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Results from the experiments like LSND, and MiniBooNE hint towards the possible presence of an extra
eV-scale sterile neutrino. The addition of such a neutrino will significantly impact the standard three-flavor
neutrino oscillations; in particular, it can give rise to additional degeneracies due to new sterile parameters.
In our work, we investigate how the sensitivity to determine the octant of the neutrino mixing angle θ23 is
affected by introducing a sterile neutrino to the standard three generation framework. We compute the
oscillation probabilities analytically in the presence of a sterile neutrino, using the approximation that Δ21,
the smallest mass squared difference, is zero. We use these probabilities to understand the degeneracies
analytically at different baselines. We present our results of the sensitivity to octant of θ23 for beam
neutrinos using a liquid argon time projection chamber (LArTPC). We also obtain octant sensitivity using
atmospheric neutrinos using the same LArTPC detector. For the latter, we present our results assuming
(i) no charge identification capability, and (ii) partial charge identification capability using the charge
tagging ability of muon capture in argon. In addition, we include the charge tagging capability of muon
capture in argon which allows one to differentiate between muon neutrino and antineutrino events. The
combined sensitivity of beam and atmospheric neutrinos in a similar experimental setup is also delineated.
We observe that by combining simulated data from the beam and atmospheric neutrinos (including charge-
id for muons), the sensitivity to the octant of θ23 for true values of θ23 ¼ 41°ð49°Þ exceeds 4σð3σÞ for more
than 50% values of true δ13.
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I. INTRODUCTION

Coming a long way since the first observation of
neutrino oscillations, the standard three-flavor neutrino
oscillation paradigm is well-established now, with most
of the parameters being measured with considerable pre-
cision [1–3]. The parameters describing the standard three-
flavor oscillations are the three mixing angles θ12, θ13, and
θ23 corresponding to mixing between the mass eigenstates
with mass eigenvalues m1,m2, and m3, the Dirac CP phase
δ13ðδCPÞ, the two mass squared differences Δ21 ¼ m2

2 −m2
1

driving the solar neutrino transitions and Δ31 ¼ m2
3 −m2

1

governing the atmospheric neutrino oscillations. The

oscillation probabilities are also dependent on the exper-
imental parameters like the baseline distance L traversed by
the neutrinos from the source to the detector and the energy
of the neutrinos Eν. Currently, the unknowns in the
standard oscillation sector are the mass ordering among
the three neutrino states, the octant of the atmospheric
mixing angle θ23, and the value of the CP violating phase
δCP. The mass ordering refers to whether the sign of the
atmospheric mass squared difference Δ31 is positive
[Normal Ordering (NH)] or negative [Inverted Ordering
(IH)]. The octant of θ23 signifies if the value of the angle
lies above [Higher Octant (HO)] or below [Lower Octant
(LO)] 45°. One of the most impeding factors in the precise
determination of these three parameters is the occurrence
of degeneracies, i.e., various sets of different values of
unknown parameters giving rise to equal probability,
making an unambiguous determination of these parame-
ters difficult. In view of the current unknowns in the
three-flavor framework, the existing degeneracies can be
understood through a generalized hierarchy-octant-δCP
degeneracy [4]. Measuring these parameters with consid-
erable precision and alleviating the existing degeneracies
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are the focus of the ongoing and upcoming experiments
such as T2K [5], NOνA [6], T2HK, DUNE [7], ESSνSB
[8], etc. Planned atmospheric neutrino experiments like
HyperKamiokande [9], KM3NeT [10], PINGU [11], INO
[12], etc., can also throw light on these parameters. Synergy
and complementarity between atmospheric and beam
experiments have been explored in the context of three
generation framework in [13–21].
Although neutrino oscillation is unequivocally the lead-

ing solution for the flavor conversion to explain solar,
atmospheric, reactor, and accelerator observations, the
possibility of other beyond standard model (BSM) effects
at a subleading level cannot be precluded. Several new
physics effects have been discussed in the literature, includ-
ing sterile neutrinos, long rang forces, neutrino decay,
nonstandard interactions, etc. Among these BSM scenarios,
the existence of a light sterile neutrino is one of the most
promising new physics hypotheses to explain the anomalies
observed by LSND and MiniBooNE experiments.
The idea of the light sterile neutrino was initiated in view

of the results from the LSND experiment, which reported a
signature of ν̄μ → ν̄e oscillation at 3.8σ [22]. Later
MiniBooNE experiment with the same L=E ratio also
confirmed this result at 4.8σ significance [23]. If we want to
interpret these results through effective two-flavor oscil-
lations then corresponding to L=E ∼ 1 GeV=km in these
experiments, there should be a new mass-squared differ-
ence Δs ∼ 1 eV2. This new mass-squared difference does
not fit in the standard three-flavor oscillation scheme,
requiring one to incorporate at least one extra neutrino
with a mass of eV scale. The result of the invisible decay
width of the Z boson at CERN suggests that there can only
be three different neutrinos below the mass range of half of
the Z boson [24]. Hence, this extra neutrino has to be inert
with no standard model gauge interactions.
Additional support in favor of an additional light sterile

neutrino came from the observation of electron neutrino νe
deficit in gallium-based radio-chemical experiments SAGE
and GALLEX (Gallium anomaly) [25,26] which has been
reinforcedwith the recent results fromBESTexperiment [27]
at 5σ. There was also the reactor antineutrino anomaly in
which several reactor neutrino experiments showed a deficit
in the measured flux with an improved calculation of the
inverse beta-decay cross section [28,29]. These could also be
explained in terms of a sterile neutrino with a mass of the
order of eV. However, the results from reactor experiments
such as DANSS [30,31], NEOS [32], STEREO [33], and
PROSPECT [34] excluded most of the reactor antineutrino
anomaly region [35] at more than 90%C.L. So far, the 3þ 1
framework including a light sterile neutrino with a mass of
1 eV first introduced in [36], offers the most economical
scenario to explain these anomalies. However, the 3þ 1
framework suffers from a tension between the νμ disappear-
ance and appearance data. This tension [37] originates from
the nonobservation of any similar supportive signal in the

accelerator-based disappearance experiments inPμμ channel
like CDHSW, MINOS [38,39], Super-Kamiokande [40],
IceCubeDeepCore [41],MicroBooNE [42], andNOνA [43].
Reactor-based electron disappearance searches in the experi-
ments Bugey3 [44] and DayaBay [45] also did not provide
any evidence in support of sterile neutrino. The global fit
performed in [46], allowed three narrow regions around
Δ41 ≈ 1–2 eV2 with 0.00048<sin22θμe<0.002. However,
after adding Bugey3, DayaBay, and MINOSþ data, the
goodness of fit decreases drastically [45]. The most recent
results from the MicroBooNE experiment did not report any
evidence of electron neutrino disappearance in their three
years of data [47,48]. However, it was shown in [49] that
MicroBooNE data cannot exclude the electron neutrino
excess observed in MiniBooNE in a model-independent
way. The joint analysis of results from MiniBooNE, and
MicroBooNE experiments preferred the 3þ 1 scenario over
no oscillation [50].
One of the sternest challenges for the existence of sterile

neutrino comes from cosmology [51]. The inclusion of an
extra sterile neutrino increases the effective no of neutrinos
relevant for the big bang nucleosynthesis. It was proposed
in [52] that secret interaction between sterile neutrinos can
remedy this situation but it was later disfavored by cosmic
microwave background analysis [53]. Recently, a joint
analysis of short baseline and cosmological data showed
that a sterile neutrino with a mass around 1 eV can be
allowed for interaction with a new light pseudoscalar. To
summarize, the existence of sterile neutrinos is still an open
question while more experimental efforts are underway to
resolve this.
The upcoming TRISTAN detector at the KATRIN [54],

SBN [55] at Fermilab, JSNS2 detector [56] at J-PARC are
following up the results of LSND and MiniBooNE. The
results from these experiments are expected to help in
reaching a definitive conclusion about the existence of an
eV scale sterile neutrino. If these experiments confirm the
presence of an eV scale neutrino, then some new physics
will be required to explain the tension between the
disappearance and the appearance data. Some ideas in this
direction can be found [57,58].
If we consider the sterile neutrino hypothesis to be true,

then the standard framework of neutrino oscillations is
going to see some important modifications. The addition of
a light sterile neutrino comes with three extra active-sterile
sector mixing angles and two additional CP phases. These
will compound the effect of the parameter degeneracies that
already exist in the standard three-flavor framework. In
particular, it was shown in [59] that for the (3þ 1)-
oscillation framework, the octant degeneracy is more
pronounced due to the effect of an additional interference
term in the νμ → νe vacuum oscillation probability rel-
evant at long baseline setups in the context of the DUNE
detector. It is well-known that the addition of neutrino
and antineutrino can evade the octant-δ13 degeneracy for
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three-flavor case [4,60]. However, in presence of a sterile
neutrino, the octant-δ14 degeneracy cannot be resolved even
after the addition of neutrino plus antineutrino [61].
Implications of additional octant degeneracies associated
with the new phases in the 3þ 1 framework have also been
studied in the context of the NOνA [61,62] experiment.
Other studies in the context of long baseline experiments in
presence of a sterile neutrino can be found, for instance,
in [63–70].
The primary focus of our paper is to study the octant

sensitivity if an additional light sterile neutrino is present.We
perform a comprehensive study of the octant sensitivity
usinga LArTPC detector. LArTPC, first proposed in [71]
constitutes one of the most important classes of scintillator
detectors at present because of its superior capabilities,which
provide several advantages in the precise reconstruction of
neutrino events. Some of the current and future detectors
using this technology areMicroBooNE, SBND, DUNE, etc.
Earlier studies performed for three neutrino generations and
atmospheric neutrinos in a liquid argon (LAr) detector can be
found, for instance, in [14,16,72]. In this paper, we extend
our scope to investigate if the effect of additional degener-
acies arising from an extra light sterile neutrino can be
reduced in the presence of a largematter effect encountered at
higher baselines. This has been studied for the combined
analysis of beam neutrinos at a baseline of 1300 km and
atmospheric neutrinos, which provide larger baselines as
well as higher energies in this experimental setup, along with
a separate study for each.Additionally,we present the results,
including the charge tagging capability of muon capture in
liquid argon, allowing one to differentiate between μþ andμ−

events in the context of atmospheric neutrinos.
In order to have a proper understanding of the octant

degeneracy seen from numerical analysis, the study of the
analytic expressions of neutrino oscillation probabilities is
important. We obtain analytic expressions of the neutrino
oscillation/survival probabilities assuming the solar mass
squared difference Δ21 to be negligible as compared to the
mass squared differences Δ31, and Δ41 ¼ m2

4 −m2
1 driving

the atmospheric and sterile neutrino oscillations, respec-
tively. We use the analytic expressions to understand the
octant degeneracy at some representative baselines, e.g.,
1300 km and 7000 km. There are other analytical calcu-
lations of oscillation probabilities in the presence of sterile
neutrino in matter using the rotation methods [73], an exact
analytical method [74]. We discuss the region of validity
and the error of the analytic expressions compared to the
exact numerical probabilities.
Studies related to sterile neutrinos in the context of

atmospheric neutrino observations at India-based Neutrino
Observatory (INO) experiment have been performed in
[75,76]. More recently, an analysis in [77] considers sterile
neutrinos in atmospheric baselines for a wide Δ41 mass
squared range 10−5∶ 100 eV2 in the context of the INO
experiment. This paper obtained bound on the active-sterile

mixing angles as well as the sensitivity to the neutrino mass
ordering in the (3þ 1)-oscillation framework. Our study in
this paper focuses on the impact of resonant matter effect on
the probabilities at very long baselines and its influence on the
sensitivity to determine the octant. To the best of our
knowledge, this kind of study of the degeneracies in presence
of a light sterile neutrino under the influence of resonance
matter effect at very longbaselines has not been looked into in
past.We also explore this aspect in the context of atmospheric
and beam neutrinos in a long baseline experimental setup of
1300 km both separately as well as together using a LArTPC
detector and examine the complementarities between these
two.Such studies in the context of a genericLArdetector have
been performed for the three generation case earlier in [16].
The plan of the paper is as follows. To start with, we

establish the analytic framework for neutrino oscillations in
presence of sterile neutrino in Sec. II. The subsequent
Sec. III details the calculation of the probabilities. Next,
Sec. IV contains the discussion on octant degeneracy for
different baselines and energies as well as the dependence
on the CP phases δ13, and δ14. In Sec. V, we describe the
experimental details for the LArTPC detector and outline
the procedure of χ2 analysis adopted. We discuss the results
in Sec. VI. Finally, we conclude in Sec. VII.

II. 3 + 1 FRAMEWORK

The minimal scheme postulated to explain the results of
LSND, and MiniBooNE is the 3þ 1 framework in which
one light sterile neutrino is added to the three active
neutrinos in the SM. In the (3þ 1)-oscillation framework,
the mixing matrix U depends on three additional mixing
angles θ14, θ24, θ34 corresponding to mixing between the
light sterile neutrino νs and the active sector neutrinos, two
new CP phases δ14, δ34 along with the standard oscillation
parameters θ12, θ13, θ23, δ13 and can be expressed as

U ¼ R̃34ðθ34; δ34ÞR24ðθ24ÞR̃14ðθ14; δ14Þ
� R23ðθ23ÞR̃13ðθ13; δ13ÞR12ðθ12Þ; ð1Þ

where R̃ij ¼ Uδ
ijðδijÞRijðθijÞU†δ

ij ðδijÞ, RijðθijÞ’s are the
rotation matrices in i–j plane and Uδ

ij are diagonal unitary
matrices with the CP phases δij’s. In the presence of an
additional light sterile neutrino, there is a new mass squared
difference Δ41. The 3þ 1 picture considered here is m4 ≫
m3 ≫ m2 ≫ m1 which corresponds to m4 being the heavi-
est mass state. The case with m4 as the lowest state is
disfavored from cosmology. The mass ordering for three
generations is considered to be NH.
Recent studies about the best-fit values and allowed

ranges of the parameters associated with eV scale sterile
neutrino can be found in [37,46,78]. In particular, the
global analysis of data performed in [46] illustrates the
following 3σ bounds and best-fits in sterile mixing angles
for Δ41 ¼ 1.3 eV2 (Table I).
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However, the analysis performed in [45] including the
MINOSþ data disfavored the allowed regions in θ24 from
above with a new bound at 90% C.L. sin2 θ24 ≤ 0.006, i.e.,
θ24 ≤ 4.5°. Also, the analysis of DayaBay and Bugey3
gives at 90% C.L. sin2 2θ14 ≤ 0.046. i.e., θ14 ≤ 6.2°.

III. OSCILLATION PROBABILITY

The effective matter interaction Hamiltonian in flavor
basis is given as follows:

Hint ¼ diagðVCC; 0; 0;−VNCÞ
¼ diagð

ffiffiffi
2

p
GFNe; 0; 0;

ffiffiffi
2

p
GFNn=2Þ; ð2Þ

where VCC ¼ ffiffiffi
2

p
GFNe is the charge current interaction

potential, VNC ¼ −
ffiffiffi
2

p
GFNn=2 is the neutral current inter-

action potential,GF is the Fermi coupling constant,Ne, and
Nn correspond to electron density and neutron density,
respectively, of the medium in which neutrinos travel. In
order to obtain the probabilities in the matter, one has to
solve the neutrino propagation equation with the total
Hamiltonian given as follows:

H ¼ 1

2Eν
U

2
6664
0 0 0 0

0 Δ21 0 0

0 0 Δ31 0

0 0 0 Δ41

3
7775U†

þ 1

2Eν

2
6664
A 0 0 0

0 0 0 0

0 0 0 0

0 0 0 A
2

3
7775; ð3Þ

where the propagation medium has been considered to be
the earth matter with neutron density being equal to
electron density, i.e., Ne ¼ Nn and the matter potential
term is A ¼ 2

ffiffiffi
2

p
GFNeEν with neutrino energy Eν and the

mass squared differences are given as Δij ¼ m2
j −m2

i

where mi’s are mass eigenvalues. This would require
diagonalization of the total Hamiltonian to go to the matter
mass basis. However, this poses difficulty even in the three-
flavor case and one has to resort to approximate methods.
A comprehensive review of the various approximations
used in the three-flavor case has been discussed in [79].
There are two well-known methods: (I) OMSD approx.;
(II) α − s13 approx. These two methods can also be used for
the 3þ 1 framework. The α − s13 method for the sterile
case has been done in Ref. [80].
In the context of this work, we have considered the two

mass scale dominance (TMSD) approximation with Δ21

set as zero, similar to the well-known one mass scale
dominance (OMSD) approximation [81] in three-flavor
case. TMSD approximation allows us to obtain compact
analytic expressions for the probabilities in the matter,
which can facilitate the understanding of the underlying
physics in the 3þ 1 framework. Although we have used
the TMSD approx. for analytical calculations, in the
numerical analysis, we consider the current best-fit value
of Δ21.

A. TMSD approximation

In the TMSD approximation, we choose Δ21 ¼ 0 since
from the experimental data Δ21 ≪ Δ31 ≪ Δ41. As a
consequence, the contribution of the solar angle θ12
drops out of mixing matrix U (1) as R12 commutes
with the mass matrix M in this approximation. The
Δ21 ¼ 0 approximation holds well for Δ21L

Eν
≪ 1 [81]. In

our study, we further assume θ34 ¼ 0 which is allowed
within current bounds [1,3]. Thus, we have only two
additional nonzero mixing angles θ14, θ24 and a nonzero
phase δ14. This leads to the effective vacuum mixing
matrix,

Ũ ¼ R24ðθ24ÞR̃14ðθ14; δ14ÞR23ðθ23ÞUδ13R13ðθ13Þ

¼

2
6664

c13c14 0 c14s13 e−ιδ14s14
−eιδ13c24s13s23 − eιδ14c13s14s24 c23c24 eιδ13c13c24s23 − eιδ14s13s14s24 c14s24

−eιδ13c23s13 −s23 eιδ13c13c23 0

−eιδ14c13c24s14 þ eιδ13s13s23s24 −c23s24 −eιδ14c24s13s14 − eιδ13c13s23s24 c14c24

3
7775; ð4Þ

TABLE I. 3σ Levels and best-fit values extracted from [46].

Parameters 3σ range Best fit

sin2 2θ14 0.04–0.09 0.079
θ14 5.76°–8.73° 8.15°
sin2 θ24 6.7 × 10−3 − 0.022 0.015
θ24 4.68°–8.6° 7.08°
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where we have used notations sij ¼ sin θij; cij ¼ cos θij.
Since the allowed values of the vacuum mixing angles
θ13, θ14, and θ24 are of a similar order, these small
parameters can be expressed in terms of OðλnÞ with λ ∼
0.15 as follows:

sin θ13 ≃OðλÞ; sin θ14 ≃OðλÞ; sin θ24 ≃OðλÞ;
Δ21 ≃Oðλ5Þ; Δ31 ≃Oðλ3Þ; A ≃Oðλ3Þ: ð5Þ

We can split the total Hamiltonian H into two parts as

H ¼ 1

2Eν
ðH0 þHpÞ; ð6Þ

where Hp, the perturbed Hamiltonian, is proportional to
the order of Δ31; A½Oðλ3Þ� whereas the unperturbed
Hamiltonian H0 is proportional to Δ41. These can be
written as follows:

H0¼Δ41

2
6664

s214 e−ιδ14c14s14s24 0 e−ιδ14c24c14s14
eιδ14c14s24s14 c214s

2
24 0 c214c24s24

0 0 0 0

eιδ14c24c14s14 c214c24s24 0 c214c
2
24

3
7775;

ð7Þ

Hp ¼ Ũ

2
6664
0 0 0 0

0 0 0 0

0 0 Δ31 0

0 0 0 0

3
7775Ũ† þ

2
6664
A 0 0 0

0 0 0 0

0 0 0 0

0 0 0 A
2

3
7775: ð8Þ

The unperturbed and perturbed Hamiltonian can be
expressed in terms of the small parameter λ in the
following manner:

H0 ∼

2
6664
λ2 λ2 0 λ

λ2 λ2 0 λ

0 0 0 0

λ λ 0 1

3
7775;

Hp ∼

2
6664

λ5 λ4 λ4 −λ5

λ4 λ3 λ3 −λ4

λ4 λ3 λ3 −λ4

−λ5 −λ4 −λ4 λ5

3
7775; ð9Þ

The unperturbed Hamiltonian has the smallest terms
proportional to Oðλ2Þ, which is at least an order less
than the largest term in Hp, the perturbed Hamiltonian.
The terms proportional to Δ21 are of higher order than λ5

and thus are neglected. The eigenvalues of H0 are
λ01 ¼ 0, λ02 ¼ 0, λ03 ¼ 0, λ04 ¼ Δ41. This implies the
need for degenerate perturbation theory to determine the

modified energy eigenvalues in the presence of the matter
potential. The modified energy eigenvalues evaluated
using degenerated perturbation theory in ascending order
of energy are as follows:

E1m¼ 1

2Eν
½Δ31 sin2ðθ13−θ13mÞ−A0 sin2 θ24 cos2θ13m

þA0 cos2 θ13mð1þ cos2θ14þ cos2 θ14 sin2 θ24Þ
−Asin2θ24 sinθ14 sinθ23 sin2θ13m cosδ=2�;

E2m¼ 0;

E3m¼ 1

2Eν
½Δ31 cos2ðθ13−θ13mÞþA0 sin2 θ24 cos2θ13m

þA0 sin2 θ13mð1þ cos2 θ14þ cos2 θ14 sin2 θ24Þ
þAsin2θ24 sinθ14 sinθ23 sin2θ13m cosδ=2�;

E4m¼ 1

2Eν
½Δ41þA0ð1þ sin2 θ14−cos2 θ14 sin2 θ24Þ�; ð10Þ

where A0 ¼ A=2 ¼ ffiffiffi
2

p
GFNe, the modified angle θ13m in

the matter is related to the original angles, and the new
phase δ ¼ ðδ13 − δ14Þ as

sin 2θ13m ¼ Δ31 sin 2θ13 þ A0 cos δ sin θ14 sin θ23 sin 2θ24
f

;

ð11Þ

cos 2θ13m ¼ ½Δ31 cos 2θ13 − A0ð1þ cos2 θ14

þ cos2 θ14 sin2 θ24 − 2 sin2 θ24Þ�=f; ð12Þ

where f is defined as

f ¼ ð½Δ31 sin 2θ13 þ A0s14s23 sin 2θ24 cos δ�2
þ½Δ31 cos 2θ13 − A0ð1þ c214 þ c214s

2
24 − 2s224Þ�2Þ1=2:

ð13Þ

It is noteworthy that for the 3þ 1 framework, the
modified angle θ13m depends on CP phases, unlike in
the three generation framework. Now if we put
sin 2θ13m ¼ 1, i.e., cos 2θ13m ¼ 0, we will get maximum
θ13m, i.e., resonance in this sector for the matter. The
corresponding resonance energy is given by

Eres¼
Δ31cos2θ13ffiffiffi

2
p

GFNeð1þcos2θ14þcos2θ14 sin2θ24−2sin2θ24Þ
:

ð14Þ

The resonance energy for 1300 km and 7000 km are
∼11 GeV, and 8 GeV respectively corresponding to
θ14¼θ24¼7°;θ13¼8.57°;Δ31¼2.515×10−3 eV2. It only
changes minimally from the three generation case.
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The modified active-sterile mixing angles θ14m; θ24m are
related to the vacuum angles as

sin θ14m ¼ sin θ14

�
1þ A0

Δ41

cos2θ14ð1þ s224Þ
�
; ð15Þ

cos θ14m ¼ cos θ14

�
1 −

A0

Δ41

sin2θ14ð1þ s224Þ
�
; ð16Þ

sin θ24m ¼ sin θ24

�
1 −

A0

Δ41

cos2θ14cos2θ24

�
; ð17Þ

cos θ24m ¼ cos θ24

�
1þ A0

Δ41

cos2θ14sin2θ24

�
: ð18Þ

The mixing matrix in matter obtained from the modified
eigenvectors using degenerate perturbation theory is as
follows:

Ũm ¼ Rm
24ðθ24mÞR̃m

14ðθ14m; δ14ÞR23ðθ23ÞUδ13Rm
13ðθ13mÞRm

12ðθ12mÞ

¼

2
6664

c13mc14m ðUmÞ12 c14ms13m e−ιδ14s14m
−eιδ13c24ms13ms23 − eιδ14c13ms14ms24m c23c24m eιδ13c13mc24ms23 − eιδ14s13ms14ms24m c14ms24m

−eιδ13c23s13m −s23 eιδ13c13mc23 0

−eιδ14c13mc24ms14m þ eιδ13s13ms23s24m −c23s24m −eιδ14c24ms13ms14m − eιδ13c13ms23s24m c14mc24m

3
7775; ð19Þ

where the original vacuum angles are replaced by modified
angles as given by (11), (12), (16), (18), and null value of
the element ðŨÞ12 in vacuum mixing matrix Ũ (4) is
modified as ðUmÞ12 ¼ A

Δ41
e−ιδ14c14c23c24s14s24 ∼Oðλ5Þ.

This is due to the fact that the matter effect introduces
correction of mixing angle θ12 which was absent before due
to the approximation Δ21 ¼ 0. The other terms related to
θ12 do not show up as they are > Oðλ5Þ. Now we can
calculate the oscillation (survival) probabilities using the
elements of Ũm in place of U and Δm

ij ¼ 2EνðEim − EjmÞ
replacing Δij in (20) assuming constant matter density,

Pαβ ¼ δαβ − 4
XN
i>j

ReðU�
αiUβiUαjU�

βjÞ sin2
1.27ΔijL

Eν

þ 2
XN
i>j

ImðU�
αiUβiUαjU�

βjÞ sin 2
1.27ΔijL

Eν
: ð20Þ

On the other hand, the exact numerical probability at
constant matter density can be evaluated as

Pnum
αβ ¼ j½e−ιHL�αβj2; ð21Þ

where H is the total Hamiltonian without any approxima-
tion given by (3).

1. Pμe channel

The appearance channel, i.e., νμ → νe oscillation prob-
ability is given by

Pμe ¼ P1
μe þ P2

μe þ P3
μe þOðλ6Þ; ð22Þ

where the different significant terms of the probability Pμe

are as follows:

P1
μe ¼ 4 cos2 θ13m cos2 θ14m sin2 θ13mðcos2 θ24m sin2 θ23 − sin2 θ14m sin2 θ24mÞ sin2

1.27Δm
31L

E

þ 2 cos3 θ13m cos2 θ14m sin θ13m sin θ14m sin 2θ24m sin θ23 sin
1.27Δm

31L
E

sin

�
1.27Δm

31L
E

þ δ

�

− 2 cos θ13m cos2 θ14m sin3 θ13m sin θ14m sin 2θ24m sin θ23 sin
1.27Δm

31L
E

sin

�
1.27Δm

31L
E

− δ

�
; ð23Þ

P2
μe ¼ cos2 θ14m sin2θ13m sinθ14m sinθ23 sin2θ24m sin

1.27Δm
41L

E
sin

�
1.27Δm

41L
E

−δ

�

þ sin2 2θ14m sin2 θ24m cos2 θ13m sin2
1.27Δm

41L
E

; ð24Þ

P3
μe ¼ − cos2 θ14m sin 2θ13m sin θ14m sin θ23 sin 2θ24m sin

1.27Δm
43L

E
sin

�
1.27Δm

43L
E

− δ

�

þ sin2 2θ14m sin2 θ24m sin2 θ13m sin2
1.27Δm

43L
E

: ð25Þ
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The total analytic probability Pμe(orange) and the
dominant terms contributing to it are plotted at 1300 km
and 7000 km baselines as a function of neutrino energy Eν

in the top panel of Fig. 1. For the plots, and calculations of
Pμe; Pμμ in this section, we have considered θ12 ¼ 33.44°,
θ13 ¼ 8.57°, θ23 ¼ 49°, θ14 ¼ θ24 ¼ 7°, δ13 ¼ 195°, δ14 ¼
30°, Δ31 ¼ 2.515 × 10−3 eV2, and Δ41 ¼ 1 eV2. The ana-
lytic expression of Pμe consists of three significant terms,
although there are other higher-order terms [Oðλ6Þ] that are
neglected. The first term in (23) (blue curve) which is
proportional to the modified mass squared difference Δm

31,
is the most dominant one and provides the average curve of
the total probability as seen in Fig. 1. The fast oscillations
seen Fig. 1 are a manifestation of the terms in (24) (green

curve), (25) (violet curve) which are proportional to the
modified mass squared differences related to the sterile
neutrino mass states Δm

41 and Δm
43, respectively. The fast

oscillations are not reflected in experiments, as we can only
get the average probability. Also, these terms are relatively
much smaller than the P1

μe around probability maxima, so
in the next section, while discussing the degeneracies, we
will only use the term P1

μe. Putting θ14, θ24 angles to zero in
Eqs. (23)–(25) gives the standard three-flavor oscillation
probability from the very first term of the (23) as the other
terms go to zero due to presence of sin θ14m; sin θ24m.
We have shown the comparison of the absolute

differences jΔPj of the analytic probability Pμe (22) with
the exact probability Pnum

μe (21) (red) as well as with the
probability PGL

μe (cyan) obtained using GLoBES [82] as a
function of neutrino energy at the bottom panel in Fig. 1.
We can see the value of jΔPj is around 10−3 for most of the
energies. jΔPj values are smaller around the resonance
energy of 11 GeV for 1300 km and 8 GeV for 7000 km.
Also, we can see the energies at which the value of
probability is smaller we get smaller values of jΔPj.
Overall we can conclude that the analytic probability
Pμe using TMSD approximation is in good agreement
with both numerical and exact ones, better with the exact
one Pnum

μe for all energies (>0.5 GeV), especially around
the resonance. This is similar to probabilities derived using
OMSD approximation matching well with numerical
ones in the standard three-flavor case in the region with
significant matter effect [83,84].

2. Pμμ channel

The disappearance channel, i.e., νμ → νμ survival prob-
ability is given by

Pμμ ¼ 1 − P1
μμ − P2

μμ − P3
μμ þOðλ6Þ; ð26Þ

where the significant terms of the probability are as
follows:

P1
μμ ¼ cos4 θ24m sin2 2θ13m sin4 θ23 sin2

1.27Δm
31L

E
þ sin4 θ24m sin4 θ14m sin2 2θ13m sin2

1.27Δm
31L

E

þ sin 2θ24m sin θ14m sin 4θ13m sin θ23 cos δðcos2 θ24m sin2 θ23 − sin2 θ24m sin2 θ13mÞ sin2
1.27Δm

31L
E

þ 4 cos2 θ24m sin2 θ24m sin2 θ14m sin2 θ23

�
1 −

sin2 2θ13m
2

− sin2 2θ13m cos2 δ

�
sin2

1.27Δm
31L

E
; ð27Þ

P2
μμ ¼ cos4 θ24m cos2 θ13m sin2 2θ23 sin2

1.27Δm
32L

E

þ 4 cos2 θ24m sin2 θ24m sin2 θ14m sin2 θ13m cos2 θ23 sin2
1.27Δm

32L
E

− 4 cos3 θ24m sin θ24m sin θ14m sin 2θ13m cos2 θ23 sin θ23 cos δ sin2
1.27Δm

32L
E

; ð28Þ

FIG. 1. The total analytic probability Pμe (orange) along with
its other dominant terms in the top panel and the absolute
differences jPμe − Pnum

μe j (red) and jPμe − PGL
μe j (cyan) in the

bottom panel at 1300 km (left), and 7000 km (right) baselines.
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P3
μμ ¼ cos4 θ24m sin2 θ13m sin2 2θ23 sin2

1.27Δm
21L

E

þ 4 cos2 θ24m sin2 θ24m sin2 θ14m cos2 θ13m cos2 θ23 sin2
1.27Δm

21L
E

þ 4 cos3 θ24m sin θ24m sin θ14m sin 2θ13m cos2 θ23 sin θ23 cos δ sin2
1.27Δm

21L
E

: ð29Þ

We show the total analytic probability Pμμ (orange) and
the different terms contributing significantly to it at
1300 km and 7000 km baselines in the top panel of
Fig. 2 as a function of neutrino energy. The analytic
expression of Pμμ consists of three significant terms
(27), (28), and (29), although there are three other fast
oscillating terms that are neglected. Here, the fast oscillat-
ing terms are proportional to the sterile mass squared
differences Δm

41;Δm
42;Δm

43 and are of higher orders [Oðλ6Þ].
The first term in (27) (blue curve), which is proportional to
the modified mass squared difference Δm

31, has a depend-
ence on octant of θ23 in the leading order due to the
presence of sin4 θ23. P1

μμ grows with energy initially and
decreases after resonance energy. The second, and third
terms in (28) (green curve), (29) (violet curve) which are
proportional to the modified mass squared differences Δm

32

and Δm
21, respectively, show no octant dependence in the

leading order due to the presence of sin2 2θ23. The second
term is the most dominant one before resonance energy but

almost becomes zero after resonance energy, whereas the
third term only grows after the resonance energy. In the
case of 7000 km at oscillation maxima of 7.5 GeV,
P1
μμ; P2

μμ; P3
μμ all have significant contributions. Putting

the θ14, θ24 angles to zero, we will get back the three-
flavor oscillation probability from the first term of the
Eqs. (27)–(29).
It has also been shown in the bottom panel of Fig. 2, the

absolute differences jΔPj of the analytical probability Pμμ

(26) with the exact probability Pnum
μμ (21) (red) and the

probability PGL
μμ (cyan) obtained using GLoBES at 1300 km

and 7000 km baselines. We observe that value of jΔPj is
mostly around 10−3. The jΔPj values are seen to be lower
around resonance energies. We can also see the jΔPj value
going down at the minima or at the regions where the value
of probability is less. The jΔPμμj for 7000 km is increasing
after resonance energy as the dominant term in those
energies is P3

μμ that is proportional to Δ21m and hence is
affected by theΔ21 ¼ 0 approximation [85]. Hence, we can
conclude that the analytical probability Pμμ using TMSD
approximation is in agreement with exact and numerical
probabilities to a good extent, matching better with the
exact one Pnum

μμ .

IV. OCTANT DEGENERACY

The degeneracy in the determination of the octant of θ23
can arise from both the survival/oscillation probabilities as
follows:

(i) When the probability is a function of sin2 2θ23, it is
not possible to differentiate between the probabil-
ities arising due to θ23 and π

2
− θ23. This is called

intrinsic octant degeneracy [86].
(ii) When the probability is a function of sin2 θ23 or

cos2 θ23, the degeneracy of the octant arises due to
the uncertainties in the Dirac CP phase δCP,

Pðθright23 ; δ13Þ ¼ Pðθwrong23 ; δ013Þ: ð30Þ
(iii) Addition of a light sterile neutrino brings an extra

phase δ14 which will also affect the determination of
octant just like in the above case through additional
degeneracies,

Pðθright23 ; δ14Þ ¼ Pðθwrong23 ; δ014Þ: ð31Þ

FIG. 2. The total analytic probability Pμμ (orange) along with
its other dominant terms in the top panel and the absolute
differences jPμμ − Pnum

μμ j (red) and jPμμ − PGL
μμ j (cyan) in the

bottom panel at 1300 km (left) and 7000 km (right).
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(iv) Considering known hierarchy and two unknown
phases, there will be a new eightfold octant-
δ13-δ14 degeneracy,

Pðθright23 ; δ13; δ14Þ ¼ Pðθwrong23 ; δ013; δ
0
14Þ: ð32Þ

We consider the normal hierarchy (Δ31 ¼ 2.515×
10−3 eV2) for our octant degeneracy study. Therefore,
we have a eightfold octant-δ13-δ14 degeneracy in presence
of a sterile neutrino as depicted in Table II. For unknown
hierarchy, this will become a 16-fold degeneracy.
In order to understand the degeneracy analytically, we

follow the method outlined in [59] and use the TMSD
probabilities derived in the earlier section. The current 3σ
range of θ23 is [39.7°, 50.9°] [1] for normal hierarchy. We
can express θ23 with respect to π=4 as

θ23 ¼
π

4
� η; ð33Þ

where the deviation in value of θ23 from current global
analysis fit is given by η ∼ 0.1 with the plus and minus sign
in (33) indicating higher octant (HO) and lower octant (LO)
of θ23, respectively. The octant sensitivity will be there if
there is a difference between probabilities of the two
opposite octants even when the phases δ13, δ14 vary in
the range ½−π; π�. The octant sensitivity from the appear-
ance channel probability Pμe is defined as

ΔPoct;1 ≡ P1HO
μe ðδHO

13 ; δHO
14 Þ − P1LO

μe ðδLO13 ; δLO14 Þ > 0: ð34Þ

As η is small, we can have the following expansion

sin2θ23≃
1

2
�η; sinθ23≃

1ffiffiffi
2

p ð1�ηÞ; cosθ23≃
1ffiffiffi
2

p ð1∓ηÞ:

ð35Þ

Putting P1
μe from (23) in (34) and using the above

expressions of (35), we get three contributions to ΔPoct;1

corresponding to the three terms in P1
μe,

ΔP0 ¼ 8η cos2 θ13m cos2 θ14m cos2 θ24m sin2 θ13m sin2 Dm
31;

ΔP1 ¼ X1½sinðDm
31 þ δHOÞ − sinðDm

31 þ δLOÞ�
þ ηX1½sinðDm

31 þ δHOÞ þ sinðDm
31 þ δLOÞ�;

ΔP2 ¼ −Y1½sinðDm
31 − δHOÞ − sinðDm

31 − δLOÞ�
− ηY1½sinðDm

31 − δHOÞ þ sinðDm
31 − δLOÞ�: ð36Þ

The contribution of the fast-oscillation terms P2
μe; P3

μe to the
octant sensitivity is

ΔPfast ¼
X
k¼1;3

Zk½sinðDm
4k − δHOÞ − sinðDm

4k − δLOÞ�

þ ηZk½sinðDm
4k − δHOÞ þ sinðDm

4k − δLOÞ�: ð37Þ

Where Dm
ij ¼

1.27Δm
ij

E . Now we can rewrite (34) for octant
sensitivity as

ΔPoct;1 ¼ ΔP0 þ ΔP1 þ ΔP2 þ ΔPfast: ð38Þ

Among the terms of ΔPoct;1 (36), ΔP0 has no dependence
on phase and is positive whereas the values of
ΔP1;ΔP2;ΔPfast can be both positive and negative as they
contain phases. Thus, degeneracy can occur when ΔP1 þ
ΔP2 þ ΔPfast is negative and is of the same order as ΔP0,
making ΔP zero. X1, Y1 the positive definite amplitudes of
ΔP1, ΔP2 respectively as well as the amplitudes Z1, Z3 of
ΔPfast are as follows:

X1¼
ffiffiffi
2

p
cos3θ13mcos2θ14msinθ13msinθ14msin2θ24msinDm

31;

Y1¼
ffiffiffi
2

p
cosθ13mcos2θ14msin3θ13msinθ14msin2θ24msinDm

31;

Z1¼cos2θ14msin2θ13msinθ14msin2θ24msinDm
41=

ffiffiffi
2

p
;

Z3¼−cos2θ14msin2θ13msinθ14msin2θ24msinDm
43=

ffiffiffi
2

p
:

ð39Þ

Now, if we inspect the possibility of the octant degeneracy
through the probabilities at a baseline of 1300 km. We
use the following values of the oscillation parameters:
θ12 ¼ 33.47°, θ13 ¼ 8.54°, θ14 ¼ 7°, θ24 ¼ 7°, Δ31 ¼
2.515 × 10−3 eV2 and Δ41 ¼ 1 eV2. For 1300 km at
oscillation maxima of 2.5 GeV, the values of various terms
of ΔPoct;1 are

ΔP0 ¼ 0.0279; X1 ¼ 0.0073; Y1 ¼ 0.0003;

Z1 ¼ −0.0056; Z3 ¼ 0.0064: ð40Þ

Therefore, ΔP2 is negligible compared to ΔP0, ΔPfast, and
ΔP1 due to presence of extra sin2 θ13m in Y1 (39). It can be
seen from (36) the square bracketed terms multiplying X1,
Z1, Z3 can vary from −2∶þ2 and therefore, for certain
phase choices, cancellation can occur resulting in loss of

TABLE II. New degeneracies in presence of unknown octant
and phases with fixed hierarchy.

Solution with right octant Solution with wrong octant

RO-Rδ13-Rδ14 WO-Rδ13-Rδ14
RO-Rδ13-Wδ14 WO-Rδ13-Wδ14
RO-Wδ13-Rδ14 WO-Wδ13-Rδ14
RO-Wδ13-Wδ14 WO-Wδ13-Wδ14
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octant sensitivity in 1300 km baseline when fast oscilla-
tions considered. However, in the absence of fast oscil-
lations, there is octant sensitivity.
Next, we use the analytic expressions in (38) to under-

stand the octant sensitivity at 7000 km. In the case of
7000 km at oscillation maxima of E ¼ 6.5 GeV, the values
of the different terms contributing to ΔP are

ΔP0 ¼ 0.1453; X1 ¼ 0.0133; Y1 ¼ 0.0040;

Z1 ¼ 0.0001; Z3 ¼ −0.0164: ð41Þ

It shows that ΔP0; X1, and Z3 are the dominant contribu-
tions, and any combination of phases can not make
ΔPoct;1 ¼ 0 as the value of P0 is one order greater than
X1. It shows probabilities ðPμeÞ corresponding to two
different octants will always be well-separated from each
other, i.e., the octant-δ13-δ14 degeneracy will be removed.
This suggests unlike in 1300 km here, even with the
variation of phases in both octants, we can have significant
octant sensitivity at higher baselines. This is mainly
because ΔP0 has much higher values than others at the
higher baselines due to higher-matter effects. Note that if
the values of θ14 and θ24 are decreased, the dominant
contribution, ΔP0 becomes larger whereas other contribu-
tions X1, Y1, Z1, and Z3 get smaller. Therefore, octant
sensitivity will be higher for smaller values of sterile
mixing angles.
The octant sensitivity from the disappearance channel

probability Pμμ is defined as

ΔPoct;2 ≡ P1HO
μμ ðδHO

13 ; δHO
14 Þ − P1LO

μμ ðδLO13 ; δLO14 Þ > 0: ð42Þ

As we have seen earlier, the largest octant sensitive term in
Pμμ comes from (27), we put that in the above (42) to get
the difference in opposite octant probabilities as

ΔPoct;2 ¼ cos2 θ24m sin2θ24m sinθ14m sin4θ13m

�ðcosδHO−cosδLOÞ1þ3η

2
ffiffiffi
2

p sin2Dm
31

þ cos2 θ24m2ηcos2 θ24m sin2 2θ13m sin2Dm
31: ð43Þ

It can be noted from the above expression that, the first term
has phase dependence while the second term is independent
of the phases.

A. Degeneracy in cos θν −Eν plane

To probe the octant sensitivity spanning over all the
baselines and energies, we present the oscillogram plots of
the differences in probabilities corresponding to the value
of θ23 ¼ 40° (LO) and θ23 ¼ 50° (HO) in cos θν − Eν plane
for normal hierarchy in Fig. 3. The phases are kept fixed at
same δ13 ¼ 195°, δ14 ¼ 30° for both the octants. From the
figure, it can be seen that the maximum difference is

obtained at the energy range of 5∶10 GeV for cos θν in the
range of −0.5∶−0.8 which roughly translates to baselines
around 5000–10,000 km. This figure serves as a reference
to show at which baselines and energies the octant
sensitivity can be maximum and motivates us to add the
contribution from atmospheric neutrinos to obtain better
octant sensitivity in our analysis.

B. Degeneracy with variation of δ13, δ14
at fixed baseline

In this section, we study the probabilities (GLoBES) as a
function of the phases to understand the dependency of the
degeneracy on these parameters. In Fig. 4, we depict the
appearance probability Pμe for θ23 ¼ 41° (red), and 49°
(blue) as a function of neutrino energy at 1300 km and
7000 km baselines. The bands correspond to the variation of
δ13, δ14. Two different sets of representative values of θ14, θ24
are considered, e.g., θ14; θ24 ¼ 4°, which are allowed after
MINOS+[45] bounds, and θ14; θ24 ¼ 7°, which are allowed
by an earlier global fit [46] excluding the MINOSþ results.
The significant observations are as follows:

(i) The probability bands of different octants overlap at
1300 km. While at 7000 km, a difference is observed

FIG. 3. ΔPμe(left), ΔPμμ(right), i.e., the absolute differences in
probabilities for θ23 values from opposite octant with fixed value
of δ13, and δ14 in cos θν − Eν plane.

FIG. 4. Pμe as a function of energy at 1300 km (left), and
7000 km (right). Blue and red bands are due to variation of δ13,
δ14 for θ23 ¼ 49°, 41° using θ14 ¼ θ24 ¼ 4°. The regions between
blue and red dotted curves are for 49° and 41° respectively,
considering θ14 ¼ θ24 ¼ 7°.
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between opposite octant bands. It shows that at a
higher baseline, sensitivity for octant will be higher.

(ii) The difference (overlap) between red and blue bands
is more (lesser) for 4° than 7°. It is obvious that with
smaller sterile mixing angles, we will get better
sensitivity.

From the above figures, we can observe that the variation in
the phases can lead to overlap in the probabilities from
opposite octants giving rise to degenerate solutions.
Therefore, it is instructive to study the variation of the
probabilities with respect to phases to understand for which
values of these parameters degenerate solutions can occur.
These plots are done at fixed energies.We choose this energy
as 2.5GeV forPμe, at 1300km, since first oscillationmaxima
occur at this energy as can be seen from Fig. 4. The variation
of the probabilities Pμe(left), Pμ̄ ē(right) are shown as a
function of phases δ13 (top), and δ14 (bottom) in Fig. 5 for
values of θ23 ¼ 39°(gray), 42°(orange), 48°(violet), 51°
(blue) spanning over both octants. The curves for other
values of θ23 will lie in between these ranges. The bands
correspond to variation over the nondisplayed phase
δ14ðtopÞ=δ13ðbottomÞ over the range −180°∶180° respec-
tively. Three horizontal iso-probability lines are drawn in
Fig. 5 to indicate the values of δ13=δ14 for which there are
degeneracies (dot-dashed line) and there are no degeneracies
(dotted, dashed lines) between the two octants. Note that in
the probability vs δ13 plots for the three-generation case,
there is a single curve for each θ23whereas, in the presence of
sterile neutrino, there are bands due to δ14 variation for a fixed
θ23. We can infer the following points from Fig. 5:

(i) The regions above the dotted line in the top panels
indicate the values of δ13 for which there is no
degeneracy in HO. This is around δ13 ¼ −90°ð90°Þ
in PμeðPμ̄ēÞ channel. However, some portions of the
blue and violet bands extend below the dotted lines
in both figures and sometimes also overlap with the
orange and violet bands, indicating that for these
values of δ13, there are still degeneracies for certain
values of δ14.

(ii) Similarly, the regions below the dashed lines in the
top panels signify the δ13 values devoid of degeneracy
for θ23 in LO. This region for PμeðPμ̄ ēÞ channel is
around δ13 ¼ 90°ð−90°Þ. Here also, the portions of
gray and orange bands above the dashed lines, as well
as the portions coinciding with the blue and violet
bands, indicate the existence of degeneracies at these
values of δ13.

(iii) From the top panels, we can clearly see a synergy
between neutrino and antineutrino channels for
octant degeneracy in both HO and LO. For instance,
for HO (LO), the degeneracy is present around δ13 ¼
90°ð−90°Þ at Pμe channel but absent for Pμ̄ ē.

(iv) In the bottom panels, the regions above the dotted
line indicate that the no degeneracy region in HO lies
around δ14 ¼ −60°ð60°Þ for PμeðPμ̄ ēÞ channel. Note
that the region has a larger spread in δ14 over
−180°∶95°ð−70°∶140°Þ for θ23 ¼ 51°, and over
−180°∶65°ð−50°∶120°Þ for θ23 ¼ 48° in PμeðPμ̄ ēÞ
channel. Corresponding nondegenerate regions have
a smaller spread in δ13 as seen from the top-panel
plots.

(v) There are regions below the dashed line, signifying
no degeneracy in LO for the plots in the bottom
panels. These regions occur around δ14 ¼ −60°ð60°Þ
for PμeðPμ̄ ēÞ channel. However, it is to be noted that
unlike in the top panel, the nondegenerate region in
LO is over the similar range of δ14 with respect to
HO as mentioned in the previous point. Therefore,
we see in the neutrino (antineutrino) channel maxi-
mum sensitivity for both HO and LO is around
δ14 ¼ 60°ð−60°Þ.

(vi) In the bottom panels, the probability bands are
wider and the extent of overlap is higher around
−60°ð60°Þ in PμeðPμ̄ ēÞ channel. These give rise to
WO-Rδ14 degeneracies which are hard to resolve
using neutrino plus antineutrino. The synergy be-
tween neutrino and antineutrino channels for octant
degeneracy is less pronounced here.

(vii) In the bottom panels for Pμe channel, around
δ14 ¼ 130°, there is a small region where there is
no WO-Rδ14 degeneracy between HO and LO for all
values of δ13. ForPμ̄ ē channel there is a similar region
with minimum degeneracy around δ14 ¼ −130°.

(viii) When the probability bands from HO (blue and
violet) coincide with bands from LO (orange and

FIG. 5. Pμe (left), and Pμ̄ ē (right) as a function of δ13 (top), δ14
(bottom) for variation of the respective another phase at neutrino
energy 2.5 GeV at 1300 km baseline for NH.
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gray) at the same δ13=δ14 values, those are exam-
ples of WO-Rδ13=Rδ14 degeneracies. While the
regions of bands from opposite octants connected
through iso-probability lines show WO-Wδ13=Wδ14
degeneracies.

While performing χ2 analysis, we take fixed true values of
parameters in one octant andmarginalize χ2 over the relevant
parameters in the opposite octant. Therefore, a better under-
standing of the octant degeneracy can be achieved if we keep
θ23, and the phases constant in one octant and vary them in
the opposite one. We replicate this in Fig. 6 where the
probabilities in neutrino (left) and antineutrino (right) chan-
nels are drawn as a function of phase δ13. In the top [bottom]
panel, thegreen [red] solid(dashed) line corresponds to θ23 ¼
49°½41°� and δ14 ¼ 0°ð90°Þ. The gray and orange [violet and
blue] bands correspond to θ23 ¼ 39°; 42°½48°; 51°� in LO
[HO] for δ14 varying over −180°∶180°. The horizontal
isoprobability lines in the plots demarcate different degen-
erate and nondegenerate regions. The important points from
Fig. 6 are as follows:

(i) In the top panel, the region above the dotted line
corresponds to no degeneracy. This region is around
δ13 ¼ −90°ð90°Þ at PμeðPμ̄ ēÞ channel for green solid
(δ14 ¼ 0°) curve. However, the green dashed
(δ14 ¼ 90°) curve has a nondegenerate region only
in Pμ̄ ē channel around δ13 ¼ 90°. This suggests that
for δ14 ¼ 0°, the octant sensitivity comes from both
Pμe, and Pμ̄ ē channel around δ13 ∼ 0° whereas for
δ14 ¼ 90° sensitivity comes only from Pμ̄ ē channel
around δ13 ∼ 90°.

(ii) For the bottom panel, the nondegenerate regions are
below the dashed horizontal line. In Pμe channel this
region is around δ13 ¼ 120° for δ14 ¼ 0°. Avery small
region for δ14 ¼ 90° also extends below the dashed
line. In Pμ̄ ē channel the region of no degeneracy lies
around δ13 ¼ −120°ð−60°Þ for δ14 ¼ 0°ð90°Þ.

Now we focus on the disappearance channel probabil-
ities Pμμ (left), and Pμ̄ μ̄ (right) as a function of phases
δ13(top panel), δ14(bottom panel) at 2.5 GeV in Fig. 7. The
following points may be noted:

(i) The bands due to variation of δ13=δ14 are narrower
than the ones for appearance channel. Hence, these
bands are well-separated from each other.

(ii) The bands corresponding to θ23 ¼ 51° (blue) in
HO comes in between the bands corresponding to
θ23 ¼ 39° (gray) and θ23 ¼ 42° (yellow) in LO. On
the other hand, the violet band corresponding to
θ23 ¼ 48° is outside the whole region of LO between
the gray and yellow band. This implies the presence
(absence) of the octant degeneracy for θ23 ¼
51°ð48°Þ in Pμμ channel.

(iii) Similarly, θ23 ¼ 39° (gray) in LO demonstrates
octant sensitivity since it lies outside the HO region
between the blue and violet bands, but θ23 ¼ 42°
(yellow) lies within the HO region and therefore is
not sensitive to the octant. A similar feature can also
be seen from probability vs δ14 plots in the bot-
tom panel.

We can conclude that for certain trues values of θ23, the Pμμ

channel can contribute to the octant sensitivity at 1300 km.

FIG. 6. Pμe (left), and Pμ̄ ē (right) as a function of δ13 for
variation of the phase δ14 at neutrino energy 2.5 GeVat 1300 km
baseline for NH.

FIG. 7. Pμμ (left), and Pμ̄ μ̄ (right) vs δ13 (top), δ14 (bottom) for
variation of the respective another phase at neutrino energy
2.5 GeV at 1300 km baseline for NH.
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Next, we study the behavior of the probabilities at a
higher baseline of 7000 km, where the resonant matter
effect comes into play. We observe the appearance prob-
ability Pμe as a function of the phase δ13 (left), and δ14
while the respective other phase variation creates band at
different values of θ23 ¼ 39°; 42°; 48°; 51° spanning over
both octants at energy maxima of 6.5 GeV in Fig. 8. We see
similar variations of the disappearance channel probability
Pμμ at maxima energy of 7 GeV in Fig. 9. Energies of
6.5 GeV and 7 GeV are chosen as they correspond to the
maxima in Pμe; Pμμ channels at this baseline, respectively.
The effect of sterile mixing angles and phases on octant
sensitivity in the Pμe channel at other energies can be seen
in Fig. 4. The following facts can be noted:

(i) Unlike at 1300 km, the Pμe probability bands of
opposite octant at 7000 km are clearly separated. It
suggests that even with the variation of phases and
θ23 in both octants, the octant degeneracy can be
clearly removed at higher baselines.

(ii) In Pμμ channel, the LO and HO bands are mostly
separated apart from the occurrence of WO-Wδ13
(left panel), WO-Rδ14=Wδ14 (right panel) degener-
acies respectively around δ13, δ14 values of�150° in
a tiny region. This suggests contributions to the

octant sensitivity also come from the Pμμ channel.
The sensitivity of the octant in Pμμ comes from the
first term in (27), which has a more significant
contribution at 7000 km than 1300 km as noted in
Fig. 2 due to larger matter effect.

V. EXPERIMENTAL AND SIMULATION
DETAILS OF THE LARTPC DETECTOR

As a typical example for the long baseline analysis, we
consider an experimental setup consisting of a near detector
(ND) and far detector (FD) exposed to a megawatt-scale
muon neutrino beam produced by Long Baseline Neutrino
Facility (LBNF) at the Fermilab. The ND will be placed
close to the source of the beam, while the FD, comprising a
LArTPC detector of 40 kt will be installed 1300 km away.
The large LArTPC detector at this depth will also collect
atmospheric neutrinos. In this analysis, we have used
beams coming from the accelerator as well as neutrinos
generated in the atmosphere by cosmic ray interactions.
The experimental setup considered in our work is similar to
that proposed by the DUNE experiment [87,88].

A. Events from beam neutrinos

We use a beam power of 1.2 MW, leading to a total
exposure of 10 × 1021 protons on target. The neutrino beam
simulation for the experiment has been carried out using the
GLoBES [82] software with the most recent publicly
available configuration file [89]. We assume experimental
run time for 3.5 years each in the neutrino and the
antineutrino mode with a total exposure of 280 kt-yr.
We have plotted the electron and muon events spectrum

for 1300 km baseline considering normal hierarchy with
sterile mixing angle of θ14; θ24 ¼ 7° at fixed phases δ13 ¼
−90°; δ14 ¼ 90° in Fig. 10. There are differences between
the spectra of the events for the true value of θ23 ¼ 41°
(green) in LO with the values of θ23 in HO for 46° (orange),
50° (blue). This is indicative of the octant sensitivity. It
should be noted that although the green spectrum is closer
to the orange one (46°) for electron events (left panels), for
muon events (right panels) the green one is closer to the
blue one (50°). This indicates that the maximum sensitivity
occurs at different θ23 values in the opposite octant for
electron and muon events. This will lead to the synergy
between electron and muon events when we compute the
combined octant sensitivity at χ2 level. The maximum
difference in events is observed in the energy region of
2–4 GeV, where the spectra of the event have maxima in the
case of both electrons and muons. We present bievents plots
in Fig. 11 considering the total no of electron neutrino and
antineutrino events obtained by integrating over the full
energy range. The elliptic regions are due to variations
in the relevant phases over their full range. This figure
shows that in the case of three-flavor oscillation framework
the ellipses for θ23 being in two different octants are

FIG. 8. Pμe vs δ13(left), and δ14(right) for variation of the
respective another phase at neutrino energy 6.5 GeV at 7000 km
baseline for NH.

FIG. 9. Pμμ vs δ13(left), and δ14(right) for variation of the
respective another phase at energy 7 GeV at 7000 km baseline
for NH.
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well-separated, showing no octant degeneracy with com-
bined νe þ ν̄e events of 3.5þ 3.5 years with 40 kt LArTPC
detector. Now, if in the presence of an additional sterile
neutrino, these ellipses turn into blobs, a combination of
many ellipses [59]. From this figure, we can see that the
separation between the green (LO) and yellow (HO)
regions increases with smaller values of sterile mixing
angles θ14, θ24, leading to an enhanced octant sensitivity.

B. Events from atmospheric neutrinos

The atmospheric neutrino and antineutrino events are
obtained by folding the relevant incident fluxes with the
appropriate disappearance and appearance probabilities,

charged current (CC) cross sections, detector efficiency,
resolution, detector mass, and exposure time. The μ−, and
e− event rates in an energy bin of width dEν and in a solid
angle bin of width dΩν are as follows:

d2Nμ

dΩdE
¼DeffΣ

2π

��
d2Φμ

dcosθdE

�
Pμμþ

�
d2Φe

dcosθdE

�
Peμ

�
; ð44Þ

d2Ne

dΩdE
¼DeffΣ

2π

��
d2Φμ

dcosθdE

�
Pμeþ

�
d2Φe

dcosθdE

�
Pee

�
: ð45Þ

Here Φμ and Φe are the νμ and νe atmospheric fluxes
respectively obtained from Honda et al. [90] at the
Homestake site; PμμðPeeÞ and Pμe are disappearance and
appearance probabilities; Σ is the total charge current (CC)
cross section and Deff is the detector efficiency. The μþ, and
eþ event rates are similar to the above expression with the
fluxes, probabilities, and cross sections replaced by those
for ν̄μ and ν̄e respectively. For the LArTPC detector, the
energy and angular resolution are implemented using the
Gaussian resolution function as follows:

REν
ðEt;EmÞ ¼

1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðEm − EtÞ2

2σ2

�
; ð46Þ

RθνðΩt;ΩmÞ ¼ Nexp

�
−
ðθt − θmÞ2 þ sin2 θtðϕt − ϕmÞ2

2ðΔθÞ2
�
;

ð47Þ

where N is a normalization constant. Here, Em (Ωm) and Et
(Ωt) denote the measured and true values of energy (zenith
angle) respectively. The smearing width σ is a function of
the energy Et. The smearing function for the zenith angle is
a bit more complicated because the direction of the incident
neutrino is specified by two variables: the polar angle θt and
the azimuthal angle ϕt. We denote both these angles
together by Ωt. The measured direction of the neutrino,
with polar angle θm and azimuthal angle ϕm, which
together we denote by Ωm, is expected to be within a cone
of half-angle Δθ of the true direction. Assumptions of the
far detector (LArTPC) parameters are mentioned in
Table III [91].

1. Charge identification using muon capture
in liquid argon

Magnetizing the large 40 kt LArTPC detector is difficult
and expensive, but the charge id of the muon can be
identified using the capture vs decay process of the muon
inside the argon as studied previously for the DUNE
detector [92]. We have implemented the charge id of the
muon as follows: some fraction of the μ− like events that
undergo the capture process are identified using capture
fraction efficiency, and the rest of the muons, as well as all
the μþ undergo muon decay. The lifetime of the muon

FIG. 10. Electron (left) and muon neutrino (right) event
spectrum for neutrinos (top) and antineutrinos (bottom) as a
function of energy for true θ23 ¼ 41° (green) with true phases
δ13 ¼ −90°; δ14 ¼ 90° at 1300 km for test values of θ23 ¼ 46°
(blue) and θ23 ¼ 50° (orange) for NH.

FIG. 11. Bievents plot in νe − ν̄e plane for θ23 ¼ 41° (red,
green), 49° (blue, yellow) at 1300 km with variation of phases δ13,
δ14 corresponding to θ14; θ24 ¼ 7° (left), 4° (right) for NH.
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resulting from the capture and decay processes can be
written as

τ ¼
�

1

τcap
þ Q
τfree

�
−1
; ð48Þ

where τcap is the lifetime in the capture process, τfree is the
decay lifetime, and Q is the Huff correction factor [93]. We
can define μ− capture fraction as

ϵcap ¼ τ

τcap
¼ 1 −

τ

τfree
: ð49Þ

We use the most precise value of μ− lifetime in argon [94],
μ− capture fraction becomes ϵcap ¼ 71.9%. Electron charge
identification is impossible at GeV energies and electron
events are summed for each energy and angular bin. For the
sensitivity calculation, the μ− and μþ are separated as
follows; the μ− events selected that undergo muon capture
are given by

Ni;j;μ−
cap ¼ ϵcap × Nμ− ð50Þ

and the remaining μ− events are included within the μþ
event bin as follows:

Nrest
i;j;μþ ¼ ð1 − ϵcapÞNi;j;μ− þ Ni;j;μþ : ð51Þ

In Fig. 12, we show the absolute differences of atmospheric
events between HO and LO in Eν- cos θν plane for μþ þ μ−

(left), and eþ þ e− (right). This clearly shows that the
difference is larger at the matter-resonance region, as
observed from the probability oscillogram plot in Fig. 3.
The electron event spectrum shows a significant difference
in the energy range of 2–8 GeV for cos θν range of
−0.5∶−0.9. The muon events also contribute, especially
in a few parts of the energy range 3–8 GeV for cos θν range
of −0.5∶−0.9. This plot captures the octant sensitivity at
different baselines and energies for fixed values of oscil-
lation parameters.

C. χ 2 analysis

The computation of χ2 is performed using the method of
pulls. This method allows us to take into account the
various statistical and systematic uncertainties in a straight-
forward way. The flux, cross sections and other systematic
uncertainties are included by allowing these inputs to
deviate from their standard values in the computation of
the expected rate in the i − jth bin, Nth

ij . Let the kth input
deviate from its standard value by σkξk, where σk is its
uncertainty. Then the value of Nth

ij with the modified inputs
is given by

Nth
ij ¼ Nth

ij ðstdÞ þ
Xnpull
k¼1

ckijξk; ð52Þ

where Nth
ij ðstdÞ is the expected rate in the i − jth bin

calculated with the standard values of the inputs and
npull=5 is the number of sources of uncertainty. The
ξk’s are called the pull variables and they determine the
number of σ’s by which the kth input deviates from its
standard value. In Eq. (52), ckij is the change in N

th
ij when the

kth input is changed by σk (i.e., by one standard deviation).
Since the uncertainties in the inputs are not very large, we
only consider changes in Nth

ij that is linear in ξk. Thus, we
have the modified χ2 as

χ2ðξkÞ¼
X
i;j

½Nth
ij ðstdÞþ

Pnpull
k¼1 c

k
ijξk−Nex

ij �2
Nex

ij
þ
Xnpull
k¼1

ξ2k; ð53Þ

where the additional ξ2k-dependent term is the penalty
imposed for moving the value of the kth input away from
its standard value by σkξk. The χ2 with pulls, which
includes the effects of all theoretical and systematic
uncertainties (as mentioned in Table III), is obtained by
minimizing χ2ðξkÞ with respect to all the pulls ξk as
follows:

χ2pull ¼ Minξk ½χ2ðξkÞ�: ð54Þ

FIG. 12. The difference of atmospheric events between HO and
LO has been plotted in Eν − cos θν plane for eþ þ e− (left), and
μþ þ μ− (right) events.

TABLE III. Assumptions of the LArTPC far detector param-
eters and uncertainties.

Parameter uncertainty Value

μþ=− Angular 2.5°
eþ=− Angular 3.0°
(μþ=−, eþ=−) Energy GLB files for each E bin [89]
Detection efficiency GLB files for each E bin [89]
Flux normalization 20%
Zenith angle dependence 5%
Cross section 10%
Overall systematic 5%
Tilt 5%
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In the case of a LArTPC detector without charge-id and
with change-id, χ2 is defined as

χ2w=o charge−id ¼ χ2μ−þμþ þ χ2e−þeþ ; ð55Þ

χ2charge−id ¼ χ2μ− þ χ2μþ þ χ2e−þeþ : ð56Þ

Finally, Δχ2 is marginalized over the oscillation parameters
as mentioned in Table IV.

VI. RESULTS AND DISCUSSION

The results are demonstrated for beam only, atmospheric
only, and a combination of both of these. We also explain
the underlying degeneracies through the contour plots of
octant sensitivity in δ13 − δ14 test plane. In Fig. 13, the
sensitivity to the octant of θ23 degeneracy ðΔχ2Þ has been
plotted as a function of true δ13 for NH. The marginalized
Δχ2 values for true θ23 ¼ 41° (blue), 49° (red) have been
shown for true δ14 ¼ 0° (left panel), 90° (right panel). The
observable points are as follows:

(i) The sensitivity of θ23 is prominently higher for LO
as compared to HO for most of the δtrue13 values.

(ii) TheΔχ2 vs δ13 curve has strikingly different features
for different δtrue14 values as can be seen from the two
panels in Fig. 13.

(iii) For δtrue14 ¼ 0° and LO the highest sensitivity comes
around δ13 ¼ �120°. This feature can be understood
from Fig. 6 which shows that there is no degeneracy
in PμeðPμ̄ ēÞ channel at δ13 ¼ 120°ð−120°Þ.

(iv) On the other hand for δtrue14 ¼ 90° the maximum
sensitivity occurs for δ13 ¼ −90°. From the red
dashed curves depicted in the bottom panels of
Fig. 6, we can see that this sensitivity comes from
Pμ̄ ē channel.

(v) For HO and δtrue14 ¼ 0° the octant sensitivity is higher
around the range δ13 ¼ −60°∶60°. From the solid
green curve drawn in the top panels of Fig. 6, we can
see that there is no degeneracy in the range
−120°∶0°ð0°∶120°Þ comes from PμeðPμ̄ ēÞ channel
with a maximum difference between the HO curve
and the LO band occurring at δ13 ¼ −60°ð60°Þ.

(vi) In case of δ14 ¼ 90° in HO, the highest sensitivity
is at δ13 ¼ 90°. From the top panel in Fig. 6, it
can be seen that is no degeneracy in Pμ̄ ē around
δ13 ¼ 90°.

In the above discussion, we try to explain the salient
features of Fig. 13 in terms of the probabilities plotted in
Fig. 6 for an energy of 2.5 GeV. However, it should be
borne in mind that the source has a broadband beam and
contributions from other energy bins also influence the
Δχ2. In Fig. 14, we have shown the sensitivity to the octant
of θ23 for atmospheric neutrinos without and with partial
charge id of muon events (blue and violet curves respec-
tively) as well as combining both beam and atmospheric
data (green and orange curves) using the 40 kt far detector.
In the figure, we also present the Δχ2 for beam only data
(red curve). These plots are obtained for true values of

TABLE IV. True values of all the oscillation parameters and
their range of marginalization. Two different sets of θ14, θ24 are
considered. Set A is according to Global fit. Set B is taken
considering MINOSþ bounds.

Parameter True value Marginalization range

θ12 33.47° N.A.
θ13 8.54° N.A.
θ23 49°(41°) 39°∶44°ð46°∶51°Þ
θ14, θ24 (A) 7° 3°∶9°
θ14, θ24 (B) 4° 0°∶6°
Δ21 7.42 × 10−5 eV2 N.A.
Δ31 2.515 × 10−3 eV2 N.A.
Δ41 1 eV2 N.A.
δ13, δ14 many −180°∶180°

FIG. 13. Sensitivity to the octant of θ23 with beam only analysis
as a function of δtrue13 due to θtrue23 ¼ 41° in LO (blue), and 49° in
HO (red) for δtrue14 ¼ 0° (left), 90° (right).

FIG. 14. Sensitivity to the octant of θ23 as a function of δtrue13 at
δtrue14 ¼ 0° for θtrue23 ¼ 41° (left) and 49° (right). The representative
plots are shown for simulated data from beam only (red),
atmospheric only without charge-id (blue), atmospheric only
with charge-id (violet), beamþ atmospheric without charge-id
(green), and beamþ atmospheric with charge-id (yellow) analy-
sis with 280 kt-yr exposure.
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θ23 ¼ 41° (left), and 49° (right) respectively. Here are the
observations from Fig. 14:

(i) The sensitivity for atmospheric data is less than 2σ
for HO and slightly higher than 2σ for LO for whole
δtrue13 parameter space.

(ii) For the case including charge id, the sensitivity
increases slightly. In matter Pμμ, and Pμ̄ μ̄ probabil-
ities are very different due to the presence of
resonant matter effect in Pμμ since we are consid-
ering normal hierarchy. This leads to a synergy when
neutrino and antineutrino χ2 are added separately
and enhances the sensitivity.

(iii) Combining atmospheric and beam data, the sensi-
tivity increases up to more than 4σð3σÞ for LO(HO)
depending on the values of δtrue13 .

(iv) The Δχ2 for atmospheric data has very less depend-
ence on δtrue13 . Therefore, in the combined case, the
nature of Δχ2 is mostly dictated by the beam data.

The percentage of values of δtrue13 for which Δχ2 value of
octant sensitivity for true value of θ14; θ24 ¼ 7° is above 2σ,
and 3σ are shown in the above Table V:

(i) The percentage of values of the δtrue13 for which 3σ
sensitivity is achieved, is higher for θtrue23 in lower
octant than in higher octant.

(ii) The sensitivity for θtrue23 ¼ 41° (LO) is more than 3σ
for 46%(32%) values of the δtrue13 for δtrue14 ¼ 0°ð90°Þ
with beam only data. However, in case of θtrue23 ¼ 49°
(HO) 3σ sensitivity isn’t observed for any values of
δtrue13 as 2σ sensitivity is achieved for 42%(100%)
values of the δtrue13 for δtrue14 ¼ 0°ð90°Þ.

(iii) For the combination of both the beam and the
atmospheric data (without charge-id), the sensitivity
for θ23 ¼ 49° increases to more than 3σ for 38%
(30%) values of the δtrue13 while for 41° the whole δtrue13

parameter space is allowed.
(iv) When we use the combined data for beam, and

atmospheric neutrinos with charge-id, the sensitivity
improves further to provide more than 3σ for all δtrue13

values θ23 ¼ 41° and for 53%(48%) of δtrue13 values
corresponding to δtrue14 ¼ 0°ð90°Þ for θ23 ¼ 49°.

In Fig. 15, the octant sensitivity is depicted as a function of
δtrue13 corresponding to θtrue23 ¼ 41° (blue) and 49° (red) for

true values of θ14; θ24 ¼ 4°. In the left panel, δtrue14 is taken as
0°, and in the right panel, it is 90°. The dotted curves denote
sensitivity for beam only cases, whereas, the dashed ones
are for beamþ atmospheric (with charge id) cases. We
observe the following in Fig. 15:

(i) An increase in the sensitivity in beam only and
beamþ atmospheric scenarios compared to the
sensitivity obtained for the true value of θ14; θ24 ¼
7° (Fig. 14).

(ii) The sensitivity for θ23 ¼ 49° is more than 3σ
irrespective of δtrue13 values when we consider the
beamþ atmospheric (with charge-id) analysis.

(iii) For true value of θ23 ¼ 41°, the octant sensitivity is
greater than 4σ over the full range of δtrue13 .

The percentage of δtrue13 values for which more than 2σ, 3σ
octant sensitivity for true value of θ14; θ24 ¼ 4° is achieved
have been enlisted in Table VI. One of the noteworthy
features of a liquid argon detector is its sensitivity to both
electron and muon events. In order to explore if there is
any synergy between these, we show in Fig. 16 how the
value of χ2 for octant sensitivity from muon (red) and
electron events (blue) varies with θtest23 . These sensitivity
curves are obtained using true values of θ23 ¼ 41°;
δ13 ¼ −90°; δ14 ¼ 90° for beam (left) and atmospheric

FIG. 15. Sensitivity to the octant of θ23 with beam only (dotted)
and beamþ atmospheric with charge-id (dashed) analysis as a
function of δtrue13 for true values of δ14 ¼ 0° (left), 90° (right). The
representative plots are shown for true values of θ23 in HO (red),
LO (blue), and θ14; θ24 ¼ 4°.

TABLE V. The percentages of δtrue13 parameter space that has χ2

value above 2σ; 3σ for various combination of true values of θ23,
δ14 and θ14; θ24 ¼ 7° as seen in Figs. 13 and 14.

θ23 δ14 Above 2σ Above 3σ Above 2σ Above 3σ

Beam þ atmospheric w/o(with) charge-id Beam

True value 3.5þ 3.5 Years, θ14 ¼ 7°; θ24 ¼ 7°

41° 0° 100%(100%) 100%(100%) 100% 46%
49° 0° 100%(100%) 38%(53%) 42% 0%
41° 90° 100%(100%) 100%(100%) 100% 32%
49° 90° 100%(100%) 30%(48%) 100% 0%

TABLE VI. The percentages of δtrue13 parameter space that has χ2

value above 2σ; 3σ for various combination of true values of θ23,
δ14, and θ14; θ24 ¼ 4° as seen in Fig. 15.

θ23 δ14 Above 2σ Above 3σ Above 2σ Above 3σ

Beamþ atmospheric with charge-id Beam

True value 3.5þ 3.5 Years, θ14 ¼ 4°; θ24 ¼ 4°

41° 0° 100% 100% 100% 100%
49° 0° 100% 100% 100% 50%
41° 90° 100% 100% 100% 75%
49° 90° 100% 100% 100% 36%
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(right) neutrinos. The observations from Fig. 16 are as
follows:

(i) In the case of beam neutrinos, the octant sensitivity
for appearance channel increases with θtest23 whereas
the sensitivity for disappearance channel mimics the
nature of sin2 2θ23 with minima at 41° and 50°. This
different feature of octant sensitivity for Pμe; Pμμ

channels can be seen in Fig. 10. When we combine
these two channels, the position of minimum sensi-
tivity at θtest23 ¼ 50° is still guided by muon events but
due to the rising nature of electron χ2 a large octant
sensitive contribution gets added and increases the
overall value of the χ2.

(ii) For atmospheric neutrinos, both muon and elec-
tron χ2 are similar. The muon χ2 is dictated by
probabilities Pμμ; Peμ, and the octant sensitivity
coming from these channels is opposite, which
dilutes the sensitivity for muons. On the other hand,
for electron events, the octant sensitivity comes from
only Pμe since Pee doesn’t depend on θ23. Therefore,
even though atmospheric νμ flux is almost twice as
νe flux, both muon and electron events can give
similar values of χ2. These features were also noted
in three-flavor case in [16].

In order to understand the θ23 − δ13 − δ14 degeneracies
listed in Table II, we have provided the contour plots in
δ13-δ14 plane showing the regions with octant sensitivity
more than 3σ. In Fig. 17, the 3σ contours are shown for the
true value of sterile CP phase δ14 ¼ 0° with four different
true values of δ13 ¼ −90°; 0°; 90°; 150°. In each panel, solid
(dashed) lines represent the RO (WO) solutions. The blue,
yellow (violet, red) correspond to contours from beam
only (beam and atmospheric combined) analysis for
θtrue23 ¼ 41°; 49°, respectively.
The noteworthy observations from Fig. 17 are as follows:
(i) In panel a, the solid contours spanning the full range

of δ14 indicate true solutions with poor precision in
δ14 for both θtrue23 ¼ 41°; 49°. We also observe dashed
contours indicating WO-Rδ13-Wδ14 solutions for
both θtrue23 .

(ii) In panel b, the precision of the true solutions improves
significantly. A small region of WO solutions for
θtrue23 ¼ 49° occurs adjacent to the true value. We also
find WO-Rδ13-Wδ14 solutions for θtrue23 ¼ 41°.

(iii) Comparing the true solutions in panels c and d but
the precision of δ14 is notably better in d. In these
panels, WO solutions are present for only
θtrue23 ¼ 49°. For θtrue23 ¼ 41°, the octant can be de-
termined at more than 3σ sensitivity as seen from the
solid blue curve in the left panel of Fig. 13 and hence
WO solutions are not observed. In panel c we find
WO-Rδ13-Wδ14 solution whereas the WO-Rδ13
solutions are observed in panel d.

(iv) Inclusion of atmospheric analysis shrinks all the
contours improving octant sensitivity. The choice of
δtrue13 affects the precision of RO solutions as well as
the occurrence of degeneracies.

(a) (b)

(c) (d)

FIG. 17. 3σ contour plot of sensitivity to the octant of θ23 in test
δ13 − δ14 plane with 7 years of data for δtrue14 ¼ 0° and δtrue13 ¼
−90°; 0°; 90°; 150° in panels a,b,c,d respectively. The represen-
tative plots are shown for the true value of θ23 ¼ 41° in LO (blue
and violet) and 49° in HO (yellow and red) for right octant
solutions(solid) and wrong octant solutions(dashed) for simulated
beam only (B) and beam þ atmospheric (Bþ A) data.

FIG. 16. Octant sensitivity as a function of θtest23 from beam
(left), and atmospheric (right) neutrinos using 280 kt-yr exposure
of LArTPC detector with θtr23 ¼ 41°; δtr13 ¼ −90°; δtr14 ¼ 90°.

TABLE VII. The degeneracies for different true value of δ13
with true δ14 ¼ 0° as seen in Fig. 17.

True δ13 True δ14 Present degeneracies

−90° 0° WO-Rδ13-Wδ14
0° 0° WO-Rδ13-Rδ14ð49°Þ, WO-Rδ13-Wδ14ð41°Þ
90° 0° WO-Rδ13-Wδ14ð49°Þ
150° 0° WO-Rδ13-Rδ14ð49°Þ, WO-Rδ13-Wδ14ð49°Þ
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Similarly, we have plotted the 3σ contours in Fig. 18
showingWO (dashed), andRO (solid) solutions with respect
to true values of θ23 ¼ 41° (blue), and 49° (yellow) for the
true value of δ14 ¼ 90° with δ13 ¼ −90°; 0°; 90°; 150° using
beam-only analysis. The observations from Fig. 18 are as
follows:

(i) In panel a, we see the WO-Rδ13 solutions spanning
the full range of δ14 for only θtrue23 ¼ 49°. We also find
true solutions with notable precision in δ14 for both
θtrue23 ¼ 41°; 49° as compared to panel a in Fig. 17.

(ii) In panel b, the precision of δ14 in true solutions
deteriorates with respect to panel a covering the
full δ14 range. We observe a small region of
WO-Rδ13-Wδ14 solution for θtrue23 ¼ 49°, along with
a bigger region of WO-Rδ13-Wδ14 solution for
θtrue23 ¼ 41°.

(iii) In panels c and d, the true solutions show better
precision in δ14 as compared to the same panels
in Fig. 17. We can also observe for θtrue23 ¼ 49° a
tine region of WO-Wδ13-Wδ14 in panel c while in
panel d WO-Rδ13-Wδ14 solutions occur. There are
WO-Rδ13-Wδ14 solutions for θtrue23 ¼ 41° in both
panels c and d but the region is smaller in c.

(iv) Overall, we see the precision of the RO true
solutions along with the size and type of WO
contours depend on δtrue13 for fixed δtrue14 .

The most common degeneracies seen in Figs. 17 and 18 are
WO-Rδ13-Rδ14 and WO-Rδ13-Wδ14. It indicates that the

presence of δ14 creates more problems in precise measure-
ment of the octant of θ23. We also observe true solutions with
poor precision in δ14. If we repeat the above analysis for true
values of θ14; θ24 ¼ 4° along with marginalization in the
range of 0–6°, the 3σ contours get smaller due to higher
octant sensitivity.
The regions under 3σ sensitivity in the contour plots of

Figs. 17, and 18 can be understood using the difference in
the probability plots in δ13 − δ14 plane. We will mainly
focus on the dominant Pμe channel to understand the effect.
In Fig. 19, the contour plot in test δ13-δ14 plane represents
the difference between the probabilities Pμe of opposite
octants while varying the θ23 value only in same (left) /
opposite (right) octant for the true θ23 ¼ 49° (top), 41°
(bottom) with δtr13 ¼ −90°; δtr14 ¼ 0° corresponding to panel
a of Fig. 17. The understandings are as follows:

(i) First, we consider the right octant solutions in the
panels at the left side column. It can be clearly seen
that the black and darker red regions around the true
value on the left side of δ13 − δ14 plane where the
difference in the probability is minimum in Fig. 19 is

(a) (b)

(c) (d)

FIG. 18. 3σ contour plot of sensitivity to the octant of θ23 in test
δ13 − δ14 plane with seven years of beam only simulated data for
δtrue14 ¼ 90° and δtrue13 ¼ −90°; 0°; 90°; 150° in panels a, b, c, and d,
respectively. The representative plots are shown for true value of
θ23 ¼ 41° in LO (blue) and 49° (yellow) in HO for right octant
solutions (solid) and wrong octant solutions (dashed).

FIG. 19. Contour plot in test δ13 − δ14 plane showing the
difference in probability ΔPμe with θ23 being fixed at one octant
while θ23 varies in the opposite octant for WO solutions (right)
and in the same octant for RO solutions (left) at true values of
δ13 ¼ −90°; δ14 ¼ 0°; θ23 ¼ 49° (top), 41° (bottom). Black and
dark red show the least differences, while blue and white show the
highest.

TABLE VIII. The degeneracies for different true value of δ13
with true δ14 ¼ 90° as seen in Fig. 18.

True δ13 True δ14 Present degeneracies

−90° 90° WO-Rδ13-Rδ14ð49°Þ, WO-Rδ13-Wδ14ð49°Þ
0° 90° WO-Rδ13-Wδ14
90° 90° WO-Wδ13-Wδ14ð49°Þ, WO-Rδ13-Wδ14ð41°Þ
150° 90° WO-Rδ13-Wδ14
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similar to the 3σ regions under the solid curves in
panel a of Fig. 17. These darker regions also indicate
poor precision of δ14.

(ii) For 49°-WO solution, minima arise in the darker red
region including the true value in the top-right panel
of Fig. 19 similar to the yellow-dashed contour in
panel a of Fig. 17. Similarly, for 41°-WO solutions in
the bottom-right panel, the minimum difference is
observed in the darker red region just above the true
value similar to the blue-dashed contour in panel a of
Fig. 17. These darker red regions clearly show
precise WO-Rδ13-Wδ14 degenerate solutions.

VII. CONCLUSIONS

In this work, we expound the possibility of determining
the octant of θ23, in the 3þ 1 framework, assuming the
presence of an extra sterile neutrino in addition to the three
standard ones. We present our results for a beam-based long
baseline experiment as well as for atmospheric neutrinos
considering a LArTPC detector. We also do a combined
analysis of beam and atmospheric neutrinos and probe the
synergies between these two options, which can result in an
enhanced sensitivity. For the beam neutrinos, the typical
baseline considered in our study is 1300 km, similar to that
proposed by the DUNE Collaboration. We provide the
analytic expressions for oscillation probabilities in the
presence of an extra sterile neutrino using the approxima-
tion that the mass squared difference Δ21 is zero. We show
that these expressions match well with the numerical
probabilities, especially in the resonance region.
We study in detail the different parameter degeneracies,

emphasizing especially the influence of the phases δ13, δ14
in the determination of octant of θ23. This is done by
plotting the probability curves for two different θ23 values
belonging to the opposite octants: (i) as a function of
δ13=δ14 for fixed energy and baseline; (ii) as a function of
energy, for varying δ13, δ14 at fixed baselines. We also
illustrate (iii) the difference in the appearance and dis-
appearance probabilities for two values θ23 belonging to
opposite octants in the cos θν − E plane.
We perform a χ2 analysis and show that for a set of true

values of sterile parameters, one can achieve more than 3σ
octant sensitivity depending upon the true value of δ13
using beam neutrinos. The representative true values of the
sterile neutrino parameters considered by us correspond
to Δ41 ¼ 1 eV2, ½θ14; θ24� ¼ 7° and 4°, δ14 ¼ 0°, and 90°,
θ34 ¼ 0°. For true values of θ14; θ24 ¼ 7°, θ23 ¼ 41°ð49°Þ,
and δ14 ¼ 90° one gets more than 3σ sensitivity for 51%
(18%) of the δtrue13 space. On the other hand for true values of
θ14; θ24 ¼ 4°, the sensitivity for θ23 ¼ 41°ð49°Þ, and δ14 ¼
90° reaches more than 3σ sensitivity for 75% (36%) of the
δtrue13 space. It can be noted that greater sensitivity is
obtained when true values of θ14, θ24 are smaller.
In case of θ14; θ24 ¼ 7°, combining the beam and the

atmospheric neutrinos (with charge-id), we can obtain 3σ

sensitivity in the 100%(48%) of the δtrue13 space for
θ23 ¼ 41°ð49°Þ; δ14 ¼ 90°. However, the sensitivity for
θ23 ¼ 41°ð49°Þ; δ14 ¼ 90° is over 3σ for entire range of
δtrue13 when θ14; θ24 ¼ 4°.
At fixed hierarchy, there can be a total of eightfold degen-

eracies (Table II) with at least one of the parameters—
octant of θ23, δ13, δ14 assuming a wrong value. We also
identify the extra degeneracies due to the presence of δ14
assuming the normal hierarchy and summarise these in
Tables VII, and VIII. We can conclude that the presence of
the phase δ14 leads to the occurrence of new degeneracies
that hinder the discovery of the octant of θ23 precisely.
In summary, the combination of the beam and the

atmospheric neutrinos provides promising results using a
LArTPC detector in the presence of an eV scale sterile
neutrino.
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APPENDIX: PROBABILITY CALCULATION
USING CAYLEY-HAMILTON FORMALISM

We will now find out the analytic probability using the
Cayley-Hamilton formalism [95–97]. We calculate the time
evolution operator and do not introduce auxiliary matter
mixing angles.
The flavor eigenstates ψα and mass eigenstates ψ i are

related as

ψ i ¼
X

j¼e;μ;τ;s

U⋆
αjψ j; ðA1Þ

where Uαj is component of unitary mixing matrix corre-
sponding to mixing between ψα, ψ j,

U ¼ R̃34ðθ34; δ34ÞR24ðθ24ÞR̃14ðθ14; δ14ÞR23ðθ23Þ
× R̃13ðθ13; δ13ÞR12ðθ12Þ: ðA2Þ
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The Schrödinger equation in mass basis is given as

ι
d
dt

ψmðtÞ ¼ HmψmðtÞ; ðA3Þ

where total Hamiltonian Hm in mass basis, and interaction
Hamiltonian Vf in flavor basis are given as follows:

Hm ¼ Hm þ U−1VfU; ðA4Þ

Vf ¼ Hint ¼ diagð2A0; 0; 0; A0Þ: ðA5Þ

Equation (A3) gives the solution with time-evolution
operator e−ιHmt as

ψmðtÞ ¼ e−ιHmtψmð0Þ: ðA6Þ

We get the solution in terms of distance L traveled by
neutrinos in time t as

ψmðLÞ¼ψmðt¼LÞ¼e−ιHmtψmð0Þ≡UmðLÞψmð0Þ: ðA7Þ

Solution in flavor state ψf is expressed at t ¼ L as

ψfðLÞ ¼ UϕmðLÞ ¼ Ue−ιHmtU−1Uψmð0Þ
¼ Ue−ιHmtU−1ψfð0Þ≡UfðLÞψfð0Þ: ðA8Þ

We will calculate the time evolution operator, i.e., the
exponential of the matrix Hm using the Cayley-Hamilton
theorem. We construct a traceless matrix out of Hm as

Hm ¼ T þ 1

4
ðtrHmÞI: ðA9Þ

The time-evolution operator is then redefined as

UmðLÞ ¼ e−ιHmL ¼ ϕe−ιTL: ðA10Þ

The elements of the traceless matrix T in mass basis are as
follows:

T11 ¼ A½− cos2 θ12ð2 sin θ13 cos θ13 sin θ14 sin θ23 sin θ24 cos θ24 cosðδ13 − δ14Þ þ cos 2θ23 sin2 θ24Þ
þ2 sin θ12 cos θ12 cos θ23 sin θ24ðcos δ13 sin θ13 sin θ23 sin θ24 − cos δ14 cos θ13 sin θ14 cos θ24Þ
þ cos2 θ12 cos2 θ13ð2 − sin2 θ24ðsin2 θ14 þ sin2 θ23Þ − sin2 θ14Þ

þ cos2 θ23 sin2 θ24� −
3A
4

þ 1

4
ð−Δ21 − Δ31 − Δ41Þ; ðA11Þ

T12 ¼ A½− sin θ12 cos θ12ð2 sin θ13 cos θ13 sin θ14 sin θ23 sin θ24 cos θ24 cosðδ13 − δ14Þ þ cos 2θ23 sin2 θ24Þ
− sin θ13 sin θ23 cos θ23 sin2 θ24ðe−iδ13 cos2 θ12 − eiδ13 sin2 θ12Þ
þ cos θ13 sin θ14 cos θ23 sin θ24 cos θ24ðe−iδ14 cos2 θ12 − eiδ14 sin2 θ12Þ
þ sin θ12 cos θ12 cos2 θ13ð2 − sin2 θ24ðsin2 θ14 þ sin2 θ23Þ − sin2 θ14Þ�; ðA12Þ

T13¼A½−eiδ14−2iδ13 cosθ12sin2θ13sinθ14sinθ23sinθ24cosθ24−eiδ14−iδ13 sinθ12sinθ13sinθ14cosθ23sinθ24cosθ24

þe−iδ14 cosθ12cos2θ13sinθ14sinθ23sinθ24cosθ24þe−iδ13 cosθ12sinθ13cosθ13ð2−sin2θ24ðsin2θ14þsin2θ23Þ−sin2θ14Þ�
−Asinθ12cosθ13sinθ23cosθ23sin2θ24; ðA13Þ

T14 ¼ A½e−iδ13 cos θ12 sin θ13 cos θ14 sin θ23 sin θ24 cos θ24 þ e−iδ14 cos θ12 cos θ13 sin θ14 cos θ14ð2 − cos2 θ24Þ
þ sin θ12 cos θ14 cos θ23 sin θ24 cos θ24�; ðA14Þ

T22¼A½−sin2 θ12ð2sinθ13 cosθ13 sinθ14 sinθ23 sinθ24 cosθ24 cosðδ13−δ14Þþ cos2θ23 sin2 θ24Þ
þ2sinθ12 cosθ12 cosθ23 sinθ24ðcosδ14 cosθ13 sinθ14 cosθ24−cosδ13 sinθ13 sinθ23 sinθ24Þ

þ sin2 θ12 cos2 θ13ð2− sin2 θ24ðsin2 θ14þ sin2 θ23Þ− sin2 θ14Þþ cos2 θ23 sin2 θ24�−
3A
4
þ1

4
ð3Δ21−Δ31−Δ41Þ; ðA15Þ

T23¼A½−eiδ14−2iδ13 sinθ12 sin2θ13 sinθ14 sinθ23 sinθ24cosθ24þeiδ14−iδ13 cosθ12 sinθ13 sinθ14cosθ23 sinθ24cosθ24

þe−iδ14 sinθ12cos2θ13 sinθ14 sinθ23 sinθ24cosθ24þe−iδ13 sinθ12 sinθ13cosθ13ð2−sin2θ24ðsin2θ14þsin2θ23Þ−sin2θ14Þ�
þAcosθ12cosθ13 sinθ23cosθ23 sin2θ24; ðA16Þ
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T24 ¼ A½e−iδ13 sin θ12 sin θ13 cos θ14 sin θ23 sin θ24 cos θ24 þ e−iδ14 sin θ12 cos θ13 sin θ14 cos θ14ð2 − cos2 θ24Þ
− cos θ12 cos θ14 cos θ23 sin θ24 cos θ24�; ðA17Þ

T33 ¼ A½2 sin θ13 cos θ13 sin θ14 sin θ23 sin θ24 cos θ24 cosðδ13 − δ14Þ

þ sin2 θ13ð2 − sin2 θ24ðsin2 θ14 þ sin2 θ23Þ − sin2 θ14Þ þ sin2 θ23 sin2 θ24� −
3A
4

þ 1

4
ð−Δ21 þ 3Δ31 − Δ41Þ; ðA18Þ

T34 ¼ A½eiδ13−iδ14 sin θ13 sin θ14 cos θ14ð2 − cos2 θ24Þ − cos θ13 cos θ14 sin θ23 sin θ24 cos θ24�; ðA19Þ

T44 ¼ A½cos2 θ14 cos2 θ24 þ 2A sin2 θ14� −
3A
4

þ 1

4
ð−Δ21 − Δ31 þ 3Δ41Þ: ðA20Þ

The Cayley-Hamilton theorem is used to get the form of the time evolution operator e−ιTL. We need to solve the
characteristic equation of matrix T given by

λ4 þ c3λ3 þ c2λ2 þ c1λþ c0 ¼ 0 ðA21Þ

to obtain the energy eigenvalues λ where the constants are defined as follows:

c0 ¼
A2

128
Δ2

41ð8 sin2 θ14 þ 29Þ þ A
64

½ð−Δ3
31 þ 2Δ2

31Δ41 þ 3Δ31Δ2
41Þ sin 2θ13 sin θ14 sin θ23 sin 2θ24 cosðδ13 − δ14Þ

þ Δ3
31ð3 − 4 cos2 θ13 sin2 θ23 sin2 θ24 − 4Q sin2 θ13Þ

þΔ2
31Δ41ð8 cos2 θ13 sin2 θ23 sin2 θ24 þ 12 cos2 θ24 − 4Qð2 cos2 θ13 þ 1Þ þ 9Þ

þΔ31Δ2
41ð12 cos2 θ13 sin2 θ23 sin2 θ24 þ 8 cos2 θ24 þ 4Qð1 − 3 cos2 θ13Þ þ 1Þ − Δ3

41ð4 cos2 θ24 − 4Qþ 5Þ�

þ Δ21

64
ðΔ3

31 − 5Δ2
31Δ41 − 5Δ31Δ2

41 þ Δ3
41Þ þ

�
−
3Δ4

31

256
þ Δ3

31Δ41

64
þ 7Δ2

31Δ2
41

128
þ Δ31Δ3

41

64
−
3Δ4

41

256

�
; ðA22Þ

c1 ¼
1

8
A2Δ41ð5 − 7 sin2 θ14Þ þ

A
8
Δ2

31ð3 − 4 sin2 θ23 sin2 θ24 cos2 θ13 − 4Q sin2 θ13Þ

−
A
8
Δ2

41ð5þ 4 cos2 θ24 − 4QÞ þ A
16

Δ31Δ41ð4þ 8 cos2 θ24 − 5P cos2 θ13Þ

þ A
4
ð−Δ31

2 þ Δ31Δ41Þ sin 2θ13 sin θ14 sin θ23 sin 2θ24 cosðδ13 − δ14Þ

þ Δ21

8
ðΔ41 − Δ31Þ2 þ

1

8
ð−Δ3

31 þ Δ2
31Δ41 þ Δ31Δ2

41 − Δ3
41Þ; ðA23Þ

c2 ¼
A
4
Δ31ð3 − 4 sin2 θ23 sin2 θ24 cos2 θ13 − 4Q sin2 θ13Þ −

A
4
Δ41ð5þ 4 cos2 θ24 − 4QÞ

−
11

8
A2 −

A
2
Δ31 sin 2θ13 sin θ14 sin θ23 sin 2θ24 cosðδ13 − δ14Þ

þ Δ21

4
ðΔ41 þ Δ31Þ þ

1

8
ð−3Δ2

31 þ 2Δ31Δ41 − 3Δ2
41Þ; ðA24Þ

c3 ¼ TraceðTÞ ¼ 0; ðA25Þ

P ¼ 2 − sin2 θ14 − sin2 θ24ðsin2 θ14 þ sin2 θ23Þ ðA26Þ

Q ¼ 2 − sin2 θ14 − sin2 θ24 sin2 θ14: ðA27Þ
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The energy eigenvalues are as follows:

λ1;2 ¼ −
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 þ t0

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 − t0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4c0 þ t20

qr �
;

ðA28Þ

λ3;4 ¼ −
1

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 þ t0

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 − t0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4c0 þ t20

qr �
;

ðA29Þ

where t0 is a real root of the following equation:

t3 − c2t2 − 4c0tþ 4c0c2 − c21 ¼ 0: ðA30Þ

The general form of probability is given by

Pαβ ¼
X4
a¼1

X4
b¼1

ðB̃aÞαβðB̃bÞ⋆αβe−ιLðλa−λbÞ; ðA31Þ

where

ðB̃aÞαβ¼
ðc1þc2λaþλ3aÞδαβþðc2þλ2aÞT̃αβþλaT̃2

αβþ T̃3
αβ

4λ3aþc1þ2c2λa
;

ðA32Þ

and the components of T; T2, and T3 in flavor basis are
defined as the following:

T̃αβ ¼ hαjUTU−1jβi; T̃2;3
αβ ¼ hαjUT2;3U−1jβi: ðA33Þ

In Fig. 20, we see that the Cayley-Hamilton probabilities
at lower energies show a better match with numerical
probabilities evaluated using GLoBES, whereas at higher
energies, especially at resonance region, the TMSD prob-
abilities match better, as was also seen in Figs. 1 and 2.
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O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle,
J. High Energy Phys. 02 (2021) 071.

[3] F. Capozzi, E. D. Valentino, E. Lisi, A. Marrone, A.
Melchiorri, and A. Palazzo, Phys. Rev. D 101, 116013
(2020).

[4] M. Ghosh, P. Ghoshal, S. Goswami, N. Nath, and S. K.
Raut, Phys. Rev. D 93, 013013 (2016).

[5] K. Abe et al. (T2K Collaboration), Nature (London) 580,
339 (2020); 583, E16(E) (2020).

[6] D. S. Ayres et al. (NOvA Collaboration), 2007, https://doi
.org/10.2172/935497.

[7] B. Abi et al. (DUNE Collaboration), arXiv:2002.03005.
[8] A. Alekou et al., Eur. Phys. J. Spec. Top. 231, 3779 (2022).
[9] K. Abe et al. (Hyper-Kamiokande Proto-Collaboration),

Prog. Theor. Exp. Phys. 2015, 53C02 (2015).
[10] J. Brunner (KM3Net Collaboration), Proc. Sci. NEU-

TEL2017 (2018) 057.
[11] M. G. Aartsen et al. (IceCube Collaboration), J. Phys. G 44,

054006 (2017).
[12] S. Ahmed et al. (ICAL Collaboration), Pramana 88, 79

(2017).

[13] M. Ghosh, S. Goswami, and S. K. Raut, Eur. Phys. J. C 76,
114 (2016).

[14] V. Barger, A. Bhattacharya, A. Chatterjee, R. Gandhi, D.
Marfatia, and M. Masud, Phys. Rev. D 89, 011302 (2014).

[15] M. Ghosh, P. Ghoshal, S. Goswami, and S. K. Raut, Phys.
Rev. D 89, 011301 (2014).

[16] A. Chatterjee, P. Ghoshal, S. Goswami, and S. K. Raut,
J. High Energy Phys. 06 (2013) 010.

[17] M. Ghosh, P. Ghoshal, S. Goswami, and S. K. Raut, Nucl.
Phys. B884, 274 (2014).

[18] A. Ghosh, T. Thakore, and S. Choubey, J. High Energy
Phys. 04 (2013) 009.

[19] K. Chakraborty, S. Goswami, C. Gupta, and T. Thakore,
J. High Energy Phys. 05 (2019) 137.

[20] S. Fukasawa, M. Ghosh, and O. Yasuda, Nucl. Phys. B918,
337 (2017).

[21] M. Ghosh, Phys. Rev. D 93, 073003 (2016).
[22] J. E. Hill, Phys. Rev. Lett. 75, 2654 (1995).
[23] A. Aguilar-Arevalo et al. (MiniBooNE Collaboration),

Phys. Rev. D 103, 052002 (2021).
[24] G. S. Abrams et al., Phys. Rev. Lett. 63, 2173 (1989).
[25] C. Giunti and M. Laveder, Phys. Rev. C 83, 065504 (2011).
[26] M. A. Acero, C. Giunti, and M. Laveder, Nucl. Phys. B

Proc. Suppl. 188, 211 (2009).

FIG. 20. Comparison of the probabilities using GLoBES PGL
μe

(red), the Cayley-Hamilton method PCH
μe (green), and TMSD

approx. Pμe (blue) at 1300 km (left), 7000 km (right) baseline.

MATTER EFFECT IN PRESENCE OF A STERILE NEUTRINO … PHYS. REV. D 108, 095050 (2023)

095050-23

https://doi.org/10.1007/JHEP01(2017)087
https://doi.org/10.1007/JHEP02(2021)071
https://doi.org/10.1103/PhysRevD.101.116013
https://doi.org/10.1103/PhysRevD.101.116013
https://doi.org/10.1103/PhysRevD.93.013013
https://doi.org/10.1038/s41586-020-2177-0
https://doi.org/10.1038/s41586-020-2177-0
https://doi.org/10.1038/s41586-020-2415-5
https://doi.org/10.2172/935497
https://doi.org/10.2172/935497
https://doi.org/10.2172/935497
https://arXiv.org/abs/2002.03005
https://doi.org/10.1140/epjs/s11734-022-00664-w
https://doi.org/10.1093/ptep/ptv061
https://doi.org/10.22323/1.307.0057
https://doi.org/10.22323/1.307.0057
https://doi.org/10.1088/1361-6471/44/5/054006
https://doi.org/10.1088/1361-6471/44/5/054006
https://doi.org/10.1007/s12043-017-1373-4
https://doi.org/10.1007/s12043-017-1373-4
https://doi.org/10.1140/epjc/s10052-016-3962-7
https://doi.org/10.1140/epjc/s10052-016-3962-7
https://doi.org/10.1103/PhysRevD.89.011302
https://doi.org/10.1007/JHEP06(2013)010
https://doi.org/10.1016/j.nuclphysb.2014.04.013
https://doi.org/10.1016/j.nuclphysb.2014.04.013
https://doi.org/10.1007/JHEP04(2013)009
https://doi.org/10.1007/JHEP04(2013)009
https://doi.org/10.1007/JHEP05(2019)137
https://doi.org/10.1016/j.nuclphysb.2017.02.008
https://doi.org/10.1016/j.nuclphysb.2017.02.008
https://doi.org/10.1103/PhysRevD.93.073003
https://doi.org/10.1103/PhysRevLett.75.2654
https://doi.org/10.1103/PhysRevD.103.052002
https://doi.org/10.1103/PhysRevLett.63.2173
https://doi.org/10.1103/PhysRevC.83.065504
https://doi.org/10.1016/j.nuclphysbps.2009.02.050
https://doi.org/10.1016/j.nuclphysbps.2009.02.050


[27] V. V. Barinov et al., Results from the baksan experiment on
sterile transitions (best) (2021).

[28] P. Huber, Phys. Rev. C 84, 024617 (2011).
[29] T. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S.

Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G.
Mention, A. Porta, and F. Yermia, Phys. Rev. C 83, 054615
(2011).

[30] D. Svirida et al., Proc. Sci. NOW2018 (2019) 066.
[31] M. Danilov and N. Skrobova, New results from the danss

experiment (2021).
[32] Y. J. Ko et al. (NEOS Collaboration), Phys. Rev. Lett. 118,

121802 (2017).
[33] H. Almazán et al. (STEREO Collaboration), Phys. Rev. D

102, 052002 (2020).
[34] M. Andriamirado et al. (PROSPECT Collaboration), Phys.

Rev. D 103, 032001 (2021).
[35] A. Minotti, Proc. Sci. NuFact2021 (2022) 246.
[36] S. Goswami, Phys. Rev. D 55, 2931 (1997).
[37] M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. A. N.

Machado, M. Maltoni, I. Martinez-Soler, and T. Schwetz,
J. High Energy Phys. 08 (2018) 010.

[38] K. N. Abazajian et al., arXiv:1204.5379.
[39] P. Adamson et al. (MINOS+ COllaboration), Phys. Rev.

Lett. 122, 091803 (2019).
[40] K. Abe et al. (T2K Collaboration), Phys. Rev. D 99, 071103

(2019).
[41] D. Vannerom, L. Fischer, J. Conrad, S. Blot, and C.

Arguelles, Proc. Sci. PANIC2021 (2022) 299.
[42] C. A. Argüelles, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp,

P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-
Gonzalez, Phys. Rev. Lett. 128, 241802 (2022).

[43] H. Hausner, Sterile neutrino search with the NOvA detectors,
Ph.D. thesis, Wisconsin University, Madison, SAL, 2022.

[44] Z. Hu (MINOS, MINOS+, Daya Bay, Bugey-3 Collabora-
tion), Proc. Sci., ICHEP2020 (2021) 201.

[45] P. Adamson et al. (MINOS+, Daya Bay Collaboration),
Phys. Rev. Lett. 125, 071801 (2020).

[46] S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, J. High
Energy Phys. 06 (2017) 135.

[47] P. Abratenko et al. (MicroBooNE Collaboration), Search for
an excess of electron neutrino interactions in microboone
using multiple final state topologies (2021).

[48] P. Abratenko et al. (MicroBooNE Collaboration), Phys.
Rev. Lett. 130, 011801 (2023).

[49] C. A. Argüelles, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp,
P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-
Gonzalez, Microboone and the νe interpretation of the
miniboone low-energy excess (2021).

[50] A. Aguilar et al., Miniboone and microboone joint fit to a
3þ 1 sterile neutrino scenario (2022).

[51] S. Böser, C. Buck, C. Giunti, J. Lesgourgues, L. Ludhova, S.
Mertens, A. Schukraft, and M. Wurm, Prog. Part. Nucl.
Phys. 111, 103736 (2020).

[52] X. Chu, B. Dasgupta, M. Dentler, J. Kopp, and N. Saviano,
J. Cosmol. Astropart. Phys. 11 (2018) 049.

[53] S. Goswami, V. K. N., A. Mukherjee, and N. Narendra,
Phys. Rev. D 105, 095040 (2022).

[54] M. Aker et al. (KATRIN Collaboration), Eur. Phys. J. C 83,
763 (2023).

[55] M. Antonello et al. (MicroBooNE, LAr1-ND, ICARUS-
WA104 Collaborations), arXiv:1503.01520.

[56] S. Ajimura et al. (JSNS2 Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 1014, 165742 (2021).

[57] K. S. Babu, V. Brdar, A. de Gouvêa, and P. A. N. Machado,
Phys. Rev. D 107, 015017 (2023).

[58] J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, N. W.
Kamp, C. A. Argüelles, J. M. Conrad, and M. H. Shaevitz,
J. High Energy Phys. 09 (2023) 058.

[59] S. K. Agarwalla, S. S. Chatterjee, and A. Palazzo, Phys.
Rev. Lett. 118, 031804 (2017).

[60] S. Kumar Agarwalla, S. Prakash, and S. Uma Sankar, Proc.
Sci. EPS-HEP2013 (2013) 534.

[61] M. Ghosh, S. Gupta, Z. M. Matthews, P. Sharma, and A. G.
Williams, Phys. Rev. D 96, 075018 (2017).

[62] S. Choubey, D. Dutta, and D. Pramanik, Eur. Phys. J. C 79,
968 (2019).

[63] D. Dutta, R. Gandhi, B. Kayser, M. Masud, and S. Prakash,
J. High Energy Phys. 11 (2016) 122.

[64] D. K. Singha, M. Ghosh, R. Majhi, and R. Mohanta, Phys.
Rev. D 107, 075039 (2023).

[65] J. M. Berryman, A. de Gouvêa, K. J. Kelly, and A. Kobach,
Phys. Rev. D 92, 073012 (2015).

[66] R. Gandhi, B. Kayser, M. Masud, and S. Prakash, J. High
Energy Phys. 11 (2015) 039.

[67] S. K. Agarwalla, S. S. Chatterjee, and A. Palazzo, J. High
Energy Phys. 09 (2016) 016.

[68] Y. Reyimuaji and C. Liu, J. High Energy Phys. 06 (2020)
094.

[69] P. B. Denton, A. Giarnetti, and D. Meloni, J. High Energy
Phys. 02 (2023) 210.

[70] S. Choubey, D. Dutta, and D. Pramanik, Phys. Rev. D 96,
056026 (2017).

[71] C. Rubbia, Report No. CERN-EP-INT-77-08, CERN-EP-
77-08, 5, 1977.

[72] R. Gandhi, P. Ghoshal, S. Goswami, and S. U. Sankar, Phys.
Rev. D 78, 073001 (2008).

[73] S. J. Parke and X. Zhang, Phys. Rev. D 101, 056005
(2020).

[74] W. Li, J. Ling, F. Xu, and B. Yue, J. High Energy Phys. 10
(2018) 021.

[75] S. P. Behera, A. Ghosh, S. Choubey, V. M. Datar, D. K.
Mishra, and A. K. Mohanty, Eur. Phys. J. C 77, 307
(2017).

[76] R. Gandhi and P. Ghoshal, Phys. Rev. D 86, 037301 (2012).
[77] T. Thakore, M. M. Devi, S. Kumar Agarwalla, and A.

Dighe, J. High Energy Phys. 08 (2018) 022.
[78] M. A. Acero et al., arXiv:2203.07323.
[79] S. J. Parke and X. Zhang, Phys. Rev. D 101, 056005

(2020).
[80] D. S. Chattopadhyay, K. Chakraborty, A. Dighe, and S.

Goswami, J. High Energy Phys. 01 (2023) 051.
[81] M. C. Banuls, G. Barenboim, and J. Bernabeu, Phys. Lett. B

513, 391 (2001).
[82] P. Huber, M. Lindner, and W. Winter, Comput. Phys.

Commun. 167, 195 (2005).
[83] R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S. U. Sankar,

and S. Shalgar, Phys. Rev. D 76, 073012 (2007).
[84] S. Choubey and P. Roy, Phys. Rev. D 73, 013006 (2006).

CHATTERJEE, GOSWAMI, and PAN PHYS. REV. D 108, 095050 (2023)

095050-24

https://doi.org/10.1103/PhysRevC.84.024617
https://doi.org/10.1103/PhysRevC.83.054615
https://doi.org/10.1103/PhysRevC.83.054615
https://doi.org/10.22323/1.337.0066
https://doi.org/10.1103/PhysRevLett.118.121802
https://doi.org/10.1103/PhysRevLett.118.121802
https://doi.org/10.1103/PhysRevD.102.052002
https://doi.org/10.1103/PhysRevD.102.052002
https://doi.org/10.1103/PhysRevD.103.032001
https://doi.org/10.1103/PhysRevD.103.032001
https://doi.org/10.22323/1.402.0246
https://doi.org/10.1103/PhysRevD.55.2931
https://doi.org/10.1007/JHEP08(2018)010
https://arXiv.org/abs/1204.5379
https://doi.org/10.1103/PhysRevLett.122.091803
https://doi.org/10.1103/PhysRevLett.122.091803
https://doi.org/10.1103/PhysRevD.99.071103
https://doi.org/10.1103/PhysRevD.99.071103
https://doi.org/10.22323/1.380.0299
https://doi.org/10.1103/PhysRevLett.128.241802
https://doi.org/10.1103/PhysRevLett.125.071801
https://doi.org/10.1007/JHEP06(2017)135
https://doi.org/10.1007/JHEP06(2017)135
https://doi.org/10.1103/PhysRevLett.130.011801
https://doi.org/10.1103/PhysRevLett.130.011801
https://doi.org/10.1016/j.ppnp.2019.103736
https://doi.org/10.1016/j.ppnp.2019.103736
https://doi.org/10.1088/1475-7516/2018/11/049
https://doi.org/10.1103/PhysRevD.105.095040
https://doi.org/10.1140/epjc/s10052-023-11818-y
https://doi.org/10.1140/epjc/s10052-023-11818-y
https://arXiv.org/abs/1503.01520
https://doi.org/10.1016/j.nima.2021.165742
https://doi.org/10.1016/j.nima.2021.165742
https://doi.org/10.1103/PhysRevD.107.015017
https://doi.org/10.1007/JHEP09(2023)058
https://doi.org/10.1103/PhysRevLett.118.031804
https://doi.org/10.1103/PhysRevLett.118.031804
https://doi.org/10.22323/1.180.0534
https://doi.org/10.22323/1.180.0534
https://doi.org/10.1103/PhysRevD.96.075018
https://doi.org/10.1140/epjc/s10052-019-7479-8
https://doi.org/10.1140/epjc/s10052-019-7479-8
https://doi.org/10.1007/JHEP11(2016)122
https://doi.org/10.1103/PhysRevD.107.075039
https://doi.org/10.1103/PhysRevD.107.075039
https://doi.org/10.1103/PhysRevD.92.073012
https://doi.org/10.1007/JHEP11(2015)039
https://doi.org/10.1007/JHEP11(2015)039
https://doi.org/10.1007/JHEP09(2016)016
https://doi.org/10.1007/JHEP09(2016)016
https://doi.org/10.1007/JHEP06(2020)094
https://doi.org/10.1007/JHEP06(2020)094
https://doi.org/10.1007/JHEP02(2023)210
https://doi.org/10.1007/JHEP02(2023)210
https://doi.org/10.1103/PhysRevD.96.056026
https://doi.org/10.1103/PhysRevD.96.056026
https://doi.org/10.1103/PhysRevD.78.073001
https://doi.org/10.1103/PhysRevD.78.073001
https://doi.org/10.1103/PhysRevD.101.056005
https://doi.org/10.1103/PhysRevD.101.056005
https://doi.org/10.1007/JHEP10(2018)021
https://doi.org/10.1007/JHEP10(2018)021
https://doi.org/10.1140/epjc/s10052-017-4851-4
https://doi.org/10.1140/epjc/s10052-017-4851-4
https://doi.org/10.1103/PhysRevD.86.037301
https://doi.org/10.1007/JHEP08(2018)022
https://arXiv.org/abs/2203.07323
https://doi.org/10.1103/PhysRevD.101.056005
https://doi.org/10.1103/PhysRevD.101.056005
https://doi.org/10.1007/JHEP01(2023)051
https://doi.org/10.1016/S0370-2693(01)00723-7
https://doi.org/10.1016/S0370-2693(01)00723-7
https://doi.org/10.1016/j.cpc.2005.01.003
https://doi.org/10.1016/j.cpc.2005.01.003
https://doi.org/10.1103/PhysRevD.76.073012
https://doi.org/10.1103/PhysRevD.73.013006


[85] In the Appendix, we have shown that with non-zero Δ21 in
the Cayley Hamilton method we get better fit at these
regions as well as at very low energies.

[86] G. L. Fogli, E. Lisi, and D. Montanino, Phys. Rev. D 49,
3626 (1994).

[87] B. Abi et al. (DUNE Collaboration), J. Instrum. 15, T08008
(2020).

[88] R. Acciarri et al. (DUNE Collaboration), arXiv:1601.05471.
[89] T. Alion et al. (DUNE Collaboration), arXiv:1606.09550.
[90] M. Honda, M. S. Athar, T. Kajita, K. Kasahara, and S.

Midorikawa, Phys. Rev. D 92, 023004 (2015).
[91] V. Barger, A. Bhattacharya, A. Chatterjee, R. Gandhi, D.

Marfatia, and M. Masud, Int. J. Mod. Phys. A 31, 1650020
(2016).

[92] C. A. Ternes, S. Gariazzo, R. Hajjar, O. Mena, M. Sorel, and
M. Tórtola, Phys. Rev. D 100, 093004 (2019).

[93] T. Suzuki, D. F. Measday, and J. P. Roalsvig, Phys. Rev. C
35, 2212 (1987).

[94] A. Klinskikh, S. Brianson, V. Brudanin, V. G. Egorov, C.
Petitjean, and M. V. Shirchenko, Bull. Russ. Acad. Sci.
Phys. 72 2768 (2008).

[95] T. Ohlsson and H. Snellman, J. Math. Phys. (N.Y.) 41, 2768
(2000); 42, 2345(E) (2001).

[96] Y. Kamo, S. Yajima, Y. Higasida, S.-I. Kubota, S. Tokuo,
and J.-I. Ichihara, Eur. Phys. J. C 28, 211 (2003).

[97] E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson,
and T. Schwetz, J. High Energy Phys. 04 (2004) 078.

MATTER EFFECT IN PRESENCE OF A STERILE NEUTRINO … PHYS. REV. D 108, 095050 (2023)

095050-25

https://doi.org/10.1103/PhysRevD.49.3626
https://doi.org/10.1103/PhysRevD.49.3626
https://doi.org/10.1088/1748-0221/15/08/T08008
https://doi.org/10.1088/1748-0221/15/08/T08008
https://arXiv.org/abs/1601.05471
https://arXiv.org/abs/1606.09550
https://doi.org/10.1103/PhysRevD.92.023004
https://doi.org/10.1142/S0217751X16500202
https://doi.org/10.1142/S0217751X16500202
https://doi.org/10.1103/PhysRevD.100.093004
https://doi.org/10.1103/PhysRevC.35.2212
https://doi.org/10.1103/PhysRevC.35.2212
https://doi.org/10.3103/S106287380806004X
https://doi.org/10.3103/S106287380806004X
https://doi.org/10.1063/1.533270
https://doi.org/10.1063/1.533270
https://doi.org/10.1063/1.1360996
https://doi.org/10.1140/epjc/s2003-01138-0
https://doi.org/10.1088/1126-6708/2004/04/078

