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Dark photons can oscillate into Standard Model (SM) photons via kinetic mixing. The conversion
probability depends sensitively on properties of the ambient background, such as the density and electro-
magnetic field strength, which cause the SM photon to acquire an in-medium effective mass. Resonances
can enhance the conversion probability when there is a level-crossing between the dark photon and
background-dependent SM photon states. In this work, we show that the widely used Landau-Zener (LZ)
approximation breaks down when there are multiple level-crossings due to a nonmonotonic SM photon
potential. Phase interference effects, especially when the dark photon mass is close to an extremum of the
SM photon effective mass, can cause deviations from the LZ approximation at the level of a few orders of
magnitude in the conversion probability. We present an analytic approximation that is valid in this regime
and that can accurately predict the conversion probabilities in a wide range of astrophysical environments.

DOI: 10.1103/PhysRevD.108.095045

I. INTRODUCTION

Dark photons (DPs) are the gauge bosons of a hidden
Uð1Þ0 symmetry that may be spontaneously broken
(analogous to the Higgs mechanism) or broken explicitly
(with the Stuckelberg action for a spin-1 field), yielding
a nonzero dark photon mass. In general, DPs will mix
with Standard Model (SM) photons at some level via the
dimension-4 kinetic mixing operator. The additional terms
in the Lagrangian capturing the effects of the DP field A0
mixing with the SM photon field A are

L ⊃ −
1

4
F0
μνF0μν þ ϵ

2
F0
μνFμν þ 1

2
m2

A0A0
μA0μ; ð1Þ

where F0 and F are the dark and SM field strength tensors,
ϵ ≪ 1 is the dimensionless coupling that determines the
strength of kinetic mixing with the SM photon, and mA0

is the DP mass. Kinetic mixing has attracted considerable
interest as a portal to dark sectors that would be accessible
at a wide range of energies since it is a marginal operator. In
particular, ϵ could be generated by any number of mech-
anisms [1–11], for instance by loop diagrams with heavy

matter fields charged under bothUð1Þ0 and the SMUð1Þ, or
alternatively from certain realizations of string theory. From
a bottom-up effective field theory point of view, ϵ can be
thought of as a free parameter accompanying a marginal
operator.
Astrophysical and cosmological observations provide

some of the tightest constraints on the existence of DPs
over a wide range of masses [12–21]. These constraints
often involve oscillations between DPs and SM photons
leading to spectral imprints or new energy loss mecha-
nisms. Furthermore, this conversion is resonantly enhanced
if there is an energy level-crossing due to in-medium
contributions to the SM photon effective mass. Large
corrections to the SM photon mass arise from ambient
free charges or strong background electromagnetic
fields [22,23], and corrections to the DP effective mass
can also arise due to a background of dark sector particles
directly charged under the DP [24,25].
In-medium effective masses can vary considerably over

spatial or temporal domains in astrophysical and cosmo-
logical environments. In the case of nonadiabatic transi-
tions due to a level-crossing, the conversion probability
is usually well-approximated by the Landau-Zener (LZ)
formula [26,27], which is often employed in such calcu-
lations as the leading-order term in the stationary phase
approximation. However, this formalism breaks down
when applied to the special case of resonant conversions
occurring near local minima or maxima of the SM photon’s
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in-medium mass (which can depend on the photon fre-
quency). This breakdown therefore occurs generically in
environments where the density of SM particles is non-
monotonic in space or time as traversed by SM photons.
The conversion probability predicted by the LZ formula
can deviate from the full solution to the Schrödinger
equation (to leading order in ϵ) by several orders of
magnitude. Therefore, there may be regions of DP param-
eter space at specific masses where existing constraints are
subject to large corrections. In this work, we provide a
simple analytic expression, Eq. (25), that is more generally
applicable to this region of parameter space and discuss
the potential impact on DP oscillation probabilities. We
note that although we concretely work with DP oscillations
in this paper, the formalism developed here can potentially
be applied to axion-photon conversions as well as neutrino
oscillations.
The rest of this paper is organized as follows. In Sec. II,

we review various formalisms for computing transition
probabilities for two-state systems. In Sec. III, we quantify
the breakdown of the LZ approximation near the critical
mass with an illustrative toy example. In Sec. IV, we
examine the consequences of the breakdown of the LZ
approximation in a few case examples arising in astro-
physical and cosmological settings, such as neutron star
magnetospheres and the solar chromosphere, as well as
during the epoch of reionization. Concluding remarks
follow in Sec. V.

II. PHOTON-DARK PHOTON OSCILLATION
FORMALISM

A. Photon-dark photon oscillations in an arbitrary
in-medium potential

The kinetic terms in Eq. (1) can be made canonical by
moving to the active-sterile basis described by the Aa and
As fields,

Aμ ≡
�
Aμ
a

Aμ
s

�
¼
�

1 0

−ϵ 1

��
Aμ

A0μ

�
þOðϵ2Þ; ð2Þ

to leading order in ϵ. Using this in Eq. (1), we then have

L ¼ −
1

4
Fa
μνF

μν
a −

1

4
Fs
μνF

μν
s þ eJμA

μ
a

þ 1

2
AT
μ

�
0 ϵm2

A0

ϵm2
A0 m2

A0

�
Aμ þOðϵ2Þ; ð3Þ

where Fμν
a and Fμν

s are the active and sterile field strengths
and we have also included the coupling of Aa to the SM
current density J. This basis is often referred to as the
interaction basis, since SM currents selectively couple to
the active state Aa. However, note that the mass matrix is
nondiagonal in this case. As a result, although the sterile
state is not sourced directly from SM currents, it arises

indirectly from Aa ↔ As oscillations, which are the focus
of this work.
In a medium, the free charges and electromagnetic fields

in the background can source a potential that alters the
dispersion relation of the active photons. We parametrize
this effect by including a spatially dependent in-medium
mass meffðxÞ for the visible field Aa in Eq. (3). The in-
medium mass-squared matrix is then given by

M2ðxÞ ≃
 
m2

effðxÞ ϵm2
A0

ϵm2
A0 m2

A0

!
: ð4Þ

In this section, we remain agnostic about the specific form
of meffðxÞ, leaving an exploration of specific examples
to Sec. IV.
We can track the propagation of the Aa − As system by

solving the corresponding equation of motion from Eqs. (3)
and (4). Following Ref. [28], we switch to Fourier space,
where ω and k are the frequency and wave number of
the field Aμ, respectively, and assume thatmeffðxÞ varies on
scales much larger than k−1. In this case, we can approxi-
mate this in-medium contribution as a constant on the scale
of the de Broglie wavelength, such that the equation of
motion for transverse modes takes the form of a standard
wave equation,

�
ω2 − k2 −M2ðxÞ�Aμðω; kÞ ¼ 0: ð5Þ

We note that an analogous dispersion relation of the form
ðω2 −M2

LÞAL ¼ 0 holds for longitudinal modes, but a
dedicated study of their evolution is beyond the scope of
this work.
To proceed, we expand Eq. (5) in the relativistic limit

ω ≃ k ≫ mA0 ; meff to obtain a linearized Schrödinger-like
equation, as in Ref. [28]. We choose to work with the
spatial domain marked by the position z, but can equiv-
alently use the temporal domain since we deal with the
propagation of relativistic particles in this work. This gives
i∂zA ¼ HA, where the total Hamiltonian H ¼ H0 þH1 is
split into diagonal and off-diagonal components,

H0 ¼
�
ωþ Δ 0

0 ωþ ΔA0

�
; H1 ¼

�
0 ϵΔA0

ϵΔA0 0

�
;

ð6Þ

with

Δ ¼ −m2
effðzÞ=2ω and ΔA0 ¼ −m2

A0=2ω: ð7Þ

Since ϵ ≪ 1, we can approximate H1 ≪ H0 and use the
techniques of time-dependent perturbation theory to solve
for the evolution of A. In particular, we switch to the inter-
action picture where i∂zAint ¼ HintAint, such thatAintðzÞ ¼
U†ðzÞAðzÞ, Hint ¼ U†H1U, and U is defined to be
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UðzÞ ¼ exp

�
−i
Z

z

zi

dz0H0ðz0Þ
�
; ð8Þ

such that zi marks the point at which we fix our initial
condition AðziÞ ¼ AintðziÞ. Hence, the system evolves as

AintðzÞ ¼ e
−i
R

z

zi
dz0Hintðz0ÞAðziÞ, which in the Schrödinger

picture is equivalent to

AðzÞ ¼ e
−i
R

z

zi
dz0H0ðz0Þe

−i
R

z

zi
dz0Hintðz0ÞAðziÞ: ð9Þ

The first factor of Eq. (9) is determined by the definition of
H0 in Eq. (6). To proceed, we evaluateHint using the Baker-
Campbell-Hausdorff identity,

Hint ¼ ϵΔA0 ðzÞ
�

0 eiΦðzÞ

e−iΦðzÞ 0

�
; ð10Þ

where we have defined

ΦðzÞ ¼
Z

z

zi

dz0Δoscðz0Þ; Δosc ¼ Δ − ΔA0 : ð11Þ

This form of Hint in Eq. (10) can be used in the second
factor of Eq. (9), after expanding to OðϵÞ. Up to an
irrelevant overall phase, this yields

AðzÞ ∝
�

1 −iϵcþ
−iϵeiΦðzÞc− eiΦðzÞ

�
AðziÞ þOðϵ2Þ; ð12Þ

where we defined c� ¼ R zzi dz0e�iΦðz0ÞΔA0 ðz0Þ.
The probability of conversion between active and sterile

states is then given by the square of the off-diagonal
elements in the above expression,

PAa↔As
¼ ϵ2

����
Z

z

zi

dz0ΔA0 ðz0ÞeiΦðz0Þ
����
2

þOðϵ3Þ: ð13Þ

In vacuum, there is no in-medium contribution to the active
photon, Δ ¼ 0, and the above integral can be performed
analytically, yielding the standard result

PAs↔Aa
¼ 4ϵ2 sin2

	
ΔA0 ðz − ziÞ=2



: ð14Þ

More generally, for ϵ ≪ 1 and Δ ≠ 0, one can numerically
integrate Eq. (13) in order to calculate the in-medium
conversion probability. In this case, the integrand in
Eq. (13) is very oscillatory, making it difficult to achieve
a high degree of numerical accuracy. Near resonances,
however, it is possible to accurately approximate PAa↔As

analytically, as discussed in the next subsection.

B. Stationary-phase approximation
and the Landau-Zener formula

While the integrand in Eq. (13) typically exhibits highly
oscillatory behavior, it varies slowly near stationary points
zn, defined by Φ0ðznÞ ¼ 0, where the “prime” corresponds
to a spatial derivative. Since the phase varies slowly in this
region of coordinate space, its contribution to the integral is
not canceled out by other regions’ contributions, where
oscillations tend to interfere destructively and average to
zero. From Eq. (11), it is evident that these stationary points
occur when the resonance condition holds, Δ ¼ ΔA0 ,
analogous to level crossings induced by matter effects
within the context of neutrino oscillations [29,30]. In this
case, Eq. (13) can be evaluated analytically by use of the
stationary-phase approximation, in which Φðz0Þ and
ΔA0 ðz0Þ in the integrand are Taylor expanded to second
and zeroth order around z0 ≃ zn, respectively. This gives

PAa↔As
≃ ϵ2

����
X
n

ffiffiffiffiffiffi
An

p
eiΦðznÞþiσnπ=4

����
2

¼ ϵ2
�X

n

An þ 2
X
n<m

ffiffiffiffiffiffiffiffiffiffiffi
AnAm

p
cosΦnm

�
; ð15Þ

where the sums are over all stationary points zn ∈ ½zi; z�,
and in the first and second lines we have defined

An ¼
2πΔ2

A0 ðznÞ
jΦ00ðznÞj

; σn ¼ sign½Φ00ðznÞ�; ð16Þ

and

Φnm ¼ ΦðznÞ −ΦðzmÞ þ ðπ=4Þðσn − σmÞ; ð17Þ

respectively, where from Eq. (11) we have Φ00ðznÞ ¼
Δ0ðznÞ. In the second line of Eq. (15), the first term is
simply the sum of individual probabilities from each
resonance. The second term instead stems from the
interference between two different resonances, which gives
rise to what we will refer to below as phase effects. Such
phase effects imprint oscillatory behavior into the con-
version probability as a function of mA0 and ω.
As shown schematically in Fig. 1, the conversion

probability undergoes a large number of oscillations
between any two resonances if jΦnmj ≫ 2π, or equivalently

����
Z

znðωÞ

zmðωÞ
dz0

m2
A0 −m2

effðz0;ωÞ
2ω

���� ≫ 2π; ð18Þ

where we have been explicit in regards to the spatial and
frequency dependence. In this case, small variations in
frequency within an observed resolution bandwidth could
lead to variations in Φnm that are much larger than 2π, such
that the phase in the second term of Eq. (15) averages to
zero within that frequency bin. A related possibility is if the
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spatial profile of meffðzÞ varies between slightly different
lines of sight within the angular resolution of the detector.
Again, in the limit where the total acquired phase is large,
small variations in the meffðzÞ profile can lead to large
phase variations within the resolution of the detector. This
would potentially cause phase effects to average to zero
within an angular bin, depending on the underlying spatial
distribution of meff .
An additional factor in the loss of phase information is

the coherence length, which determines the ability to
maintain phase coherence between different mass eigen-
states. This length is the distance over which wave packets
of different mass eigenstates separate by a distance greater
than the wave packet width, and its dependence on the
production process has been investigated extensively in
the context of neutrinos [31,32]. If the distance between
resonance regions exceeds the coherence length, then
different mass eigenstates decohere before reaching the
subsequent resonance region, leading to the loss of phase
information. For the purposes of this work, we assume
that the states remain coherent, as we are working with
relativistic DPs and do not assume that the source of SM
photons or DPs is spatially or temporally localized; we will
revisit these assumptions and their relevance to astrophysi-
cal environments in future work.
In the literature, phase effects are often assumed to

average to zero. Ignoring the corresponding cross terms in
Eq. (15), the conversion probability reduces to the standard
LZ result [26,27] for a nonadiabatic two-level transition,

PLZ
Aa↔As

≃ ϵ2
X
n

An: ð19Þ

Note that this approximation is valid only when the above
expression remains less than unity, which would otherwise
seemingly violate unitarity. In this work, we always deal

with conversion probabilities PAa↔As
≪ 1 such that multi-

ple sequential conversions are highly suppressed.

C. Breakdown of Landau-Zener

If mA0 happens to be near a local extremum of meffðzÞ,
there exists a pair of resonant points z1;2 such that z1 ≲
zc ≲ z2 and z1 ≃ z2 ≃ zc (see Fig. 1). For a particular value
of mA0 , such points coalesce near the position of the
extremum, zc. We refer to this mass mA0 ¼ meffðzcÞ≡mc
as the critical mass. At this critical point zc, the first two
derivatives of ΦðzÞ both vanish due to the resonance
appearing at the extremum of the meff potential. Near zc,
the contributions from the saddle points An ∝ jΦ00ðznÞj−1 in
Eq. (15) diverge. As a result, neither Eq. (15) or the LZ
approximation in Eq. (19) are valid for mA0 ≃mc.
Instead, analytically determining the transition proba-

bility when mA0 ≃mc requires incorporating the cubic term
in the Taylor expansion ofΦðzÞ around zc in Eq. (13), since
Φ0ðzcÞ ¼ Φ00ðzcÞ ¼ 0. We therefore define a dimensionless
variable

ξ≡min
zn

jΦ00ðznÞj
jΦ000ðznÞj23

ð20Þ

that quantifies the relative contribution of the quadratic
term over the cubic term in the Taylor expansion. Hence,
for ξ ≪ 1 (near the critical mass) the quadratic term
becomes negligible and one should include Φ000ðzcÞ in
order to accurately evaluate the conversion probability near
the critical mass. We expand the phase function ΦðzÞ to
cubic order

ΦðzÞ ≃ΦðzcÞ þΦ0ðzcÞðz − zcÞ þ
1

3!
σcjΦ000ðzcÞjðz − zcÞ3

ð21Þ

FIG. 1. A schematic representation of a peaked meff -profile (gray line) with the distance Lres between the resonances (black dots)
marked for a specific dark photon mass. The critical point is marked by the black “×” at the top of the potential. Left: A depiction of how
the conversion probability oscillates spatially, where Lvac is the relevant conversion length scale in vacuum. Right: Propagating photon
and dark photon wave packets are depicted in red and blue, respectively, for the two mass eigenstates, with the coherence length Lcoh
also shown.
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with σc ¼ sign½Φ000ðzcÞ� and ΔA0 ðzÞ to linear order

ΔA0 ðzÞ ≃ ΔA0 ðzcÞ þ ΔA0 ðzcÞðz − zcÞ: ð22Þ

Incorporating these expansions and changing the integra-
tion variable to u ¼ σcðjΦ000ðzcÞj=2Þ1=3ðz − zcÞ, we can
then rewrite Eq. (13) as

PAa↔As
≃ ϵ2

����
�

2

jΦ000j
�

1=3
Z

du

�
ΔA0 ðzcÞ

þ σc

�
2

jΦ000j
�

1=3
uΔ0

A0 ðzcÞ
�
eiðζuþ1

3
u3Þ
����
2

; ð23Þ

where ζ ≡ σcð2=jΦ000jÞ1=3Φ0. We can then express the
integrals in terms of Airy functions,

2πAiðxÞ ¼
Z

eiðxuþ1
3
u3Þdu

2πAi0ðxÞ ¼ i
Z

ueiðxuþ
1
3
u3Þdu: ð24Þ

Using Eq. (24) in Eq. (23), we obtain the conversion
probability for two “coalescing saddle points” [33,34]

PAa↔As
≃ 4π2ϵ2Δ2

A0

�
2

jΦ000j
�

2=3
�
Aið−ζÞ þ iσc

�
2

jΦ000j
�

1=3

×

�
Δ0

A0

ΔA0
−
1

6

Φ0000

Φ000

�
Ai0ð−ζÞ

�
2
����
zc

ð25Þ

which is a key result of this work and is only valid for
values of mA0 ≃mc such that ξ≲ 1. In Eq. (25), the entire
expression is evaluated at the critical point zc. We note that
this formula is valid for two resonant crossings near an
extremum; incorporating additional resonance points is
possible with the approximations of Ref. [34].

III. NONMONOTONIC TOY POTENTIAL

In this section, we begin to quantify the degree to which
various treatments of DP-SM photon transition probabil-
ities can differ. Motivated by the form of the Taylor expan-
sion of meff about its extremum, we consider the following
quadratic toy model for the potential,

m2
effðzÞ ¼ m2

c

�
1 −

�
z
zc

− 1

�
2
�
; ð26Þ

where we have chosen to take the width of the peak near zc
to beOðzcÞ so that there is only one relevant length scale in
the problem. For mA0 < mc, there are two resonant level
crossings where mA0 ¼ meff . Because any potential will
take a similar quadratic form near its extremum, we can use
this toy model as a proxy to gain intuition for potentials in
astrophysical systems, such as the ones discussed in the

next section. Conversion probabilities using Eq. (26) com-
puted with different methods are shown in Fig. 2 as a
function of

δm≡ ðmc −mA0 Þ=mc: ð27Þ

As can be seen in the left panel of Fig. 2, when mA0 is far
from the critical mass mc, the approximation in Eq. (15)
(labelled “phase effects”) matches well with the numerical
evaluation of Eq. (13) (labeled “numerical”). In this case,
the standard LZ result of Eq. (19) (labelled “LZ”) accu-
rately captures the typical value of the transition proba-
bility, averaged over the oscillatory features with varying
mA0 . AsmA0 approachesmeff from below, the two resonance
points converge spatially, eventually merging at the critical
point when δm ¼ 0, corresponding to ξ → 0 in Eq. (20).
As discussed in the previous section, the approximations
detailed in Eqs. (15) and (19) are no longer valid for ξ≲ 1
(left of the vertical dashed line). Nevertheless, our approxi-
mation in Eq. (25) (labeled “our approx.”) remains accurate
and proves to be a reliable method of tracking the
conversion probability near this critical mass. We empha-
size that these approximations are substantially faster to
evaluate numerically as compared with the full numerical
solution of the Schrödinger equation, primarily due to the
oscillatory nature of ΦðzÞ.
In-medium resonances significantly amplify the conver-

sion probability with respect to the vacuum value of
Eq. (14). To encapsulate the enhancement due to such
in-medium resonances, we first note that Eq. (16) can be
rewritten as An ¼ 2πμn, where we have introduced a
dimensionless resonance enhancement parameter

μn ¼ jΔA0 ðznÞj×
���� ddz log jΔðznÞj

����
−1

ð28Þ

that is analogous to the adiabaticity parameter of Keldysh in
Ref. [35]. Since PAa↔As

∼ ϵ2 maxAn in the LZ approxi-
mation, μ≡max μn effectively quantifies the degree that
any such resonance enhances the conversion probability
over the vacuum value. Hence, for μ ≪ 1, we expect the
in-medium modifications to the transition probability to
be suppressed, such that PAa↔As

approaches the vacuum
value of Eq. (14).
This form of the resonance enhancement parameter μ is

to be expected. To see this, note that for a nonmonotonic
potential, such as the one of Eq. (26), μn ∼ Lres=Lvac, where
Lres is the separation between zn and a nearby resonant
point, and Lvac ∼ 1=ΔA0 is the vacuum oscillation length.
Hence, for μ ≪ 1, the potential as seen by the DP under-
goes a spatially abrupt change compared to the oscillation
length, resulting in an extremely nonadiabatic transition
where it is valid to use the “sudden approximation”.
Since by the uncertainty relation the DP can only resolve
length scales greater than 1=ΔA0 ∼ Lvac for a momentum
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difference between active and sterile states of δk ¼ ΔA0 ,
it cannot effectively discern the presence of the potential
over a distance of Lres ≪ Lvac. Conversely, for μ ≫ 1,
the potential varies over long distances compared to the
vacuum oscillation length, indicating a need to account for
meff using one of the other approximations detailed in the
previous section.
The validity of the sudden approximation (i.e., using

the vacuum transition probability) for μ ≪ 1 is verified
numerically in the right panel of Fig. 2, which compares
numerical evaluations of PAa↔As

with Eq. (13) to the
vacuum value in Eq. (14), as a function of ω (expressed in
terms of the dimensionless quantity ω=mc) and for various
representative choices of the DP mass in the form of δm. As
ω increases, the vacuum oscillation length also increases
compared to the effective width of the meff profile, such
that the conversion probability progressively approaches its
vacuum value.

IV. ASTROPHYSICAL AND COSMOLOGICAL
ENVIRONMENTS

In this section, we provide a few relevant examples of
environments with nonmonotonic effective photon masses
where it is necessary to use Eq. (25) in order to accurately
evaluate the DP conversion probability near the critical
mass. It may be necessary to update some astrophysical and
cosmological bounds on DPs for particular DP masses in
light of these considerations.

A. Neutron star magnetospheres

Among astrophysical environments, neutron star (NS)
magnetospheres are the most extreme in their variations in
free charge density and electromagnetic field strength; they
therefore pose an environment where m2

eff can vary sub-
stantially, affecting conversion of DPs to SM photons [36].
In particular, the rotating magnetic fields source electric
fields that exert forces much larger than the gravitational
binding energy on the NS surface charges. As a result,
charges are pulled off of the surface and fill the magneto-
sphere of the NS. The charges then redistribute themselves
in a way such that the Lorentz force on them cancels,
producing a corotating plasma surrounding the NS. The
charge density of this plasma can be approximated by the
Goldreich-Julian model [37], which has been generalized to
account for relativistic effects [38]

nGJe ðr;θÞ ¼ 2Ω ·B
e

�
F1ðr̄Þ sin2 θ−F2ðr̄Þðsin2 θ− 2 cos2 θÞ�:

ð29Þ

Here, r and θ are polar coordinates such that r is the
distance from the center of the NS, θ is the polar angle with
respect to the NS’s rotation axis Ω̂, B is the magnetic field
outside the NS (assumed to be dominated by its dipole
component), and Ω is the rotational frequency. The
functions

FIG. 2. Left: The conversion probability PAa↔As
as a function of δm (a dimensionless measure of the proximity of mA0 to the critical

mass mc) for the toy potential of Eq. (26) with mczc ¼ 2 × 104, ω=mc ¼ 102, and ωzc ¼ 2 × 106. The region to the left of the dashed
vertical line corresponds to ξ≲ 1 [see Eq. (20)], indicating the expected breakdown of standard approximations. The various
approximations, consisting of the LZ result of Eq. (19), adding the term that captures phase effects in Eq. (15), and our approximation in
Eq. (25), are compared to a numerical evaluation of Eq. (13) and the vacuum conversion probability of Eq. (14). Right: The ratio
between the full conversion probability computed numerically and the vacuum oscillation probability as a function of ω=mc for fixed
mczc ¼ 2 × 104 and for different values of δm. For larger frequencies, the conversion probability reduces to its vacuum value as the
transition becomes increasingly nonadiabatic.
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and

F2ðr̄Þ ¼ r̄3
2
	
1 − β

r̄3



1 − 1
r̄

�
1

2r̄2
þ 1

r̄
þ ln

�
1 −

1

r̄

�
ð31Þ

incorporate relativistic corrections, where we have defined
r̄ ¼ r=rg and β ¼ 2=5ðrNS=rgÞ2 for a NS of radius rNS and
Schwarschild radius of rg. Note that at large distances,
limr̄→∞ F1ðr̄Þ ¼ −1=2r̄ and limr̄→∞ F2ðr̄Þ ¼ −2=3.
Following Ref. [39], we take the rotation axis to be

aligned with ẑ, such that

Ω ·B ¼ B0

2rLC

�
rNS
r

�
3�
3 cos θm̂ · r̂ − cos αB

� ð32Þ

and

m̂ · r̂ ¼ cos θ cos αB þ sin θ sin αB cos ðΩtÞ; ð33Þ

where B0 is the magnetic field strength at the NS surface, αB
is the orientation angle of the magnetic field with respect to
the rotation axis, and rLC ¼ 1=Ω is the light-cylinder radius.
In the presence of large magnetic fields (with B0 ∼ Bc

where Bc ¼ m2
e=e is the critical value of the magnetic

field), both the magnetic field and the plasma contribute
to meff for the propagating photon mode (that has its
electric field parallel to the plane containing the propaga-
tion and NS magnetic field vectors) but with opposite
signs [36,40,41]. We can decompose the effective SM
photon mass as m2

eff ¼ VB þ Vpl, where

VB ≃ −
7α

45π
b2q̂Bω2 sin2 θ; Vpl ¼ ω2

p sin2 θ; ð34Þ

b ¼ BðrÞ=Bc, ω2
pl ¼ 4παnGJe =me is the plasma frequency,

and q̂B is a fitting function that reproduces the correct
b ≪ 1 and b ≫ 1 behavior [41]

q̂B ≡ 1þ 1.2b
1þ 1.33bþ 0.56b2

: ð35Þ

The frequency-dependent B-field contribution to the
photon potential VB originates from nonlinear vacuum
polarization effects (analogous to the Euler-Heisenberg
term in pure QED) and contributes effectively only when
BðrÞ ≳ Bc. The opposing signs of VB and Vpl give rise to a
nonmonotonic profile for m2

effðrÞ. Note that the potential is
nonmonotonic regardless of the inclusion of relativistic
corrections in Eq. (29).

The exact form of the SM photon potential m2
effðrÞ is

sensitive to various NS parameters, such as the magnetic
field strength, rotation speed, and frequency ω, resulting in
a wide range of possible profiles. Since the electron density
and magnetic field both scale as ∝ 1=r3 far from the
NS’s surface, the potentials of Eq. (34) scale as VB ∝ −r−6
and Vpl ∝ r−3. As a result, m2

eff < 0 when VB dominates
at intermediate distances (which precludes the possibility
of a resonance in this region) and m2

eff > 0 when Vpl

dominates at large distances. Hence, the potential reaches
its extremum at the turnover point rc when VplðrcÞ∼
−VBðrcÞ. For B0 ≲ Bc, the corresponding critical radius
and mass take simple analytical forms,

rc ∼ ðω2rLCB0Þ1=3
erNS
me

; mc ∼
me

eωrLC
: ð36Þ

As discussed in Sec. II C, when the dark photon is close to
but slightly less than the critical mass, there exist two nearby
resonant points r1 ≃ r2 such that r1 ≲ rc ≲ r2. These res-
onances are physically realized only if the critical radius rc
lies in the range rNS ≤ rc ≤ rLC, which is equivalent to

r2NS
rLC

≲ e2

me

B0

Bc
ω2 ≲ r2LC

rNS
: ð37Þ

The left panel of Fig. 3 shows that the critical mass mc
spans many orders of magnitude for a representative range
of possible values for the light-cylinder radius rLC and
frequency ω, fixing B0=Bc ¼ 10 and using the full form
for the potential m2

eff . In the right panel, we show the
conversion probability as a function of δm, using the
various approximations discussed in Sec. II, for a particular
choice of NS parameters. By comparing to Fig. 2, we note
that our findings qualitatively resemble the probabilities for
the toy example of the previous section, further illustrating
that Eq. (25) is required to accurately compute PAa↔As

for δm ≪ 1.

B. Intergalactic medium

The free electron fraction of the intergalactic medium
(IGM) has fluctuated considerably since recombination,
diminishing during the dark ages and cosmic dawn before
increasing again during reionization, all while the density
of the Universe was redshifting as ∼ð1þ zÞ3. As a result,
cosmic microwave background (CMB) photons experience
large variations in their effective mass as they traverse
the IGM,

m2
eff ≃ ω2

p;e − ðω=RyÞ2ω2
p;HI; ð38Þ

where ωp;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne=me

p
and ωp;HI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παnHI=me

p
are

contributions to the plasma frequency from the average
number density of free electrons ne and electrons bound in
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neutral hydrogen nHI, respectively. As shown in the top-left
panel of Fig. 4, the resulting SM photon potential has
two local extrema independent of frequency near z ∼ 10,
corresponding to just before and after reionization, as well
as additional local maxima for frequencies significantly
larger than the CMB blackbody temperature, i.e., ω=T ≳
few [17,42]. The corresponding values of the critical
mass are roughly mc ∼ few × 10−13 eV, mc ∼ 10−14 eV,
and mc ∼ 10−11 eV × ðT=ωÞ2. We note that the first two of
these are subject to uncertainties in the ionization history.
We postpone a more careful consideration of alternative
parametrizations of reionization [43] as well as the incor-
poration of fluctuations in the plasma density (along the
lines of Refs. [18,19]) to future study.
Previous studies have derived strong constraints on

DPs from requiring that the CMB spectrum remains a
blackbody, as resonant conversion from CMB photons to
DPs could induce observable spectral distortions in the
frequency range probed by the Far InfraRed Absolute
Spectrophotometer (FIRAS) [45]. Accounting for both the
mean value and fluctuations of the plasma density has led to
strong constraints at the level of ϵ≲ 10−7 for 10−15 eV≲
mA0 ≲ 10−6 eV [17–19,21]. Such studies have employed
the LZ approximation discussed above, but this is expected
to break down for mA0 ≃mc, necessitating the use of
Eq. (25). This is demonstrated in the top-right panel of
Fig. 4, which shows the conversion probability for DP
masses near the critical point as computed using different
approximation schemes, analgous to the toy example of
Fig. 2. Given the form of the mean photon potential

(i.e., ignoring plasma density fluctuations), DPs with
10−13 eV≲mA0 ≲ 10−14 eV have three or more resonance
points, with two critical points occurring around the time of
reionization. It is noteworthy that both ωðtÞ and Φ00ðtÞ
decrease steeply with the age of the Universe, meaning that
resonances that occur later are more adiabtic. As a result of
the ∼1=ðω2Φ00Þ scaling of the An in Eq. (16), resonances
occurring at later times therefore have a much greater
contribution to the total conversion probability as computed
with the LZ formalism of Eq. (19). We therefore ignore the
earliest level crossings that occur well before reionization
in computing the conversion probability and include only
the ones occurring around the time of reionization.
The conversion probability fluctuates sharply as a

function ω and meff due to the phase effects discussed
in Sec. II B. Effects from variations in ω are potentially
observable depending on the frequency resolution of the
detector, which is shown for FIRAS as the vertical gray
region in the bottom row of Fig. 4. Variations in meff
arise from the fact that different lines of sight trace
slightly different ionization histories due to the patchy
morphology of reionization, leading to shifts in the SM
photon potential and conversion probability along slightly
different lines of sight. We note that this opens the
possibility for the constraints on DPs from CMB spectral
distortions to form more of a “fog” (due to theoretical
uncertainties in computing the conversion probabilities)
rather than a sharp exclusion boundary in parameter space.
We leave the question of whether or not these variations
average out across different lines of sight to future work.

FIG. 3. Left: Contours of the critical massmc in the environment of a neutron star, in the plane spanned by the rotation period P of the
NS and frequency ω for a fixed value of the magnetic field B0=Bc ¼ 10. The critical mass varies considerably for fixed neutron star
properties, meaning that any conversion processes occurring over a range of frequencies would only be accurately described by the
approximations developed in this work. Right: As in Fig. 2, but for the neutron star potential of Eq. (34) with rLC ¼ 300 km,
B0=Bc ¼ 10, and ω ¼ 0.08 eV. The similarity of this behavior with that of the toy model underscores the necessity of using the
approximation near the critical mass.
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We also note that these considerations may be relevant for
the dark screening effect that was recently proposed in
Ref. [46], since there the photons passing through halos
containing a gas overdensity will have two resonance
points near the maximum plasma frequency.

C. Solar chromosphere

In stellar chromospheres, the density of free electrons nce
exhibits a distinct peak located approximately 103 km
above the photosphere, as depicted in Fig. 5 [47]. This non-
monotonic electron density translates to a nonmonotonic

m2
eff ¼ 4παðnceÞ2=me. Additionally, the form of the profile

yields a small value of ξ for a wide range of frequencies
if the DP mass is near the critical mass. For instance, for
δm ∼ 0.01, ξ≲ 1 for ω≳ 0.1 eV. This implies the unavoid-
able need for the approximation of Eq. (25) to accurately
assess the conversion probability shown in Fig. 5. This may
be important to incorporate for DP searches involving the
Sun, for instance strategies that could complement existing
searches involving resonant level crossing in the solar
atmosphere (e.g., Refs. [48,49]). We explore this possibility
in future work.

FIG. 4. Top left: The spatially averaged evolution ofmeff in the intergalactic medium as a function of redshift for different frequencies.
Reionization induces extrema in the potential experienced by CMB photons. Top right: As in Fig. 2, but for the IGM potential shown
in the top-left panel for a frequency of ω ¼ 7 × 10−4 eV and mc ≃ 2.5 × 10−13 eV. Bottom: As in Fig. 2, but with two values of fixed
dark photon masses and instead varying the frequency. Also shown as a gray vertical band is the frequency resolution of FIRAS,
24.6 GHz [44]. For values of the dark photon mass near the critical mass, the frequency oscillations do not necessarily average out within
the frequency resolution of the instrument, meaning that phase effects are potentially significant in determining the observed conversion
probability. Note that in the bottom panels, the values of δm correspond to ξ > 1where we expect our approximation is not necessary to
compute the conversion probability.
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V. CONCLUSION

In this paper, we have developed an accurate approxi-
mation for the solution to the Schrödinger equation for a
two-state system (specifically, photons and dark photons)
with multiple nearby resonances about the extremum of a
potential. This approximation can be viewed as an exten-
sion of the LZ formula, which is widely used for computing
the transition probability between photons and dark pho-
tons. Using a toy model, we find that there can be large
corrections to the conversion probability for specific dark
photon masses in a given potential (i.e., given some
properties of the background environment that affect the
propagation of photons).
We have highlighted the application of this formalism to

various astrophysical systems where multiple resonances
between dark photons and photons are possible. Some of
these systems have been previously used to constrain the
existence of dark photons through their observed spectral
signatures, which makes it important to quantify the effects
of multiple resonances on the constraints. We have not
attempted to update any of these constraints from specific
astrophysical systems, and leave such an analysis to future
work. We note that applying our formalism to neutron stars
seems especially promising due to the large resonant
enhancement factors over the vacuum conversion proba-
bility as well as the wide range of possible values of the
critical mass.
There are several additional subtleties in the conversion

between photons and dark photons that we have not
considered here, such as the role of decoherence between

different states, which may be particularly relevant when
the dark photon is nonrelativistic (e.g., in the case of dark
photon dark matter). We note that much of the formalism
here, along with the associated subtleties, may be trans-
ferred over to axion-photon conversions and neutrino
oscillations. We leave consideration of all of these effects
to future work.
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FIG. 5. Left: The nonmonotonic plasma frequency ωp and temperature T profile above the solar photosphere. The solar transition
region which separates the chromosphere and corona is also shown. Right: As in Fig. 2, but with the chromospheric potential depicted in
the left panel.
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