0 is now applied to both terms

in Eq. (31). For the difference γtðnÞ − γt0ðnÞ, we have

γtðnÞ − γt0ðnÞ
2 · 16π3

≈ ½ctðx1Þ − ct0ðx1Þ�Y123ðx1; κ12; σÞ; ð32Þ

where the linear dependence on κ12 is contained in Y123.
For the finite part of the counterterm, which does not need
to be specified here, we write

γfinite ≈ c̃0ðx1; κ12; σÞ; ð33Þ

with the function c̃0 at most linear in κ12.
Taking this into account, we can extract the running

coupling from the three-gluon vertex at first order in κ12,
identifying the coefficient in front of the bare vertex
structure Y123:

Ṽ21t ¼ gỸ21t þ g3ðK̃21t þ K̃210Þ
≈ fgþ g3½ctðx1Þ − ct0ðx1Þ�gY123 þ c̃0ðx1; κ12; σÞ
þOðκ212; g4Þ: ð34Þ

The running coupling at third order is, thus,

gt ≡ gþ g3½ctðx1Þ − ct0ðx1Þ�; ð35Þ

and, setting gt to be g0 at the scale t0, we are left with

gt ¼ g0 þ g30ðctðx1Þ − ct0ðx1ÞÞ: ð36Þ

A. Term a

The triangle term (a) gathers products of three first-order
vertices Eq. (10):

ðK̃21tðx1; κ12; σÞ þ K̃210ðx1; κ12; σÞÞja
¼ Y0;axY0;xyY0;ybðCt;axyb − Ct0;axybÞ; ð37Þ

where the contribution of the third-order counterterm is
included. Y0;αβ are first-order interaction vertices from the
initial Hamiltonian, with subscripts denoting particle con-
figurations before and after each interaction. The RGPEP
factor Ct;axyb results from solving the RGPEP equations,
and it is made of functions of invariant masses and form
factors (see Appendix A, Fig. 8, and Refs. [19,20]).
The product of first-order vertices Eq. (11) that leads to

diagram (a) is

Y0;axY0;xyY0;yb ¼ 8
X
123

Z
½123�

Z
dxd2κ
16π3

ftr;axftr;xyftr;yb
pþ2
3

P
678Y

�
682Y167Y783

ðx − x1Þð1 − xÞx δ̄ðp7 þ p8 − p3Þa†1a†2a3; ð38Þ

where the numbers 6, 7, and 8 label intermediate gluons. The contribution of this diagram is

γtðaÞ − γt0ðaÞ ¼ 4iNcY123fc1c2c3
Z

1

x1

dxϵijkðaÞ
ðx − x1Þð1 − xÞx

Z
d2κftr;axftr;xyftr;ybκ

i
68κ

j
16κ

k Ct;axyb − Ct0;axyb

pþ2
3

þ ð1 ↔ 2Þ; ð39Þ

where ϵijkðaÞ is a structure that depends on the relative
transverse momentum of external gluons κ⊥12 and emerges
from the product of polarizations:

X
678

Y�
682Y167Y783 ¼

Nc

2
ifc1c2c3κi68κ

j
16κ

kϵijkðaÞ: ð40Þ

In order to evaluate Eq. (39), we simplify the integrand
proceeding as described in Appendix B. The integration
over x is divided into regions called I, II, and III:
ðx1; x1 þ m̄gÞ, ðx1 þ m̄g; 1 − m̄gÞ, and ð1 − m̄g; m̄gÞ,
respectively, where m̄g is dimensionless and depends
on mg. The integral over x diverges in regions I and III
but is finite in region II.

(i) Region II.—Since there is no divergence in this
interval, limits mg → 0 and tr → 0 can be applied,
and the result is analogous to the one obtained
in [19].

(ii) Regions I and III.—The first and third intervals are
evaluated separately by expanding the integrals over
x ≈ x1 and x ≈ 1, respectively, and keeping only
the dominant powers. Then, an expansion around
κ12 ≈ 0 is applied, yielding an expression propor-
tional to the structure Y123; cf. Eq. (32) with integrals
that can be evaluated analytically.

The total contribution of diagram (a) is obtained after
adding the result from each interval. A logarithmic
dependence on the gluon mass parameter mg remains:
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γtðaÞ − γt0ðaÞ → NcY123π log

�
t
t0

��
−
11

3
þ 1

6
haðx1Þ

�

−
16πNcY123

x1x2

t̄ − t̄0
x21 þ x22

m̄g

t̄r
; ð41Þ

where

1

6
haðx1Þ ¼ −3 log ðm̄4

g

ffiffiffiffiffiffi
t̄t̄1

p
eγEÞ− 5− logð2Þ

þ 1− x21x
2
2

ð1þ x21Þð1þ x22Þ
−

2

1− x22
log

�
1þ x22
x1x2

�

−
2

1− x21
log

�
1þ x21
x1x2

�
þ
�
1−

1

1− x21
−

1

1− x22

�

× log

� ðx21 þ x22Þx21x22
2ð1þ x22Þð1þ x21Þ

�
; ð42Þ

γE being the Euler-Mascheroni constant.

B. Terms (b)–(i)
Terms (b) and (c) are products of the first-order vertex

and the second-order canonical interaction. For the
term (b), we have

γtðbÞ − γt0ðbÞ →
16πNcY123

x0x2

ðt̄ − t̄0Þ
x21 þ x22

m̄g

t̄r
: ð43Þ

This contribution exactly cancels the term proportional to
t̄ − t̄0 in Eq. (41).
The contribution of (c) turns out to be negligible in the

limit mg, tr → 0.
Terms (e) and (h) also result from the product of the

same kind of interactions as (b) and (c). They do not
contribute to the running coupling due to the absence of
linear terms in κ12 that could give rise to the canonical
polarization structure Y123 of Eq. (11).
Terms (d) and (f) are also obtained from products of

first-order interactions, two of them forming a second-order
self-energy contribution μ̂t. Thus, diagrams (d) and (f)
come from the first and second terms in Eq. (26), respec-
tively, the latter containing the counterterm. Their sum
gives the following result:

γtðdþ fÞ − γt0ðdþ fÞ

→ πNcY123 log

�
t
t0

��
11

3
þ 1

6
hdþfðx1Þ

�
; ð44Þ

where

1

6
hdþfðx1Þ ¼ 2 log ðeγEm̄4

g

ffiffiffiffiffiffi
t̄t̄0

p
Þ þ 2 log 2þ 4

− 2
x22

1 − x22
log

�
1þ x22
2x22

�

− 2
x21

1 − x21
log

�
1þ x21
2x21

�
: ð45Þ

Terms (g) and (i) are analogous, but the loop is located in
another leg of the diagram:

γtðgþ iÞ − γt0ðgþ iÞ

→
πNcY123

6
log

�
t
t0

�
½11þ hgþiðx1Þ� ð46Þ

with

1

6
hgþiðx1Þ ¼ log

�
eγEm̄4

g

ffiffiffiffiffiffi
t̄ t̄0

p �
þ log 2þ 1: ð47Þ

The final expression of the running coupling is given by
Eqs. (41)–(47):

gλ ¼ g0 − Nc
g30

48π2
log

�
λ

λ0

�
½11þ hðx1Þ�; ð48Þ

with λ ¼ 1=
ffiffiffi
4

p
t and

hðx1Þ ¼ −6
�
1þ x22
1− x22

log

�ð1þ x22Þ2
x22

�

þ 1þ x21
1− x21

log

�ð1þ x21Þ2
x21

�
−

1− x21x
2
2

ð1þ x21Þð1þ x22Þ

þ
�
1−

1

1− x21
−

1

1− x22

�
log

�
8ð1þ x22Þð1þ x21Þ

ðx21 þ x22Þ
�	

:

ð49Þ

As one can see, the obtained running coupling does not
contain any explicit dependence on cutoff tr or on the gluon
mass mg. All possible dependencies have been canceled
after adding the contributions. Thus, the final result is finite
and independent of mg in the limit mg → 0, even when the
contributions diverge individually in this limit; cf. Fig. 6.

C. Analysis of results

It is interesting to observe the results shown in Fig. 7.
The 2D plot shows separate contributions to the running
coupling (for x1 ¼ 0.5) coming from different diagrams in
Fig. 5. Contributions ðdÞ þ ðfÞ and ðgÞ þ ðiÞ are decreas-
ing and, therefore, asymptotically free, whereas contribu-
tion (a) is increasing. All three contributions balance out,
and their sum is extremely close to the value of the running
coupling obtained from standard calculations using
Feynman diagrams (bold black line). The difference is
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due to the appearance of function hðx1Þ in Eq. (48), which
for the considered value hð0.5Þ ¼ −0.863. This small
difference does not even reach a maximum of 2% in the
treated range of scale λ.

Such a difference grows, however, for values of x1 that
distance from the central one x1 ¼ 0.5, reaching a maximum
at x1 ¼ 0 and x1 ¼ 1, as is plotted in the curved surface of
the 3D Fig. 7. It seems reasonable to define the running
coupling at x1 ¼ 0.5. Yet, a need for a more adequate
definition of the running of the coupling and including
higher-order Hamiltonians than third is not discarded.
The difference in sign in the variation of the coupling

provided by the different pieces represented in Fig. 5
resembles the difference in sign of terms in the effective
potential obtained for quarks in the bound-state problem
[9,33]. In the bound-state equation, self-energy interactions
are repulsive, while the exchange of gluons between quarks
is attractive. Hence, attractive and repulsive forces combine
to form bound states, canceling divergences that appear in
them when they are taken separately. It is not surprising
then that Hamiltonian terms combine analogously in
the three-gluon vertex, too. Indeed, terms ðdÞ þ ðfÞ and
ðgÞ þ ðiÞ are self-energy Hamiltonians multiplied by a
three-gluon vertex, whereas term (a) can be seen as a
gluon exchange term that is contracted with a three-gluon
vertex. In other words, the first case is a three-gluon vertex
with one of the gluons interacting with itself, whereas in
the latter case, one gluon splits in two, which, in turn,
exchange another gluon.
It is not trivial how the cutoff dependence appearing in

different diagrams cancels each other exactly in the limit
mg → 0. The running coupling is, in fact, insensitive to
the gluon mass and cutoff, as long as they are sufficiently
small. Yet, the presence of the mass is indispensable for the
cancellation of divergences. The fact that the function hðx1Þ
appears and that it is different from the functions h obtained
in the old version of the calculation [19] evidences the finite
dependence on the regularization procedure, which needs
to be clarified and better understood in a deeper analysis.

FIG. 7. Left: The resulting running coupling Eq. (48) varying with λ for x1 ¼ 0.5 (purple). It results from the sum of the contributions
coming from the different diagrams (blue dashed lines). It appears very close to the running coupling result corresponding to hðx1Þ ¼ 0
(bold black line) (cf. Refs. [18,19]). Right: The function gλðx1Þ shows a dependence on x1 due to the function hðx1Þ appearing in
Eq. (49), differing from the case hðx1Þ ¼ 0 as x1 approaches the ends x1 ¼ 1 and x1 ¼ 0. The difference is more pronounced for lower
values of λ.

FIG. 6. Result of integration over κ⊥ for region I of term γðaÞ
(see Appendix B). In the upper panel, tr is fixed to 0.04 GeV−4,
while in the bottom panel, mg is fixed to 0.06 GeV. In both
figures, t ¼ 2 GeV−4, t0 ¼ 1 GeV−4, and x1 ¼ 0.5. Divergences
occur either when tr → 0 or mg → 0.

CANCELLATION OF SMALL-x DIVERGENCES IN THE … PHYS. REV. D 108, 096001 (2023)

096001-9



IV. SUMMARY AND CONCLUSIONS

We have analyzed the effect of a new regularization with
canonical gluon mass in the front-form Hamiltonian within
the RGPEP. Following previous studies, we have derived
the three-gluon-vertex effective Hamiltonian term in a
third-order expansion in powers of the coupling constant.
The inclusion of a gluon mass provides a suitable regu-
larization procedure for small-x divergences. The presence
of the mass makes regularization factors go to zero faster
than any positive power of x as x → 0.
We have computed the running of the coupling constant

using the coefficient function in front of the three-gluon-
vertex structure in the approximation κ⊥12 ≈ 0, describing the
running of the coupling by its variation with the energy scale.
Although the new regularization procedure differs con-

ceptually from the one employed in previous calculations,
it leads to a similar type of function, exhibiting asymptotic
freedom. The running of the coupling depends on the
renormalization-group parameter λ in the same way as the
running coupling calculated using Feynman diagrams for
off-shell Green’s functions depends on momentum, even
though both approaches are fairly different.
In our definition of the running coupling, all terms

depending on mg cancel out in a nontrivial way for
infinitesimally small gluon mass. Hence, there is no
dependence on the mass parameter mg or on the cutoff
tr, even though separate contributions diverge in this limit.
As in the foregoing studies, a finite dependence on the

regularization remains, which is manifest in the appearance
of the function hðx1Þ in Eq. (48). For x1 ¼ 0.5, the running
coupling has values extremely close to the one provided
by standard calculations [and would be identical for
hðx1Þ ¼ 0], with less than a 2% difference within the
entire range of the scale λ considered. In contrast to the
previous calculation, the dependence on x1 appears not
only in contribution (a) [Eq. (41)], but also in ðdÞ þ ðfÞ
[Eq. (44)]. Removal of such finite dependence requires a
deeper understanding of how to define the running cou-
pling constant in Hamiltonians and, eventually, a higher-
order analysis. The inclusion of longitudinal polarization
for gluon with mass ought to be considered [38].
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APPENDIX A: SOLUTIONS ORDER BY ORDER

This appendix summarizes the main steps for system-
atically solving the RGPEP equation (16) perturbatively.

The reader interested in a deeper discussion may consult
Ref. [20]. The effective Hamiltonian is a solution to the
RGPEP equation:

H0
t ¼ ½½Hf;HPt�;Ht�: ðA1Þ

The operator HPt is defined in terms of the effective
Hamiltonian Ht, differing in a factor ð1

2

P
i p

þ
i Þ2, with i

denoting the particles involved in an interaction [20].
The perturbative solution is given as a power expansion

in the coupling constant g:

Ht ¼ H0 þ gHt1 þ g2Ht2 þ g3Ht3 þ g4Ht4 þ � � � : ðA2Þ

For instance, in a fourth-order expansion, one has

H0
0 þ gH0

t1 þ g2H0
t2 þ g3H0

t3 þ g4H0
t4

¼ ½½H0;H0 þ gH1Pt þ g2H2Pt þ g3H3Pt þ g4H4Pt�;
H0 þ gHt1 þ g2Ht2 þ g3Ht3 þ g4Ht4�; ðA3Þ

which can be solved order by order:

H0
0 ¼ 0; ðA4Þ

gH0
t1 ¼ ½½H0; gH1Pt�;H0�; ðA5Þ

g2H0
t2 ¼ ½½H0; g2H2Pt�;H0� þ ½½H0; gH1Pt�; gH1t�; ðA6Þ

g3H0
t3 ¼ ½½H0; g3H3Pt�;H0� þ ½½H0; g2H2Pt�; gH1t�

þ ½½H0; gH1Pt�; g2H2t�; ðA7Þ

g4H0
t4 ¼ ½½H0; g4H4Pt�;H0� þ ½½H0; g3H3Pt�; gH1t�

þ ½½H0; g2H2Pt�; g2H2t� þ ½½H0; gH1Pt�; g3H3t�:
ðA8Þ

We present solutions to these equations in terms of matrix
elements Htab ¼ hajHjbi:

Ht1ab ¼ ftabH01ab; ðA9Þ

Ht2ab ¼ ftab
X
x

H01axH01xbBtaxb þ ftabG02ab; ðA10Þ

Ht3ab ¼ ftabG03ab þ ftab
X
xy

H01axH01xyH01ybCtaxyb

þ ftab
X
x

ðH01axG02xb þ G02axH01xbÞBtaxb;

ðA11Þ
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Ht4ab ¼ ftab
X
xyz

H01axH01xyH01yzH01zbDtaxyzb

þ fτab
X
xy

ðH01axH01xyG02yb þH01axG02xyH01yb

þ G02axH01xyH01ybÞCtaxyb
þ fτab

X
x

ðG02axG02xb þH01axG03xb

þ G03axH01xbÞBtaxb þ fτabG04ab; ðA12Þ

where operators G02, G03, and G04 are the initial condition,
being canonical terms or counterterms of the respective
order [20]. The so-called RGPEP factors are given by

Ataxb ¼ ½axpax þ bxpbx�f−1tabftaxftbx; ðA13Þ

Btaxb ¼
Z

t

0

Aτaxbdτ; ðA14Þ

Ctaxyb ¼
Z

t

0

½AτaxbBτxyb þAτaybBτaxy�dτ; ðA15Þ

Dtaxyb;¼
Z

t

0

½AτaxbCτxyzbþAτazbCτaxyzþAτaybBτaxyBτyzb�;

ðA16Þ

with ftab ≔ exp ½−ab2t� and ab ≔ M2
ab −M2

ba.
The subscripts a, b, x, and y represent particle configu-

rations; cf. Fig. 8 and Ref. [20]. In this paper, we consider
solutions up to third order.

APPENDIX B: INTEGRATION PROCEDURE

In this appendix, a systematic procedure to integrate
expressions such as Eq. (39) is discussed. After introduc-
tion of the scale t0, integrals involved have the structure

lim
mg→0

Z
1

1−xP
dx
Z

∞

0

d2κ⊥f̃trðft;i − ft0;iÞCiðx; x1; κ; κ12; mgÞ;

ðB1Þ

where f̃tr is the product of regularization form factors
introduced at each interaction vertex and ðft;i − ft0;iÞCi

denotes a sum of differences of form factors, evaluated at t
and t0, multiplied by fractions depending on invariant
masses [see BtðaÞ in Eq. (C15) in [19], where the counter-
term has not been taken into account yet]. 1 − xP denotes
the minimal momentum fraction carried in internal loops.
In this work, it is equal to 1 or x2.
The limit mg → 0 is used to simplify the integrand.

First, we introduce dimensionless variables using an
arbitrary scale tN :

t̄ ¼ t
tN

; κ̄⊥ ¼ κ⊥t1=4N ; m̄g ¼ mgt
1=4
N : ðB2Þ

After this change of variables, the behavior of the integrand
in the neighborhood of κ ¼ 0 and x ¼ 1 or x ¼ 1 − xP is
studied. Form factors are decreasing exponentials of
differences of invariant masses:

ft ¼ exp ½−tðM2 −m2
gÞ2�; ðB3Þ

with M depending on κ̄, m̄g, and x in the following way:

M2 ¼ x2P
κ̄2 þ m̄2

g

ð1 − xÞðx − ð1 − xPÞÞ
: ðB4Þ

There are two scales settled by m̄g and κ̄; one corresponds
to κ̄ ≫ m̄g, in which the mass parameter can be ignored,
and the other to κ̄ ≈ 0, for which m̄g provides the necessary
regularization when x is close to of 1 − xP or 1. Thus, the
limit m̄g → 0 cannot be applied inside the integral, as it cuts
off the divergences of invariant masses that take place when
x − ð1 − xPÞ < m̄g or 1 − x < m̄g if κ̄ ¼ 0, necessary to
regulate (B1).
If the integral over x is divided in three regions,
(i) region I: x∈ ð1 − xP; ð1 − xPÞ þ m̄gÞ,
(ii) region II: x∈ ðð1 − xPÞ þ m̄g; 1 − m̄gÞ, and
(iii) region III: x∈ ð1 − m̄g; 1Þ,

it can be greatly simplified in intervals I and III applying
approximations 1 − x ≈ xP and x − ð1 − xPÞ ≈ xP respec-
tively. The limit m̄g → 0 can be safely applied in region II,
since numerators of invariant masses are quadratic in m̄g,
whereas denominators are linear in m̄g.
For example, in the self-energy integral Eq. (26), the

three regions are

FIG. 8. Particle configurations a, x, y, and b in diagram (a).
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Z
1

0

dx → lim
m̄g→0

�Z
m̄g

0

dxþ
Z

1−m̄g

m̄g

dxþ
Z

1

1−m̄g

dx

�
: ðB5Þ

The contribution in region I is obtained using the approxi-
mation 1 − x ≈ 1:

μtjI ¼
Nc

ð2πÞ2
Z

m̄g

0

dx
x2

Z
dκ̄

κ̄3

m̄2
g þ κ̄2

exp

�
−2t̄

ðm̄2
g þ κ̄2Þ2
x2

�
;

ðB6Þ

that can be easily integrated:

μtjI ¼ −
Nc

ð2πÞ2
ffiffiffi
π

2

r
1

8
ffiffi
t

p
�
2þ γE þ 3 logð2Þ þ log ðtm4

gÞ

−
1

2
log ðtNm4

gÞ
�
: ðB7Þ

In region III, the change of variables y ¼ 1 − x makes the
integral analogous to the one on interval region I and the
result is the same. In region II, the regularization can be
safely lifted by taking the limit tr → 0 and mg → 0,
yielding

μtjII ¼
Nc

ð2πÞ2
Z

1−m̄g

m̄g

dx
Z

dκκ

�
1þ 1

x2
þ 1

ð1 − xÞ2
�

× exp

�
−2t

κ4

x2ð1 − xÞ2
�

¼ −
Nc

ð2πÞ2
ffiffiffi
π

2

r
1

8
ffiffi
t

p
�
log ðtNm4

gÞ þ
11

3

�
: ðB8Þ

Adding the results of the three intervals, one obtains
Eq. (27). The dependence on the arbitrary scale tN cancels
and a logarithmic dependence on mg is left as a remnant of
the regulated divergence.
The error induced by this approximation is negligible

in the limit of infinitesimally small gluon mass. This is
shown in Fig. 9: The left panel shows the difference
between the result obtained applying this procedure and
the numerical integral, as a function of the gluon mass
parameter mg. The right panel shows the difference
between the approximated analytical integral and the
numerical one for different values of t and a fixed mass
mg ¼ 0.01 MeV. We recall that we are interested in the
limit mg → 0.
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