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CP issues in the SM from a viewpoint of spontaneous CP violation
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The standard model (SM) has several issues related to the CP violation which could give clues to search
physics beyond the SM. They are a CP phase in the Cabibbo-Kobayashi-Maskawa matrix, the strong
CP problem, CP phases in the Pontecorvo-Maki-Nakagawa-Sakata matrix, and CP asymmetry in lepton-
number-violating processes related to baryon number asymmetry. We consider a model which could give a
unified explanation for them in a framework of spontaneous CP violation. It is an extension of the SM with
vectorlike fermions and singlet scalars. In this model, they are explained by a common complex phase
caused in the spontaneous CP violation. We present concrete examples for them and also discuss some

relevant phenomenology.

DOI: 10.1103/PhysRevD.108.095046

I. INTRODUCTION

Origin of CP violation in the quark sector of the
standard model (SM) is considered to be given by com-
plex Yukawa couplings [1]. They fix up-type and down-
type 3 x 3 quark mass matrices M, and M . A CP phase
appears in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix by considering their mass eigenstates. Since it is
irrelevant to a € parameter in the QCD sector [2], the
strong CP problem [3] is caused. Although an experi-
mental bound for the neutron electric dipole moment [4]
requires 0 = 0 + arg[det(M, M,)] < 107'° [5], we cannot
explain why irrelevant ones can realize such a small value.
This problem is known to be solved by the axion [6-8]
caused by spontaneous breaking of the Peccei-Quinn (PQ)
symmetry [9]. Axion physics severely constrains a breaking
scale of the PQ symmetry [10].

An alternative solution for the strong CP problem is
given by the Nelson-Barr mechanism based on sponta-
neous CP violation [11]. Since CP invariance guarantees
0 = 0 in this scenario, smallness of # can be explained
if the spontaneous CP violation occurs satisfying
arg[det(M,M,)] = 0. A crucial problem is how simple
models can be constructed so as to generate a CP phase in
the CKM matrix keeping @ < 107!, For such an example
among several models, one may consider a model pro-
posed by Bento, Branco and Parada (BBP) [12], which is
an extension of the SM with vectorlike fermions and a
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complex singlet scalar. In this model, a CP phase could
appear in the CKM matrix when the CP symmetry is
spontaneously broken in the scalar sector [13]. It is caused
via mixing between SM fermions and vectorlike fermions
mediated by the singlet scalar.' In their model, extra
heavy vectorlike down-type quarks are introduced, and
Z, symmetry is imposed to control a down-type quark
mass matrix. Unfortunately, one-loop corrections and
contributions from higher-dimension operators to the
quark mass matrix could generate corrections, which could
violate 6 < 1071 [17].

In the lepton sector, long baseline neutrino oscillation
experiments such as NOvA and T2K [18,19] suggest the
existence of a CP-violating phase in the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [20]. If lepton Yukawa
couplings are assumed to be complex as in the quark sector,
it can be also derived in the same way as the CKM matrix as
long as neutrinos are massive. A similar idea to the BBP
model may be applicable to the lepton sector in order to
explain the CP phase in the PMNS matrix. In that case,
since a lepton mass matrix is irrelevant to the strong CP
problem, no constraint on the mass matrix is imposed by it
differently from the quark sector. As a result, such an
extension could be relevant to the recently confirmed muon
anomalous magnetic moment which shows the deviation
at 4.2¢ from the SM prediction [21]. Several articles sug-
gest that the existence of charged vectorlike leptons could
explain it [22]. It seems to be an interesting issue whether
this kind of framework could give any connection between
the origin of a complex phase in the PMNS matrix and large
deviation of the muon anomalous magnetic moment from
the SM prediction.

'Extension of the model has been discussed from several
phenomenological viewpoints. For example, see [14—16].
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It is well known that baryon number asymmetry existing
in the Universe [23] cannot be understood in the SM.
Leptogenesis based on out-of-equilibrium decay of heavy
right-handed neutrinos [24] is considered to be a most
promising scenario for it. Although CP asymmetry in their
decay is a crucial parameter, it is difficult to fix it, and we
have to treat it as a free parameter since the identification
of relevant CP phases is not easy. Additionally, since the
mass of the lightest right-handed neutrino should be larger
than 10° GeV for successful leptogenesis [25,26] in usual
scenarios for the small neutrino mass generation [27,28],
reheating temperature is required to be higher than it. It
constrains possible inflation scenarios.

In this paper, we study these issues by considering a
model based on the spontaneous CP violation. We show
that the model can explain the CP phases in the CKM
and PMNS matrices in a consistent way with the strong
CP problem. We also clarify a CP phase relevant to
the CP asymmetry in the decay of the right-handed
neutrinos and show that much lower reheating temperature
than 10° GeV is allowed for successful leptogenesis in
the model.

The remaining parts of the paper are organized as
follows. In Sec. II, we introduce our model and discuss its
scalar sector. We estimate reheating temperature expected
in an inflation scenario supposed in the model. In Sec. I,
we discuss a CP phase in the CKM matrix and the strong
CP problem and also the neutrino mass generation and CP
phases in the PMNS matrix. We estimate CP asymmetry
in leptogenesis and show that leptogenesis occurs suc-
cessfully at a low scale in a consistent way with the
expected reheating temperature in the supposed inflation
scenario. We also show that the anomalous magnetic
moment of muon suggested by the experiments cannot
be explained in this model. Section IV is devoted to the
summary of the paper.

II. MODEL FOR SPONTANEOUS CP VIOLATION

We consider an extension of the SM by introducing
vectorlike charged leptons E; x and down-type quarks
Dy g, right-handed neutrinos N;, and several scalars, that
is, a complex scalar S, a real scalar ¢, and an inert doublet
scalar n. We also impose a global discrete symmetry
Z4 x Z. The model is intended to give a solution to the
strong CP problem and bring about CP phases in the PMNS
matrix simultaneously along the lines of the Nelson-Barr
mechanism [11]. After spontaneous breaking of the discrete
symmetry, the model is reduced to a scotogenic model for
the neutrino mass [28] at low-energy regions effectively.
Representation of the introduced fields under [SU(3). x
SU(2), x U(1)y| x Zy x Z]; is summarized in Table 1.
Since the SM contents are assumed to have no charge of
Z, x Z},, the invariant Yukawa terms relevant to quarks are
given as

TABLE 1. Representation of vectorlike fermions and scalars
added to the SM. In this table, SM stands for SU(3). x
SU(2), x U(1)y. They play crucial roles in solving the strong
CP problem and also in explaining CP phases in the PMNS
matrix, the neutrino mass, and dark matter.

SM zZ, Z, SM zZ, Z
E, (L1,-1) 2 2 D (31-1H 2 2
Ep (1,1,-1) 0 0 D @31-L 0 2
N, (1.1,0) 1 1 S (1,1,0) 22
n 12-3) 3 3 c (1,1,0) 20

3 3
L:q > Z [Z h?th¢de + (y?S + y?ST)DLdR,»
i—1 | =1
+ ypoD; Dg +He., (1)

where g, and dg, stand for the SM doublet and singlet
. 2

quarks, respectively.” Some new Yukawa terms are also

introduced to charged leptons and neutrinos

3 3
cfaz[zhw%+<yss+y;swaeR,

i=1 |j=1

+xi?Li$ER + (yES +57EST)ELER +H.c., (2)

3 3
£, Z [2 el N+ (yn, S + 3y, STNNG + Hee. |
j=1 Li=

(3)

where 7 and eg. stand for the SM doublet and singlet
leptons, respectively.

Scalar potential invariant under the assumed symmetry
can have a lot of terms. However, in the present study, we
just assume rather restricted ones among them as

V - Vl + V2,
1 1
Vl = K‘S(STS)2 + ZK604 + EKSG(STS)G2 + KS(ﬁ(STS) (¢T¢)

1 1
+ Ekmﬁaz(ﬂd)) + mi(S'S) + Emgaz + V. (4)

Va=2($'$)* +n'n)* +25(¢*¢) (n'n) + 24 (@'n) (n" )

s s ;
+2 [ﬁ (' )2 +H.c} +mgdtd+min'n. (5)

%¢ is an ordinary Higgs scalar. Definition ¢ = ir,¢* is used.
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where M is a cutoff for physics relevant to the inert doublet
n. We list terms up to dimension 5. Several terms allowed
under the imposed symmetry are assumed to be zero in this
potential, for simplicity. Since CP symmetry is assumed to
be exact in the model, all the coupling constants in the
Lagrangian are real.

V,, is composed of the S-number-violating but Z, x Z-
invariant terms such as S?> and $* [13]. Spontaneous CP
violation could be caused in this part if S gets a vacuum
expectation value (VEV). As such a simple example of V,,,
we consider

V= a(St 4+ S™) + (S + 572)gTg. (6)

If we express S as § = % Se'r, p appears only in V,, which
can be rewritten as

2
vb=a(32cos2p+£¢*¢)2—§i4—1ﬂ6—a<¢*¢)2. (7)

Thus, an angular component p is fixed at this potential
valley in the neutral field space. It is expressed by using S
and a radial part ¢, of the neutral component of the doublet
scalar ¢ as

_ Py
4a8?%° (8)

cos2p =
as long as the coupling constants a and f take appropriate
values.
Here, we specify the vacuum structure of this model.
We assume that these scalars take VEVs such as

v

@=w. @=(7). =0 ©

u
Sy =——e'0,
) ’

V2
!

211’1}2
(ksp + 28)vucos py
(ksp — 2p)vusinp,

Ko UW

M2 =

If M3 is diagonalized as OMZO" = M 4.,

(ks + 2p)vucos py
2(ks + da)u*cos’p,
(Rg — da)u? sin 2p,

KgsWU COS Py

where v(=(¢°)) =246 GeV and u,w > v is assumed.’
Since u > v is supposed, spontaneous CP violation
could occur, and p, ~ 7 is realized. Potential for the neutral
scalars in V| at the potential valley defined by Eq. (8) can
be approximately expressed as

Ky K
VO(Sg.S;.0) = + (6% = w?)2 + —43 (8% 4 82 — y2)2
K{S
+ —45 (6 —w?)(S% + 57 —u?), (10)

where [kg,| and |k,,| are assumed to be much smaller than
others. The coupling &g is defined as Ky = kg — 2a.
To guarantee the stability of the potential (10), these
couplings should satisfy the conditions

Ky, kg >0, 4Rk, > K. (11)

Absolute values of these couplings could be con-
strained by a supposed inflation scenario as discussed
later.

It is useful to note that the imposed discrete sym-
metry Z, x Z is spontaneously broken to its diagonal
subgroup Z, in this vacuum. This Z, could stabilize
the lightest field with its odd charge and guarantee the
existence of candidates of dark matter (DM). Since
the remaining Z, keeps a uniqueness of the vacuum, the
appearance of cosmologically dangerous stable domain
walls associated to the breaking of discrete symmetry
[29] is escapable.

The neutral scalar sector characterizes the model
depending on this vacuum. A squared mass matrix for
¢, Sg» Sy, and & is given for a basis ¢7 = (¢, Sk, S, ¢) as

(ksp = 2p)vusin p
(kg — da)u? sin 2p,

Ko UW
KgsWU COS g
2(Rg + 4a)u’sin’p, kg wu sin pg

KW Sin py 2K ,w?

by using an orthogonal matrix O, the mass eigenstate y is related to ¢ as

x = Og. Since the couplings |kg,| and |k,,| in Eq. (4) are assumed to be sufficiently small and v < u, w is satisfied,
mixing of other scalars with ¢ is small enough not to affect the nature of the neutral Higgs scalar largely. Moreover, we
consider a case where |kg,|u < k,w is satisfied. If we focus our study on such a case, y; ~ ¢, and y, ~ o are satisfied, and
x> and y3 are linear combinations of S and S; as

x> =Sgcosy —S;siny,  y3;=Sgsiny + S;cosy, (13)

?Although fine-tuning is required to realize this, we do not discuss it further and just assume this hierarchical structure here.
*We note that A, is shifted to 4, = 1, — % in V, due to an effect of V.
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where  is found to be defined as

R — 4
tan 2y = — ks 4a tan 2p. (14)

Kg +4a

If we suppose p, =~ %, mass eigenvalues m; of these scalars
y; are approximately evaluated as

m3 ~2),v%, m3 =~ 2kgu?,

m3 =~ 8au?, m3 =~ 2k w?. (15)

Taking account of Egs. (8) and (14), py and y are found to
be expressed as

2

T v
2_+ﬂ 2

4 8au

pra
Po 4 R—4da8au?’

Y=

These singlet scalars could cause several effects on the
phenomenology beyond the SM. One of such issues is
inflation of the Universe and reheating temperature
expected from it. Here, we consider S; as a candidate of
inflaton. Details of this inflation are discussed in
Appendix A. In this part, we only focus on reheating
temperature realized in this inflation scenario through a
perturbative process, which is expected to give a lower
bound for possible reheating temperature.

3( & \1/4 u
8.7 x 10 (ﬁ) (m) GeV

32 10°(54) (122)

TR:

where g, =130 is used and C=2.7 x 107(&)"/*x
(tgrssy) /2. It suggests that this reheating temperature
cannot be high enough for the thermal leptogenesis in
the ordinary seesaw model for the neutrino mass [25,26].
However, it is sufficiently high for successful leptogenesis
in the present model. We will see it later.

Finally, we note here that the inflation scale H; is found
to be much higher than the CP-breaking scale u supposed
in this model. It could bring about a serious domain wall
problem caused by the spontaneous CP violation [30].
However, since the inflation occurs through the inflaton
which breaks the CP symmetry, the CP symmetry is
violated during the inflation. As a result, the relevant
domain wall is expected to be inflated away. It is not
recovered throughout the inflaton oscillation period. Thus,
the problem seems not to appear since the reheating
temperature is lower than the CP breaking scale u as
shown in Eq. (18). It is noticeable that even such a low
reheating temperature could make leptogenesis successful
in the present model.

10° GeV

When the inflaton amplitude becomes O(u) and the

Hubble parameter takes a value H(u) = (é’iﬁ)lﬂ, the
pl

inflaton is considered to start decaying through S; — ¢'¢
in the case y;i, Vi VN, > \/Kg, for which the S; decay to
fermions Dy Dg, E; Eg, and Ng Np are kinematically
forbidden. Its decay width is estimated as

1+ i
[ V275 (17)

where a = 0.1k is assumed for simplicity. If ' > H(u) is
satisfied, instantaneous decay and thermalization are
expected to occur. Then, reheating temperature is deter-
mined by Z g, 7% = 1&u®, where g, represents relativistic
degrees of freedom in the model. We note that Kg is
constrained by the cosmic microwave background data
as discussed in Appendix A. In the case ' < H(u),
instantaneous decay cannot be applied, and reheating
temperature should be estimated through I' = H(T) where

22 AN\ 1/2 . .
H(T) = (‘gi;) . Thus, the reheating temperature is
pl

fixed depending on the coupling constant kg, as

for |K'5¢| > C,
(18)

u )1/2 GeV for |kg,| < C,

[

II1. UNIFIED EXPLANATION OF THE CP ISSUES
IN THE SM

CP issues in the SM could be treated in a unified way
from the CP phase caused by the spontaneous violation
discussed in the previous section. We discuss them in this
section. A CP phase in the CKM matrix is shown to be
derived using the Nelson-Barr mechanism. The constraint
on the 6 can be satisfied even if the radiative effects are
taken into account. CP phases in the PMNS matrix are also
shown to be derived in the same way as the CKM phase.
Baryon number asymmetry could be generated by thermal
leptogenesis through the decay of right-handed neutrinos
under the previously estimated reheating temperature.
Sufficient CP asymmetry in that decay is shown to be
caused in a quantitatively fixed way.

A. CKM phase and solution for the strong CP problem

Yukawa interactions shown in Eq cause a 4 x 4 mass
matrix MY for down-type quarks as
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wn D)) o

qr,> VL ]__;1 up Dy )
where m{, = %h;’jv, Fé = %(y;’e”’o + §9e#0)u, and
up = ypw. We note that each component for g, Dp in
Mg is zero because of the imposed discrete symmetry.
Since an up-type quark mass matrix M, is real by the
assumed CP invariance and arg(det MY) = 0 is fulfilled as
found from Eq. (19), 6 = 0 + arg(det M, M) = 0 is still
satisfied for p, # 0 after the spontaneous CP violation.
This means that the strong CP problem is solved at tree
level by the Nelson-Barr mechanism. On the other hand, a
CP phase in the CKM matrix could be caused from the CP
phase py.

To see how the phase p, can generate the CP phase in the
CKM matrix, we consider the diagonalization of a matrix
MOIMY by a4 x 4 unitary matrix V, as V, MOMS V] Tt
may be expressed as

A B mdde mdfd’f AT CT
(e o) s 0rr ) (5 1)
my 0
B < 0 M%)’

where a 3 x3 matrix /% in the right-hand side is
diagonal in which the generation indices are abbreviated.
Equation (20) requires

(20)

mim®* = ATi2A + CTM?3,C,

Fimdt = Biin2A + D'M3C,
13 + FAFY = BB + D' D. (21)
|

y?=(0,5.2x1074,0), ¢ =(0,0,1.2 x 1073),

hd, =6.0x107°  hd, =65x107*,
hdy, = h§, = 1.45x 107,

the mass eigenvalues of the down-type quarks are
obtained as

g, = 4.7 MeV,
g, = 4.2 GeV,

ﬁ’ldz =95 MCV,

Mp = 1646 GeV. (26)

The CKM matrix and the Jarlskog invariant J,, [31] are
determined as

hiy = h$, =7.0x 107,

Since u2 + FIF? could be much larger than each
component of F?m“’, we find that B, C, and D can be
approximated as

]:’dmd’r

Amd Fat
Cy———r
pup + FOFE

N =, Dzl?
M2D+f'df'd.

(22)

which guarantee the approximate unitarity of the matrix A.
In such a case, it is also easy to find that

A7 2A = mimdt — md Fét Fdmdi (23)

1
iy + FAF

The right-hand side is an effective mass matrix of the light
down-type quarks which is derived through the mixing with
the extra heavy quarks. Since the second term can have
complex phases in off-diagonal components unless j)jd is
equal to y;’ , the matrix A could be complex. Complex
phases in the matrix A could have a substantial magnitude
since the second term is comparable with the first term as
long as p3, < FOFT is satisfied.

As a reference, we show an example of the CKM
matrix obtained in this scenario by assuming that the
up-type quark mass matrix is diagonal. In this case, the
CKM matrix is given as Ve = A. If we take the relevant
VEVs as

u=10% GeV, w = 10° GeV (24)
and Yukawa coupling constants as
yD = 10_2,
hdy =3.5x 1072,
hdy = hd, = 1.6 x 1073, (25)
I
0.974 0.225 0.008
Vekm = | 0225 0973 0.047 |, J,=1.64x 1073,
0.003 0.048 0.999
(27)

where the absolute values for the components of Vcxm
are presented. This example suggests that suitable param-
eters could reproduce the experimental results well in this
framework.

For the strong CP problem, Eq. (19) does not mean
to give a stable solution. One-loop radiative effects and
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FIG. 1.
éhfj, 514, and Sup from left to right, respectively.

higher-order effective operators could give complex
corrections to the Yukawa couplings [17], which add
CP-violating contributions to each component of the
mass matrix (19). Since they could violate the constraint
0 < 10710 easily, we need to examine whether the correc-
tions are small enough to give a satisfactory solution for

J=1

f{(y, + 39) siny + i(y9

we find that they can be estimated, respectively, as

d ~
Sh, =

M
X|: ¢ {(y]JFy])COSl/’_l(y'
m3

+ Ssed v

3

KS¢WD
5f¢ ~—1 hé,
/i 327° (u ) Z {

Ksg ﬂD

3

3
u . .
Sup =275 > A0+ 5¢) cospo — ilyf -
=

{8+ 5¢) cosy —i(yd —

One-loop diagrams which give complex contributions to the down-type quark mass matrix M . Each diagram corresponds to

the strong CP problem. One-loop complex corrections to
the coupling constant h?, 7> a coupling constant f¢ for the
operator dL,.CbDR which is zero at the tree level, and the
mass y are caused by diagrams shown in Fig. 1, respec-
tively. If we note that relevant Yukawa interactions in

Eq. (1) can be rewritten by using Eq. (13) as

3
~ - 1 . ) dy s =
Z [hfljédeJdR + E {(Y;j + J’f) cosy — l()’? - )’j!) sin l//})(zDLdR,

—3{) cosylysDpdg, +Hee. |, (28)

(u > Zh (y{ + 3¢) cos po — i(y{ — §) sin py }
§9) siny} cos(po + )

{4 +39) siny + i(y§ = ) cosy} sin(py +w)}

§¢) siny} cos(py + w)

{¢ + 5¢) siny +i(y¢ — 3¢) cosy} sin(py + w)} :

54) sinpo }

Kol mj d_ ~d cod _mdY o
X [ In| =5 |[{(y{ +7) cosy —i(y§ — 3¢) siny} cos(pg + )
m

my —mj; 2

Kso

u? m? _ .
t— 2ln(m:>{(yj +59) siny +i(yf = 39) cosyr} Sln(ﬂo*“/’)} (29)

my —m3

where m3, m3, and m2 are the scalar mass eigenvalues given in Eq. (15).
On the other hand, higher-order operators which give complex contribution to them at low-energy regions come from

dimension-6 ones,
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52 oS - - S
de’de —d §Dp, — 0D Dg, (30)
o3 " 3

where the O(1) coupling constants are supposed for them.
Since the dominant contributions are expected to come

from the one-loop contributions in the case 3~ = O(107"?),
p!

the mass matrix of the down-type quarks is modified to
ohiv  Sfdv

Md:Mg[H(Mg)—l( f )} (31)
5.7:d 5/11)

Since the second term is much smaller than the first term in
the right-hand side, 6 = arg(det M) can be estimated as

f=Im [tr{(/\/l?z)_l @Z: ZZ) H

—im [tr((hd)*éhd)—ﬂl<fd<hd>-lafd—au0>}

. 3
Kg
ln<4 )s1n2 Po+w) E yj —y/ (32)

J=1

1 Ks,U>
12872 kw2

where we use Eq. (29) in the last equality. It is caused
by Im[‘sﬁ] as a result of cancellation between other

contributions.

If we use Eq. (16) for py and y and the parameters
given in Eq. (25), which fixes Y ;(yf* = 79%) to 0(107°),
the constraint 6] < 107! can be expressed as

2
K'S0|v_2n<:S) <102, (33)
a

Ky W

This condition can be easily satisfied for the supposed
couplings by taking account of v”v—z = 0(107°). In relation to
this, it may be useful to note that dominant one-loop
correction to kg, caused by the fermion loop could be
estimated as

13
OKss —TZ

k=1

M2
+ §42) 1nu—§‘. (34)

It is clear that this correction does not contradict the above
condition. The present analysis shows that the strong CP
problem can be solved in the model even if the radiative
effects are taken into account. Here, on the points suggested
in [17], we should note that the above result is obtained
under the assumption that the couplings s, and ,, of the
new singlet scalars with the Higgs scalar are sufficiently
small, and additional fine-tuning is required in the scalar
sector. In this sense, we might consider that the strong CP
problem is replaced with the small Higgs mass problem in
this model.

B. CP PHASES IN THE PMNS MATRIX AND DM

A CP phase can appear in the PMNS matrix through the
couplings of the singlet S with the vectorlike charged
leptons in the same way as in the CKM matrix case. In fact,
the Yukawa interactions shown in £, cause a 4 X 4 mass
matrix M, as

L mé, G, er.

¢, E ! )( ) 35

(o) (5 3
where mf; = h{v, F§=5(y5e™ +55e ), G =
1

v, and Up = %(yEe"/’O + Jge~?)u. The difference
from Mg appears in nonzero components G; and the mass
ug. Following the CKM case, we consider the diagonal-
ization of a matrix /\/le/\/lz by a 4 x 4 unitary matrix V; as
VLMKM;VZ. It can be represented as

(A E) ( mm®" + GG m¢Ft + upG > <AT C‘*)

Cv D ./':'emﬁ#-gTﬂE |ME|2_|_]:'efeT B% DT
2.0

_ <’" ! ) (36)
0 M

where a 3 x 3 matrix 722 in the right-hand side is diagonal
again. Equation (36) requires

mem*" + GG" = ATin 2A + CTMZ C
]:e et +gT”E BT 2A—|—D+M2C
el + PO = Bk BGD. ()

Since |ug|* + F¢F¢" is much larger than each components
of Femer + Gy, we find that B,C, and D can be appro-
ximately expressed in the same way as the case of the
CKM matrix,

Am* F + pG)

femeT‘FgTﬂE ~
ugl* + FeFet

B~— C~ -, D~1.
lug|* + FeFe

(38)

These again guarantee the approximate unitarity of the
matrix A. In such a case, it is also easy to find the relation

1
uel + FeFT
x (Feme 4 pupG). (39)

A Vn?A = memet + GG — (m*F" + u3Q)

The charged lepton effective mass matrix 71, is obtained
as a result of the mixing between the light charged leptons
and the extra heavy leptons. If y¢ is not equal to y7 and

lug|? < FeFet, the matrix A could have a large CP phase.
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The mass of neutrinos can be generated through the
radiative effect as in the scotogenic model since the present
model is reduced to it effectively after S gets the VEV. As
found in Eq. (3), N; has Yukawa couplings with v, and 7.
However, since 5 is assumed to have no VEV, neutrino
masses are not generated at tree level but generated at
one-loop level. We note that a small complex effective
coupling constant 1s = As Mi*eipo is induced even in the

case A5 = O(1). The effective coupling %(nwﬁ)z +H.c.
brings about a small mass difference between the real
and imaginary components of #°. As its result, the one-
loop diagram with N; and n° in internal lines gives a
nonzero contribution to the neutrino mass. If we note
that the mass of N; are generated through the coupling
(yNjS + )”)Nl_ST)NjNJC- in Eq. (3), the neutrino mass is found
to be expressed as

3
— v [ i(Ox+po)
M, = E R %y Ayl
k=1

sl ()> [ MR, My, | M3,
A= 2 ol s-In—>5 ).
M'? _MNk Mn _MNk Mn

k= SﬂzMNk
(40)
where My, , 6, and M; are defined as
My, = (¥, + 35, + 2nFn, cOs 2p0)"u,
tan 0, = Lyf/ktanpo,
YN, T YN,

The formula (40) can explain small neutrino masses
required by the neutrino oscillation data [32] even for
N; with the mass of order TeV scale since the smallness of
|15| is naturally guaranteed by u << M, as addressed above.

If we consider that the matrix M, is diagonalized by
a unitary matrix U, such as UM, U, = MS®, the
PMNS matrix is obtained as Vpyns = ATU, where A is
fixed through Eq. (39). Since the matrix A is expected to

be almost diagonal from hierarchical charged lepton
|

y¢=(0,1074,0),
YE = SJE =33x 10_6,
h$y = hs, =4 x 1075,

These give mass eigenvalues of the charged leptons as

i, =0.59 MeV, 7, = 0.106 MeV,

5¢=(0,0,33 x 107),
h§, =5.7x1078,
héy = h$, = 1.7 x 1075,

masses, the structure of Vpyng is considered to be mainly
determined by U, in the neutrino sector. It is well known
that tribimaximal mixing cannot realize a nonzero mixing
angle 6,3, which is required by the neutrino oscillation
data. However, if the matrix A can compensate this fault, a

desirable Vpyns may be derived as Vpyns = AT U, even if
U, takes the tribimaximal form. The tribimaximal struc-
ture in the neutrino sector can be easily realized if we
adopt a simple assumption for neutrino Yukawa couplings
such as [33]

Wy =0, by =k =h(j=1.2),

hiy = hyy = =hiy = hs. (42)
Under this assumption, the mass eigenvalues of M, given
in Eq. (40) are fixed as
mi =0, mj= Sh%/\3,
m4 =2[h} A2 + h3AZ +2h2h3 A Ay cos (0, —0,)]V/2. (43)
This suggests that the squared mass differences required
by the neutrino oscillation data can be realized if both #,

and h; take values of O(1072) for A,; = O(1) eV, which
can be realized for TeV scale M, and M - The diago-

nalization matrix U, can be expressed as

O\ /1 0o o0

2 L
V6 V3
-1 1 1 iy,
U=|7% B ¥ 0 e 0 . (44)
DI 0 0 er
V6 V3 V2

where y; and y, are defined as

v = % yy= ltan_l h%Al sin@l + ]’l%/\z sin92

2 2 hiA cos@; + h3A,cos6,|

(45)

We examine whether the present scenario works in this
simple tribimaximal case by fixing the relevant parameters.
For this purpose, we use the values of u and w given in
Eq. (24). Other input parameters are taken to be

x=(22x1074,1.5x1073,8 x 1073),

hs, =12x 107, h§; =7 x 1073,
RSy = hS, = 4.7 x 1074, (46)
i, = 1.81 GeV, My = 3165 GeV. (47)
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The PMNS matrix and the Jarlskog invariant J, are
determined as’

0.837 0.526 0.149
0412 0.672 0.615 |,
0.360 0.521 0.774

Vemns = J, =—-0.032,

(48)

where the absolute values are presented for each element of
Veumns. We find that these are a rather good realization of
the experimental results.

The imposed global symmetry in the model could
guarantee the stability of some neutral fields and present
candidates of DM. The present model has an inert doublet
scalar 17 and three right-handed neutrinos N ;, which are the
only fields with the odd parity of the remnant Z, symmetry.
Since 7 is assumed to have no VEV, Z, remains as an exact
symmetry. It guarantees the stability of the lightest one
with its odd parity as in the ordinary scotogenic model
where DM candidates are included in the model as crucial
ingredients. Possible DM candidates are the lightest N;
or the lightest neutral component of 5. Both of them
can have TeV-scale mass in a consistent way with the
neutrino oscillation data. In the case where N, is DM with
a TeV-scale mass, the Yukawa coupling A% should be
large to decrease its relic density to the required amount.
It causes a dangerous lepton-flavor-violating process such
as u — ey [34]. On the other hand, the lightest neutral
component of n can be a good DM candidate without
causing serious phenomenological contradiction. It has been
extensively studied as a CDM candidate, and it has been
found that its thermal relics in this mass range could have a
suitable amount if the quartic couplings 45 and 4, in Eq. (5)
take suitable values [26,35].

C. CP asymmetry in leptogenesis

In the ordinary scotogenic model for the neutrino mass
generation, required baryon number asymmetry cannot be
generated through thermal leptogenesis due to the decay of
the lightest right-handed neutrino N; unless its mass is
larger than O(10%) GeV [26]. For sufficient production of
the thermal abundance of N,, large neutrino Yukawa
couplings A%, are required, and then larger N; mass is
needed to make neutrino masses suitable for the explanation
of the neutrino oscillation data. On the other hand, small
couplings h% are favored to sufficiently suppress the
washout of lepton number asymmetry generated through
the N, decay. These fix the above-mentioned lower bound
of the N, mass and also the lower bound of the reheating
temperature.

’Here, we note that J, does not depend on the Majorana
phases.

Fortunately, this bound could be relaxed automatically
in the present model. N could be generated in the thermal
bath through other built-in processes, that is, the scat-
tering of the vectorlike fermions such as E; Ex — N;N;,
Epeg, — N;N;, and Dy dg — N;N;, which are mediated
by the neutral scalars S and S;. The second and third
ones among these are expected to give dominant contribu-
tions since relevant Yukawa coupling constants take larger
values in the previous examples. For example, the reaction
rate of the second process can be roughly estimated at the
temperature T(>Mp) as

rE ) = [0 + 5203, + 53 (5 +
s 64rm | ! FOVNG S INI\mg omd
+2{(vIn, + ¥ww,)’
o 1
— (¢yw, = 9598, ﬁ:| , (49)
' mam3

where m, and mj are given in Eq. (15). Since this process
is irrelevant to the neutrino Yukawa couplings /%, they
can take sufficiently small values so as to make the washout
process ineffective.® The heavy lepton E is expected to be
in the thermal equilibrium through the SM gauge inter-
actions if reheating temperature T and its mass M, satisfy
My < Tg. Thus, if the reaction rate T'"(i1) of this
scattering and the Hubble parameter H satisfy a condi-

tion FgEe)(i 1) ~ H(T) at the temperature 7, N could be
produced sufficiently as long as the temperature 7 is larger
than My, . In fact, if we apply the parameters used in the
previous example, this condition is found to be satisfied

around the temperature7

-4\ 2/3 -3\ 2/3 / = 2/3
T~2.3xlos(“1) (‘0 ) (Ks_é)/
yi N, 10

4/3
> GeV. (50)

u
X N
10° GeV

The estimated lower bound of the reheating temperature in
Eg. (18) could be higher than this. If M, takes a value of
O(1) TeV, its number density is expected to reach the
relativistic equilibrium value ny! (T) of 0(1073).

On the CP asymmetry ¢ of the N decay, if we note that
all the Yukawa couplings £;; are real and it is independent
of the PMNS matrix, ¢ is found to be expressed as

®This is allowed since the squared mass differences required to
explain the neutrino oscillation data can be caused by two right-
handed neutrinos N, and N5 only.

A value of g is referred to the result given in Eq. (AS).

095046-9



DAIJIRO SUEMATSU

PHYS. REV. D 108, 095046 (2023)

10° 100 v
T, 1

-2 D
102} 108 Iy p—

4 IR —
107 6 (%d)

6 107 f I 4
108 | rg?
108k 10* |

T I
1010 ~10%k \
102 00 e
14 -
1077 ¥ 102
10-16 L

s 10 7
107 : : : : : :

0.1 1 10 100 0.1 1 10 100

Ny

FIG. 2. Left panel: evolution of Yy, and Y, =|Y, — Y| as a function of z(—M—) starting from zz(= MT—A:) We set Yy, (zg) =

=7

Y (zz) = 0 as initial conditions and quantities given as the legend are plotted. Horizontal dashed lines represent a region of ¥; required to
generate the observed baryon number asymmetry through the sphaleron process in the model. Right panel: evolution of the relevant

(ab

reaction rate as a function of z. I'; ) stands for the reaction rate for the scattering ab — ij mediated by ¢ and l"g‘ is the decay width of N;.

1 (Zih’;]h’;j)zf<M12vj

E = —
My,

~ sin(6; —60;), (51)
T i35 i ) !

where f(x) = /x[1 — (1 +x)In=] and 6, is given in
Eq. (41). It is interesting that CP phases which determine
the CP asymmetry ¢ can be clearly traced in this model.
Since the neutrino oscillation data require #, and h;
defined in Eq. (42) to be O(1073), & can be estimated
as e = 0(1077) for py ~Z This suggests that the lepton
number asymmetry AL caused by this decay is given as
AL = eny! = 0(107'%) if the N, decay delays until the
time when the washout of the generated lepton number
asymmetry is negligibly small.® This AL is sufficient
to give a required baryon number asymmetry through
the sphaleron process. Since thermal leptogenesis could
work successfully at a scale much smaller than 108 GeV, a
lower bound of the reheating temperature estimated in the
previous part is expected to be sufficient.

To examine it in a more quantitative way, we solve
relevant Boltzmann equations numerically. We set param-
eters in the neutrino sector as

yy = (1.5x1073,3 x 1073,6 x 1073),
571\/ - (15 X 10_3,0,()),
M,=2TeV, J5=107

hy=2x1078,  (52)

which gives My, = 2121 GeV, and then My > M,o is
satisfied. For these parameters, the neutrino ocsillation data

8We should remind the reader that such a situation can be
realized for a sufficiently small /%, in a consistent way with the
neutrino oscillation data.

and Eq. (43) fix the neutrino Yukawa coupling constants in
Eq. (42) as

h, = 6.9 x 1073, hy =23 %1073 (53)
Using these and the parameters used in the previous
examples, we solve relevant Boltzmann equations for
Y, (= "T'”) where n,, is the number density of y and s is
the entropy density [26]. The result is shown in the left
panel of Fig. 2, which proves that sufficient baryon number
asymmetry Yz = 3.0 x 10710 is generated. In the right
panel, the evolution of the reaction rates relevant to the
Boltzmann equations is plotted as a function of z. It shows
that substantial decay of N; starts after the processes

plotted as FE\',M) and Fg\'}ﬂf), which cause the washout of
the lepton number asymmetry, are frozen out. These figures
support our above discussion on the leptogenesis in the
present model. Even for the low reheating temperature
estimated in the previous part, we find that thermal lepto-
genesis could occur successfully.

D. Electric dipole moment and g —2 of leptons

New effects beyond the SM are expected to be caused
radiatively by the additionally introduced fields. If we
focus our study on ones in the lepton sector, the electric
dipole moment of leptons is a typical example relevant to
the CP violation. An operator relevant to it in the effective
Lagrangian is given as

eca/j _ Fuv H
2 ~ WL,,UMDWR/; + .C.,
My

(54)

where v, is a charged lepton mass eigenstate with mass
in,. It is related to the gauge eigenstate ¥, = (£, E;)T
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through y, = V,¥, by using the unitary matrix V,
defined in Eq. (36). The same operator also contributes
to the anomalous magnetic moment of leptons and lepton-
flavor-violating processes such as £; — ¢,y. Using the
coefficient ¢ 4 in Eq. (54), new contributions to the electric
dipole moment d,, of y, and its anomalous magnetic
moment Aa,, are represented as

d, =——Im(cy). Aa

=2R . (55
= = 2Re(c). (55)

v

The branching ratio of the lepton-flavor-violating decay
£y — ¢4y for the case fing > i, is also expressed by using
C(lﬁ as

487°a,
Br = 2 (|c(zﬂ|2 + |C[)’(1|2)7 (56)

(rh(lzGF)

where G is the Fermi constant and @, is the fine structure
constant of the electromagnetic interaction.

One-loop diagrams contributing to this operator in the
model are classified into three types whose internal lines
are composed of (i) £} x and a scalar S or ¢, (ii) N R, and 7,
and (iii) E;, x and a Z boson. The formula for the
coefficient ¢, caused by each diagram is presented in
Appendix B. Here, we have to remind the reader that
vectorlike fermions are introduced to explain the CP
phases in the CKM and PMNS matrices in this model.
This point is largely different from the models with
vectorlike leptons studied in [22]. As a result, their effect
on ¢,y is expected to be largely suppressed since relevant
off-diagonal components of the mixing matrix V, should
be small enough to keep the approximate unitarity of the
CKM and PMNS matrices [32].

If we apply the parameters used in the previous parts to
this calculation, we obtain the predictions for the electric
dipole moment as

d,=1.7x1073, d, =4.6 x 1072, (57)
where an e-cm unit is used. A dominant contribution
comes from the graph in type i. These are much smaller
than the present experimental upper bounds [32]. The
predicted anomalous magnetic moment of the electron
and the muon is, respectively,

Aa, =72 x 10722, Aa, =12x10715. (58)
This shows that the muon anomalous magnetic moment
reported at FNAL [21] cannot be explained in this extended
model. On the lepton-flavor-violating decay y — ey, the
branching ratio is predicted as

Br(u — ey) = 1.4 x 1072, (59)

which is also much smaller than the present bound [36].
These results show that it is difficult to find evidence of the
model by using near-future experiments for them.

IV. SUMMARY

The SM has several issues for the CP symmetry.
Spontaneous CP violation might give both a unified
description for them and a clue to study physics beyond
the SM. In this paper, on the basis of this point of view, we
consider a model which could give a unified explanation for
the CP issues in the SM and study phenomenological
consequences of the model. The model is a simple extension
of the SM with some fields including vectorlike fermions
and singlet scalars. Since the model is constructed to be
reduced to the scotogenic neutrino mass model at the low-
energy regions, it can also explain the small neutrino mass
and the existence of DM in addition to the CP issues.

This model brings about the CP phases in the CKM and
PMNS matrices through the mixing between the ordinary
fermions and the introduced vectorlike fermions as a result
of the spontaneous CP violation in the scalar sector. In the
quark sector, since both contributions to 0 from radiative
effects and higher-order operators after the spontaneous
CP violation can be sufficiently suppressed, the strong
CP problem does not appear even if they are taken into
account. We also show that the model can cause a sufficient
CP asymmetry in the decay of the right-handed neutrinos
and then the required baryon number asymmetry can be
generated through low-scale thermal leptogenesis.

To show that the model works well, we present examples
of parameter sets which realize rather good agreement with
the CKM and PMNS matrices predicted through the various
experimental results. Using these parameters, we prove that
the observed baryon number asymmetry can be induced
through thermal leptogenesis. An interesting point in the
leptogenesis is that the right-handed neutrinos can be
produced sufficiently through the built-in interaction inde-
pendently of the neutrino Yukawa couplings. As a result, the
low-scale leptogenesis occurs successfully in a consistent
way with the neutrino oscillation data even if the mass of the
right-handed neutrinos is of order of a TeV scale. It allows
an inflation scenario in which the reheating temperature is
of O(10) TeV. We present such an example of inflation
which could be realized within the model.

One-loop diagrams caused by the vectorlike leptons in
the model could contribute to the electric dipole moment
and the anomalous magnetic moment of leptons and also
lepton-flavor-violating processes like y — ey. However,
since the vectorlike leptons are introduced to explain the
CP phases in the PMNS matrix, its unitarity constraint
heavily suppresses their effects to them. A similar feature is
expected in the quark sector. Unfortunately, it seems to be
difficult to examine the model by observing them in near-
future experiments.
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APPENDIX A: APENDIX A: POSSIBLE
INFLATION IN THE MODEL

In this Appendix, we discuss a possible inflation scenario
in the model. We suppose that the singlet scalar S couples
with the Ricci scalar in the Jordan frame as

1
S, = /d“x./_—g [—EM;R — &5, STSR — % (82 + SR

+ 0579, — Vy(S, S"‘)} , (A1)

where My, is the reduced Planck mass. Its nonminimal
couplings can be rewritten as

[(&s, + &s,)Sk + (&5, — &s,)STIR. (A2)

N =

where Sp and §; are real and imaginary parts of S,
respectively, and defined as S = %(SR +1S;). We focus
our consideration on a case where only one component §; is
allowed to have the nonminimal coupling [37]. It can be
realized by assuming a certain condition for &g and &g,
such as &g = —&s,, and then it reduces to an inflation
model with ES7R where £ is fixed as & = &, — &, > 0.
We review this scenario briefly here.

If we consider the conformal transformation for a metric
tensor in the Jordan frame

i

Q2 =1+4¢-L, (A3)
Mgl

g;w = ng,uw

we have the action in the Einstein frame where the Ricci
scalar term takes a canonical form [38],

1 . 1
Sp = /d4x1/—g {—EMFZ)]R +§a“SRa,,SR

1 ( Y 1
+— [ Q2+ 62 —’) 08,0,S; —— Vo(Sk, S,)] ,
Q! M2 mE oA

(A4)

where V|, stands for the ¢ term in Eq. (10). We neglect « in
V) since it is much smaller than O(M,,) that is a value of S,
during the inflation. The kinetic term of S; in Eq. (A4) can
be rewritten to the canonical form by inflaton y,., which is

defined by
dy. Y
QL= Q>+ 682 — .
as, %

(AS)

The potential of y.. can be fixed through V(y.) = é V(S))
by using this relation. It can be approximately expressed as
V= %M;l at the large field regions y. > M. Results of
the cosmic microwave background observations put con-
straints on the model parameters in the potential V. The
slow-roll parameters in this model can be evaluated by

using Eq. (AS5) as [39,40]

e:M_§<K)2:Lﬁ
—2 V) Tdireas

77=M2V—”—— 8M,

PV T U682 (A6)

where V' stands for 57‘/ If we use the e-foldings number N,
from the time when the scale k exits the horizon to the
end of inflation, these slow-roll parameters are found to
be approximated as €=~ ﬁ and 7~ —J\%. Thus, the
model predicts favorable values for the scalar power index
as ny, = 0.958-0.965 and the tensor-to-scalar ratio as
r = 0.0048 — 0.0033 for N, = 50-60.

The spectrum of the cosmic microwave background
density perturbation predicted by the slow-roll inflation
is known to be expressed as [39,40]

ng—1
P(k):As(k> A v

=——— . (A7)
k. 24 Mpyely.

If we use the Planck data A, = (2.1017593,) x 107 at
k, = 0.05 Mpc~! [41], we find a constraint on the coupling
constant Kg as

~ 5 2/ 55\?
~ 6 =2 R
Kg =~ 1.2 x 10 < > Nk* s

and the Hubble parameter satisfies H;=1.5x10"(3>)

*

(A8)

GeV during the inflation.

APPENDIX B: APENDIX B: FORMULAS
FOR RADIATIVE PROCESSES
IN THE LEPTON SECTOR

In this Appendix, we present formulas of the coefficient
Cqp in Eq. (54) caused by one-loop diagrams [42].
Diagrams of types i and ii are shown in Fig. 3. Yukawa
interactions relevant to i are given in Eq. (2). They are
expressed by using the mass eigenstates v, as
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FIG. 3.
drawn by using the gauge eigenstates.

af.a=1

3 . ~
+<Zw‘~/ >V4 3a)(l//Ll//R/i+HC
o a a

where V¥ is a unitary matrix which diagonalizes the lepton mass matrix M, as VEM,VET =

One-loop diagrams caused by the scalar exchange, which give a new contribution to the effective operator in Eq. (54). They are

3 3 e
Wy (7R - Y +)’ R ~ _
Z [(Z\ﬁ‘%,) V4/;rO{a)(aWLal//Rﬁ + (Z j\/z / VJ) Vﬁaoga;(‘,y/wwﬂ
J=1

Jj=1

(B1)

MU Taking account of

these interactions, the contribution from these diagrams to ¢, can be calculated as

3
P (z 7 )(;<y, s, va) S o0

ay=1

167: (Zx V) (Z(y, ; V’”)

i=1

| 3
aﬂ:2—<z y1+yz

s@ o) (S
() (£8) 5 00

where ity = My and m?2 is the ath eigenvalue of the mass

matrix M2 and given in Eq. (15). ny;/;’ (Slﬂ, and caﬂ are
contributions caused by the left three diagrams shown in
Fig. 3, respectively. Loop functions J(r) and H(r) are

defined as

1
S 2(r=1)°
1
6(r—1)*

(3—4r+r>+2Inr),

(2+3r—6r*+r*+6rinr). (B3)

One might expect that the diagram in which the chirality
flip occurs in the internal fermion line brings about the
enhancement via its large mass. However, since V, is
related to the PMNS matrix in this model, the unitarity
requirement makes the mixing between the light leptons
and vectorlike leptons small. As a result, effective coupling

ay=1

)

ol

i iy (72
V VRT /3] r
WV
Z O VL ‘7RT ’hrﬁlﬁj ’h_g
~2
LioL (g + 1ng)ing
a;lo A e e

LT L (ma+mﬁ>m/3
Vay Via TH

E 3
::I\) )
SN—

R (ma + mﬁ)m/i

u(™
2m mz)’
|

is considered to be strongly suppressed, and the enhance-
ment is ineffective.

Yukawa interactions relevant to ii are given in Eq. (3). If
we rewrite them by using the mass eigenstates v, they can
be expressed as

Vi, N+ Hee. (B4)

Their contribution to the coefficient ¢,z can be calculated as

[ (i + ig)iy (M3

o L 0 a pIMp N,

CZ/; =162 'Ek 1h’;kvmhﬁkvﬁje’ k G 1 m(z)k ,
1,],k=

(BS)

where My, and 0, are given in Eq. (41). A loop function
I(r) is defined as
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FIG. 4. One-loop diagrams caused by the Z-boson exchange,
which give the effective operator in Eq. (54) deviated from the
SM one. They are drawn by using the mass eigenstates.

1

0=y

(=1 +6r—3r"=2r +6r2Inr). (B6)

If we apply tribimaximal assumption (42) to this for-
mula, coefficients relevant to interesting quantities can
be rewritten as

~ 9 2

' mlhz i05 My,
‘n = e 2.2M¢ — |

1677 m mg

1 a3 [, . (My o (M,
= 2 hzelgll L)+ h261921 2
22 167172 m% 1 m% 2 m%
(M3
+ h3e® 1 <—’;>} ,
my

-~ 2
po_ 1 mzhz i0s | My,
Cip = 2 53¢ 2 |

327" mg mg

(B7)

where we use the assumption that V' is almost diagonal.
Diagrams of type iii are shown in Fig. 4. Gauge
interaction relevant to these is given as

9
cos By,

3
Z(ngﬂLj}’”ij + grérv'er,)
J=1

+ grELY"EL + grERY"ER | Z,, (B8)

where g; and gy are defined as g; = —% + sin? @y, and
gr = sin” By,. Since the extra lepton E; is introduced as an
SU(2), singlet, flavor-changing couplings appear only in
the left-handed neutral current part as

WL, " (CL)apwr, + 9rVR, YWk, | Zy  (BY)
1

4 r 4
g {
cosOy 4= 5
where a charge matrix C, is expressed as C, = V,C,, ‘72.
Although C; is a diagonal matrix, its elements are
(91,91, 91,9r), and then C; has nonzero off-diagonal
components to cause flavor mixings. Their contribution
to ¢4 can be calculated as

1 ¢ (7
Z = 7 (C —LF(-L
caﬁ’ 1677:2 COSZHW ( L)a/}gR m% m%
1 7 4
—— E C C
+ 32”2 COSZHW ( L)ay( L)yﬂ

r=1

~ N =2
y (7g + Ting)ing <my (B10)

G > — csMm0,
2 2 SMY%afp»
2my my
where cqyy represents the contribution in the SM corre-
sponding to other two terms. F(r) and G(r) are loop
functions defined as

1
fm(—4+3r+r3—6rlnr),

=51 1)4(—8+38r—39r2+ 1477 =5r*+18r%Inr).
(B11)
Although the chirality flip occurs in the internal line in the

first diagram, the enhancement via large fermion mass is
not caused since the right-handed current is flavor diagonal.
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