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The standard model (SM) has several issues related to the CP violation which could give clues to search
physics beyond the SM. They are a CP phase in the Cabibbo-Kobayashi-Maskawa matrix, the strong
CP problem, CP phases in the Pontecorvo-Maki-Nakagawa-Sakata matrix, and CP asymmetry in lepton-
number-violating processes related to baryon number asymmetry. We consider a model which could give a
unified explanation for them in a framework of spontaneous CP violation. It is an extension of the SM with
vectorlike fermions and singlet scalars. In this model, they are explained by a common complex phase
caused in the spontaneous CP violation. We present concrete examples for them and also discuss some
relevant phenomenology.
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I. INTRODUCTION

Origin of CP violation in the quark sector of the
standard model (SM) is considered to be given by com-
plex Yukawa couplings [1]. They fix up-type and down-
type 3 × 3 quark mass matrices Mu and Md. A CP phase
appears in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix by considering their mass eigenstates. Since it is
irrelevant to a θ parameter in the QCD sector [2], the
strong CP problem [3] is caused. Although an experi-
mental bound for the neutron electric dipole moment [4]
requires θ̄ ¼ θ þ arg½detðMuMdÞ� < 10−10 [5], we cannot
explain why irrelevant ones can realize such a small value.
This problem is known to be solved by the axion [6–8]
caused by spontaneous breaking of the Peccei-Quinn (PQ)
symmetry [9]. Axion physics severely constrains a breaking
scale of the PQ symmetry [10].
An alternative solution for the strong CP problem is

given by the Nelson-Barr mechanism based on sponta-
neous CP violation [11]. Since CP invariance guarantees
θ ¼ 0 in this scenario, smallness of θ̄ can be explained
if the spontaneous CP violation occurs satisfying
arg½detðMuMdÞ� ¼ 0. A crucial problem is how simple
models can be constructed so as to generate a CP phase in
the CKM matrix keeping θ̄ < 10−10. For such an example
among several models, one may consider a model pro-
posed by Bento, Branco and Parada (BBP) [12], which is
an extension of the SM with vectorlike fermions and a

complex singlet scalar. In this model, a CP phase could
appear in the CKM matrix when the CP symmetry is
spontaneously broken in the scalar sector [13]. It is caused
via mixing between SM fermions and vectorlike fermions
mediated by the singlet scalar.1 In their model, extra
heavy vectorlike down-type quarks are introduced, and
Z2 symmetry is imposed to control a down-type quark
mass matrix. Unfortunately, one-loop corrections and
contributions from higher-dimension operators to the
quark mass matrix could generate corrections, which could
violate θ̄ < 10−10 [17].
In the lepton sector, long baseline neutrino oscillation

experiments such as NOvA and T2K [18,19] suggest the
existence of a CP-violating phase in the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [20]. If lepton Yukawa
couplings are assumed to be complex as in the quark sector,
it can be also derived in the same way as the CKMmatrix as
long as neutrinos are massive. A similar idea to the BBP
model may be applicable to the lepton sector in order to
explain the CP phase in the PMNS matrix. In that case,
since a lepton mass matrix is irrelevant to the strong CP
problem, no constraint on the mass matrix is imposed by it
differently from the quark sector. As a result, such an
extension could be relevant to the recently confirmed muon
anomalous magnetic moment which shows the deviation
at 4.2σ from the SM prediction [21]. Several articles sug-
gest that the existence of charged vectorlike leptons could
explain it [22]. It seems to be an interesting issue whether
this kind of framework could give any connection between
the origin of a complex phase in the PMNS matrix and large
deviation of the muon anomalous magnetic moment from
the SM prediction.
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1Extension of the model has been discussed from several
phenomenological viewpoints. For example, see [14–16].
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It is well known that baryon number asymmetry existing
in the Universe [23] cannot be understood in the SM.
Leptogenesis based on out-of-equilibrium decay of heavy
right-handed neutrinos [24] is considered to be a most
promising scenario for it. Although CP asymmetry in their
decay is a crucial parameter, it is difficult to fix it, and we
have to treat it as a free parameter since the identification
of relevant CP phases is not easy. Additionally, since the
mass of the lightest right-handed neutrino should be larger
than 109 GeV for successful leptogenesis [25,26] in usual
scenarios for the small neutrino mass generation [27,28],
reheating temperature is required to be higher than it. It
constrains possible inflation scenarios.
In this paper, we study these issues by considering a

model based on the spontaneous CP violation. We show
that the model can explain the CP phases in the CKM
and PMNS matrices in a consistent way with the strong
CP problem. We also clarify a CP phase relevant to
the CP asymmetry in the decay of the right-handed
neutrinos and show that much lower reheating temperature
than 109 GeV is allowed for successful leptogenesis in
the model.
The remaining parts of the paper are organized as

follows. In Sec. II, we introduce our model and discuss its
scalar sector. We estimate reheating temperature expected
in an inflation scenario supposed in the model. In Sec. III,
we discuss a CP phase in the CKM matrix and the strong
CP problem and also the neutrino mass generation and CP
phases in the PMNS matrix. We estimate CP asymmetry
in leptogenesis and show that leptogenesis occurs suc-
cessfully at a low scale in a consistent way with the
expected reheating temperature in the supposed inflation
scenario. We also show that the anomalous magnetic
moment of muon suggested by the experiments cannot
be explained in this model. Section IV is devoted to the
summary of the paper.

II. MODEL FOR SPONTANEOUS CP VIOLATION

We consider an extension of the SM by introducing
vectorlike charged leptons EL;R and down-type quarks
DL;R, right-handed neutrinos Nj, and several scalars, that
is, a complex scalar S, a real scalar σ, and an inert doublet
scalar η. We also impose a global discrete symmetry
Z4 × Z0

4. The model is intended to give a solution to the
strongCP problem and bring aboutCP phases in the PMNS
matrix simultaneously along the lines of the Nelson-Barr
mechanism [11]. After spontaneous breaking of the discrete
symmetry, the model is reduced to a scotogenic model for
the neutrino mass [28] at low-energy regions effectively.
Representation of the introduced fields under ½SUð3ÞC ×
SUð2ÞL ×Uð1ÞY � × Z4 × Z0

4 is summarized in Table 1.
Since the SM contents are assumed to have no charge of
Z4 × Z0

4, the invariant Yukawa terms relevant to quarks are
given as

Lq ⊃
X3
i¼1

"X3
j¼1

hdijq̄Li
ϕ̃dRj

þ ðydi Sþ ỹdi S
†ÞD̄LdRi

#

þ yDσD̄LDR þ H:c:; ð1Þ

where qLi
and dRi

stand for the SM doublet and singlet
quarks, respectively.2 Some new Yukawa terms are also
introduced to charged leptons and neutrinos

Ll ⊃
X3
i¼1

"X3
j¼1

heijlLi
ϕ̃eRj

þ ðyei Sþ ỹei S
†ÞĒLeRi

þ xilLi
ϕ̃ER

#
þ ðyESþ ỹES†ÞĒLER þH:c:; ð2Þ

Lν ⊃
X3
j¼1

"X3
i¼1

hνijlLi
ηNj þ ðyNj

Sþ ỹNj
S†ÞN̄jNc

j þH:c:

#
;

ð3Þ

where lLi
and eRi

stand for the SM doublet and singlet
leptons, respectively.
Scalar potential invariant under the assumed symmetry

can have a lot of terms. However, in the present study, we
just assume rather restricted ones among them as

V ¼ V1 þ V2;

V1 ¼ κSðS†SÞ2 þ
1

4
κσσ

4 þ 1

2
κSσðS†SÞσ2 þ κSϕðS†SÞðϕ†ϕÞ

þ 1

2
κσϕσ

2ðϕ†ϕÞ þm2
SðS†SÞ þ

1

2
m2

σσ
2 þ Vb: ð4Þ

V2 ¼ λ1ðϕ†ϕÞ2 þ λ2ðη†ηÞ2 þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðϕ†ηÞðη†ϕÞ

þ λ5
2

�
S
M�

ðη†ϕÞ2 þH:c:

�
þm2

ϕϕ
†ϕþm2

ηη
†η; ð5Þ

TABLE I. Representation of vectorlike fermions and scalars
added to the SM. In this table, SM stands for SUð3ÞC ×
SUð2ÞL × Uð1ÞY . They play crucial roles in solving the strong
CP problem and also in explaining CP phases in the PMNS
matrix, the neutrino mass, and dark matter.

SM Z4 Z0
4 SM Z4 Z0

4

EL ð1; 1;−1Þ 2 2 DL ð3; 1;− 1
3
Þ 2 2

ER ð1; 1;−1Þ 0 0 DR ð3; 1;− 1
3
Þ 0 2

Nj ð1; 1; 0Þ 1 1 S ð1; 1; 0Þ 2 2
η ð1; 2;− 1

2
Þ 3 3 σ ð1; 1; 0Þ 2 0

2ϕ is an ordinary Higgs scalar. Definition ϕ̃ ¼ iτ2ϕ� is used.
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whereM� is a cutoff for physics relevant to the inert doublet
η. We list terms up to dimension 5. Several terms allowed
under the imposed symmetry are assumed to be zero in this
potential, for simplicity. Since CP symmetry is assumed to
be exact in the model, all the coupling constants in the
Lagrangian are real.
Vb is composed of the S-number-violating but Z4 × Z0

4-
invariant terms such as S2 and S4 [13]. Spontaneous CP
violation could be caused in this part if S gets a vacuum
expectation value (VEV). As such a simple example of Vb,
we consider

Vb ¼ αðS4 þ S†4Þ þ βðS2 þ S†2Þϕ†ϕ: ð6Þ

If we express S as S ¼ 1ffiffi
2

p S̃eiρ, ρ appears only in Vb, which

can be rewritten as

Vb ¼ α

�
S̃2 cos2ρþ β

4α
ϕ†ϕ

�
2

−
α

2
S̃4 −

β2

16α
ðϕ†ϕÞ2: ð7Þ

Thus, an angular component ρ is fixed at this potential
valley in the neutral field space. It is expressed by using S̃
and a radial part ϕ0 of the neutral component of the doublet
scalar ϕ as

cos 2ρ ¼ −
βϕ2

0

4αS̃2
; ð8Þ

as long as the coupling constants α and β take appropriate
values.
Here, we specify the vacuum structure of this model.

We assume that these scalars take VEVs such as

hSi¼ uffiffiffi
2

p eiρ0 ; hσi¼w; hϕi¼
� vffiffi

2
p

0

�
; hηi¼0; ð9Þ

where vð≡hϕ0iÞ ¼ 246 GeV and u; w ≫ v is assumed.3

Since u ≫ v is supposed, spontaneous CP violation
could occur, and ρ0 ∼ π

4
is realized. Potential for the neutral

scalars in V1 at the potential valley defined by Eq. (8) can
be approximately expressed as

V0
1ðSR; SI; σÞ ¼

κσ
4
ðσ2 − w2Þ2 þ κ̃S

4
ðS2R þ S2I − u2Þ2

þ κσS
4

ðσ2 − w2ÞðS2R þ S2I − u2Þ; ð10Þ

where jκSϕj and jκσϕj are assumed to be much smaller than
others. The coupling κ̃S is defined as κ̃S ¼ κS − 2α.4

To guarantee the stability of the potential (10), these
couplings should satisfy the conditions

κσ; κ̃S > 0; 4κ̃Sκσ > κ2σS: ð11Þ

Absolute values of these couplings could be con-
strained by a supposed inflation scenario as discussed
later.
It is useful to note that the imposed discrete sym-

metry Z4 × Z0
4 is spontaneously broken to its diagonal

subgroup Z2 in this vacuum. This Z2 could stabilize
the lightest field with its odd charge and guarantee the
existence of candidates of dark matter (DM). Since
the remaining Z2 keeps a uniqueness of the vacuum, the
appearance of cosmologically dangerous stable domain
walls associated to the breaking of discrete symmetry
[29] is escapable.
The neutral scalar sector characterizes the model

depending on this vacuum. A squared mass matrix for
ϕ0, SR, SI, and σ is given for a basis φT ¼ ðϕ0; SR; SI; σÞ as

M2
s ¼

0
BBBBB@

2λ̃1v2 ðκSϕ þ 2βÞvu cos ρ0 ðκSϕ − 2βÞvu sin ρ0 κσϕvw

ðκSϕ þ 2βÞvu cos ρ0 2ðκ̃S þ 4αÞu2cos2ρ0 ðκ̃S − 4αÞu2 sin 2ρ0 κSσwu cos ρ0

ðκSϕ − 2βÞvu sin ρ0 ðκ̃S − 4αÞu2 sin 2ρ0 2ðκ̃S þ 4αÞu2sin2ρ0 κSσwu sin ρ0

κσϕvw κSσwu cos ρ0 κSσwu sin ρ0 2κσw2

1
CCCCCA: ð12Þ

If M2
s is diagonalized as OM2

sOT ¼ M2
s;diag by using an orthogonal matrix O, the mass eigenstate χ is related to φ as

χ ¼ Oφ. Since the couplings jκSϕj and jκσϕj in Eq. (4) are assumed to be sufficiently small and v ≪ u, w is satisfied,
mixing of other scalars with ϕ0 is small enough not to affect the nature of the neutral Higgs scalar largely. Moreover, we
consider a case where jκSσju ≪ κσw is satisfied. If we focus our study on such a case, χ1 ∼ ϕ0 and χ4 ∼ σ are satisfied, and
χ2 and χ3 are linear combinations of SR and SI as

χ2¼ SR cosψ −SI sinψ ; χ3¼ SR sinψþSI cosψ ; ð13Þ

3Although fine-tuning is required to realize this, we do not discuss it further and just assume this hierarchical structure here.
4We note that λ1 is shifted to λ̃1 ¼ λ1 −

β2

4α in V2 due to an effect of Vb.
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where ψ is found to be defined as

tan 2ψ ¼ −
κ̃S − 4α

κ̃S þ 4α
tan 2ρ0: ð14Þ

If we suppose ρ0 ≃ π
4
, mass eigenvalues mi of these scalars

χi are approximately evaluated as

m2
1 ≃ 2λ̃1v2; m2

2 ≃ 2κ̃Su2;

m2
3 ≃ 8αu2; m2

4 ≃ 2κσw2: ð15Þ

Taking account of Eqs. (8) and (14), ρ0 and ψ are found to
be expressed as

ρ0 ≃
π

4
þ βv2

8αu2
; ψ ≃

π

4
−
κ̃ þ 4α

κ̃ − 4α

βv2

8αu2
: ð16Þ

These singlet scalars could cause several effects on the
phenomenology beyond the SM. One of such issues is
inflation of the Universe and reheating temperature
expected from it. Here, we consider SI as a candidate of
inflaton. Details of this inflation are discussed in
Appendix A. In this part, we only focus on reheating
temperature realized in this inflation scenario through a
perturbative process, which is expected to give a lower
bound for possible reheating temperature.

When the inflaton amplitude becomes OðuÞ and the

Hubble parameter takes a value HðuÞ ¼
�

1
4
κ̃Su4

3M2
pl

�
1=2

, the

inflaton is considered to start decaying through SI → ϕ†ϕ
in the case ydj ; y

e
j ; yNj

>
ffiffiffiffiffi
κ̃S

p
, for which the SI decay to

fermions D̄LDR; ĒLER, and NRj
NRj

are kinematically
forbidden. Its decay width is estimated as

Γ ≃
1þ 1ffiffi

2
p

32π

κ2Sϕffiffiffiffiffi
κ̃S

p u; ð17Þ

where α ¼ 0.1κS is assumed for simplicity. If Γ>HðuÞ is
satisfied, instantaneous decay and thermalization are
expected to occur. Then, reheating temperature is deter-
mined by π2

30
g�T4 ¼ 1

4
κ̃Su4, where g� represents relativistic

degrees of freedom in the model. We note that κ̃S is
constrained by the cosmic microwave background data
as discussed in Appendix A. In the case Γ < HðuÞ,
instantaneous decay cannot be applied, and reheating
temperature should be estimated through Γ ¼ HðTÞ where
HðTÞ ¼

�
π2

30
g�T4

3M2
pl

�1=2
. Thus, the reheating temperature is

fixed depending on the coupling constant κSϕ as

TR ¼

8>><
>>:

8.7 × 103
�

κ̃S
10−6

�
1=4
�

u
106 GeV

�
GeV for jκSϕj > C;

3.2 × 103
�jκSϕj
10−9

��
10−6

κ̃S

�
1=4
�

u
106 GeV

�
1=2

GeV for jκSϕj < C;
ð18Þ

where g� ¼ 130 is used and C ¼ 2.7 × 10−9ð κ̃S
10−6

Þ1=2×
ð u
106 GeV

Þ1=2. It suggests that this reheating temperature
cannot be high enough for the thermal leptogenesis in
the ordinary seesaw model for the neutrino mass [25,26].
However, it is sufficiently high for successful leptogenesis
in the present model. We will see it later.
Finally, we note here that the inflation scale HI is found

to be much higher than the CP-breaking scale u supposed
in this model. It could bring about a serious domain wall
problem caused by the spontaneous CP violation [30].
However, since the inflation occurs through the inflaton
which breaks the CP symmetry, the CP symmetry is
violated during the inflation. As a result, the relevant
domain wall is expected to be inflated away. It is not
recovered throughout the inflaton oscillation period. Thus,
the problem seems not to appear since the reheating
temperature is lower than the CP breaking scale u as
shown in Eq. (18). It is noticeable that even such a low
reheating temperature could make leptogenesis successful
in the present model.

III. UNIFIED EXPLANATION OF THE CP ISSUES
IN THE SM

CP issues in the SM could be treated in a unified way
from the CP phase caused by the spontaneous violation
discussed in the previous section. We discuss them in this
section. A CP phase in the CKM matrix is shown to be
derived using the Nelson-Barr mechanism. The constraint
on the θ̄ can be satisfied even if the radiative effects are
taken into account. CP phases in the PMNS matrix are also
shown to be derived in the same way as the CKM phase.
Baryon number asymmetry could be generated by thermal
leptogenesis through the decay of right-handed neutrinos
under the previously estimated reheating temperature.
Sufficient CP asymmetry in that decay is shown to be
caused in a quantitatively fixed way.

A. CKM phase and solution for the strong CP problem

Yukawa interactions shown in Lq cause a 4 × 4 mass
matrix M0

d for down-type quarks as
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ðq̄Li
; D̄LÞ

�md
ij 0

F d
j μD

��
dRj

DR

�
; ð19Þ

where md
ij ¼ 1ffiffi

2
p hdijv, F d

j ¼ 1ffiffi
2

p ðydj eiρ0 þ ỹdj e
−iρ0Þu, and

μD ¼ yDw. We note that each component for q̄Li
DR in

M0
d is zero because of the imposed discrete symmetry.

Since an up-type quark mass matrix Mu is real by the
assumed CP invariance and argðdetM0

dÞ ¼ 0 is fulfilled as
found from Eq. (19), θ̄ ¼ θ þ argðdetMuM0

dÞ ¼ 0 is still
satisfied for ρ0 ≠ 0 after the spontaneous CP violation.
This means that the strong CP problem is solved at tree
level by the Nelson-Barr mechanism. On the other hand, a
CP phase in the CKM matrix could be caused from the CP
phase ρ0.
To see how the phase ρ0 can generate the CP phase in the

CKM matrix, we consider the diagonalization of a matrix
M0

dM
0†

d by a 4 × 4 unitary matrix VL as VLM0
dM

0†
d V†

L. It
may be expressed as

�
A B

C D

��
mdmd† mdF d†

F dmd† μ2D þ F dF d†

��
A† C†

B† D†

�

¼
�
m̃2

d 0

0 M̃2
D

�
; ð20Þ

where a 3 × 3 matrix m̃2
d in the right-hand side is

diagonal in which the generation indices are abbreviated.
Equation (20) requires

mdmd† ¼ A†m̃2
dAþ C†M̃2

DC;

F dmd† ¼ B†m̃2
dAþD†M̃2

DC;

μ2D þ F dF d† ¼ B†m̃2
dBþD†M̃2

DD: ð21Þ

Since μ2D þ F dF d† could be much larger than each
component of F dmd†, we find that B, C, and D can be
approximated as

B≃−
AmdF d†

μ2D þF dF d† ; C≃
F dmd†

μ2D þF dF d† ; D≃ 1; ð22Þ

which guarantee the approximate unitarity of the matrix A.
In such a case, it is also easy to find that

A−1m̃2
dA ¼ mdmd† −

1

μ2D þ F dF d†m
dF d†F dmd†: ð23Þ

The right-hand side is an effective mass matrix of the light
down-type quarks which is derived through the mixing with
the extra heavy quarks. Since the second term can have
complex phases in off-diagonal components unless ỹdj is
equal to ydj , the matrix A could be complex. Complex
phases in the matrix A could have a substantial magnitude
since the second term is comparable with the first term as
long as μ2D < F dF d† is satisfied.
As a reference, we show an example of the CKM

matrix obtained in this scenario by assuming that the
up-type quark mass matrix is diagonal. In this case, the
CKM matrix is given as VCKM ¼ A. If we take the relevant
VEVs as

u ¼ 106 GeV; w ¼ 105 GeV ð24Þ

and Yukawa coupling constants as

yd ¼ ð0; 5.2 × 10−4; 0Þ; ỹd ¼ ð0; 0; 1.2 × 10−3Þ; yD ¼ 10−2;

hd11 ¼ 6.0 × 10−6; hd22 ¼ 6.5 × 10−4; hd33 ¼ 3.5 × 10−2;

hd12 ¼ hd21 ¼ 1.45 × 10−4; hd13 ¼ hd31 ¼ 7.0 × 10−5; hd23 ¼ hd32 ¼ 1.6 × 10−3; ð25Þ

the mass eigenvalues of the down-type quarks are
obtained as

m̃d1 ¼ 4.7 MeV; m̃d2 ¼ 95 MeV;

m̃d3 ¼ 4.2 GeV; M̃D ¼ 1646 GeV: ð26Þ

The CKM matrix and the Jarlskog invariant Jq [31] are
determined as

VCKM ¼

0
B@

0.974 0.225 0.008

0.225 0.973 0.047

0.003 0.048 0.999

1
CA; Jq ¼ 1.64× 10−5;

ð27Þ
where the absolute values for the components of VCKM
are presented. This example suggests that suitable param-
eters could reproduce the experimental results well in this
framework.
For the strong CP problem, Eq. (19) does not mean

to give a stable solution. One-loop radiative effects and
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higher-order effective operators could give complex
corrections to the Yukawa couplings [17], which add
CP-violating contributions to each component of the
mass matrix (19). Since they could violate the constraint
θ̄ < 10−10 easily, we need to examine whether the correc-
tions are small enough to give a satisfactory solution for

the strong CP problem. One-loop complex corrections to
the coupling constant hdij, a coupling constant fdi for the

operator d̄Li
ϕ̃DR which is zero at the tree level, and the

mass μD are caused by diagrams shown in Fig. 1, respec-
tively. If we note that relevant Yukawa interactions in
Eq. (1) can be rewritten by using Eq. (13) as

X3
j¼1

�
hdijϕ̃d̄Lj

dR þ 1ffiffiffi
2

p fðydj þ ỹdj Þ cosψ − iðydj − ỹdj Þ sinψgχ2D̄LdRj

þ 1ffiffiffi
2

p fðydj þ ỹdj Þ sinψ þ iðydj − ỹdj Þ cosψgχ3D̄LdRj
þ H:c:

�
; ð28Þ

we find that they can be estimated, respectively, as

δhdij ≃
1

32π2
ln

�
v2

u2

�X3
k¼1

hdikfðydk þ ỹdkÞ cos ρ0 − iðydk − ỹdkÞ sin ρ0g

×

�
κSϕu2

m2
2

fðydj þ ỹdj Þ cosψ − iðydj − ỹdj Þ sinψg cosðρ0 þ ψÞ

þ κSϕu2

m2
3

fðydj þ ỹdj Þ sinψ þ iðydj − ỹdj Þ cosψg sinðρ0 þ ψÞ
�
;

δfdi ≃
ffiffiffi
2

p

32π2
ln

�
v2

u2

�X3
k¼1

hdik

�
κSϕuμD
m2

2

fðydk þ ỹdkÞ cosψ − iðydk − ỹdkÞ sinψg cosðρ0 þ ψÞ

þ κSϕuμD
m2

3

fðydk þ ỹdkÞ sinψ þ iðydk − ỹdkÞ cosψg sinðρ0 þ ψÞ
�
;

δμD ≃
μD
32π2

X3
k¼1

fðydk þ ỹdkÞ cos ρ0 − iðydk − ỹdkÞ sin ρ0g

×

�
κSσu2

m2
4 −m2

2

ln

�
m2

4

m2
2

�
fðydj þ ỹdj Þ cosψ − iðydj − ỹdj Þ sinψg cosðρ0 þ ψÞ

þ κSσu2

m2
4 −m2

3

ln
�
m2

4

m2
3

�
fðydj þ ỹdj Þ sinψ þ iðydj − ỹdj Þ cosψg sinðρ0 þ ψÞ

�
; ð29Þ

where m2
2, m

2
3, and m2

4 are the scalar mass eigenvalues given in Eq. (15).
On the other hand, higher-order operators which give complex contribution to them at low-energy regions come from

dimension-6 ones,

FIG. 1. One-loop diagrams which give complex contributions to the down-type quark mass matrixMd. Each diagram corresponds to
δhdij, δf

d
i , and δμD from left to right, respectively.
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S2

M2
pl

d̄Lϕ̃dR;
σS
M2

pl

d̄Lϕ̃DR;
S2

M2
pl

σD̄LDR; ð30Þ

where the Oð1Þ coupling constants are supposed for them.
Since the dominant contributions are expected to come
from the one-loop contributions in the case u

Mpl
¼ Oð10−12Þ,

the mass matrix of the down-type quarks is modified to

Md ¼ M0
d

�
1þ ðM0

dÞ−1
�
δhdv δfdv

δF d δμD

��
: ð31Þ

Since the second term is much smaller than the first term in
the right-hand side, θ̄ ¼ argðdetMdÞ can be estimated as

θ̄¼ Im

�
tr

	
ðM0

dÞ−1
�
δhdv δfdv

δF d δμD

�
�

¼ Im

�
trððhdÞ−1δhdÞ− 1

μD
ðF dðhdÞ−1δfd−δμDÞ

�

¼ 1

128π2
κSσu2

κσw2
ln

�
κ̃S
4α

�
sin2ðρ0þψÞ

X3
j¼1

ðyd2j − ỹd2j Þ; ð32Þ

where we use Eq. (29) in the last equality. It is caused
by Im½δμDμD

� as a result of cancellation between other
contributions.
If we use Eq. (16) for ρ0 and ψ and the parameters

given in Eq. (25), which fixes
P

jðyd2j − ỹd2j Þ to Oð10−6Þ,
the constraint jθ̄j < 10−10 can be expressed as

jκSσj
κσ

v2

w2
ln

�
κ̃S
4α

�
< 10−2: ð33Þ

This condition can be easily satisfied for the supposed
couplings by taking account of v2

w2 ¼ Oð10−6Þ. In relation to
this, it may be useful to note that dominant one-loop
correction to κSσ caused by the fermion loop could be
estimated as

δκSσ ¼
1

16π2
X3
k¼1

y2Dðyd2k þ ỹd2k Þ lnM
2
pl

u2
: ð34Þ

It is clear that this correction does not contradict the above
condition. The present analysis shows that the strong CP
problem can be solved in the model even if the radiative
effects are taken into account. Here, on the points suggested
in [17], we should note that the above result is obtained
under the assumption that the couplings κSϕ and κσϕ of the
new singlet scalars with the Higgs scalar are sufficiently
small, and additional fine-tuning is required in the scalar
sector. In this sense, we might consider that the strong CP
problem is replaced with the small Higgs mass problem in
this model.

B. CP PHASES IN THE PMNS MATRIX AND DM

A CP phase can appear in the PMNS matrix through the
couplings of the singlet S with the vectorlike charged
leptons in the same way as in the CKMmatrix case. In fact,
the Yukawa interactions shown in Ll cause a 4 × 4 mass
matrix Me as

ðlLi
; ĒLÞ

�me
ij Gi

F e
j μE

��
eRj

ER

�
; ð35Þ

where me
ij ¼ heijv, F e

j ¼ 1ffiffi
2

p ðyejeiρ0 þ ỹeje
−iρ0Þu, Gi ¼

1ffiffi
2

p xiv, and μE ¼ 1ffiffi
2

p ðyEeiρ0 þ ỹEe−iρ0Þu. The difference

from M0
d appears in nonzero components Gi and the mass

μE. Following the CKM case, we consider the diagonal-
ization of a matrixMeM

†
e by a 4 × 4 unitary matrix ṼL as

ṼLMlM
†
lṼ

†
L. It can be represented as

�
Ã B̃

C̃ D̃

��
meme† þ GG† meF e† þ μ�EG

F eme† þG†μE jμEj2 þF eF e†

��
Ã† C̃†

B̃† D̃†

�

¼
�
m̃2

e 0

0 M̃2
E

�
; ð36Þ

where a 3 × 3 matrix m̃2
e in the right-hand side is diagonal

again. Equation (36) requires

meme† þ GG† ¼ Ã†m̃2
eÃþ C̃†M̃2

EC̃;

F eme† þ G†μE ¼ B̃†m̃2
eÃþ D̃†M̃2

EC̃;

jμEj2 þ F eF e† ¼ B̃†m̃2
eB̃þ D̃†M̃2

ED̃: ð37Þ

Since jμEj2 þ F eF e† is much larger than each components
of F eme† þ Gμ�E, we find that B̃; C̃, and D̃ can be appro-
ximately expressed in the same way as the case of the
CKM matrix,

B̃≃−
ÃðmeF e†þ μ�EGÞ
jμEj2þF eF e† ; C̃≃

F eme†þG†μE
jμEj2þF eF e† ; D̃≃ 1:

ð38Þ

These again guarantee the approximate unitarity of the
matrix Ã. In such a case, it is also easy to find the relation

Ã−1m̃e2Ã¼meme†þGG†−
1

jμEj2þF eF e† ðmeF e†þ μ�EGÞ

× ðF eme†þμEG†Þ: ð39Þ

The charged lepton effective mass matrix m̃e is obtained
as a result of the mixing between the light charged leptons
and the extra heavy leptons. If ỹej is not equal to yej and

jμEj2 < F eF e†, the matrix Ã could have a large CP phase.
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The mass of neutrinos can be generated through the
radiative effect as in the scotogenic model since the present
model is reduced to it effectively after S gets the VEV. As
found in Eq. (3), Nj has Yukawa couplings with νLi

and η.
However, since η is assumed to have no VEV, neutrino
masses are not generated at tree level but generated at
one-loop level. We note that a small complex effective
coupling constant λ̃5 ¼ λ5

u
M�

eiρ0 is induced even in the

case λ5 ¼ Oð1Þ. The effective coupling λ̃5
2
ðη†ϕÞ2 þ H:c:

brings about a small mass difference between the real
and imaginary components of η0. As its result, the one-
loop diagram with Nj and η0 in internal lines gives a
nonzero contribution to the neutrino mass. If we note
that the mass of Nj are generated through the coupling
ðyNj

Sþ ỹNj
S†ÞN̄jNc

j in Eq. (3), the neutrino mass is found
to be expressed as

Mνij ¼
X3
k¼1

hνikh
ν
jkΛkeiðθkþρ0Þ;

Λk ¼
jλ̃5jhϕi2
8π2MNk

�
M2

Nk

M2
η −M2

Nk

�
1þ M2

Nk

M2
η −M2

Nk

ln
M2

Nk

M2
η

��
;

ð40Þ

where MNk
, θk, and M2

η are defined as

MNk
¼ ðy2Nk

þ ỹ2Nk
þ 2yNk

ỹNk
cos 2ρ0Þ1=2u;

tan θk ¼
yNk

− ỹNk

:yNk
þ ỹNk

tan ρ0;

M2
η ¼ m2

η þ ðλ3 þ λ4Þhϕi2: ð41Þ

The formula (40) can explain small neutrino masses
required by the neutrino oscillation data [32] even for
Nj with the mass of order TeV scale since the smallness of
jλ̃5j is naturally guaranteed by u ≪ M� as addressed above.
If we consider that the matrix Mν is diagonalized by

a unitary matrix Uν such as UT
νMνUν ¼ Mdiag

ν , the
PMNS matrix is obtained as VPMNS ¼ Ã†Uν where Ã is
fixed through Eq. (39). Since the matrix Ã is expected to
be almost diagonal from hierarchical charged lepton

masses, the structure of VPMNS is considered to be mainly
determined by Uν in the neutrino sector. It is well known
that tribimaximal mixing cannot realize a nonzero mixing
angle θ13, which is required by the neutrino oscillation
data. However, if the matrix Ã can compensate this fault, a
desirable VPMNS may be derived as VPMNS ¼ Ã†Uν even if
Uν takes the tribimaximal form. The tribimaximal struc-
ture in the neutrino sector can be easily realized if we
adopt a simple assumption for neutrino Yukawa couplings
such as [33]

hν1j ¼ 0; hν2j ¼ hν3j ¼ hjðj ¼ 1; 2Þ;
hν13 ¼ hν23 ¼ −hν33 ¼ h3: ð42Þ

Under this assumption, the mass eigenvalues of Mν given
in Eq. (40) are fixed as

mν
1 ¼ 0; mν

2¼ 3h23Λ3;

mν
3 ¼ 2½h41Λ2

1þh42Λ2
2þ2h21h

2
2Λ1Λ2 cosðθ1−θ2Þ�1=2: ð43Þ

This suggests that the squared mass differences required
by the neutrino oscillation data can be realized if both h2
and h3 take values of Oð10−2Þ for Λ2;3 ¼ Oð1Þ eV, which
can be realized for TeV scale Mη and MNj

. The diago-
nalization matrix Uν can be expressed as

Uν ¼

0
BBB@

2ffiffi
6

p 1ffiffi
3

p 0

−1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p −1ffiffi
3

p 1ffiffi
2

p

1
CCCA
0
B@

1 0 0

0 e−iγ1 0

0 0 e−iγ2

1
CA; ð44Þ

where γ1 and γ2 are defined as

γ1 ¼
θ3
2
; γ2 ¼

1

2
tan−1

�
h21Λ1 sinθ1þh22Λ2 sinθ2
h21Λ1 cosθ1þh22Λ2 cosθ2

�
: ð45Þ

We examine whether the present scenario works in this
simple tribimaximal case by fixing the relevant parameters.
For this purpose, we use the values of u and w given in
Eq. (24). Other input parameters are taken to be

ye ¼ ð0; 10−4; 0Þ; ỹe ¼ ð0; 0; 3.3 × 10−5Þ; x ¼ ð2.2 × 10−4; 1.5 × 10−3; 8 × 10−3Þ;
yE ¼ ỹE ¼ 3.3 × 10−6; he11 ¼ 5.7 × 10−6; he22 ¼ 1.2 × 10−4; he33 ¼ 7 × 10−3;

he12 ¼ he21 ¼ 4 × 10−5; he13 ¼ he31 ¼ 1.7 × 10−6; he23 ¼ he32 ¼ 4.7 × 10−4: ð46Þ

These give mass eigenvalues of the charged leptons as

m̃e1 ¼ 0.59 MeV; m̃e2 ¼ 0.106 MeV; m̃e3 ¼ 1.81 GeV; M̃E ¼ 3165 GeV: ð47Þ
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The PMNS matrix and the Jarlskog invariant Jl are
determined as5

VPMNS ¼

0
B@

0.837 0.526 0.149

0.412 0.672 0.615

0.360 0.521 0.774

1
CA; Jl ¼ −0.032;

ð48Þ

where the absolute values are presented for each element of
VPMNS. We find that these are a rather good realization of
the experimental results.
The imposed global symmetry in the model could

guarantee the stability of some neutral fields and present
candidates of DM. The present model has an inert doublet
scalar η and three right-handed neutrinos Nj, which are the
only fields with the odd parity of the remnant Z2 symmetry.
Since η is assumed to have no VEV, Z2 remains as an exact
symmetry. It guarantees the stability of the lightest one
with its odd parity as in the ordinary scotogenic model
where DM candidates are included in the model as crucial
ingredients. Possible DM candidates are the lightest Nj

or the lightest neutral component of η. Both of them
can have TeV-scale mass in a consistent way with the
neutrino oscillation data. In the case where N1 is DM with
a TeV-scale mass, the Yukawa coupling hνi1 should be
large to decrease its relic density to the required amount.
It causes a dangerous lepton-flavor-violating process such
as μ → eγ [34]. On the other hand, the lightest neutral
component of η can be a good DM candidate without
causing serious phenomenological contradiction. It has been
extensively studied as a CDM candidate, and it has been
found that its thermal relics in this mass range could have a
suitable amount if the quartic couplings λ3 and λ4 in Eq. (5)
take suitable values [26,35].

C. CP asymmetry in leptogenesis

In the ordinary scotogenic model for the neutrino mass
generation, required baryon number asymmetry cannot be
generated through thermal leptogenesis due to the decay of
the lightest right-handed neutrino N1 unless its mass is
larger than Oð108Þ GeV [26]. For sufficient production of
the thermal abundance of N1, large neutrino Yukawa
couplings hνi1 are required, and then larger N1 mass is
needed to make neutrino masses suitable for the explanation
of the neutrino oscillation data. On the other hand, small
couplings hνi1 are favored to sufficiently suppress the
washout of lepton number asymmetry generated through
the N1 decay. These fix the above-mentioned lower bound
of the N1 mass and also the lower bound of the reheating
temperature.

Fortunately, this bound could be relaxed automatically
in the present model. N1 could be generated in the thermal
bath through other built-in processes, that is, the scat-
tering of the vectorlike fermions such as ĒLER → NjNj,
ĒLeRi

→ NjNj, and D̄LdRj
→ NjNj, which are mediated

by the neutral scalars SR and SI . The second and third
ones among these are expected to give dominant contribu-
tions since relevant Yukawa coupling constants take larger
values in the previous examples. For example, the reaction
rate of the second process can be roughly estimated at the
temperature Tð>M̃EÞ as

ΓðEeÞ
S ðijÞ ≃ T5

64π

�
ðye2i þ ỹe2i Þðy2Nj

þ ỹ2Nj
Þ
�

1

m4
2

þ 1

m4
3

�
þ 2fðyei ỹNj

þ ỹei yNj
Þ2

− ðyei yNj
− ỹei ỹNj

Þ2g 1

m2
2m

2
3

�
; ð49Þ

where m2 and m3 are given in Eq. (15). Since this process
is irrelevant to the neutrino Yukawa couplings hνi1, they
can take sufficiently small values so as to make the washout
process ineffective.6 The heavy lepton E is expected to be
in the thermal equilibrium through the SM gauge inter-
actions if reheating temperature TR and its mass M̃E satisfy

M̃E < TR. Thus, if the reaction rate ΓðEeÞ
S ði1Þ of this

scattering and the Hubble parameter H satisfy a condi-

tion ΓðEeÞ
S ði1Þ ∼HðTÞ at the temperature T, N1 could be

produced sufficiently as long as the temperature T is larger
than MN1

. In fact, if we apply the parameters used in the
previous example, this condition is found to be satisfied
around the temperature7

T ∼ 2.3 × 103
�
10−4

yei

�
2=3
�
10−3

yN1

�
2=3
�

κ̃S
10−6

�
2=3

×

�
u

106 GeV

�
4=3

GeV: ð50Þ

The estimated lower bound of the reheating temperature in
Eq. (18) could be higher than this. If MN1

takes a value of
Oð1Þ TeV, its number density is expected to reach the
relativistic equilibrium value neqN1

ðTÞ of Oð10−3Þ.
On the CP asymmetry ε of the N1 decay, if we note that

all the Yukawa couplings hνij are real and it is independent
of the PMNS matrix, ε is found to be expressed as

5Here, we note that Jl does not depend on the Majorana
phases.

6This is allowed since the squared mass differences required to
explain the neutrino oscillation data can be caused by two right-
handed neutrinos N2 and N3 only.

7A value of κ̃S is referred to the result given in Eq. (A8).

CP ISSUES IN THE SM FROM A VIEWPOINT OF … PHYS. REV. D 108, 095046 (2023)

095046-9



ε ¼ 1

8π

X
j¼2;3

ðPih
ν
i1h

ν
ijÞ2P

ih
ν2
i1

f
�M2

Nj

MN1

�
sinðθ1 − θjÞ; ð51Þ

where fðxÞ ¼ ffiffiffi
x

p ½1 − ð1þ xÞ ln 1þx
x � and θj is given in

Eq. (41). It is interesting that CP phases which determine
the CP asymmetry ε can be clearly traced in this model.
Since the neutrino oscillation data require h2 and h3
defined in Eq. (42) to be Oð10−3Þ, ε can be estimated
as ε ¼ Oð10−7Þ for ρ0 ≃ π

4
. This suggests that the lepton

number asymmetry ΔL caused by this decay is given as
ΔL ¼ εneqN1

¼ Oð10−10Þ if the N1 decay delays until the
time when the washout of the generated lepton number
asymmetry is negligibly small.8 This ΔL is sufficient
to give a required baryon number asymmetry through
the sphaleron process. Since thermal leptogenesis could
work successfully at a scale much smaller than 108 GeV, a
lower bound of the reheating temperature estimated in the
previous part is expected to be sufficient.
To examine it in a more quantitative way, we solve

relevant Boltzmann equations numerically. We set param-
eters in the neutrino sector as

yN ¼ ð1.5 × 10−3; 3 × 10−3; 6 × 10−3Þ;
ỹN ¼ ð1.5 × 10−3; 0; 0Þ;
Mη ¼ 2 TeV; λ̃5 ¼ 10−5; h1 ¼ 2 × 10−8; ð52Þ

which gives MN1
¼ 2121 GeV, and then MN1

>Mη0 is
satisfied. For these parameters, the neutrino ocsillation data

and Eq. (43) fix the neutrino Yukawa coupling constants in
Eq. (42) as

h2 ¼ 6.9 × 10−3; h3 ¼ 2.3 × 10−3: ð53Þ

Using these and the parameters used in the previous
examples, we solve relevant Boltzmann equations for
Yψ ð≡ nψ

s Þ, where nψ is the number density of ψ and s is
the entropy density [26]. The result is shown in the left
panel of Fig. 2, which proves that sufficient baryon number
asymmetry YB ¼ 3.0 × 10−10 is generated. In the right
panel, the evolution of the reaction rates relevant to the
Boltzmann equations is plotted as a function of z. It shows
that substantial decay of N1 starts after the processes

plotted as ΓðηlÞ
N and ΓðllÞ

N , which cause the washout of
the lepton number asymmetry, are frozen out. These figures
support our above discussion on the leptogenesis in the
present model. Even for the low reheating temperature
estimated in the previous part, we find that thermal lepto-
genesis could occur successfully.

D. Electric dipole moment and g− 2 of leptons

New effects beyond the SM are expected to be caused
radiatively by the additionally introduced fields. If we
focus our study on ones in the lepton sector, the electric
dipole moment of leptons is a typical example relevant to
the CP violation. An operator relevant to it in the effective
Lagrangian is given as

ecαβ
2m̃β

ψ̄Lα
σμνψRβ

Fμν þ H:c:; ð54Þ

where ψα is a charged lepton mass eigenstate with mass
m̃α. It is related to the gauge eigenstate ΨL ¼ ðlL; ELÞT

FIG. 2. Left panel: evolution of YN1
and YL ≡ jYl − Ylj as a function of zð≡MN1

T Þ starting from zRð≡MN1

TR
Þ. We set YN1

ðzRÞ ¼
YLðzRÞ ¼ 0 as initial conditions and quantities given as the legend are plotted. Horizontal dashed lines represent a region of YL required to
generate the observed baryon number asymmetry through the sphaleron process in the model. Right panel: evolution of the relevant

reaction rate as a function of z. ΓðabÞ
c stands for the reaction rate for the scattering ab → ijmediated by c and ΓN1

D is the decay width ofN1.

8We should remind the reader that such a situation can be
realized for a sufficiently small hνi1 in a consistent way with the
neutrino oscillation data.
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through ψL ¼ ṼLΨL by using the unitary matrix ṼL
defined in Eq. (36). The same operator also contributes
to the anomalous magnetic moment of leptons and lepton-
flavor-violating processes such as lβ → lαγ. Using the
coefficient cαβ in Eq. (54), new contributions to the electric
dipole moment dψα

of ψα and its anomalous magnetic
moment Δaψα

are represented as

dψα
¼ −

e
m̃α

ImðcααÞ; Δaψα
¼ 2ReðcααÞ: ð55Þ

The branching ratio of the lepton-flavor-violating decay
lβ → lαγ for the case m̃β ≫ m̃α is also expressed by using
cαβ as

Br ¼ 48π3αe
ðm̃α

2GFÞ2
ðjcαβj2 þ jcβαj2Þ; ð56Þ

where GF is the Fermi constant and αe is the fine structure
constant of the electromagnetic interaction.
One-loop diagrams contributing to this operator in the

model are classified into three types whose internal lines
are composed of (i) EL;R and a scalar S or ϕ, (ii) NRj

and η,
and (iii) EL;R and a Z boson. The formula for the
coefficient cαβ caused by each diagram is presented in
Appendix B. Here, we have to remind the reader that
vectorlike fermions are introduced to explain the CP
phases in the CKM and PMNS matrices in this model.
This point is largely different from the models with
vectorlike leptons studied in [22]. As a result, their effect
on cαβ is expected to be largely suppressed since relevant
off-diagonal components of the mixing matrix ṼL should
be small enough to keep the approximate unitarity of the
CKM and PMNS matrices [32].
If we apply the parameters used in the previous parts to

this calculation, we obtain the predictions for the electric
dipole moment as

de ¼ 1.7 × 10−33; dμ ¼ 4.6 × 10−29; ð57Þ

where an e · cm unit is used. A dominant contribution
comes from the graph in type i. These are much smaller
than the present experimental upper bounds [32]. The
predicted anomalous magnetic moment of the electron
and the muon is, respectively,

Δae ¼ 7.2 × 10−22; Δaμ ¼ 1.2 × 10−15. ð58Þ

This shows that the muon anomalous magnetic moment
reported at FNAL [21] cannot be explained in this extended
model. On the lepton-flavor-violating decay μ → eγ, the
branching ratio is predicted as

Brðμ → eγÞ ¼ 1.4 × 10−21; ð59Þ

which is also much smaller than the present bound [36].
These results show that it is difficult to find evidence of the
model by using near-future experiments for them.

IV. SUMMARY

The SM has several issues for the CP symmetry.
Spontaneous CP violation might give both a unified
description for them and a clue to study physics beyond
the SM. In this paper, on the basis of this point of view, we
consider a model which could give a unified explanation for
the CP issues in the SM and study phenomenological
consequences of the model. The model is a simple extension
of the SM with some fields including vectorlike fermions
and singlet scalars. Since the model is constructed to be
reduced to the scotogenic neutrino mass model at the low-
energy regions, it can also explain the small neutrino mass
and the existence of DM in addition to the CP issues.
This model brings about the CP phases in the CKM and

PMNS matrices through the mixing between the ordinary
fermions and the introduced vectorlike fermions as a result
of the spontaneous CP violation in the scalar sector. In the
quark sector, since both contributions to θ̄ from radiative
effects and higher-order operators after the spontaneous
CP violation can be sufficiently suppressed, the strong
CP problem does not appear even if they are taken into
account. We also show that the model can cause a sufficient
CP asymmetry in the decay of the right-handed neutrinos
and then the required baryon number asymmetry can be
generated through low-scale thermal leptogenesis.
To show that the model works well, we present examples

of parameter sets which realize rather good agreement with
the CKM and PMNSmatrices predicted through the various
experimental results. Using these parameters, we prove that
the observed baryon number asymmetry can be induced
through thermal leptogenesis. An interesting point in the
leptogenesis is that the right-handed neutrinos can be
produced sufficiently through the built-in interaction inde-
pendently of the neutrino Yukawa couplings. As a result, the
low-scale leptogenesis occurs successfully in a consistent
way with the neutrino oscillation data even if the mass of the
right-handed neutrinos is of order of a TeV scale. It allows
an inflation scenario in which the reheating temperature is
of Oð10Þ TeV. We present such an example of inflation
which could be realized within the model.
One-loop diagrams caused by the vectorlike leptons in

the model could contribute to the electric dipole moment
and the anomalous magnetic moment of leptons and also
lepton-flavor-violating processes like μ → eγ. However,
since the vectorlike leptons are introduced to explain the
CP phases in the PMNS matrix, its unitarity constraint
heavily suppresses their effects to them. A similar feature is
expected in the quark sector. Unfortunately, it seems to be
difficult to examine the model by observing them in near-
future experiments.
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APPENDIX A: APENDIX A: POSSIBLE
INFLATION IN THE MODEL

In this Appendix, we discuss a possible inflation scenario
in the model. We suppose that the singlet scalar S couples
with the Ricci scalar in the Jordan frame as

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

plR − ξS1S
†SR −

ξS2
2
ðS2 þ S†2ÞR

þ ∂
μS†∂μS − V0ðS; S†Þ

�
; ðA1Þ

where Mpl is the reduced Planck mass. Its nonminimal
couplings can be rewritten as

1

2
½ðξS1 þ ξS2ÞS2R þ ðξS1 − ξS2ÞS2I �R; ðA2Þ

where SR and SI are real and imaginary parts of S,
respectively, and defined as S ¼ 1ffiffi

2
p ðSR þ iSIÞ. We focus

our consideration on a case where only one component SI is
allowed to have the nonminimal coupling [37]. It can be
realized by assuming a certain condition for ξS1 and ξS2
such as ξS1 ¼ −ξS2 , and then it reduces to an inflation
model with 1

2
ξS2IR where ξ is fixed as ξ≡ ξS1 − ξS2 > 0.

We review this scenario briefly here.
If we consider the conformal transformation for a metric

tensor in the Jordan frame

g̃μν ¼ Ω2gμν; Ω2 ¼ 1þ ξ
S2I
M2

pl

; ðA3Þ

we have the action in the Einstein frame where the Ricci
scalar term takes a canonical form [38],

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

2
M2

plR̃þ 1

Ω2
∂
μSR∂μSR

þ 1

Ω4

�
Ω2 þ 6ξ2

S2I
M2

pl

�
∂
μSI∂μSI −

1

Ω4
V0ðSR; SI

��
;

ðA4Þ

where V0 stands for the κ̃S term in Eq. (10). We neglect u in
V0 since it is much smaller thanOðMplÞ that is a value of SI
during the inflation. The kinetic term of SI in Eq. (A4) can
be rewritten to the canonical form by inflaton χc, which is
defined by

Ω2
dχc
dSI

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2

S2I
M2

pl

s
: ðA5Þ

The potential of χc can be fixed through VðχcÞ ¼ 1
Ω4 VðSIÞ

by using this relation. It can be approximately expressed as
V ¼ κ̃S

4ξ2
M4

pl at the large field regions χc > Mpl. Results of

the cosmic microwave background observations put con-
straints on the model parameters in the potential V. The
slow-roll parameters in this model can be evaluated by
using Eq. (A5) as [39,40]

ϵ≡M2
pl

2

�
V 0

V

�
2

¼ 8M4
pl

ξð1þ 6ξÞχ4c
;

η≡M2
pl
V 00

V
¼ −

8M2
pl

ð1þ 6ξÞχ2c
; ðA6Þ

where V 0 stands for dV
dχc
. If we use the e-foldings numberN k

from the time when the scale k exits the horizon to the
end of inflation, these slow-roll parameters are found to
be approximated as ϵ ≃ 3

4N 2
k
and η ≃ − 1

N k
. Thus, the

model predicts favorable values for the scalar power index
as ns ¼ 0.958–0.965 and the tensor-to-scalar ratio as
r ¼ 0.0048 − 0.0033 for N k ¼ 50–60.
The spectrum of the cosmic microwave background

density perturbation predicted by the slow-roll inflation
is known to be expressed as [39,40]

PðkÞ ¼ As

�
k
k�

�
ns−1

; As ¼
V

24π2M4
plϵ

����
k�

: ðA7Þ

If we use the Planck data As ¼ ð2.101þ0.031
−0.034Þ × 10−9 at

k� ¼ 0.05 Mpc−1 [41], we find a constraint on the coupling
constant κ̃S as

κ̃S ≃ 1.2 × 10−6
�
ξ

50

�
2
�

55

N k�

�
2

; ðA8Þ

and the Hubble parameter satisfies HI ¼1.5×1013ð 55
N k�

Þ
GeV during the inflation.

APPENDIX B: APENDIX B: FORMULAS
FOR RADIATIVE PROCESSES
IN THE LEPTON SECTOR

In this Appendix, we present formulas of the coefficient
cαβ in Eq. (54) caused by one-loop diagrams [42].
Diagrams of types i and ii are shown in Fig. 3. Yukawa
interactions relevant to i are given in Eq. (2). They are
expressed by using the mass eigenstates ψα as
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X4
α;β;a¼1

" X3
j¼1

xjffiffiffi
2

p ṼL
αj

!
ṼR†
4βO

T
1aχaψ̄LαψRβ þ

 X3
j¼1

yej þ ỹejffiffiffi
2

p ṼR†
jβ

!
ṼL
4αO

T
2aχaψ̄LαψRβ

þ
 X3

j¼1

iðyej − ỹejÞffiffiffi
2

p ṼR†
jβ

!
ṼL
4αO

T
3aχaψ̄LαψRβ þ H:c:

#
; ðB1Þ

where ṼR is a unitary matrix which diagonalizes the lepton mass matrix Ml as ṼLMlṼR† ¼ Mdiag
l . Taking account of

these interactions, the contribution from these diagrams to cαβ can be calculated as

cSϕαβ ¼ 1

16π2

 X3
i¼1

xiṼL
iα

! X3
j¼1

ðyj þ ỹjÞṼR†
jβ

!X4
a;γ¼1

OT
1aO

T
2aṼ

L
4γṼ

R†
γ4

m̃γm̃β

m2
a

J

�
m̃2

γ

m2
a

�

þ i
16π2

 X3
i¼1

xiṼL
iα

! X3
j¼1

ðyj − ỹjÞṼR†
jβ

!X4
a;γ¼1

OT
1aO

T
3aṼ

L
4γṼ

R†
γ4

m̃γm̃β

m2
a

J

�
m̃2

γ

m2
a

�
;

cSαβ ¼
1

32π2

 X3
i¼1

ðyi þ ỹiÞṼR
iα

! X3
j¼1

ðyj þ ỹjÞṼR†
jβ

!X4
a;γ¼1

OT
2aO

T
2aṼ

L†
4γ Ṽ

L
γ4

ðm̃α þ m̃βÞm̃β

2m2
a

H

�
m̃2

γ

m2
a

�

þ 1

32π2

 X3
i¼1

ðyi − ỹiÞṼR
iα

! X3
j¼1

ðyj − ỹjÞṼR†
jβ

!X4
a;γ¼1

OT
3aO

T
3aṼ

L†
4γ Ṽ

L
γ4

ðm̃α þ m̃βÞm̃β

2m2
a

H

�
m̃2

γ

m2
a

�
;

cϕαβ ¼
1

32π2

 X3
i¼1

xiṼL
iα

! X3
j¼1

xjṼ
L†
jβ

! X4
a;γ¼1

OT
1aO

T
1aṼ

R†
4γ Ṽ

R
γ4

ðm̃α þ m̃βÞm̃β

2m2
a

H
�
m̃2

γ

m2
a

�
; ðB2Þ

where m̃4 ¼ M̃E and m2
a is the ath eigenvalue of the mass

matrix M2
s and given in Eq. (15). cSϕαβ , c

S
αβ, and cϕαβ are

contributions caused by the left three diagrams shown in
Fig. 3, respectively. Loop functions JðrÞ and HðrÞ are
defined as

JðrÞ ¼ 1

2ðr − 1Þ3 ð3 − 4rþ r2 þ 2 ln rÞ;

HðrÞ ¼ 1

6ðr − 1Þ4 ð2þ 3r − 6r2 þ r3 þ 6r ln rÞ: ðB3Þ

One might expect that the diagram in which the chirality
flip occurs in the internal fermion line brings about the
enhancement via its large mass. However, since ṼL is
related to the PMNS matrix in this model, the unitarity
requirement makes the mixing between the light leptons
and vectorlike leptons small. As a result, effective coupling

is considered to be strongly suppressed, and the enhance-
ment is ineffective.
Yukawa interactions relevant to ii are given in Eq. (3). If

we rewrite them by using the mass eigenstates ψα, they can
be expressed as

hνijṼ
L
αiψ̄Lα

η−Nj þ H:c: ðB4Þ

Their contribution to the coefficient cαβ can be calculated as

cηαβ ¼
1

16π2
X3
i;j;k¼1

hνikṼ
L
αih

ν
jkṼ

L
βje

iθk
ðm̃α þ m̃βÞm̃β

2m2
0

I

�
M2

Nk

m2
0

�
;

ðB5Þ

where MNk
and θk are given in Eq. (41). A loop function

IðrÞ is defined as

FIG. 3. One-loop diagrams caused by the scalar exchange, which give a new contribution to the effective operator in Eq. (54). They are
drawn by using the gauge eigenstates.
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IðrÞ ¼ 1

6ðr − 1Þ4 ð−1þ 6r − 3r2 − 2r3 þ 6r2 ln rÞ: ðB6Þ

If we apply tribimaximal assumption (42) to this for-
mula, coefficients relevant to interesting quantities can
be rewritten as

cη11 ¼
1

16π2
m̃2

1

m2
0

h23e
iθ3I

�
M2

N3

m2
0

�
;

cη22 ¼
1

16π2
m̃2

2

m2
0

�
h21e

iθ1I

�
M2

N1

m2
0

�
þ h22e

iθ2I

�
M2

N2

m2
0

�

þ h23e
iθ3I

�
M2

N3

m2
0

��
;

cη12 ¼
1

32π2
m̃2

2

m2
0

h23e
iθ3I

�
M2

N3

m2
0

�
; ðB7Þ

where we use the assumption that ṼL is almost diagonal.
Diagrams of type iii are shown in Fig. 4. Gauge

interaction relevant to these is given as

g
cos θW

"X3
j¼1

ðgLlLj
γμlLj

þ gRēRj
γμeRj

Þ

þ gRĒLγ
μEL þ gRĒRγ

μER

#
Zμ; ðB8Þ

where gL and gR are defined as gL ¼ − 1
2
þ sin2 θW and

gR ¼ sin2 θW . Since the extra lepton EL is introduced as an
SUð2ÞL singlet, flavor-changing couplings appear only in
the left-handed neutral current part as

g
cosθW

X4
α¼1

�X4
β¼1

ψ̄Lα
γμðCLÞαβψLβ

þgRψ̄Rα
γμψRα

�
Zμ; ðB9Þ

where a charge matrix CL is expressed as CL ¼ ṼLCLṼ
†
L.

Although CL is a diagonal matrix, its elements are
ðgL; gL; gL; gRÞ, and then CL has nonzero off-diagonal
components to cause flavor mixings. Their contribution
to cαβ can be calculated as

cZαβ ¼
1

16π2
g2

cos2θW
ðCLÞαβgR

m̃2
β

m2
Z
F

�
m̃2

β

m2
Z

�

þ 1

32π2
g2

cos2θW

X4
γ¼1

ðCLÞαγðCLÞγβ

×
ðm̃α þ m̃βÞm̃β

2m2
Z

G

�
m̃2

γ

m2
Z

�
− cSMδαβ; ðB10Þ

where cSM represents the contribution in the SM corre-
sponding to other two terms. FðrÞ and GðrÞ are loop
functions defined as

FðrÞ¼ 1

2ðr−1Þ3 ð−4þ3rþr3−6r lnrÞ;

GðrÞ¼ 1

6ðr−1Þ4 ð−8þ38r−39r2þ14r3−5r4þ18r2 lnrÞ:

ðB11Þ

Although the chirality flip occurs in the internal line in the
first diagram, the enhancement via large fermion mass is
not caused since the right-handed current is flavor diagonal.
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