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Evidence for a stochastic gravitational wave background in the nHz frequency band is recently reported
by four pulsar timing array collaborations NANOGrav, EPTA, CPTA, and PPTA. It can be interpreted by
gravitational waves from collapsing domain walls in the early universe. We assume such domain walls
arising from the spontaneous breaking of a Z2 symmetry in a scalar field theory, where a tiny Z2-violating
potential is required to make domain walls unstable. We propose that this Z2-violating potential is
radiatively induced by a feeble Yukawa coupling between the scalar field and a fermion field, which is also
responsible for dark matter production via the freeze-in mechanism. Combining the pulsar timing array data
and the observed dark matter relic density, we find that the model parameters can be narrowed down to
small ranges.
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I. INTRODUCTION

Recently, four pulsar timing array (PTA) collaborations
NANOGrav [1,2], EPTA [3,4], CPTA [5], and PPTA [6]
have reported positive evidence for an isotropic, stochastic
background of gravitational waves (GWs) in the nHz
frequency band. Potential sources for such a stochastic
GW background (SGWB) involve supermassive black hole
binaries [7–16], first-order phase transitions [17–34],
cosmic strings [35–45], domain walls [46–60], inflation
[61–71], scalar-induced GWs [72–79], and other astro-
physical and cosmological GW sources [80–96]. Among
these GW sources, we are particularly interested in domain
walls and their link to new physics beyond the standard
model (SM).
Domain walls (DWs) are two-dimensional topological

defects which could be formed when a discrete symmetry
of the scalar potential is spontaneously broken in the early
universe [97]. They are boundaries separating spatial
regions with different degenerate vacua. Stable DWs are
thought to be a cosmological problem [98]. As the universe
expands, the DW energy density decreases slower than

radiation and matter, and would soon dominate the total
energy density. Moreover, large-scale density fluctuations
induced by DWs could easily exceed those observed in the
cosmic microwave background.
Nonetheless, it is allowed if DWs collapse at a very

early epoch [99–101]. Such unstable DWs can be realized if
the discrete symmetry is explicitly broken by a small
potential term that gives an energy bias among the minima
of the potential. The bias induces a volume pressure
force acting on the DWs that leads to their collapse.
Collapsing DWs significantly produce GWs [102–105],
which would form a stochastic background remaining to
the present time, and it could be the one probed by recent
PTA experiments.
In this work, we consider a scalar field S with a

spontaneously broken Z2-symmetric potential to be the
origin of DWs. These DWs can be described by the kink
solution of the equation of motion. Since the DWs should
collapse before they overclose the universe, a tiny but
nonzero Z2-violating potential needs to be added. We will
present a possibility that the Z2-violating potential is
radiatively originated from a Yukawa interaction between
S and a fermionic field χ. The dominant effect comes from
one-loop tadpole diagrams for S.
Our further analysis shows that the Yukawa coupling

should be feeble for reproducing the observed GW data,
and this is also required by the freeze-in mechanism of
dark matter (DM) production. Therefore, it is possible that
the fermion χ, acting as a feebly interacting massive
particle (FIMP) [106,107], constitutes the DM relic of
the universe. There are a lot of recent studies on exploring
such FIMPs [108–119]. We will explore the interplay
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between the PTA observations of the SGWB and the
freeze-in DM.1

The remainder of the paper is outlined as follows. In
Sec. II, we discuss unstable DWs from the spontaneous
breaking of an approximate Z2 symmetry and the resulting
GWs. In Sec. III, the freeze-in DM production and the
induced Z2-violating potential are studied. In Sec. IV, we
investigate the parameter ranges simultaneously fulfilling
the recent PTAGW data and the observed DM relic density.
Section V gives a summary.

II. DOMAIN WALLS AND
GRAVITATIONAL WAVES

In this work, we consider the following Lagrangian for
scalar fields,

L ¼ 1

2
∂μS∂μSþDμH†DμH − V0ðH; SÞ; ð1Þ

where H is the SM Higgs field and S is a real scalar field
that is a SM gauge singlet. The zero-temperature potential
V0ðH; SÞ ¼ VZ2

þ Vvio consists of the Z2-conserving terms

VZ2
¼−

1

2
μ2SS

2þμ2HjHj2þ1

4
λSS4þλHjHj4þ1

2
λHSjHj2S2;

ð2Þ

which respect a Z2 symmetry S → −S, and the Z2-violating
terms

Vvio ¼ κ1Sþ κ3
6
S3 þ κHSjHj2S: ð3Þ

If one removes the Z2-violating terms, then the
Lagrangian has the Z2 symmetry, which would be sponta-
neously broken for a negative mass parameter −μ2S at low
temperatures. In the phase where both the electroweak and
Z2 symmetries are broken, H and S develop nonvanishing
vacuum expectation values (VEVs) hHi ¼ ð0; v= ffiffiffi

2
p ÞT and

hSi ¼ �vs with v ≈ 246 GeV and vs > 0. We assume a
hierarchy of vs ≫ v, implying that the Z2 symmetry is
spontaneously broken at a scale much higher than the
electroweak scale. Furthermore, we assume the Higgs mass
parameter μ2H > 0 and the portal coupling λHS < 0, and the
reason will be explained below. Thus, when the S field is
integrated out below the scale vs, the effective mass
parameter for H becomes μ2H þ λHSv2s=2 < 0, leading to
the spontaneous breaking of the electroweak symmetry.
That is to say, the electroweak symmetry breaking is
essentially induced by the large vacuum expectation value
(VEV) of S.

At high temperatures, the electroweak and Z2 sym-
metries would be restored due to thermal corrections to
the scalar potential. In the high-temperature limit, the
effective potential becomes

V0 þVTðH;SÞ ¼ ½δm2
HðTÞ þ μ2H�jHj2 þ 1

2
½δm2

SðTÞ− μ2S�S2

þ 1

4
λSS4 þ λHjHj4 þ 1

2
λHSjHj2S2 þ � � � ;

ð4Þ

where T is the temperature, and δm2
HðTÞ and δm2

SðTÞ are
thermal corrections to the masses of H and S given by

δm2
HðTÞ ≈

T2

4

�
1

4
g02 þ 3

4
g2 þ y2t þ

1

6
λHS þ 2λH

�
; ð5Þ

δm2
SðTÞ ≈

T2

4

�
2

3
λHS þ λS

�
; ð6Þ

where g0 and g are the Uð1ÞY and SUð2ÞL gauge couplings,
and yt is the Yukawa coupling of the top quark.
At a sufficiently high temperature, because of the positive

contributions from the thermal masses, both the electroweak
andZ2 symmetries are restored.As the universe expands and
cools down, these symmetries become broken at some
critical temperatures. Since these phase transitions happen
at an era after reheating, DWs could be produced after the
spontaneous breaking of the Z2 symmetry [97].
A DW corresponds to a kink solution of the equation of

motion for the scalar field S given by [98]

SðzÞ ¼ vs tanh

� ffiffiffiffiffi
λS
2

r
vsz

�
; ð7Þ

where the direction perpendicular to the DW is assumed to
lie along the z-axis. Thus, SðzÞ approaches the VEVs� vs
for z → �∞. The DW locates at z ¼ 0 with a thickness
δ ≈ ð ffiffiffiffiffiffiffiffiffi

λS=2
p

vsÞ−1, separating two domains with SðzÞ > 0

and SðzÞ < 0. By integrating the energy density along the
z-direction, the surface energy density of the DW, i.e., its
tension, is given by

σ ¼ 4

3

ffiffiffiffiffi
λS
2

r
v3s : ð8Þ

Inside each domain with S ∼ Sð�∞Þ ≈�vs, we can para-
metrize H and S as

HðxÞ¼ 1ffiffiffi
2

p
�

0

vþhðxÞ

�
; SðxÞ¼�vsþ sðxÞ; ð9Þ

where hðxÞ and sðxÞ are quantum fields describing the
fluctuations above the vacuum. For vs ≫ v, and the masses

1Earlier works on the link of GWs from collapsing DWs to
feebly interacting DM can be found in Refs. [120,121].
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squared of the scalar bosons h and s are approximately
given by

m2
h≈ 2λHv2; m2

s ≈ 2λSv2s : ð10Þ

In order to ensure that the two vacua are local minima, the
quartic couplings in the Z2-conserving potential should
satisfy

λH > 0; λS > 0; λ2HS < 4λHλS: ð11Þ

Further considering the condition to obtain a negative
effective mass parameter for the H field driven by the
VEVof S, the viable range of λHS expressed by the h boson
mass and the VEVs is

−
ffiffiffiffiffiffiffi
2λS

p
mh

v
< λHS < −

m2
h

v2s
: ð12Þ

Once DWs are created, their tension σ acts to straighten
them against the friction from the interaction with the
cosmic plasma. If the friction effect is important, the
SGWB spectrum induced by DWs could be significantly
different from the case without friction [122]. In this work,
however, the interactions between DWs and the particles in
the thermal bath are mediated by the SM Higgs field
and only the sufficiently massive SM particles are relevant.
Such interactions are highly suppressed by the small mixing
between s and h because of the hierarchy vs ≫ v.
Furthermore, at sufficiently low temperatures,2 the friction
force due to the massive SM particles, whose masses arise
from the electroweak symmetry breaking, is significantly
damped by the exponentially suppressed number densities
of these particles [123].
In addition, the Higgs profile inside the DWs is

also relevant to friction. If μ2H < 0 and λHS > 0, the SM
Higgs boson mass is given by m2

h ≈ −ð2μ2H þ λHSv2sÞ≈
ð125 GeVÞ2, implying jμHj ∼ vs ≫ v for λHS ∼Oð1Þ.
Inside a DW, the S field value is close to zero, and μ2H ∼
−v2s forces the H field to take a large value ∼vs.
Consequently, the SM particles coupled to H become very
heavy inside the DW, and their reflection probability with
the DW would be highly increased, leading to significant
friction [122]. Nonetheless, because we have assumed
μ2H > 0 and λHS < 0, the H field value would vanish inside
the DWs, and the friction can be safely neglected in
this study.
Since the friction is negligible, DWs will quickly enter

the scaling regime and their energy density evolves as

ρDW ¼ Aσ

t
; ð13Þ

where A ≈ 0.8� 0.1 is a numerical factor given by lattice
simulation [124]. ρDW ∝ t−1 implies that the DW energy
density is diluted more slowly than radiation and matter.
Therefore, if DWs are stable, they would soon dominate the
evolution of the universe, and it conflicts with cosmological
observations. This can be evaded if an explicit Z2-violating
potential like Eq. (3) presents.
A small Z2-violating potential generates a small energy

bias between the two minima of the total potential. It leads
to a volume pressure force acting on the DWs. Thus, the
walls could collapse at a very early epoch before they
overclose the universe, and would not cause a cosmological
problem. With the Z2-violating potential (3), the minima
are shifted to

v� ≈�vs− δ; with δ≈
2κ1þ κ3v2s
4λSv2s

; ð14Þ

where we have neglected the contribution from the jHj2S
term for v ≪ vs. We define ŜðxÞ≡ SðxÞ þ δ and rewrite the
potential with the redefined scalar field Ŝ:

VðŜÞ ¼ λS
4
ðŜ2 − v2sÞ2 þ ϵvs

�
1

3
Ŝ2 − v2s

�
Ŝ; ð15Þ

where

ϵ ¼ −
6κ1 þ κ3v2s

4v3s
: ð16Þ

The two minima of the potential are now located
at Ŝ ¼ �vs.
Ŝ ¼ þvs corresponds to the true vacuum, while Ŝ ¼ −vs

corresponds to the false vacuum with slightly higher
energy. The energy difference between them is [123]

Vbias ¼ Vð−vsÞ − VðþvsÞ ¼
4

3
ϵv4s : ð17Þ

The volume pressure force caused by this energy bias acts
on the DWs and tends to make the false vacuum domains
shrink. The collapse of DWs begin when the volume
pressure force becomes comparable to the tension force.
As a result, the annihilation temperature of DWs can be
estimated by [123,124]

Tann¼34.1MeVA−1=2
�
g�ðTannÞ

10

�
−1=4

�
σ

TeV3

�
−1=2

�
Vbias

MeV4

�
1=2

¼76.3MeVA−1=2
�
g�ðTannÞ

10

�
−1=4

�
0.2
λS

ms

105 GeV
ϵ

10−26

�
1=2

;

ð18Þ

where g� represents the effective number of relativistic
degrees of freedom for the energy density of the plasma and

2As we will see below, the temperatures relevant to the
annihilation of DWs are of ∼Oð102Þ MeV.
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its numerical value depending on the temperature can be
found in Ref. [125].
There are two lower bounds on the energy bias between

the two minima Vbias [123]. The first one is

V1=4
bias > 0.0218 MeVA1=2

�
σ

TeV3

�
1=2

; ð19Þ

given by the requirement that DWs should collapse before
they dominate the universe. Moreover, the energetic par-
ticles produced from DW collapse could destroy the light
elements generated in the big bang nucleosynthesis (BBN).
Thus, we should require that DWs annihilate before the
BBN epoch. This leads to a second lower bound as

V1=4
bias > 0.507 MeVA1=4

�
σ

TeV3

�
1=4

: ð20Þ

The stochastic GWs from collapsing DWs can be
estimated by numerical simulations [104,105,124]. The
frequency spectrum of the SGWB is commonly charac-
terized by

ΩGWðfÞ ¼
f
ρc

dρGW
df

; ð21Þ

where ρGW is the GW energy density and ρc is the critical
energy density of the universe. At high frequencies, the
simulations show that the GW spectrum behaves as
ΩGW ∝ f−1. At small frequencies, the spectrum scales as
ΩGW ∝ f3 because of causality [124,126]. The peak of the
spectrum at the DW annihilation temperature Tann can be
expressed as [124]

Ωpeak
GW jT¼Tann

¼ 3ϵ̃GWα
2�

32π
; ð22Þ

where ϵ̃GW ¼ 0.7� 0.4 is derived from numerical simu-
lation. α� represents the ratio of the GW energy density to
the radiation energy density ρrad at Tann, i.e.,

α� ≡ ρDW
ρrad

����
T¼Tann

¼ 0.035

�
10

g�ðTannÞ
�
1=2 A

0.8
0.2
λS

×

�
ms

105 GeV

�
3
�
100 MeV

Tann

�
2

: ð23Þ

Taking into account the dilution of the GW energy
density due to the cosmological expansion, the peak
amplitude of the SGWB spectrum at the present time
can be expressed as [123,124]

Ωpeak
GW h2 ¼ 7.2 × 10−18ϵ̃GWA2

�
g�sðTannÞ

10

�
−4=3

×

�
σ

1 TeV3

�
2
�

Tann

10 MeV

�
−4

¼ 5.9 × 10−9ϵ̃GWA4

�
g�sðTannÞ

10

�
−4=3 g�ðTannÞ

10

×

�
10−26

ϵ

�
2
�

ms

105 GeV

�
4

; ð24Þ

where g�s denotes the effective number of relativistic
degrees of freedom for the entropy density. The present
GW peak frequency can be estimated by the Hubble rate at
Tann taking into account the redshift effect, given by

fpeak¼1.1×10−9Hz

�
g�ðTannÞ

10

�
1=2

�
g�sðTannÞ

10

�
−1=3 Tann

10MeV

¼8.39×10−9HzA−1=2
�
g�sðTannÞ

10

�
−1=3

�
g�ðTannÞ

10

�
1=4

×

�
0.2
λS

ms

105GeV
ϵ

10−26

�
1=2

: ð25Þ

Thus, the present SGWB spectrum induced by collapsing
DWs can be evaluated by

ΩGWðfÞh2 ¼Ωpeak
GW h2 ×

8<
:
�

f
fpeak

	
3
; f < fpeak;

fpeak
f ; f > fpeak:

ð26Þ

FIG. 1. GW spectra generated by collapsing DWs for four sets of
parameters. Thegray andorangeviolins represent the reconstructed
posterior distributions for the NANOGrav (gray violins) [2] and
EPTA (orange violins) [4] observations of nHz GWs, respectively.
The brown region is excluded by the requirement that DWs should
annihilate before they dominate the universe.
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In Fig. 1, we show the GW spectra generated by DWs for
some benchmark parameters, compared with the recon-
structed posterior distributions for the NANOGrav (gray
violins) [2] and EPTA (orange violins) [4] signals. We find
that the spectra with σ ∼Oð1017Þ GeV3 and Vbias ∼
Oð10−3Þ GeV4 can explain the PTA observations. As
discussed above, DWs must annihilate before they domi-
nate the energy of the universe. Thus, the time tann when
DWs annihilate should be earlier than the time tdom when
DWs would dominate. According to Eqs. (18), (19), and
(24), this gives upper limits on the GW spectra from
collapsing DWs. In Fig. 1, the unavailable region corre-
sponding to tann > tdom is shaded by the brown color.

III. FREEZE-IN DARK MATTER AND THE
INDUCED Z2-VIOLATING POTENTIAL

So far, the Z2-violating potential is introduced by hand.
In the following, we will consider it to be generated by
loops of fermionic dark matter through a Yukawa inter-
action with the scalar field S. To be precise, we introduce a
Dirac fermion field χ, which is a singlet under all the SM
gauge symmetries. The Lagrangian involving χ is

Lχ ¼ χ̄ði=∂ −mχÞχ þ yχSχ̄χ; ð27Þ

where yχ is the Yukawa coupling constant. When S
acquires a nonzero VEV, hSi ≈�vs, the mass of χ receives

a correction, mð�Þ
χ ≈mχ ∓ yχvs. In this work, we assume

that mχ ≫ yχvs, so mð�Þ
χ ≈mχ holds.

After reheating, s bosons are in thermal equilibrium with
the SM particles due to the jHj2S2 interaction, while χ
fermions are assumed to be out of equilibrium with nearly
vanishing number density. This requires yχ to be a feeble
coupling constant. In this case, χ fermions could be
produced via s decays but never reach thermal equilibrium
if yχ is extremely small, say, ∼Oð10−10Þ. This is the well-
known freeze-in mechanism of DM production [106], and χ
acts as a DM candidate. The evolution of the DM number
density nχ is determined by the Boltzmann equation [127]

dnχ
dt

þ 3Hnχ ≈
m2

ST
π2

Γs→χχ̄K̃1ðxS; 0; 0; 1; 0; 0Þ; ð28Þ

where xi ≡mi=T, and Γs→χχ̄ is the s → χχ̄ partial decay
width given by

Γs→χχ̄ ≈
y2χms

8π
ð29Þ

for mχ ≪ ms. The function K̃1ðx1; x2; x3; η1; η2; η3Þ is
defined as

K̃1ðx1; x2; x3; η1; η2; η3Þ

≡ 1

ð4πÞ2pCMT

Z Y3
i¼1

�
d3pi

Ei

1

eEi=T − ηi

�

× eE1=Tδð4Þðp1 − p2 − p3

�
ð30Þ

By solving Eq. (28), the χ number density at the present
time t0 can be approximated by [127]

nχðt0Þ ≈
3.434s0MPlΓs→χχ̄

½g�ðms=3Þ�3=2m2
s
; ð31Þ

where g�ðms=3Þ ≈ 108, s0 is the present entropy density,
andMPl ≈ 2.4 × 1018 GeV is the reduced Planck mass. The
χ relic density is then given by

Ωχh2 ≈ 2.74 × 108
mχ

GeV

nχðt0Þ
s0

≈ 8.13 × 1022
y2χmχ

ms
: ð32Þ

On the other hand, the observed value of the DM relic
density is ΩDMh2 ¼ 0.1200� 0.0012 [128], which implies
that the Yukawa coupling yχ should be feeble.
In the potential (15), the Z2-violating term is charac-

terized by the parameter ϵ, which is related to κ1 and κ3
via Eq. (16). Taking λS ∼ 0.2, σ ∼ 1017 GeV3, and
Vbias ∼ 10−3 GeV4, which lead to a GW spectrum account-
ing for the recent PTA observations, we obtain ϵ ∼
Oð10−26Þ from Eqs. (8) and (17). Note that the Sχ̄χ
Yukawa interaction explicitly breaks the Z2 symmetry even
if the tree-level Z2-violating potential is absent. It is natural
to conjecture that such an extremely tiny ϵ is originated
from the feeble Yukawa interaction through χ loops.
In Fig. 2, we show some one-loop diagrams relevant

to the generation of the Z2-violating couplings κ1 and κ3.

FIG. 2. Examples of one-loop diagrams for generating the Z2-violating potential terms.
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The first two diagrams contains the one-loop tadpole
diagrams of S and they give the dominant contributions
to κ1 and κ3. Although the third diagram also contributes to
κ3, it is negligible compared with the second diagram due to
a y3χ suppression. Our further calculation leads to the ϵ value
at the ms scale as

ϵðmsÞ ≈
3λ3=2S yχffiffiffi

2
p

π2

�
mχ

ms

�
3

ln
ΛUV

ms
; ð33Þ

where ϵ ¼ 0 at some ultraviolet (UV) scale ΛUV is
assumed. Below we assume ΛUV ¼ MPl. Thus, λS ∼ 0.2
and vs ∼ 105 GeV lead to ϵðmsÞ ∼ 0.6yχðmχ=msÞ3.
By taking λS ¼ 0.2, σ ¼ 1017 GeV3, and Vbias ¼

3.3 × 10−3 GeV4, which correspond to the GW spectrum
denoted by the green line in Fig. 1, we obtain vs ¼
6.19×105 GeV, ms¼ 3.91×105 GeV, ϵ¼ 3.58×10−26,
Tann ¼ 163 MeV, Ωpeak

GW h2 ¼ 9.44 × 10−8, and fpeak ¼
2.18 × 10−8 Hz. Then, yχ and mχ are related by Eq. (33).
For this set of parameters, the predictedDMrelic density as a
function of yχ is shown in Fig. 3, with the upper horizontal
axis corresponding to mχ . We find that both the extremely
tiny ϵ ∼Oð10−26Þ and the observed DM relic density
ΩDMh2 ¼ 0.12 can be naturally explained by the feeble
Yukawa coupling yχ ∼Oð10−10Þ. Therefore, our theory can
simultaneously explain the recent PTA observations of nHz
GWs and the DM relic via freeze-in production.

IV. FAVORED PARAMETER RANGES

In this section, we investigate the parameter ranges
favored by both the PTAGWobservations and the observed

DM relic density. Our model has four free parameters,
which can be chosen to be λS, yχ , ms, and mχ . In the
following analysis, we fix the quartic coupling λS ¼ 0.2 to
reduce one free parameter.
In Fig. 4, the GW spectra for four benchmark points

with mχ ¼ 1.1–2.5 GeV and ms ¼ ð3.5 − 5Þ × 105 GeV
are shown. For all these benchmark points, the Yukawa
coupling yχ is adjusted to give the mean value of the

FIG. 3. DM relic density as a function of the Yukawa coupling
yχ with fixed σ ¼ 1017 GeV3, Vbias ¼ 3.3 × 10−3 GeV4, and
λS ¼ 0.2. The upper horizontal axis denotes the value of mχ .
The horizontal dashed line corresponds to the Planck observation
value of the DM relic density [128].

FIG. 4. Same as in Fig. 1, but for GW spectra corresponding to
different values ofmχ andms with λS ¼ 0.2 fixed and yχ adjusted
to give Ωχh2 ¼ 0.12.

FIG. 5. Parameter regions favored by the NANOGrav GW
signal in the mχ-ms plane for yχ ¼ 6.4 × 10−10. The deep blue
and light blue regions corresponds to the 68% and 95% Bayesian
credible regions favored by the NANOGrav data, respectively.
The red line denotes the mean value of the Planck observation of
the DM relic density, Ωχh2 ¼ 0.12. The brown and gray regions
are excluded because DWs would dominate the universe and
would inject energetic particles to affect BBN, respectively.

ZHANG, CAI, SU, WANG, YU, and ZHANG PHYS. REV. D 108, 095037 (2023)

095037-6



observed DM relic density Ωχh2 ¼ 0.12. We can see
that the GW spectrum is quite sensitive to mχ and ms,
limiting them varying within roughly one order of
magnitude.
In our model, after the annihilation of DWs, most of their

energy releases to the SM thermal bath. In this case, the
NANOGrav collaboration has reconstructed the posterior
distributions of ðTann; α�Þ accounting for the observed nHz
GW signal, as shown in the left panel of Fig. 12 in Ref. [2].
We use this result to study the favored parameter regions. In
Fig. 5, the Yukawa coupling is fixed as yχ ¼ 6.4 × 10−10,
and the deep blue and light blue regions in the mχ −mS

plane correspond to the 68% and 95% Bayesian credible
regions favored by the NANOGrav data. It shows a
high correlation between mχ and mS, which can be under-
stood by the behavior of the GW peak amplitude,
Ωpeak

GW h2 ∝ m10
s =m6

χ , inferred from Eqs. (24) and (33).
In Fig. 5, Ωχh2 ¼ 0.12 corresponds to a red line, which

intersects the regions favored by the NANOGrav GW
observation. Thus, both the PTA GW signal and the
observed DM relic density can be well interpreted.
Moreover, the brown and gray regions are excluded by
the requirements that DWs should collapse before they
dominate the universe and before the BBN epoch, respec-
tively. We find that these constraints do not exclude the
NANOGrav 95% Bayesian credible region.
The intersection of the Ωχh2 ¼ 0.12 line and the

NANOGrav favored regions sensitively depends on the
value of yχ . Our calculation shows that such a intersection
can only happen for 4.6 × 10−10 ≲ yχ ≲ 8.7 × 10−10. In the
left and right panels of Fig. 6, we demonstrate the results
for yχ ¼ 4.6 × 10−10 and yχ ¼ 8.7 × 10−10, respectively. In
both cases, theΩχh2 ¼ 0.12 line can only touch the edge of
the NANOGrav 95% Bayesian credible region. To sum

up, for λS ¼ 0.2, we find that the preferred parameter
ranges where our model can simultaneously explain the
NANOGrav GW signal and the DM relic density are

4.6 × 10−10 ≲ yχ ≲ 8.7 × 10−10;

0.17 GeV≲mχ ≲ 7.5 GeV;

8.1 × 104 GeV≲ms ≲ 106 GeV: ð34Þ

V. SUMMARY

In this work, we studied the interplay between the
SGWB from collapsing DWs and FIMP DM. The newly
introduced real scalar field S satisfies a Z2 symmetry in the
tree-level potential, which, however, is violated by the
Yukawa coupling yχ with a fermion field χ. The linear and
cubic terms of S can be induced by the Yukawa coupling at
one-loop level, and they explicitly break the Z2 symmetry
of the potential, leading to an energy bias between the two
minima. Thus, after the spontaneous breaking of the Z2

symmetry, unstable DWs would be formed. We considered
that the Yukawa coupling is feeble, i.e., yχ ∼Oð10−10Þ, and
the χ fermions become FIMPs that are produced by the
freeze-in mechanism, accounting for dark matter in the
universe.
On the other hand, four PTA collaborations have recently

reported evidences of a SGWB at nHz frequencies, which
could be produced by the collapse of DWs in the early
universe. Since the tiny Z2-violating potential induced by
the feeble Yukawa coupling leads to unstable DWs, it is
possible that our model can explain the PTA data.
Comparing with the posterior distributions in the GW
spectrum reconstructed by the NANOGrav and EPTA data,

FIG. 6. Same as in Fig. 5, but for yχ ¼ 4.6 × 10−10 (a) and yχ ¼ 8.7 × 10−10 (b).
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our analysis showed that the Z2-violating coefficient should
be as tiny as ϵ ∼ 10−26, which can be naturally induced by
the feeble Yukawa couplings yχ ∼Oð10−10Þ at one-loop
level. Thus, our scenario is very suitable for interpreting the
PTA observations of the nHz SGWB.
Moreover, we investigated the parameter regions where

both the PTA GW observations and the DM relic density
can be simultaneously explained. We found that the
parameters should satisfy yχ ∈ ð4.6 × 10−10; 8.7 × 10−10Þ,
mχ ∈ ð0.17; 7.5Þ GeV, and ms ∈ ð8.1 × 104; 106Þ GeV for
a fixed quartic scalar couplings λS ¼ 0.2. The correspond-
ing regions also fulfill the requirements that DWs should

collapse before they overclose the universe and they should
not affect the BBN.
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