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We consider F-term hybrid inflation and supersymmetry breaking in the context of a model that largely
respects a global Uð1Þ R symmetry. The Kähler potential parametrizes the Kähler manifold with an
enhancedUð1Þ × ðSUð1; 1Þ=Uð1ÞÞ symmetry, where the scalar curvature of the second factor is determined
by the achievement of a supersymmetry-breaking de Sitter vacuum without ugly tuning. The magnitude of
the emergent soft tadpole term for the inflaton can be adjusted in the range (1.2–460) TeV—increasing with
the dimensionality of the representation of the waterfall fields—so that the inflationary observables are in
agreement with the observational requirements. The mass scale of the supersymmetric partners turns out to
lie in the region (0.09–253) PeV which is compatible with high-scale supersymmetry and the results of LHC
on the Higgs boson mass. The μ parameter can be generated by conveniently applying the Giudice-Masiero
mechanism and assures the out-of-equilibrium decay of the R saxion at a low reheat temperature
Trh ≤ 163 GeV.
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I. INTRODUCTION

Among the various inflationary models (for reviews see
Refs. [1,2]), the simplest and most well-motivated one is
undoubtedly the “F-term hybrid inflation” (FHI) model [3].
It is tied to a renormalizable superpotential uniquely
determined by a global Uð1Þ R symmetry, it does not
require fine-tuned parameters and trans-Planckian inflaton
values, and it can be naturally followed by a grand unified
theory (GUT) phase transition; see, e.g., Refs. [4–6]. In the
original implementation of FHI [3], the slope of the
inflationary path that is needed to drive the inflaton toward
the supersymmetric (SUSY) vacuum is exclusively pro-
vided by the inclusion of radiative corrections (RCs) in the
tree level (classically flat) inflationary potential. This
version of FHI is considered as strongly disfavored by
the Planck data [7] fitted to the standard power-law
cosmological model with cold dark matter (CDM) and a
cosmological constant (ΛCDM). A more complete treat-
ment, though, incorporates also corrections originating
from supergravity (SUGRA) that depend on the adopted

Kähler potential [8–11] as well as soft SUSY-breaking
terms [12–17]. Mildly tuning the parameters of the relevant
terms, we can achieve [18] mostly hilltop FHI fully
compatible with the data [7,19,20]; observationally accept-
able implementations of FHI can also be achieved by
invoking a two-step inflationary scenario [21] or a specific
generation [5,22,23] of the μ-term of the minimal super-
symmetric standard model (MSSM).
Out of the aforementioned realizations of FHI we focus

here on the “tadpole-assisted” one [14,15] in which the
suitable inflationary potential is predominantly generated
by the cooperation of the RCs and the soft SUSY-breaking
tadpole term. A crucial ingredient for this is the specifi-
cation of a convenient SUSY-breaking scheme; see, e.g.,
Refs. [23–27]. Here, we extend the formalism of FHI to
encompass SUSY breaking by imposing a mildly violated
R symmetry introduced in Ref. [28]. Actually, it acts as a
junction mechanism of the (visible) inflationary sector (IS)
and the hidden sector (HS). A first consequence of this
combination is that the R charge 2=ν of the Goldstino
superfield—which is related to the geometry of the HS—is
constrained to values with 0 < ν < 1. A second by-product
is that SUSY breaking is achieved not only in a Minkowski
vacuum, as in Ref. [28], but also in a de Sitter (dS) one,
which allows us to control the notorious dark energy (DE)
problem by mildly tuning a single superpotential parameter
to a value of order 10−12. A third consequence is the
stabilization [24–27] of the sgoldstino to low values during
FHI. Selecting minimal Kähler potential for the inflaton
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and computing the suppressed contribution of the sgold-
stino to the mass squared of the inflaton, we show that the η
problem of FHI can be elegantly resolved. After these
arrangements, the imposition of the inflationary require-
ments may restrict the magnitude of the naturally induced
tadpole term which is a function of the inflationary scaleM
and the dimensionality NG of the representation of the
waterfall fields. The latter quantity depends on the GUT
gauge symmetry G in which FHI is embedded. We
exemplify our proposal by considering three possible G’s
that correspond to the values NG ¼ 1, 2, and 10. The
analysis for the two latter NG values is done for the first
time. We find that the required magnitude of the tadpole
term increases with NG.
For NG ¼ 1 the scale of formation of the B − L cosmic

strings (CSs) fits well with the bound [29] induced by the
observations [19] on the anisotropies of the cosmic micro-
wave background (CMB) radiation. These B − L CSs are
rendered metastable, if theUð1ÞB−L symmetry is embedded
in a GUT based on a group with higher rank such as
SOð10Þ. In such a case, the CS network decays generating a
stochastic background of gravitational waves that may
interpret [30,31] the recent data from NANOGrav [32]
and other pulsar timing array experiments [33]; see
also Ref. [34].
Finally, a solution to the μ problem of MSSM—for an

updated review see Ref. [35]—may be achieved by
suitably applying [28] the Giudice-Masiero mechanism
[36,37]. Contrary to similar attempts [22,23], the μ-term
here plays no role during FHI. This term assures [38–42]
the timely decay of the sgoldstino (or R saxion), which
dominates the energy density of the Universe, before the
onset of the big bang nucleosynthesis (BBN) at cosmic
temperature ð2–4Þ MeV [43]. In a portion of the parameter
space with 3=4 < ν < 1, nonthermal production of grav-
itinos (G̃) is prohibited and so the moduli-induced G̃
problem [44] can be easily eluded. Finally, our model
sheds light on the rather pressing problem of the deter-
mination of the SUSY mass scale m̃which remains open to
date [45] due to the lack of any SUSY signal in LHC (for
similar recent works see Refs. [46–51]). In particular, our
setting predicts m̃ close to the PeV scale and fits well with
high-scale SUSY and the Higgs boson mass discovered at
LHC [52] if we assume a relatively low tan β and stop
mixing [53].
We describe below how we can interconnect the infla-

tionary and the SUSY-breaking sectors of our model in
Sec. II. Then, we propose a resolution to the μ problem of
MSSM in Sec. III and study the reheating process in
Sec. IV. We finally present our results in Sec. VI con-
fronting our model with a number of constraints described
in Sec. V. Our conclusions are discussed in Sec. VII.
General formulas for the SUGRA-induced corrections to
the potential of FHI are arranged in the Appendix.

II. LINKING FHI WITH THE
SUSY-BREAKING SECTOR

As mentioned above, our model consists of two sectors:
the HS responsible for the F-term (spontaneous) SUSY
breaking and the IS responsible for FHI. In Sec. II A, we
first specify the conditions under which the coexistence of
both sectors can occur and then, in Sec. II B, we investigate
the vacua of the theory. Finally, we derive the inflationary
potential in Sec. II C.

A. Setup

Here we determine the particle content, the superpoten-
tial, and theKähler potential of ourmodel. These ingredients
are presented in Secs. II A 1, II A 2, and II A 3. Then, in
Sec. II A 4, we present the general structure of the SUGRA
scalar potential that governs the evolution of the HS and IS.

1. Particle content

As well known, FHI can be implemented by introducing
three superfields Φ̄, Φ, and S. The two first are left-handed
chiral superfields oppositely charged under a gauge group
G, whereas the latter is the inflaton and is a G-singlet left-
handed chiral superfield. Singlet under G is also the SUSY-
breaking (Goldstino) superfield Z.
In this work we identify G with three possible gauge

groups with different dimensionality NG of the representa-
tions to which Φ̄ and Φ belong. Namely, we consider
(a) G ¼ GB−L with GB−L ¼ GSM ×Uð1ÞB−L, where GSM

is the Standard Model gauge group. In this case Φ and
Φ̄ belong [14] to the ð1; 1; 0;−1Þ and ð1; 1; 0; 1Þ
representation of GB−L, respectively, and so NG ¼ 1.

(b) G ¼ GLR with GLR¼ SUð3ÞC ×SUð2ÞL ×SUð2ÞR ×
Uð1ÞB−L. In this case Φ and Φ̄ belong [4,5] to the
ð1; 1; 2;−1Þ and ð1; 1; 2̄; 1Þ representation of GLR,
respectively, and so NG ¼ 2.

(c) G ¼ G5X
with G5X

¼ SUð5Þ × Uð1ÞX, the gauge
group of the flipped SUð5Þ model. In this case Φ
and Φ̄ belong [6] to the ð10; 1Þ and ð10;−1Þ repre-
sentation of G5X

, respectively, and so NG ¼ 10.
In the cases above, we assume that G is completely

broken via the vacuum expectation values (VEVs) ofΦ and
Φ̄ to GSM. No magnetic monopoles are generated during
this GUT transition, in contrast to the cases where
G ¼ SUð4ÞC × SUð2ÞL × SUð2ÞR, SUð5Þ, or SOð10Þ.
The production of magnetic monopole can be avoided,
though, even in these groups, if we adopt the shifted [54] or
smooth [55] variants of FHI.

2. Superpotential

The superpotential of our model has the form

W ¼ WIðS;Φ; Φ̄Þ þWHðZÞ þWGHðZ; Φ̄;ΦÞ; ð1Þ
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where the subscripts “I” and “H” stand for the IS and HS,
respectively. The three parts of W are specified as follows:
(a) WI is the IS part of W written as [3]

WI ¼ κSðΦ̄Φ −M2Þ; ð2aÞ
where κ and M are free parameters that may be made
positive by field redefinitions.

(b) WH is the HS part of W, which reads [28]

WH ¼ mm2
PðZ=mPÞν: ð2bÞ

Here mP ¼ 2.4 × 1018 GeV is the reduced Planck
mass, m is a positive free parameter with mass
dimensions, and ν is an exponent that may, in
principle, acquire any real value if WH is considered
as an effective superpotential valid close to the non-
zero vacuum value of Z. We will assume though that
the effective superpotential is such that only positive
powers of Z appear.

(c) WGH is an unavoidable term—see below—that mixes
Z with Φ̄ and Φ and has the form

WGH ¼ −λmPðZ=mPÞνΦ̄Φ; ð2cÞ
with λ a real coupling constant.

W is fixed by imposing an R symmetry under which W
and the various superfields have the following R characters:

RðWÞ¼RðSÞ¼ 2; RðZÞ¼ 2=ν; and RðΦ̄ΦÞ¼ 0: ð3Þ

As we will see below, we confine ourselves to the range
3=4 < ν < 1. We assume thatW is holomorphic in S and so
S appears with positive integer exponents νs. Mixed terms
of the form SνsZνz must obey the R symmetry and thus

νs þ νz=ν ¼ 1 ⇒ νz ¼ ð1 − νsÞν; ð4Þ

leading to negative values of νz. Therefore, no such mixed
terms appear in the superpotential.

3. Kähler potential

The Kähler potential has two contributions,

K ¼ KIðS;Φ; Φ̄Þ þ KHðZÞ; ð5Þ

which are specified as follows:
(a) KI is the part of K that depends on the fields involved

in FHI [cf. Eq. (2a)]. We adopt the simplest possible
form

KI ¼ jSj2 þ jΦj2 þ jΦ̄j2; ð6aÞ

which parametrizes theUð1ÞS ×Uð1ÞΦ × Uð1ÞΦ̄ Käh-
ler manifold—the indices here indicate the moduli that
parametrize the corresponding manifolds.

(b) KH is the part of K devoted to the HS. We adopt the
form introduced in Ref. [28] where

KH ¼ Nm2
P ln

�
1þ jZj2 − k2Z4

−=m2
P

Nm2
P

�
; ð6bÞ

with Z� ¼ Z � Z�. Here, k is a parameter that mildly
violates R symmetry endowing R axion with phenom-
enologically acceptable mass. Despite the fact that
there is no string-theoretical motivation for KH, we
consider it as an interesting phenomenological option
since it ensures a vanishing potential energy density in
the vacuum without tuning for

N ¼ 4ν2

3 − 4ν
; ð7Þ

when ν is confined to the following ranges:

3

4
< ν<

3

2
for N< 0 and ν<

3

4
for N> 0: ð8Þ

As we will see below, the same ν − N relation assists
us to obtain a dS vacuum of the whole field system
with tunable cosmological constant. Our favored ν
range will finally be 3=4 < ν < 1. This range is
included in Eq. (8) for N < 0. Therefore, KH para-
metrizes the ðSUð1; 1Þ=Uð1ÞÞZ hyperbolic Kähler
manifold. The total K in Eq. (5) enjoys an enhanced
symmetry for the S and Z fields, namely,
Uð1ÞS × ðSUð1; 1Þ=Uð1ÞÞZ. Thanks to this symmetry,
mixing terms of the form Sν̃sZ�ν̃z can be ignored,
although they may be allowed by the R symmetry
for ν̃z ¼ νν̃s.

4. SUGRA potential

Denoting the various superfields of our model as Xα ¼
S; Z;Φ; Φ̄ and employing the same symbol for their
complex scalar components, we can find the F-term (tree
level) SUGRA scalar potential VF fromW in Eq. (1) and K
in Eq. (5) by applying the standard formula [56],

VF ¼ eK=m
2
PðKαβ̄DαWDβ̄W

� − 3jWj2=m2
PÞ; ð9Þ

with Kαβ̄ ¼ ∂Xα∂X�β̄K, Kβ̄αKαγ̄ ¼ δβ̄γ̄ , and

DαW ¼ ∂XαW þW∂XαK=m2
P: ð10Þ

Thanks to the simple form of K in Eqs. (5), (6a), and (6b),
the Kähler metric Kαβ̄ has diagonal form with only one
nontrivial element,

KZZ� ¼ ðNm4
P − k2Z4

− þm2
PjZj2Þ−2m2

PN

× ðm6
PN þ 12Nk2m4

PZ
2
− þ 4k4Z6

− þ 3k2m2
PZ

2
−Z2þÞ:
ð11Þ
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The resulting VF can be written as

VF¼e
K
m2
PðjvSj2þjvΦj2þjvΦ̄j2þK−1

ZZ� jvZj2−3jvW j2Þ; ð12Þ

where the individual contributions are

vS ¼ κðΦ̄Φ −M2ÞðjS=mPj2 þ 1Þ
− S�Zν=mνþ1

P ðmmP − λΦ̄ΦÞ; ð13aÞ

vΦ ¼ κSðM2m−2
P Φ� − Φ̄ðjΦj2m−2

P þ 1ÞÞ
þ Zνm1−ν

P ðλΦ̄ðjΦ=mPj2 þ 1Þ −mm−1
P Φ�Þ; ð13bÞ

vZ ¼ νðZ=mPÞν−1ðmmP − λΦ̄ΦÞ
þ NðZ�m2

P − 4k2Z3
−ÞðNm4

P − k2Z4
− þ jZj2m2

PÞ−1
× ððZ=mPÞνðmm2

P − λΦ̄ΦÞ þ κSðΦ̄Φ −M2ÞÞ; ð13cÞ

vW ¼ κSm−1
P ðΦ̄Φ −M2Þ þ Zνm−ν

P ðmmP − λΦ̄ΦÞ: ð13dÞ

Note that vΦ̄ is obtained from vΦ by interchanging Φ with
Φ̄. Obviously, Eq. (7) was not imposed in the formu-
las above.
D-term contributions to the total SUGRA scalar potential

arise only from the G nonsinglet fields. They take the form

VD ¼ g2

2
ðjΦj2 − jΦ̄j2Þ2; ð14Þ

where g is the gauge coupling constant of G. During FHI
and at the SUSY vacuum, we confine ourselves along the
D-flat direction

jΦ̄j ¼ jΦj; ð15Þ

which ensures that VD ¼ 0.

B. SUSY- and G-breaking vacuum

As we can verify numerically, VF in Eq. (12) is
minimized at the G-breaking vacuum

jhΦij ¼ jhΦ̄ij ¼ M: ð16Þ

It has also a stable valley along hθi ¼ 0 and hθS=mPi ¼ π,
with these fields defined by

Z¼ðzþ iθÞ=
ffiffiffi
2

p
and S¼ σeiθS=mP=

ffiffiffi
2

p
: ð17Þ

As we will see below, θS=mP ¼ π holds during FHI and we
assume that it is also valid at the vacuum. Substituting
Eq. (17) in Eq. (12), we obtain the partially minimized VF
as a function of z and σ, i.e.,

VFðz; σÞ

¼ 2−ðνþ1ÞehKHi=m2
P

�
ðλM2 −mmPÞ2ðz=mPÞ2ν

×

�ð2Nm2
Pνþ ðνþ NÞz2Þ2
N2z2m2

P
− 6þ σ2

m2
P

�

þ
�
2

1þν
2 κMσþð2MðλðM2 þm2

PÞ −mmPÞzν
mνþ1

P

�
2
�
: ð18Þ

The minimization of the last term implies

σ ¼ −2ð1−νÞ=2ðλðM2 þm2
PÞ −mmPÞzν=mðνþ1Þ

P ; ð19Þ

whereas imposing the condition in Eq. (7), we obtain [28]

ð2Nm2
Pνþ ðνþ NÞz2Þ2
N2z2m2

P
− 6 ¼ ð3z2 − 8νm2

PÞ2
16ν2z2m2

P
: ð20Þ

Substituting the two last relations into Eq. (18) we arrive at
the result

VFðzÞ¼ ehKHi=m2
PðλM2−mmPÞ2z2ν

×

�ðλðM2þm2
PÞ−mmPÞ2

22νκ2m4ð1þνÞ
P

z2νþ ð8ν2m2
P−3z2Þ2

25þνν2z2m2ðνþ1Þ
P

�
;

ð21Þ
which is minimized with respect to σ too. From the last
expression, we can easily find that z acquires the VEV

hzi ¼ 2
ffiffiffiffiffiffiffiffi
2=3

p
jνjmP; ð22Þ

which yields the constant potential energy density

hVFi ¼
�
16ν4

9

�
ν
�
λM2 −mmP

κm2
P

�
2

ωN

× ðλðM2 þm2
PÞ −mmPÞ2; ð23Þ

with

ω ¼ ehKHi=Nm2
P ≃ 2ð3 − 2νÞ=3; ð24Þ

given thatM ≪ mP. Tuning λ to a value λ ∼m=mP ≃ 10−12

we can obtain a postinflationary dS vacuum that corre-
sponds to the current DE density parameter. By virtue of
Eq. (19), we also obtain hσi ≃ 0.
The gravitino (G̃) acquires mass [56]

m3=2 ¼ he
KH
2m2

PWHi ≃ 2ν3−ν=2jνjνmωN=2: ð25aÞ

Deriving the mass-squared matrix of the field system S −
Φ − Φ̄ − Z at the vacuum, we find the residual mass
spectrum of the model. Namely, we obtain a common
mass for the IS
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mI ¼ e
KH
2m2

P

ffiffiffi
2

p
ðκ2M2þð4ν2=3Þνð1þ4M2=mP

2Þm2Þ12; ð25bÞ

where the second term arises due to the coexistence of the
IS with the HS (cf. Ref. [14]). We also obtain the
(canonically normalized) sgoldstino (or R saxion) and
the pseudo-sgoldstino (or R axion) with respective masses

mz≃
3ω

2ν
m3=2 and mθ≃12kω

3
2m3=2: ð25cÞ

Comparing the last formulas with the ones obtained in the
absence of the IS [28] we infer that no mixing appears
between the IS and the HS. As in the “isolated” case of
Ref. [28], the role of k in Eq. (6b) remains crucial in
providing θ with a mass. Some representative values of the
masses above are arranged in Table I for specific κ, ν, and k
values and for the three G’s considered in Sec. II A 1. We
employ values for M and the tadpole parameter aS
compatible with the inflationary requirements exposed in
Sec. V; for the definition of aS see Sec. II C 4. We observe
that mI turns out to be of order 1012 GeV (cf. Ref. [14]),
whereas m3=2; mz, and mθ lie in the PeV range. For the
selected value ν ¼ 7=8 > 3=4 the phenomenologically
desired hierarchy mz < 2m3=2 (see Sec. V) is easily
achieved. In the same table we find it convenient to
accumulate the values of some inflationary parameters
introduced in Secs. II C 4 and VI and some parameters
related to the μ-term of the MSSM and the reheat temper-
ature given in Secs. III and IV.
Our analytic findings related to the stabilization of the

vacuum in Eqs. (16) and (22) can be further confirmed by
Fig. 1, where the dimensionless quantity VF=m2m2

P in
Eq. (18) is plotted as a function of z and σ. We employ the
values of the parameters listed in column B of Table I. We
see that the dS vacuum in Eq. (22)—indicated by the black

thick point—is placed at ðhzi; hσiÞ ¼ ð1.43mP; 0Þ and is
stable with respect to both directions.

C. Inflationary period

It is well known [2,3] that FHI takes place for sufficiently
large jSj values along an F- and D-flat direction of the
SUSY potential

Φ̄ ¼ Φ ¼ 0; ð26Þ

where the potential in global SUSY,

VSUSYðΦ ¼ 0Þ≡ VI0 ¼ κ2M4; ð27Þ

provides a constant potential energy density with corre-
sponding Hubble parameter HI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VI0=3m2

P

p
. In a

SUGRA context, though, we first check, in Sec. II C 1,

TABLE I. A case study overview.

Case A B C

Input parameters

κ ¼ 5 × 10−4; ν ¼ 7=8 (N ¼ −49=8), and k ¼ 0.1

NG 1 2 10
Mð1015 GeVÞ 1.4 1.9 3.6
m (PeV) a 0.5 1.15 6.3
λð10−12Þ 0.2 1.7 2.6

HS parameters during FHI

hziIð10−3mPÞ 1.1 1.5 2.5
mI3=2 (TeV) 1.2 2.98 25
mIz (EeV) 0.64 1.1 4.1
mIθ (EeV) 0.15 0.32 1.2

Inflationary parameters

aS (TeV) 2.63 6.7 56.3
HI (EeV) 0.25 0.4 1.6
σ⋆=

ffiffiffi
2

p
M 1.026 1.035 1.067

NI⋆ 40.5 40.8 40.6
Δc⋆ð%Þ 2.6 3.5 6.7
Δmax �ð%Þ 2.9 3.9 7.3

Inflationary observables

ns 0.967
−αsð10−4Þ 2.3 2.5 2.9
rð10−12Þ 0.9 3.1 39.7

Spectrum at the vacuum

mIð1012 GeVÞ 1.8 2.4 4.5
m3=2 (PeV) 0.9 2. 11.2
mz (PeV) 1.3 2.9 16
mθ (PeV) 0.8 1.8 10

Reheat temperature

For μ ¼ m̃ (λμ ¼ 0.69) and K ¼ K1

Trh (GeV) 0.07 0.18 2.05
aRecall that 1 PeV ¼ 106 GeV and 1 EeV ¼ 109 GeV.

FIG. 1. The (dimensionless) SUGRA potential VF=m2m2
P in

Eq. (18) as a function of z and σ for the inputs shown in column B
of Table I. The location of the dS vacuum in Eq. (22) is also
depicted by a thick point.
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the conditions under which such a scheme can be achieved
and then we include a number of corrections described in
Secs. II C 2 and II C 3 below. The final form of the
inflationary potential is given in Sec. II C 4.

1. Hidden sector’s stabilization

The implementation of FHI is feasible in our setup if Z is
well stabilized during it. As already emphasized [27], VI0 in
Eq. (26) is expected to transport the value of Z from the
value in Eq. (22) to values well below mP. To determine
these values, we construct the complete expression for VF
in Eq. (12) along the inflationary trough in Eq. (26) and
then expand the resulting expression for low S=mP values,
assuming that the θ ¼ 0 direction is stable as in the
vacuum. Under these conditions VF takes the form

VFðzÞ ¼ e
KH
m2
P

�
κ2M4 þm2

z2ðν−1Þð8ν2m2
P − 3z2Þ2

25þνν2m2ν
P

�
: ð28Þ

The extremum condition obtained for VFðzÞ with respect to
z yields

m2m−2ν
P hzi2ðν−2ÞI ð64ν4m4

P − 9hzi4I Þ
× ð8ð1 − νÞν2m2

P þ ð3 − νÞhzi2I Þ ¼ 2ð7þνÞν4VI0; ð29Þ

where the subscript I denotes that the relevant quantity is
calculated during FHI. Given that hziI=mP ≪ 1, the equa-
tion above implies

hziI ≃ ð
ffiffiffi
3

p
× 2ν=2−1HI=mν

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
Þ1=ðν−2ÞmP; ð30Þ

which is in excellent agreement with its precise numerical
value. We remark that ν < 1 assures the existence and the
reality of hziI, which is indeed much less than mP
since HI=m ≪ 1.
To highlight further this key point of our scenario, we

plot in Fig. 2 the quantity 105ðVF=κ2M4 − 1Þwith VF given

by Eq. (12) for fixed Φ ¼ Φ̄ ¼ 0 [see Eq. (26)] and the
remaining parameters listed in column B of Table I. In the
left panel of Fig. 2, we use as free coordinates z and
σ with fixed θ ¼ 0. We see that the location of
ðhziI; σ⋆Þ ¼ ð1.5 × 10−3mP; 1.4637MÞ, where σ⋆ is the
value of σ when the pivot scale crosses outside the horizon
and is indicated by a black thick point, is independent from
σ as expected from Eq. (30). In the right panel of this figure,
we use as coordinates z and θ and fix σ ¼ σ⋆. We observe
that ðhziI; θÞ ¼ ð1.5 × 10−3mP; 0Þ—indicated again by a
black thick point—is well stabilized in both directions.
The (canonically normalized) components of sgoldstino

acquire masses squared, respectively,

m2
Iz≃6ð2−νÞH2

I and m2
Iθ≃3H2

I

−m2ð8ν2m2
P−3hzi2I Þ

4νð1−νÞm2
Pþð1−96k2νÞhzi2I

23þννm2ν
P hzi2ð2−νÞI

;

ð31aÞ

whereas the mass of G̃ turns out to be

mI3=2 ≃ ðνð1 − νÞ1=2m2=ν=
ffiffiffi
3

p
HIÞν=ð2−νÞ: ð31bÞ

It is evident from the results above that mIz ≫ HI and
therefore hziI is well stabilized during FHI, whereas
mIθ ≃HI and gets slightly increased as k increases. We
do not think that this fact causes any problem with
isocurvature perturbations since these can be observatio-
nally dangerous only for mIθ ≪ HI. As verified by our
numerical results, all the masses above display no S
dependence and so they do not contribute to the inclination
of the inflationary potential via RCs; see Sec. II C 3 below.

2. SUGRA corrections

The SUGRA potential in Eq. (9) induces a number of
corrections to VI0 originating not only from the IS but also

FIG. 2. The SUGRA potential 105ðVF=κ2M4 − 1Þ in Eq. (12) along the path in Eq. (26) as a function of z and σ for θ ¼ 0 (left) or z and
θ for σ ¼ σ⋆ (right). In both cases, we take the parameters of column B in Table I. The location of ðhziI; σ⋆Þ (left) or ðhziI; 0Þ (right) is
also depicted by a thick black point.
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from the HS. These corrections are displayed in the
Appendix for arbitrary WH and KH. If we consider the
WH and KH in Eqs. (2b) and (6b), respectively, the v’s in
Eq. (A5) are found to be

v1 ¼ 2κM2mI3=2ð2 − ν − 3hzi2I =8νm2
PÞ; ð32aÞ

v2 ¼ κ2M4hzi2I =2m2
P; ð32bÞ

v3 ¼ κM2mI3=2ð1 − ν − 3hzi2I =8νm2
PÞ; ð32cÞ

v4 ¼ κ2M4ð1þ hzi2I =m2
PÞ=2: ð32dÞ

Since hziI ≪ mP we do not discriminate between κ and its
rescaled form following the formulas of the Appendix.
Despite the fact that v2 and v4 receive contributions from
both IS and HS, as noted in the Appendix, here the IS does
not participate in v2 thanks to the selected canonical Kähler
potential for the S field in Eq. (6a). This fact together with
the smallness of hzi2I assists us to overcome the notorious η
problem of FHI.

3. Radiative corrections

These corrections originate [3] from a mass splitting in
the Φ − Φ̄ supermultiplets due to SUSY breaking on the
inflationary valley. To compute them, we work out the mass
spectrum of the fluctuations of the various fields about the
inflationary trough in Eq. (26). We obtain 2NG Weyl
fermions and 2NG pairs of real scalars with mass squared,
respectively,

m2
f ¼ κ2S2λ and m2

� ¼ κ2ðS2λ �M2Þ; ð33Þ

with Sλ ¼ jSj − λhZiνIm1−ν
P =κ. SUGRA corrections to these

masses are at most of order M4=m2
P and can be safely

ignored. Inserting these masses into the well-known
Coleman-Weinberg formula, we find the correction

VRC ¼ κ2NG

32π2
VI0

�X
i¼�

m4
i ln

m2
i

Q2
− 2m4

f ln
m2

f

Q2

�
; ð34Þ

where Q is a renormalization scale. Assuming positivity of
m2

−, we obtain the lowest possible value Sc of S which
assures stability of the direction in Eq. (26). This critical
value is equal to

jScj ¼ M þ λhZiνIm1−ν
P =κ: ð35Þ

Needless to say, the mass spectrum and jScj deviate slightly
from their values in the simplest model of FHI [3] due to the
mixing term in W [see Eq. (2c)].

4. Inflationary potential

Substituting Eqs. (32a)–(32d) into VF in Eq. (A5),
including VRC from Eq. (34), and introducing the canoni-
cally normalized inflaton

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2KSS�

p
jSj with KSS� ¼ 1; ð36Þ

the inflationary potential VI can be cast in the form

VI ≃ VI0ð1þ CRC þ CSSB þ CSUGRAÞ; ð37Þ
where the individual contributions are specified as follows:
(a) CRC represents the RCs to VI=VI0 which may be

written consistently with Eq. (34) as [2]

CRC ¼ κ2NG

128π2

�
8 ln

κ2M2

Q2
þ fRCðxÞ

�
; ð38aÞ

with x ¼ ðσ −
ffiffiffi
2

p
λhZiνIm1−ν

P =κÞ=M >
ffiffiffi
2

p
and

fRCðxÞ ¼ 8x2tanh−1ð2=x2Þ − 4ðln 4þ x4 ln xÞ
þ ð4þ x4Þ lnðx4 − 4Þ: ð38bÞ

(b) CSSB is the contribution to VI=VI0 from the soft SUSY-
breaking effects [12] parametrized as follows:

CSSB ¼ m2
I3=2σ

2=2VI0 − aSσ=
ffiffiffiffiffiffiffiffiffi
2VI0

p
; ð38cÞ

where the tadpole parameter reads

aS ¼ 21−ν=2m
hziνI
mν

P

�
1þ hzi2I

2Nm2
P

��
2 − ν −

3hzi2I
8νm2

P

�
:

ð38dÞ

The minus sign results from the minimization of the
factor ðSþ S�Þ ¼ ffiffiffi

2
p

σ cosðθS=mPÞ which occurs for
θS=mP ¼ πð mod 2πÞ; the decomposition of S is
shown in Eq. (17). We further assume that θS remains
constant during FHI; otherwise, FHI may be analyzed
as a two-field model of inflation in the complex
plane [15]. Trajectories, though, far from the real axis
require a significant amount of tuning. The first term in
Eq. (38c) does not play any essential role in our setup
due to low enough m3=2’s (cf. Ref. [14]).

(c) CSUGRA is the SUGRA correction to VI=VI0, after
subtracting the one in CSSB. It reads

CSUGRA ¼ c2ν
σ2

2m2
P
þ c4ν

σ4

4m4
P
; ð38eÞ

where the relevant coefficients originate from
Eqs. (32b) and (32d) and read

c2ν¼hzi2I =2m2
P and c4ν¼ð1þhzi2I =m2

PÞ=2: ð38fÞ
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Note that in similar models (cf. Refs. [14,15]) without
the presence of a HS, c2ν is taken identically equal to
zero. Our present setup shows that this assumption
may be well motivated.

III. GENERATION OF THE
μ-TERM OF MSSM

An important issue, usually related to the inflationary
dynamics (see, e.g., Refs. [5,22,57]) is the generation of the
μ-term of MSSM. Indeed, we would like to avoid the
introduction by hand into the superpotential of MSSM of a
term μHuHd with μ being an energy scale much lower than
the GUT scale, where Hu and Hd are the Higgs superfields
coupled to the up and down quarks, respectively. To avoid
this we assign R charges equal to 2 to both Hu and Hd,
whereas all the other fields of MSSM have zero R charges.
Although we employ here the notation used in a GB−L
model, our construction can be easily extended to the cases
of the two other G’s considered; see Sec. II A 1. Indeed,Hu
and Hd are included in a bidoublet superfield belonging to
the representation ð1; 2; 2; 0Þ in the case of GLR [5]. On the
other hand, these superfields are included in the represen-
tations ð5̄; 2Þ and ð5;−2Þ in the case of G5X

[6].
The mixing term between Hu and Hd may emerge if we

incorporate (somehow) into the Kähler potential of our
model the following higher order terms:

Kμ ¼ λμ
Z�2ν

m2ν
P

HuHd þ H:c:; ð39Þ

where the dimensionless constant λμ is taken real for
simplicity. To exemplify our approach (cf. Ref. [28]) we
complement the Kähler potential in Eq. (5) with terms
involving the left-handed chiral superfields of MSSM
denoted by Yα with α ¼ 1;…; 7, i.e.,

Yα ¼ Q;L; dc; uc; ec;Hd; and Hu;

where the generation indices are suppressed. Namely, we
consider the following variants of the total K:

K1 ¼ KH þ KI þ Kμ þ jYαj2; ð40aÞ

K2 ¼ Nm2
P ln

�
1þ 1

N

�jZj2 − k2Z4
−=m2

P

m2
P

þ Kμ

��
þ KI þ jYαj2; ð40bÞ

K3 ¼ Nm2
P ln

�
1þ jZj2 − k2Z4

−=m2
P þ jYαj2

Nm2
P

�
þ KI þ Kμ; ð40cÞ

K4 ¼ Nm2
P ln

�
1þ 1

N
jZj2 − k2Z4

−=m2
P þ jYαj2

Nm2
P

þ Kμ

N

�
þ KI: ð40dÞ

Expanding these K’s for low values of S;Φ; Φ̄, and Yα,
we can bring them into the form

K ≃ KHðZÞ þ KI þ K̃ðZÞ
X
α

jYαj2

þ λμ

�
cH

Z�2ν

m2ν
P

HuHd þ H:c:
�
; ð41Þ

where K̃ is determined as follows:

K̃ ¼
8<
:

1 for K ¼ K1; K4;�
1þ jZj2−k2Z4

−=m2
P

m2
PN

�
−1

for K ¼ K2; K3;
ð42Þ

whereas cH is found to be

cH ¼
8<
:

1 for K ¼ K1; K3;�
1þ jZj2−k2Z4

−=m2
P

m2
PN

�
−1

for K ¼ K2; K4:
ð43Þ

Consistent with our hypothesis about the enhanced sym-
metry of K in Sec. II A 3, we do not consider the possibility
of including KI in the argument of the logarithm of KH as
we have done for Kμ and/or jYαj.
Applying the relevant formulas of Refs. [28,37], we find

a nonvanishing μ-term in the superpotential of MSSM,

μĤuĤd; ð44Þ

where Ŷα ¼ hK̃i1=2Yα and the μ parameter reads

jμj
m3=2

¼ λμ

�
4ν2

3

�
ν

×

8>>>><
>>>>:

ð5−4νÞ for K¼K1;

3ð4ν−1Þ=4ν for K¼K2;

ð5−4νÞω for K¼K3;

3ωð4ν−1Þ=4ν for K¼K4:

ð45Þ

Moreover, in the effective low-energy potential, we obtain a
common soft SUSY-breaking mass parameter m̃, which is

m̃ ¼ m3=2 ×

�
1 for K ¼ K1 and K2;

ð3=2ν − 1Þ for K ¼ K3 and K4:
ð46Þ

Therefore, m̃ is a degenerate SUSY mass scale that can
indicatively represent the mass level of the SUSY partners.
The results in Eqs. (45) and (46) are consistent with those
presented in Ref. [28], where further details of the
computation are given.
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The magnitude of the μ’s in Eq. (45) is demonstrated in
Fig. 3, where we present the ratios jμj=λμm3=2 for K ¼ K1

(solid line), K2 (dashed line), K3 (dot-dashed line), and K4

(dotted line) versus ν for 3=4 < ν < 1. By coincidence all
cases converge at the value jμj=λμm3=2 ≃ 1.6 for ν ¼ 3=4.
For λμ’s of order unity, the jμj values are a little enhanced
with respect to m3=2 and increase for K ¼ K2 and K4 or
decrease for K ¼ K1 and K3 as ν increases.

IV. REHEATING STAGE

Soon after FHI, the Hubble rate H becomes of the order
of their masses and the IS and z enter into an oscillatory
phase about their minima and eventually decay via their
coupling to lighter degrees of freedom. Note that θ remains
well stabilized at zero during and after FHI and so it does
not participate in the phase of dumped oscillations. Since
hzi ∼mP [see Eq. (22)], the initial energy density of its
oscillations is ρzI ∼m2

zhzi2. It is comparable with the
energy density of the Universe at the onset of these
oscillations ρt ¼ 3m2

PH
2 ≃ 3m2

Pm
2
z and so we expect that

z will dominate the energy density of the Universe until
completing its decay through its weak gravitational inter-
actions. Actually, this is a representative case of the
infamous cosmic moduli problem [38,39] where reheating
is induced by long-lived massive particles with mass
around the weak scale.
The reheating temperature is determined by [58]

Trh ¼ ð72=5π2grh�Þ1=4Γ1=2
δz m1=2

P ; ð47Þ

where grh� ≃ 10.75–100 counts the effective number of the
relativistic degrees of freedom at Trh. Moreover, the total
decay width Γδz of the (canonically normalized) sgoldstino,

bδz¼ hK1=2
ZZ� iδz with δz¼ z− hzi and hKZZ� i ¼ hωi−2;

ð48Þ

predominantly includes the contributions from its decay
into pseudo-sgoldstinos and Higgs bosons via the kinetic
terms KXX�∂μX∂μX� where X ¼ Z;Hu and Hd [39–42] of
the Lagrangian. In particular, we have

Γδz ≃ Γθ þ Γh̃; ð49Þ

where the individual decay widths are given by

Γθ ≃
λ2θm

3
z

32πm2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

θ=m
2
3=2

q
; ð50aÞ

with λθ ¼ −hzi=NmP ¼ ð4ν − 3Þ= ffiffiffi
6

p
ν, and

Γh̃ ¼
32νþ1

24νþ1
λμ

2
ω2

4π

m3
z

m2
P
ν−4ν: ð50bÞ

Other possible decay channels into gauge bosons through
anomalies and three-body MSSM (s)particles are subdomi-
nant. On the other hand, we kinematically block the decay
of bδz into G̃’s [39,44] in order to protect our setting from
complications with BBN due to possible late decay of the
produced G̃ and problems with the abundance of the
subsequently produced lightest SUSY particles. In view
of Eqs. (25c) and (25a), this aim can be elegantly achieved
if we set ν > 3=4.
Taking κ and mz values allowed by the inflationary part

of our model (see Sec. VI) and selecting some specific K
from Eqs. (40a)–(40d), we evaluate Trh as a function of κ
and determine the regions allowed by the BBN constraints
in Eqs. (59a) and (59b); see Sec. V below. The results of
this computation are displayed in Fig. 4, where we design
allowed contours in the κ − Trh plane for the various NG’s
and ν ¼ 7=8. This is an intermediate value in the selected
margin ð3=4 − 1Þ. The boundary curves of the allowed
regions correspond to μ ¼ m̃ or λμ ¼ 0.65 (dot-dashed line)
and μ ¼ 3m̃ or λμ ¼ 1.96 (dashed line). The jμj=m̃ − λμ
correspondence is determined via Eq. (45) for a selected K.
Here we set K ¼ K1. Qualitatively similar results are
obtained for an alternative K choice. We see that there is
an ample parameter space consistent with the BBN bounds
depicted by two horizontal lines. Since the satisfaction of
the inflationary requirements leads to an increase of the
scale m with NG and m heavily influences mz and
consequently Trh [see Eq. (47)], this temperature increases
with NG. The maximal values of Trh for the selected ν are
obtained for μ ¼ 3m̃ and are estimated to be

Tmax
rh ≃14; 33; and 49GeV; ð51Þ

for NG ¼ 1, 2, and 10, respectively. Obviously, reducing μ
below m̃, the parameters λμ, Γδz, and so Trh decrease too
and the slice cut by the BBN bound increases. Therefore,

FIG. 3. The ratios jμj=λμmI3=2 for K ¼ K1; K2; K3, and K4

(solid, dashed, dot-dashed, and dotted line, respectively) versus ν
in the range 0.75–1.
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our setting fits better with high-scale SUSY [53] and not
with split [53] or natural [39] SUSY, which assume μ ≪ m̃.

V. OBSERVATIONAL REQUIREMENTS

Our setup must satisfy a number of observational
requirements specified below.
(a) The number of e-foldings that the pivot scale k⋆ ¼

0.05=Mpc undergoes during FHI must be adequately
large for the resolution of the horizon and flatness
problems of standard big bang cosmology. Assuming
that FHI is followed, in turn, by a decaying-particle,
radiation and matter dominated era, we can derive the
relevant condition [7,18]

NI⋆ ¼
Z

σ⋆

σf

dσ
m2

P

VI

V 0
I
≃ 19.4þ 2

3
ln

V1=4
I0

1 GeV
þ 1

3
ln

Trh

1 GeV
;

ð52Þ
where the prime denotes derivation with respect to σ,
σ⋆ is the value of σ when k⋆ crosses outside the
inflationary horizon, and σf is the value of σ at the end
of FHI. The latter coincides with either the critical
point σc ¼

ffiffiffi
2

p jScj [see Eq. (33)] or the value of σ for
which one of the slow-roll parameters [1]

ϵ¼m2
PðV 0

I=
ffiffiffi
2

p
VIÞ2 or η¼m2

PV
00
I =VI ð53Þ

exceeds unity in absolute value. For λ ∼ 10−12 as
required by the cosmic coincidence problem, see
below, we obtain hσi ≃ 0, which does not disturb
the inflationary dynamics since hσi ≪ σc.

(b) The amplitude As of the power spectrum of the
curvature perturbation generated by σ during FHI
and calculated at k⋆ as a function of σ⋆ must be
consistent with the data [19], i.e.,

ffiffiffiffiffi
As

p
¼ 1

2
ffiffiffi
3

p
πm3

P

V3=2
I ðσ⋆Þ

jV 0
Iðσ⋆Þj

≃ 4.588 × 10−5: ð54Þ

The observed curvature perturbation is generated
wholly by σ since the other scalars are adequately
massive during FHI; see Sec. II C 1.

(c) The scalar spectral index ns, its running αs, and the
scalar-to-tensor ratio r must be in agreement with the
fitting of the Planck TT, TE, EEþ lowEþ lensing,
BICEP/Keck Array, and BAO data [7,20] with the
ΛCDMþ rmodel, which approximately requires that,
at 95% confidence level (C.L.),

ns¼ 0.967�0.0074 and r≤ 0.032; ð55Þ

with jαsj ≪ 0.01. These observables are calculated
employing the standard formulas

ns ¼ 1 − 6ϵ⋆ þ 2η⋆; ð56aÞ

αs ¼ 2ð4η2⋆ − ðns − 1Þ2Þ=3− 2ξ⋆; and r¼ 16ϵ⋆;

ð56bÞ

where ξ ≃m4
PV

0
IV

000
I =V

2
I and all the variables with the

subscript ⋆ are evaluated at σ ¼ σ⋆.
(d) The dimensionless tension Gμcs of the B − L CSs

produced at the end of FHI in the case G ¼ GB−L
is [59]

Gμcs ≃
1

2

�
M
mP

�
2

ϵcsðrcsÞ with ϵcsðrcsÞ ¼
2.4

lnð2=rcsÞ
·

ð57Þ

Here G ¼ 1=8πm2
P is the Newton gravitational con-

stant and rcs ¼ κ2=2g2 ≤ 10−2 with g ≃ 0.7 being the
gauge coupling constant at a scale close to M. Gμcs is
restricted by the level of the CS contribution to the
observed anisotropies of CMB radiation reported by
Planck [29] as follows:

Gμcs ≲ 2.4 × 10−7 at 95% C:L: ð58aÞ

On the other hand, the primordial CS loops and
segments connecting monopole pairs decay by emit-
ting stochastic gravitational radiation, which is mea-
sured by the pulsar timing array experiments [32,33].
If the CS network is stable, the recent observations
require [31]

Gμcs ≲ 2 × 10−10 at 95% C:L: ð58bÞ

However, if the CSs are metastable, due to the
embedding of GB−L into a larger group GGUT whose
breaking leads to monopoles that can break the CSs,

FIG. 4. Allowed strips in the κ − Trh plane compatible with the
inflationary requirements in Sec. V for ns ¼ 0.967 and various
NG values indicated in the graph. We take K ¼ K1, ν ¼ 7=8, and
μ ¼ m̃ (dot-dashed lines) or μ ¼ 3m̃ (dashed lines). The BBN
lower bounds on Trh for hadronic branching ratios Bh ¼ 1 and
0.001 are also depicted by two thin lines.
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the interpretation [31] of the recent observations
[32,33] dictates

10−8≲Gμcs≲2×10−7 for 8.2≳ ffiffiffiffiffiffiffi
rms

p ≳7.9 ð58cÞ

at 2σ, where the upper bound originates from Ref. [34]
and is valid for a standard cosmological evolution and
CSs produced after inflation. Here rms is the ratio of
the monopole mass squared to μcs. Since we do not
specify further this possibility in our work, the last
restriction does not impact our parameters.

(e) Consistency between theoretical and observational
values of light element abundances predicted by
BBN imposes a lower bound on Trh, which depends
on the mass of the decaying particle z and the hadronic
branching ratio Bh. Namely, for large mz ∼ 105 GeV,
the most up-to-date analysis of Ref. [43] entails

Trh ≥ 4.1 MeV for Bh ¼ 1 ð59aÞ

and Trh ≥ 2.1 MeV for Bh ¼ 10−3: ð59bÞ

The BBN bound is mildly softened for larger mz

values. Moreover, the possible production of G̃ from
the z decay is mostly problematic [39] since it may
lead to overproduction of the lightest SUSY particle
(LSP), whose nonthermally produced abundance from
the G̃ decay can drastically overshadow its thermally
produced one. As a consequence, the LSP abundance
can easily violate the observational upper bound [19]
from CDM considerations. This is the moduli-
induced [44] LSP overproduction problem via the G̃
decay [39]. To avoid this complication, we kinemat-
ically forbid the decay of z into G̃ selecting ν > 3=4,
which ensures that mz < 2m3=2 [see Eq. (25c)].

(f) We identify hVFi in Eq. (23) with the DE energy
density, i.e.,

hVFi ¼ ΩΛρc0 ¼ 7.2 × 10−121m4
P; ð60Þ

whereΩΛ ¼ 0.6889 and ρc0 ¼ 2.4 × 10−120h2m4
P with

h ¼ 0.6732 [19] are the density parameter of DE and
the current critical energy density of the Universe,
respectively. By virtue of Eq. (23), we see that Eq. (60)
can be satisfied for λ ∼m=mP. Explicit values are
given for the cases in Table I.

(g) Scenarios with large m̃, although not directly acces-
sible at the LHC, can be probed via the measured value
of the Higgs boson mass. Within high-scale SUSY,
updated analysis requires [52,53]

3 × 103 ≲ m̃=GeV≲ 3 × 1011; ð61Þ

for degenerate sparticle spectrum μ and tan β in the
ranges m̃=3 ≤ μ ≤ 3m̃ and 1 ≤ tan β ≤ 50 and varying
the stop mixing.

VI. RESULTS

As deduced from Secs. II A 1–II A 3 and III, our model
depends on the parameters

NG; κ;M;m; λ; ν; k; and λμ

[recall that N is related to ν via Eq. (7)]. Let us initially
clarify that λ can be fixed at a rather low value as explained
below Eq. (60) and does not influence the rest of our
results. Moreover, k affects mθ and mIθ via Eqs. (25c)
and (31a) and helps us to avoid massless modes. We take
k ¼ 0.1 throughout our investigation.
As shown in Ref. [14], the confrontation of FHI with data

for any fixedNG requires a specific adjustment between κ or
M and the aS which is given in Eq. (47) as a function ofm, ν,
κ, andM [see Eq. (30)]. Obviously, a specific aS value can be
obtained by several choices of the initial parameters ν andm.
These parameters influence also the requirement in Eq. (52)
via Trh, which is given in Eq. (47). However, to avoid
redundant solutions, we first explore our results for the IS in
terms of the variables κ, M, and aS in Sec. VI A taking a
representative Trh value, e.g., Trh ≃ 1 GeV. Variation of Trh
over 1 or 2 orders of magnitude does not affect our findings
in any essential way. Therefore, we do not impose in
Sec. VI A the constraints from the BBN in Eqs. (59a) and
(59b). In Sec. VI B, we then interconnect these results with
the HS parameters ν and m.

A. Inflation analysis

Enforcing the constraints in Eqs. (52) and (54) we can
find M and σ⋆, for any given NG, as functions of our free
parameters κ and aS. Let us clarify here that for NG ¼ 1 the
parameter space is identical to the one explored in
Ref. [14], where the HS is not specified. As explained
there, see also Ref. [15], observationally acceptable values
of ns can be achieved by implementing hilltop FHI. This
type of FHI requires a nonmonotonic VI with σ rolling from
its value σmax at which the maximum of VI lies down to
smaller values. As for any model of hilltop inflation, V 0

I and
therefore ϵ in Eq. (53) and r in Eq. (56b) decrease sharply
as NI⋆ increases [see Eq. (52)], whereas VI

00 (or η) becomes
adequately negative, thereby lowering ns within its range
in Eq. (55).
These qualitative features are verified by the approxi-

mate computation of the quantities in Eq. (53) for σ < σmax
which are found to be

ϵ ≃mP
2ðC0

RC þ C0
SSBÞ2=2 and η ≃m2

PC
00
RC; ð62Þ

where the derivatives of the various contributions read
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C0
SSB ≃ −aS=

ffiffiffiffiffiffiffiffiffi
2VI0

p
; ð63aÞ

C0
RC ≃

NGκ
2x

32Mπ2
ð4 tanh−1 ð2=x2Þ þ x2 lnð1 − 4=x4ÞÞ; ð63bÞ

C00
RC≃

NGκ
2

32M2π2
ð4 tanh−1 ð2=x2Þþ3x2 lnð1−4=x4ÞÞ: ð63cÞ

The required behavior of VI in Eq. (37) can be attained, for
given NG, thanks to the similar magnitudes and the
opposite signs of the terms C0

RC and C0
SSB in Eqs. (63a)

and (63b), which we can obtain for carefully selecting κ and
aS. Apparently, we have C0

SSB < 0 and C0
RC > 0 for σ⋆ <

σmax since j4 tanh−1 ð2=x2Þj > jx2 lnð1 − 4=x4Þj. On the
contrary, C00

RC < 0, since the negative contribution
3x2 lnð1 − 4=x4Þ dominates over the first positive one,
and so we obtain η < 0, giving rise to acceptably low ns
values.
We can roughly determine σmax by expanding C0

RC for
large σ and equating the result with C0

SSB. We obtain

NGκ
2

8π2σmax
¼ aSffiffiffi

2
p

κM2
⇒ σmax ≃

κ3M2NG

4
ffiffiffi
2

p
π2aS

: ð64Þ

Needless to say, VI turns out to be bounded from below for
large σ’s since in this regimeCSUGRA starts dominating over
CRC generating thereby a (NG-independent) minimum at
about

σmin ≃
�

aSm4
Pffiffiffi

2
p

c4νκM2

�
1=3

· ð65Þ

For σ > σmin, VI becomes a monotonically increasing
function of σ and so the boundedness of VI is assured.
From our numerical computation we observe that, for

constantNG; κ, and aS, the lower the value for ns we wish to
attain, the closer we must set σ⋆ to σmax. Given that σmax
turns out to be comparable to σc and the hierarchy σc <
σ⋆ < σmax has to hold, we see that we need two types of
mild tunings in order to obtain successful FHI. To quantify
the amount of these tunings, we define the quantities

Δc⋆ ¼
σ⋆ −σc

σc
and Δmax⋆ ¼

σmax−σ⋆
σmax

: ð66Þ

The naturalness of the hilltop FHI increases with Δc⋆ and
Δmax⋆. To get an impression of the amount of these tunings
and their dependence on the parameters of the model, we
display in Table I the resultingΔc⋆ andΔmax⋆ together with
M, aS, αs, and r for κ ¼ 0.0005 and ns fixed to its central
value in Eq. (55). In all cases, we obtain NI⋆ ≃ 40.5 from
Eq. (52). We notice that Δmax⋆ > Δc⋆ and that their values
may be up to 10% increasing with NG (and aS). Recall that
in Ref. [14] it is shown that Δc⋆ and Δmax⋆ increase with κ
(and M). From the observables listed in Table I we also

infer that jαsj turns out to be of order 10−4, whereas r is
extremely tiny, of order 10−11, and therefore far outside the
reach of the forthcoming experiments devoted to detecting
primordial gravity waves. For the preferred ns values, we
observe that r and jαsj increase with aS.
The structure of VI described above is visualized in

Fig. 5, where we display a typical variation of VI as a
function of σ=M for the values of the parameters shown in
column B of Table I. The maximum of VI is located at
σmax=M ¼ 1.52f1.38g, whereas its minimum lies at
σmin=M ¼ 29.1f29.5g; the values obtained via the approxi-
mate Eqs. (64) and (65) are indicated in curly brackets. The
values of σ⋆=M ≃ 1.4637 and σf=M ≃ 1.41421 are also
depicted together with σmax=M in the inset of this figure.
We remark that the key σ values for the realization of FHI
are squeezed very close to one another and so their accurate
determination is essential for obtaining reliable predictions
from Eqs. (56a) and (56b). Moreover, NI⋆ in Eq. (52) can
only be found numerically taking all the possible contri-
butions to V 0

I from Eqs. (63a) and (63b), and thus σ⋆ cannot
be expressed analytically in terms of NI⋆. For these
reasons, the results presented in the following are exclu-
sively based on our numerical analysis.

FIG. 5. VI as a function of σ in units of M for the parameters
given in column B of Table I. The values σ⋆, σf , σmax, and σmin of
σ are also depicted.

FIG. 6. Values of aS allowed by Eqs. (52) and (54) versus κ for
various NG’s and fixed ns ¼ 0.967.
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We first display in Fig. 6 the contours that are allowed by
Eqs. (52) and (54) in the κ − aS plane, taking ns ¼ 0.967
and NG ¼ 1 (dot-dashed line), NG ¼ 2 (solid line), and
NG ¼ 10 (dashed line). The various lines terminate at κ
values close to 10−3, beyond which no observationally
acceptable inflationary solutions are possible. We do not
depict the very narrow strip obtained for each NG by
varying ns in its allowed range in Eq. (55), since the
obtained boundaries are almost indistinguishable. From the
plotted curves, we notice that the required aS’s increase
with NG.
Working in the same direction, we delineate in Fig. 7 the

regions in the M − aS plane allowed by Eqs. (52), (54),
and (55) for the considered G’s. In particular, we use
NG ¼ 1, 2, and 10 in Figs. 7(a)–7(c), respectively. The
boundaries of the allowed areas in Fig. 7 are determined by
the dashed (dot-dashed) lines corresponding to the upper
(lower) bound on ns in Eq. (55). We also display by solid
lines the allowed contours for ns ¼ 0.967. We observe that
the maximal allowed M’s increase with NG. The maximal
r’s are encountered in the upper right end of the dashed
lines, which correspond to ns ¼ 0.974, with the maximal
value being r ¼ 6.2 × 10−10 for NG ¼ 10. On the other
hand, the maximal jαsj’s are achieved along the dot-dashed
lines and the minimal value of αs is −3.2 × 10−4 for
NG ¼ 10 too. Summarizing our findings from Fig. 7 for
the central ns value in Eq. (55) and NG ¼ 1, 2, and 10,
respectively, we end up with the following ranges:

0.07≲M=1015 GeV≲ 2.56 and 0.1≲ aS=TeV≲ 100;

ð67aÞ

0.82≲M=1015 GeV≲ 3.7 and 0.09≲ aS=TeV≲ 234;

ð67bÞ

1.22≲M=1015 GeV≲ 4.77 and 0.2≲ aS=TeV≲ 460:

ð67cÞ

Within these margins, Δc⋆ ranges between 0.5% and 20%
and Δmax⋆ ranges between 0.4% and 12%. The lower
bounds of these inequalities are expected to be displaced to
slightly larger values due to the postinflationary require-
ments in Eqs. (59a) and (59b), which are not considered
here for the shake of generality. Recall that precise
incorporation of these constraints requires the adoption
of a specific K from Eqs. (40a)–(40d) and corresponding
μ=m̃ relation from Eq. (45).
In the case G ¼ GB−L, CSs may be produced after FHI

with Gμcs ¼ ð6.5 − 89Þ × 10−9 for the parameters in
Eq. (67a). Therefore, the corresponding parameter space
is totally allowed by Eq. (58a) but completely excluded by
Eq. (58b), if the CSs are stable. If these CSs are metastable,
the explanation [30] of the recent data [32,33] on stochastic

gravity waves is possible for M ≳ 9 × 1014 GeV in
Eq. (67a), where Eq. (58c) is fulfilled. No similar restric-
tions exist if G ¼ GLR or G5X

, which do not lead to the
production of any cosmic defect. On the other hand, the
unification of gauge coupling constants within MSSM
close to MGUT ¼ 2.86 × 1016 GeV remains intact if
G ¼ GB−L, despite the fact that M ≪ MGUT for M given
in Eq. (67a). Indeed, the gauge boson associated with the

FIG. 7. Regions (shaded) allowed by Eqs. (52), (54), and (55) in
the M − aS plane for NG ¼ 1 (a), NG ¼ 2 (b) and NG ¼ 10 (c).
The conventions adopted for the various lines are also shown.
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Uð1ÞB−L breaking is neutral under GSM and so it does not
contribute to the relevant renormalization group running. If
G ¼ GLR or G5X

we may invoke threshold corrections or
additional matter supermultiples to restore the gauge
coupling unification; for G ¼ G5X

, see Ref. [60].

B. Link to the MSSM

The inclusion of the HS in our numerical computation
assists us to gain information about the mass scale of the
SUSY particles through the determination of m̃ ∼m3=2 [see
Eq. (46)]. Indeed, aS, which is already restricted as a
function of κ or M for given NG in Figs. 6 and 7, can be
correlated to m via Eq. (38d). Taking into account Eq. (30)
and the fact that hziI=mP ∼ 10−3 (see Table I), we can solve
analytically and very accurately Eq. (38d) with respect to
m. We find

m ≃
�

aS
21þνð2 − νÞ

�ð2−νÞ=2� 3H2
I

ð1 − νÞν2
�

ν=4

: ð68Þ

Let us clarify here that in our numerical computation we
use an iterative process, which converges quickly, in order
to extract consistently m as a function of κ and M. This is
because the determination of the latter parameters via the
conditions in Eqs. (52) and (54) requires the introduction of
a trial m value that allows us to use as input the form of VI
in Eq. (37). Thanks to the aforementioned smallness of hziI
in Eq. (38d), m turns out to be 2–3 orders of magnitude
larger than aS, suggesting that m̃ lies clearly at the PeV
scale via Eqs. (46) and (25a). In fact, taking advantage of
the resultingm for fixed ν in Eq. (68), we can computem3=2

from Eq. (25a) and mz and mθ from Eq. (25c). All these
masses turn out to be of the same order of magnitude—see
Table I. Then m̃ and Trh can be also estimated from
Eqs. (46) and (47) for a specific K from Eqs. (40a)–(40d).
The magnitude of m̃ and the necessity for μ ∼ m̃, estab-
lished in Sec. IV, hints toward the high-scale MSSM.
To highlight numerically our expectations, we take

K ¼ K1 and fix initially ν ¼ 7=8, which is a representative
value. The predicted m̃ as a function of κ is depicted in
Fig. 8 for the threeNG’s considered in our work. We use the
same type of lines as in Fig. 6. Assuming also that μ ¼ m̃
we can determine the segments of these lines that can be
excluded by the BBN bound in Eq. (59b). In all, we find
that m̃ turns out to be confined in the ranges

0.34≲ m̃=PeV≲ 13.6 for NG ¼ 1; ð69aÞ

0.21≲ m̃=PeV≲ 32.9 for NG ¼ 2; ð69bÞ

0.58≲ m̃=PeV≲ 46.8 for NG ¼ 10: ð69cÞ

Allowing ν and μ to vary within their possible respective
margins (0.75 − 1) and ð1 − 3Þm̃, we obtain the gray

shaded region in Fig. 8. We present an overall region for
the three possible NG’s, since the separate ones overlap
each other. Obviously the lower boundary curve of the
displayed region is obtained for NG ¼ 1 and ν ≃ 0.751,
whereas the upper one corresponds to NG ¼ 10 and
ν ≃ 0.99. The hatched region is ruled out by Eq. (59b).
All in all, we obtain the predictions

1.2≲ aS=TeV≲ 460 and 0.09≲ m̃=PeV≲ 253 ð70Þ

and Tmax
rh ≃ 71, 139, and 163 GeV for NG ¼ 1, 2, and 10,

respectively, attained for μ ¼ 3m̃ and ν ≃ 0.99. The derived
allowed margin of m̃, which is included in Eq. (61), and the
employed μ values render our proposal compatible with the
mass of the Higgs boson discovered in LHC [52] if we
adopt as a low-energy effective theory the high-scale
version of MSSM [53].

VII. CONCLUSIONS

We considered the realization of FHI in the context of an
extended model based on the superpotential and Kähler
potential in Eqs. (1) and (5), which are consistent with an
approximate R symmetry. The minimization of the SUGRA
scalar potential at the present vacuum constrains the
curvature of the internal space of the Goldstino superfield
and provides a tunable energy density that may be
interpreted as the DE without the need of an unnaturally
small coupling constant. On the other hand, this same
potential causes a displacement of the sgoldstino to values
much smaller than mP during FHI. Combining this fact
with minimal kinetic terms for the inflaton, the η problem is
resolved, allowing hilltop FHI. The slope of the inflationary
path is generated by the RCs and a tadpole term with a
minus sign and values that increase with the dimensionality
of the representation of the relevant Higgs superfields.
Embedding GB−L into a larger gauge group GGUT which
predicts the production of monopoles prior to FHI that can

FIG. 8. Region in the κ − m̃ plane allowed by Eqs. (52) and (54)
for K ¼ K1, μ ¼ m̃, ns ¼ 0.967, and 1 ≤ NG ≤ 10, 3=4 < ν < 1.
The allowed contours for ν ¼ 7=8 are also depicted. Hatched is
the region excluded by BBN for Bh ¼ 0.001.
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eventually break the CSs allows the attribution of the
observed data on the gravitational waves to the decay of
metastable B − L CSs.
We also discussed the generation of the μ-term of MSSM

following the Giudice-Masiero mechanism and restricted
further the curvature of the Goldstino internal space so that
phenomenologically dangerous production of G̃ may be
avoided. This same term assists in the decay of the
sgoldstino, which normally dominates the energy density
of the Universe, at a reheat temperature that can be as high
as 163 GeV provided that the μ parameter is of the order of
the G̃ mass, i.e., of order PeV. Linking the inflationary
sector to a degenerate MSSMmass scale m̃we found that m̃
lies in a range consistent with the Higgs boson mass
measured at LHC within high-scale SUSY.
The long-lasting matter domination obtained in our

model because of the sgoldstino oscillations after the
end of FHI leads [61] to a suppression at relatively large
frequencies (f > 0.1 Hz) of the spectrum of the gravita-
tional waves from the decay of the metastable CSs. This
effect may be beneficial for spectra based on Gμcs values
that violate the upper bound of Eq. (49) from the results of
Ref. [34]. Since we do not achieve such Gμcs values here
we do not analyze further this implication of our scenario.
On the other hand, the low reheat temperature encountered
in our proposal makes difficult the achievement of baryo-
genesis. However, there are currently attempts [62] based
on the idea of cold electroweak baryogenesis [63] that may
overcome this problem. It is also not clear which particle
could play the role of CDM in a high-scale SUSY regime.
Let us just mention that a thorough investigation is needed,
including the precise solution of the relevant Boltzmann
equations as in Ref. [58], in order to assess if the abundance
of the lightest SUSY particle can be confined within the
observational limits in this low-reheating scenario.
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APPENDIX: SUGRA CORRECTIONS TO THE
INFLATIONARY POTENTIAL OF FHI

As shown in Sec. II C 2, the presence of WH and KH in
Eqs. (2b) and (6b), respectively, transmit (potentially
important) corrections to the inflationary potential. We
present here, for the first time to the best of our knowledge,
these corrections without specifying the form of these
functions. The corrections from the IS are also taken
into account.

In particular, we consider the following superpotential
and Kähler potential resulting from the ones in Eqs. (1)
and (5) by setting Φ and Φ̄ to zero:

W¼WIðSÞþWHðZÞ and K¼KIðSÞþKHðZÞ; ðA1Þ

where WI and KI are given by

WI ¼ −κ̂M2S and KI ¼ KIðjSj2Þ ðA2Þ

[cf. Eqs. (2a) and (6a)]. We also assume that KI can be
reliably expanded in powers of jSj=mP as follows:

KI ≃ jSj2 þ k4
4

jSj4
m2

P
þ k6

9

jSj6
m3

P
þ � � � : ðA3Þ

Under these circumstances, the inverse Kähler metric reads

KSS�
I ≃1−k4jSj2m2

Pþðk42−k6ÞjSj4=m4
Pþ��� ðA4aÞ

and the exponential prefactor of VF in Eq. (9) is well
approximated by

eKI=m2
P ≃ 1þ jSj2

m2
P
þ 1þ 2k4

2

jSj4
m4

P
þ � � � : ðA4bÞ

Taking into account the two last expressions and
expanding VF in Eq. (9) with W and K from Eq. (A1)
up to the fourth power in jSj=mP, we obtain the quite
generic formula below,

VF ≃ v0 þm2
I3=2jSj2 þ ðv1S� þ c:c:Þ þ v2jSj2=m2

P

þ ðv3S� þ c:c:ÞjSj2=m2
P þ v4jSj4=m4

P þ � � � ; ðA5Þ

where the various v’s are found to be

v0 ¼ κ2M4; ðA6aÞ

v1 ¼ κM2mI3=2h2 − KZZ�
H ∂ZGHiI; ðA6bÞ

v2 ¼ κ2M4hKZZ�
H j∂ZKHj2=m2

P − k4iI; ðA6cÞ

v3 ¼ κM2mI3=2hð1þ k4=2Þ − KZZ�
H ∂ZGHiI; ðA6dÞ

v4 ¼ κ2M4ð1=2þ k4ð4k4 − 7Þ=4 − k6

þ hKZZ�
H j∂ZKHj2=m2

PiIÞ: ðA6eÞ

Here κ is the rescaled coupling constant κ̂ after absorbing
the relevant prefactor ehKHiI=2mP in Eq. (9) and we used the
definition of the G̃ mass,

mI3=2 ¼ heKH=2m2
PWH=m2

PiI;

and the Kähler invariant function (see, e.g., Ref. [56]),
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GH ¼ KH=m2
P þ ln jWH=m3

Pj2: ðA7Þ

From these results we see that v2 and v4 generically
receive contributions from both the IS and HS, whereas v1
and v3 exclusively from the HS—cf. Refs. [8,10].
Specifically, from Eq. (A6c), we can recover the miracu-
lous cancellation occurring within minimal FHI [4,14],

where the HS is ignored and k4 ¼ k6 ¼ 0 in Eq. (A3).
Switching on KH and noticing that

k4 ¼ ∂
2
S∂

2
S�KIðS ¼ S� ¼ 0Þ; ðA8Þ

we can also see that Eq. (A6c) agrees with that presented in
Ref. [8]. The applicability of our results can be easily
checked for other HS settings [23,24,26] too.
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[12] V. N. Şenoǧuz and Q. Shafi, Phys. Rev. D 71, 043514
(2005).

[13] M. U. Rehman, Q. Shafi, and J. R. Wickman, Phys. Lett. B
683, 191 (2010); 688, 75 (2010); K. Nakayama, F.
Takahashi, and T. T Yanagida, J. Cosmol. Astropart. Phys.

12)2010(010 .
[14] C. Pallis and Q. Shafi, Phys. Lett. B 725, 327 (2013).
[15] W. Buchmüller, V. Domcke, K. Kamada, and K. Schmitz, J.

Cosmol. Astropart. Phys. 07 (2014) 054.
[16] Q. Shafi and J. R. Wickman, Phys. Lett. B 696, 438 (2011).
[17] C. Pallis and Q. Shafi, Phys. Lett. B 736, 261 (2014).
[18] R. Armillis and C. Pallis, Recent Advances in Cosmology,

edited by A. Travena and B. Soren (Nova Science Publish-
ers, New York, 2013).

[19] N. Aghanim et al. (Planck Collaboration), Astron. As-
trophys. 641, A6 (2020).

[20] P. A. R. Ade et al. (BICEP and Keck Collaborations), Phys.
Rev. Lett. 127, 151301 (2021).

[21] G. Lazarides and C. Pallis, Phys. Lett. B 651, 216 (2007).
[22] N. Okada and Q. Shafi, Phys. Lett. B 775, 348 (2017); M. U.

Rehman, Q. Shafi, and F. K.Va-rdag, Phys. Rev. D 96,
063527 (2017); G. Lazarides, M. U. Rehman, Q. Shafi, and
F. K. Vardag, Phys. Rev. D 103, 035033 (2021).

[23] L. Wu, S. Hu, and T. Li, Eur. Phys. J. C 77, 168 (2017).
[24] W. Buchmüller, L. Covi, and D. Delepine, Phys. Lett. B

491, 183 (2000).
[25] S. Antusch, M. Bastero-Gil, K. Dutta, S. F. King, and P. M.

Kostka, J. Cosmol. Astropart. Phys. 01 (2009) 040.
[26] T. Higaki, K. S. Jeong, and F. Takahashi, J. High Energy

Phys. 12 (2012) 111.
[27] P. Brax, C. van de Bruck, A. C. Davis, and S. C. Davis, J.

Cosmol. Astropart. Phys. 09 (2006) 012; S. C. Davis and M.
Postma, J. Cosmol. Astropart. Phys. 04 (2008) 022; S.
Mooij and M. Postma, J. Cosmol. Astropart. Phys. 06
(2010) 012.

[28] C. Pallis, Phys. Rev. D 100, 055013 (2019); Eur. Phys. J. C
81, 804 (2021).

[29] P. A. R. Ade et al. (Planck Collaboration), Astron. As-
trophys. 594, A13 (2016).

[30] W. Buchmüller, V. Domcke, and K. Schmitz, J. Cosmol.
Astropart. Phys. 11 (2023) 020; S. Antusch, K. Hinze, S.
Saad, and J. Steiner, arXiv:2307.04595; B. Fu, S. F. King, L.
Marsili, S. Pascoli, J. Turner, and Y.-L. Zhou,
arXiv:2308.05799; G. Lazarides, R. Maji, A. Moursy,
and Q. Shafi, arXiv:2308.07094; A. Afzal, M. Mehmood,
M. U. Rehman, and Q. Shafi, arXiv:2308.11410; R. Maji
and W. I. Park, arXiv:2308.11439.

[31] A. Afzal et al. (NANOGrav Collaboration), Astrophys. J.
Lett. 951, L11 (2023).

[32] G. Agazie et al. (NANOGrav Collaboration), Astrophys. J.
Lett. 951, L8 (2023).

[33] J. Antoniadis et al. (EPTA Collaboration) arXiv:2306
.16214; D. J. Reardon et al., Astrophys. J. Lett. 951, L6
(2023); H. Xu et al., Res. Astron. Astrophys. 23, 075024
(2023).

[34] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), Phys. Rev. Lett. 126, 241102 (2021).

[35] K. J. Bae, H. Baer, V. Barger, and D. Sengupta, Phys. Rev. D
99, 115027 (2019).

[36] G. F. Giudice and A. Masiero, Phys. Lett. B 206, 480
(1988).

G. LAZARIDES and C. PALLIS PHYS. REV. D 108, 095055 (2023)

095055-16

https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1142/S0218271815300256
https://doi.org/10.1142/S0218271815300256
https://doi.org/10.1007/3-540-48025-0
https://doi.org/10.1088/1742-6596/53/1/033
https://doi.org/10.1088/1742-6596/53/1/033
https://doi.org/10.1103/PhysRevLett.73.1886
https://doi.org/10.1103/PhysRevLett.73.1886
https://doi.org/10.1103/PhysRevD.56.1324
https://doi.org/10.1103/PhysRevD.56.4562
https://doi.org/10.1016/j.nuclphysb.2012.05.001
https://doi.org/10.1016/j.nuclphysb.2012.05.001
https://doi.org/10.1016/S0370-2693(98)00145-2
https://doi.org/10.1016/S0370-2693(98)00145-2
https://doi.org/10.1016/j.physletb.2006.03.007
https://doi.org/10.1088/1475-7516/2021/10/015
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1016/S0370-2693(99)00688-7
https://doi.org/10.1103/PhysRevD.71.063516
https://doi.org/10.1103/PhysRevD.71.063516
https://doi.org/10.1016/j.physletb.2006.06.085
https://doi.org/10.1016/j.physletb.2006.06.085
https://doi.org/10.1088/1126-6708/2006/12/038
https://doi.org/10.1088/1126-6708/2006/12/038
https://doi.org/10.1103/PhysRevD.75.043522
https://doi.org/10.1088/1475-7516/2009/04/024
https://doi.org/10.1103/PhysRevD.83.067304
https://doi.org/10.1103/PhysRevD.83.067304
https://doi.org/10.1016/j.physletb.2014.04.060
https://doi.org/10.1103/PhysRevD.71.043514
https://doi.org/10.1103/PhysRevD.71.043514
https://doi.org/10.1016/j.physletb.2009.12.010
https://doi.org/10.1016/j.physletb.2009.12.010
https://doi.org/10.1016/j.physletb.2010.03.072
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1088/1475-7516/2010/12/010
https://doi.org/10.1016/j.physletb.2013.07.029
https://doi.org/10.1088/1475-7516/2014/07/054
https://doi.org/10.1088/1475-7516/2014/07/054
https://doi.org/10.1016/j.physletb.2011.01.002
https://doi.org/10.1016/j.physletb.2014.07.031
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1016/j.physletb.2007.06.008
https://doi.org/10.1016/j.physletb.2017.11.015
https://doi.org/10.1103/PhysRevD.96.063527
https://doi.org/10.1103/PhysRevD.96.063527
https://doi.org/10.1103/PhysRevD.103.035033
https://doi.org/10.1140/epjc/s10052-017-4741-9
https://doi.org/10.1016/S0370-2693(00)01005-4
https://doi.org/10.1016/S0370-2693(00)01005-4
https://doi.org/10.1088/1475-7516/2009/01/040
https://doi.org/10.1007/JHEP12(2012)111
https://doi.org/10.1007/JHEP12(2012)111
https://doi.org/10.1088/1475-7516/2006/09/012
https://doi.org/10.1088/1475-7516/2006/09/012
https://doi.org/10.1088/1475-7516/2008/04/022
https://doi.org/10.1088/1475-7516/2010/06/012
https://doi.org/10.1088/1475-7516/2010/06/012
https://doi.org/10.1103/PhysRevD.100.055013
https://doi.org/10.1140/epjc/s10052-021-09595-7
https://doi.org/10.1140/epjc/s10052-021-09595-7
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1088/1475-7516/2023/11/020
https://doi.org/10.1088/1475-7516/2023/11/020
https://arXiv.org/abs/2307.04595
https://arXiv.org/abs/2308.05799
https://arXiv.org/abs/2308.07094
https://arXiv.org/abs/2308.11410
https://arXiv.org/abs/2308.11439
https://doi.org/10.3847/2041-8213/acdc91
https://doi.org/10.3847/2041-8213/acdc91
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.3847/2041-8213/acdac6
https://arXiv.org/abs/2306.16214
https://arXiv.org/abs/2306.16214
https://doi.org/10.3847/2041-8213/acdd02
https://doi.org/10.3847/2041-8213/acdd02
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1103/PhysRevLett.126.241102
https://doi.org/10.1103/PhysRevD.99.115027
https://doi.org/10.1103/PhysRevD.99.115027
https://doi.org/10.1016/0370-2693(88)91613-9
https://doi.org/10.1016/0370-2693(88)91613-9


[37] A. Brignole, L. E. Ibáñez, and C. Muñoz, Adv. Ser. Dir.
High Energy Phys. 18, 125 (1998).

[38] G. Kane, K. Sinha, and S. Watson, Int. J. Mod. Phys. D 24,
1530022 (2015).

[39] K. J. Bae, H. Baer, V. Barger, and R.W. Deal, J. High
Energy Phys. 02 (2022) 138.

[40] M. Endo, F. Takahashi, and T. T. Yanagida, Phys. Rev. D 76,
083509 (2007).

[41] J. Ellis, M. Garcia, D. Nanopoulos, and K. Olive, J. Cosmol.
Astropart. Phys. 10 (2015) 003.

[42] Y. Aldabergenov, I. Antoniadis, A. Chatrabhuti, and H.
Isono, Eur. Phys. J. C 81, 1078 (2021).

[43] T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T.
Tram, and S. Hannestad, J. Cosmol. Astropart. Phys. 12
(2019) 012.

[44] M. Endo, K. Hamaguchi, and F. Takahashi, Phys. Rev. Lett.
96, 211301 (2006); S. Nakamura and M. Yamaguchi, Phys.
Lett. B 638, 389 (2006).

[45] H. Baer, V. Barger, D. Sengupta, S. Salam, and K. Sinha,
Eur. Phys. J. Special Topics 229, 3085 (2020).

[46] W. Buchmüller, E. Dudas, L. Heurtier, and C.Wieck, J. High
Energy Phys. 09 (2014) 053; E. Dudas, T. Gherghetta, Y.
Mambrini, and K. A. Olive, Phys. Rev. D 96, 115032 (2017).

[47] J. Ellis, D. V. Nanopoulos, K. A. Olive, and S. Verner, Phys.
Rev. D 100, 025009 (2019); J. Cosmol. Astropart. Phys. 08
(2020) 037.

[48] I. Antoniadis, A. Chatrabhuti, H. Isono, and R. Knoops, Eur.
Phys. J. C 76, 680 (2016); Y. Aldabergenov, A. Chatrabhuti,
and S. V. Ketov, Eur. Phys. J. C 79, 713 (2019); I.
Antoniadis, O. Lacombe, and G. K. Leontaris, Eur. Phys.
J. C 80, 1014 (2020); Y. Aldabergenov, A. Chatrabhuti, and
H. Isono, Eur. Phys. J. C 81, 166 (2021).

[49] V. Domcke and K. Schmitz, Phys. Rev. D 95, 075020
(2017); 97, 115025 (2018).

[50] M. C. Romão and S. F. King, J. High Energy Phys. 07
(2017) 033; S. F. King and E. Perdomo, J. High Energy
Phys. 05 (2019) 211.

[51] R. Kallosh and A. Linde, Phys. Rev. D 91, 083528 (2015);
A. Linde, J. Cosmol. Astropart. Phys. 11 (2016) 002.

[52] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 90,
052004 (2014); CMS Collaboration, Technical Report
No. CMS-PAS-HIG-14-009, 2014, https://cds.cern.ch/
record/1728249?ln=en.

[53] E. Bagnaschi, G. F. Giudice, P. Slavich, and A. Strumia, J.
High Energy Phys. 09 (2014) 092.

[54] R. Jeannerot, S. Khalil, G. Lazarides, and Q. Shafi, J. High
Energy Phys. 10 (2000) 012; R. Jeannerot, S. Khalil, and G.
Lazarides, J. High Energy Phys. 07 (2002) 069.

[55] G. Lazarides and C. Panagiotakopoulos, Phys. Rev. D 52,
R559 (1995); G. Lazarides and A. Vamvasakis, Phys. Rev.
D 76, 083507 (2007); M. U. Rehman and Q. Shafi, Phys.
Rev. D 86, 027301 (2012).

[56] P. Binétruy, Supersymmetry: Theory, Experiment and
Cosmology (Oxford, New York, 2006).

[57] G. Lazarides and Q. Shafi, Phys. Rev. D 58, 071702
(1998).

[58] C. Pallis, Astropart. Phys. 21, 689 (2004); Nucl. Phys.
B751, 129 (2006).

[59] M. Hindmarsh, Prog. Theor. Phys. Suppl. 190, 197 (2011).
[60] M. Mehmood, M. U. Rehman, and Q. Shafi, J. High Energy

Phys. 02 (2021) 181; J. Ellis, J. L. Evans, N. Nagata, D. V.
Nanopoulos, and K. A. Olive, Eur. Phys. J. C 81, 1109
(2021).

[61] Y. Cui, M. Lewicki, D. E. Morrissey, and J. D. Wells, J.
High Energy Phys. 01 (2019) 081; P. Auclair et al., J.
Cosmol. Astropart. Phys. 04 (2020) 034; Y. Gouttenoire, G.
Servant, and P. Simakachorn, J. Cosmol. Astropart. Phys. 07
(2020) 032.

[62] M.M. Flores, A. Kusenko, L. Pearce, and G. White,
arXiv:2208.09789.

[63] J. Garcia-Bellido, D. Grigoriev, A. Kusenko, and M.
Shaposhnikov, Phys. Rev. D 60, 123504 (1999); L. M.
Krauss and M. Trodden, Phys. Rev. Lett. 83, 1502
(1999).

PROBING THE SUPERSYMMETRY-MASS SCALE WITH F-TERM … PHYS. REV. D 108, 095055 (2023)

095055-17

https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/S0218271815300220
https://doi.org/10.1142/S0218271815300220
https://doi.org/10.1007/JHEP02(2022)138
https://doi.org/10.1007/JHEP02(2022)138
https://doi.org/10.1103/PhysRevD.76.083509
https://doi.org/10.1103/PhysRevD.76.083509
https://doi.org/10.1088/1475-7516/2015/10/003
https://doi.org/10.1088/1475-7516/2015/10/003
https://doi.org/10.1140/epjc/s10052-021-09862-7
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1103/PhysRevLett.96.211301
https://doi.org/10.1103/PhysRevLett.96.211301
https://doi.org/10.1016/j.physletb.2006.05.078
https://doi.org/10.1016/j.physletb.2006.05.078
https://doi.org/10.1140/epjst/e2020-000020-x
https://doi.org/10.1007/JHEP09(2014)053
https://doi.org/10.1007/JHEP09(2014)053
https://doi.org/10.1103/PhysRevD.96.115032
https://doi.org/10.1103/PhysRevD.100.025009
https://doi.org/10.1103/PhysRevD.100.025009
https://doi.org/10.1088/1475-7516/2020/08/037
https://doi.org/10.1088/1475-7516/2020/08/037
https://doi.org/10.1140/epjc/s10052-016-4539-1
https://doi.org/10.1140/epjc/s10052-016-4539-1
https://doi.org/10.1140/epjc/s10052-019-7225-2
https://doi.org/10.1140/epjc/s10052-020-08581-9
https://doi.org/10.1140/epjc/s10052-020-08581-9
https://doi.org/10.1140/epjc/s10052-021-08947-7
https://doi.org/10.1103/PhysRevD.95.075020
https://doi.org/10.1103/PhysRevD.95.075020
https://doi.org/10.1103/PhysRevD.97.115025
https://doi.org/10.1007/JHEP07(2017)033
https://doi.org/10.1007/JHEP07(2017)033
https://doi.org/10.1007/JHEP05(2019)211
https://doi.org/10.1007/JHEP05(2019)211
https://doi.org/10.1103/PhysRevD.91.083528
https://doi.org/10.1088/1475-7516/2016/11/002
https://doi.org/10.1103/PhysRevD.90.052004
https://doi.org/10.1103/PhysRevD.90.052004
https://cds.cern.ch/record/1728249?ln=en
https://cds.cern.ch/record/1728249?ln=en
https://cds.cern.ch/record/1728249?ln=en
https://cds.cern.ch/record/1728249?ln=en
https://doi.org/10.1007/JHEP09(2014)092
https://doi.org/10.1007/JHEP09(2014)092
https://doi.org/10.1088/1126-6708/2000/10/012
https://doi.org/10.1088/1126-6708/2000/10/012
https://doi.org/10.1088/1126-6708/2002/07/069
https://doi.org/10.1103/PhysRevD.52.R559
https://doi.org/10.1103/PhysRevD.52.R559
https://doi.org/10.1103/PhysRevD.76.083507
https://doi.org/10.1103/PhysRevD.76.083507
https://doi.org/10.1103/PhysRevD.86.027301
https://doi.org/10.1103/PhysRevD.86.027301
https://doi.org/10.1103/PhysRevD.58.071702
https://doi.org/10.1103/PhysRevD.58.071702
https://doi.org/10.1016/j.astropartphys.2004.05.006
https://doi.org/10.1016/j.nuclphysb.2006.06.003
https://doi.org/10.1016/j.nuclphysb.2006.06.003
https://doi.org/10.1143/PTPS.190.197
https://doi.org/10.1007/JHEP02(2021)181
https://doi.org/10.1007/JHEP02(2021)181
https://doi.org/10.1140/epjc/s10052-021-09896-x
https://doi.org/10.1140/epjc/s10052-021-09896-x
https://doi.org/10.1007/JHEP01(2019)081
https://doi.org/10.1007/JHEP01(2019)081
https://doi.org/10.1088/1475-7516/2020/04/034
https://doi.org/10.1088/1475-7516/2020/04/034
https://doi.org/10.1088/1475-7516/2020/07/032
https://doi.org/10.1088/1475-7516/2020/07/032
https://arXiv.org/abs/2208.09789
https://doi.org/10.1103/PhysRevD.60.123504
https://doi.org/10.1103/PhysRevLett.83.1502
https://doi.org/10.1103/PhysRevLett.83.1502

