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The absence of semitauonic decays of charmed hadrons makes the decay processes mediated by the
quark-level c → dτþντ transition inadequate for probing a generic new physics (NP) with all kinds of Dirac
structures. To fill in this gap, we consider in this paper the quasielastic neutrino scattering process
ντ þ n → τ− þ Λc, and propose searching for NP through the polarizations of the τ lepton and the Λc

baryon. In the framework of a general low-energy effective Lagrangian, we perform a comprehensive
analysis of the (differential) cross sections and polarization vectors of the process both within the Standard
Model and in various NP scenarios, and scrutinize possible NP signals. We also explore the influence
on our findings due to the uncertainties and the different parametrizations of the Λc → N transition form
factors, and show that they have become one of the major challenges to further constrain possible NP
through the quasielastic scattering process.
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I. INTRODUCTION

Over the past few years, several intriguing anomalies have
been observed in the processes mediated by the quark-level
b → clν̄l transitions, particularly in the ratios RDð�Þ [1–11],

RDð�Þ ≡ BðB → Dð�Þτ−ντÞ
BðB → Dð�Þl−νlÞ

; ð1Þ

with l ¼ e, μ. These anomalies continuously challenge the
lepton flavor universality, a central feature of the Standard
Model (SM) of particle physics, and arouse a surge of
phenomenological studies of new physics (NP) beyond the
SM inB physics (for recent reviews, see, e.g., Refs. [12–15]).
In view of the potential violation of the lepton flavor
universality in B-meson decays, it is also natural to inves-
tigate if such phenomena also emerge in the charm sector.

Among the various processes used to probe the phenom-
ena, the ones mediated by the quark-level c → dτþντ
transition attract certain attention [16–19]. In particular,
a ratio Rτ=μ, somewhat similar to RDð�Þ , can be defined as

Rτ=μ ¼
ΓðDþ → τþντÞ
ΓðDþ → μþνμÞ

; ð2Þ

and serve as an important avenue to test the SM in the
charm sector [16,17]. Interestingly enough, the ratio Rτ=μ is
constructed from the purely leptonic D-meson decays
rather than from the semileptonic ones, which is in contrast
to the ratios RDð�Þ . The underlying reason for this is that the
largest accessible phase space for semileptonic D-meson
decays is given by mDþ −mπ0 ≃ 1.735 GeV, which is
smaller than the τ-lepton mass, rendering the semitauonic
D-meson decays kinematically forbidden. The same con-
clusion also holds for the charmed-baryon decays.
The absence of semitauonic decays of charmed hadrons

makes, therefore, the decay processes mediated by the
c → dτþντ transition suitable for probing NP with only a
subset of Dirac structures. For example, the purely leptonic
D-meson decays are known to be only sensitive to the
axial and pseudoscalar four-fermion operators of a general
low-energy effective Lagrangian [denoted by Leff as
introduced in Eq. (3)], making the tauonic vector, scalar,
and tensor operators seemingly inaccessible at the low-
energy regime [18–21]. Although these operators can be
probed through the high-pT dilepton invariant mass tails at
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high-energy colliders under additional assumptions [22,23],
other new processes and observables, particularly the low-
energy ones, are still badly needed in order to pinpoint all
the possible NP Dirac structures. In some cases, these
low-energy processes and observables can also provide very
complementary information about NP [24,25].
In this paper, we will consider the quasielastic (QE)

neutrino scattering process ντ þ n → τ− þ Λc induced by
the quark-level ντd → τ−c transition. This process is free
from the kinematic problem that the semitauonic charmed-
baryon decays face and involves all the effective operators
of Leff . However, even with the purely tauonic D-meson
decays and the high-pT dilepton invariant mass analyses, it
still cannot provide enough observables to fully pinpoint all
the NP Dirac structures and determine the corresponding
complex Wilson coefficients (WCs). Thus, we will also
propose searching for NP through the polarizations of the τ
lepton and the Λc baryon.1 The polarization observables
to be considered in this work involve all the effective
operators of Leff , and can fill the gap (at least partially),
though they are generally more difficult to measure than the
cross sections. Based on a combined constraint on the WCs
of the effective operators set by the measured branching
ratio ofDþ → τþντ decay [17] and the analysis of the high-
pT dilepton invariant mass tails [22], we will perform a
comprehensive analysis of all the observables involved
both within the SM and in various NP scenarios, and
scrutinize possible NP signals.
The hadronic matrix elements of the scattering process

will be parametrized by the n → Λc transition form factors,
which are in turn related to the Λc → N (nucleon) form
factors by complex conjugation. However, since a scatter-
ing process generally occupies a negative kinematic range
(q2 < 0) while a decay process happens at the positive one
(q2 > 0), an extrapolation of the Λc → N transition form
factors from positive to negative q2 becomes necessary.
This requires that the form-factor parametrization must
possess analyticity in the proper q2 range [24,25,29]. In this
paper, we will consider three different models with three
different form-factor parametrizations for the Λc → N
transition form factors to compute the cross sections and
polarization vectors in various NP scenarios. Our major
results will be, however, based on the lattice QCD (LQCD)
calculations [30], since they also provide the theoretical
uncertainties, which we will propagate to all the observ-
ables considered. Nonetheless, a detailed comparison of all
the observables calculated with different form-factor para-
metrizations will be provided as well.
The paper is organized as follows. In Sec. II, we begin

with a brief introduction of our theoretical framework,

including the most general low-energy effective Lagrangian
as well as the kinematics, the cross sections, and the various
polarization vectors of the scattering process. In such a
framework, we study in Sec. III A the total cross section
and the averaged polarization vectors in various NP
scenarios, and then in Sec. III B the differential cross
sections and the Q2-dependent polarization observables.
In Sec. III C, we revisit the scattering process together with
the Q2-dependent observables in the limit of small WCs
(i.e., small gi). The subsequent two subsections contain our
exploration of the influence on our findings due to the
uncertainties and the different parametrizations of the
Λc → N transition form factors. Finally, we collect our
main conclusions in Sec. IV, and relegate further details on
the form factors and explicit expressions of the various
observables to the Appendixes.

II. THEORETICAL FRAMEWORK

A. Low-energy effective Lagrangian

Without introducing the right-handed neutrinos, the
most general low-energy effective Lagrangian responsible
for the ντd → τ−c transition can be written as

Leff ¼ −
4GFffiffiffi

2
p Vcd

�
ð1þ gLVÞOL

V þ gRVO
R
V þ gLSO

L
S

þ gRSO
R
S þ gLTO

L
T

�
þ H:c:; ð3Þ

with

OL;R
V ¼ ðc̄γμPL;RdÞðτ̄γμPLντÞ;

OL;R
S ¼ ðc̄PL;RdÞðτ̄PLντÞ;
OL

T ¼ ðc̄σμνPLdÞðτ̄σμνPLντÞ; ð4Þ

where PR;L ¼ ð1� γ5Þ=2 are the right- and left-handed
projectors, and σμν ¼ i½γμ; γν�=2 the antisymmetric tensor.
Note that the tensor operators with mixed quark and lepton
chiralities vanish due to Lorentz invariance. The WCs gi in
Eq. (3) parametrize possible deviations from the SM and
are complex in general. Such a framework is only appli-
cable up to an energy scale ofOðmbÞ, withmb denoting the
bottom-quark mass, above which new degrees of freedom
would appear.
It should be pointed out that theLeff can also be presented

in another operator basis, in which the majority of basis
operators possess definite parity (see, e.g., Ref. [19]). The
WCs associated with this set of basis operators can be related
to the gi in Eq. (3) through the following relations:

gV;A ¼ gRV � gLV; gS;P ¼ gRS � gLS ; gT ¼ gLT . ð5Þ

And the former become very handy for discussing the D-
meson leptonic decays, since these decays are only sensitive

1We note that the polarizations of the final lepton and the
produced nucleon in a charged-current QE neutrino-nucleus
scattering process induced by the quark-level νld → l−u or ν̄lu →
lþd=s transition have also been discussed in Refs. [26–28].
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to gA and gP, as shown inEq. (23). However, wewill focus on
the operators listed in Eq. (4), sincewewill also take account
of the constraints set through the analysis of the dilepton
invariant mass tails in pp → τντ processes at high pT [22],
which are based on the very same set of basis operators as in
Eq. (4) and much severer in general than the ones set by the
Dþ → τþντ decay (see the colored regions in Fig. 2).

B. Cross section, form factors, and kinematics

The differential cross section of the QE scattering
process ντðkÞþnðpÞ→ τ−ðk0ÞþΛcðp0Þ, with p¼ðmn;0Þ,
p0 ¼ ðEΛc

; p0Þ, k ¼ ðE; kÞ, and k0 ¼ ðE0; k0Þ, is given by

dσ ¼ 1

4p · k
d3k0

ð2πÞ3
1

2E0
d3p0

ð2πÞ3
1

2EΛc

jMj2

× ð2πÞ4δ4ðpþ k − p0 − k0Þ; ð6Þ
where the amplitude M can be generically written as [31]

M ¼ 4GFffiffiffi
2

p Vcd

�
JHJL þ JαHJ

L
α þ JαβH JLαβ

�
; ð7Þ

when all the effective operators in Eq. (3) are taken into
account. The lepton currents in Eq. (7) are defined as

JLðαβÞ ¼ ūτðk0; r0ÞΓðαβÞPLuντðk; rÞ; ð8Þ

with ΓðαβÞ ¼ ð1; γα; σαβÞ, while the hadron currents as

JðαβÞH ¼ hΛcðp0; s0Þjc̄OðαβÞ
H djnðp; sÞi; ð9Þ

with

OH ¼ 1

2
ðgS þ gPγ5Þ;

Oα
H ¼ 1

2
γαðg0V − g0Aγ5Þ;

Oαβ
H ¼ gLTσ

αβPL; ð10Þ
where g0V;A ¼ ð1þ gLV � gRVÞ, gS;P are given by Eq. (5), and
r and s (r0 and s0) denote the spins of initial (final) lepton
and baryon, respectively. The amplitude squared jMj2 is
obtained by summing up the initial- and final-state spins;
more details are elaborated in Appendix B.
The hadronic matrix elements hΛcjc̄OðαβÞ

H djni in Eq. (9)

are identical to the complex conjugate of hnjðc̄OðαβÞ
H dÞ†jΛci,

which are further parametrized by the Λc → N transition
form factors [30,32,33]. Since a scattering process generally
occupies a different kinematic range (q2 < 0) from that of a
decay (q2 > 0), theoretical analyses of the scattering process
require an extrapolation of the form factors to negative q2.
Thus, the form-factor parametrizations suitable for our
purpose must be analytic in the proper q2 range.

Interestingly, there exist already several schemes that
meet our selection criterion and have been utilized to
parametrize the Λc → N form factors by various models.
For instance, a dipole parametrization scheme has been
employed within the MIT bag model (MBM) [34,35] and
the nonrelativistic quark model (NRQM) [36], and a
double-pole one in the relativistic constituent quark model
(RCQM) [37,38]. Although the form-factor parametriza-
tions in each scheme do not result in pathological behaviors
in the q2 < 0 range, only the form factors associated with
the matrix element hNjd̄γμPLcjΛci were calculated in these
models. The primary scheme we consider was initially
proposed to parametrize the B → π vector form factor [39],
and has been recently utilized in the LQCD calculations
of the Λc → N transition form factors [30]. In contrast to
other model evaluations, the LQCD calculation not only
takes care of all the form factors, but also provides an
error estimation. Thus, we will adopt the latest LQCD
results [30] throughout this work. Meanwhile, given that
the model calculations of the N → Λc form factors can
significantly affect the predictions of Λc weak production
in neutrino QE processes [29,40], we will also analyze
the QE scattering process ντ þ n → τ− þ Λc in terms of the
form factors calculated within the models MBM, NRQM,
and RCQM in various NP scenarios; for more details about
the form factors in these different models, we refer the
readers to Appendix A.
The kinematics of the QE scattering process is bounded

by [24]

α − E
ffiffiffi
λ

p

mn þ 2E
≤ q2 ≤

αþ E
ffiffiffi
λ

p

mn þ 2E
; ð11Þ

where

α≡ Eðm2
Λc

−m2
n þm2

τ − 2mnEÞ þmnm2
τ ;

λ≡m4
Λc

þ ðm2
n þ 2mnE −m2

τÞ2
− 2m2

Λc
ðm2

n þ 2mnEþm2
τÞ:

This condition indicates that the neutrino beam energy E
determines the maximal and minimal values of Q2

(Q2 ¼ −q2), which, in turn, implies that any constraints
on Q2

max and Q2
min restrict the E selection. An explicit

example is that a minimal requirement for E
(E≳ 8.33 GeV) of the scattering process can be obtained
by using the condition Q2

max ¼ Q2
min; this can also be

visualized in Fig. 1 by noting the intersection point of
the red and green curves that represent the E-Q2

max and
E-Q2

min relations, respectively. Besides the kinematic con-
straint on Q2

max, we also consider the limit from our
theoretical framework. As our analyses are carried out in
the framework of Leff given by Eq. (3), to ensure the
validity of our results, we require Q2

max to not exceed
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Q2
b ¼ 16 GeV2 ≈m2

b. Such a requirement, depicted by
the blue line in Fig. 1, indicates an upper bound
E≲ 13.41 GeV, provided that the observables one is
interested in, such as the total cross section, involve
Q2

max. Otherwise, E is not bounded from above, since
one can always concentrate on the lower Q2 range, even
though a high Q2

max is available due to a high E.
It is interesting to note that the τ-optimized ντ flux at the

Deep Underground Neutrino Experiment (DUNE) drops
below 108 m−2 year−1 at Eντ ≳ 14 GeV [41,42], which is
close to the upper bound of E shown in Fig. 1. If the
proposed QE scattering process were measured at the
DUNE, one could then explore all the observables con-
sidered in this work within the whole, available Q2 range,
while maintaining a relatively high ντ beam flux. It should
be pointed out that the neutrino oscillation experiments in
the few-GeV range at DUNE use detectors constructed of
liquid argon (see, e.g., Ref. [43]), where nuclear effects are
significant. But the knowledge of those effects remains
imperfect, which induces important uncertainties for the
experiments of neutrino oscillation as well as the proposed
QE scattering process at DUNE.

C. Polarization vectors of the final lepton and baryon

The polarization four-vector Pμ
l of the τ lepton produced

in the scattering process ντ þ n → τ− þ Λc can be con-
veniently obtained by using the density matrix formalism
as [44]

Pμ
l ¼

Tr½ρlðk0Þγμγ5�
Tr½ρlðk0Þ�

; ð12Þ

where the spin density matrix ρlðk0Þ of the τ lepton is
given by

ρlðk0Þ ¼J ðαβ;α0β0Þ
h
Λðk0ÞΓðαβÞPLΛðkÞPRΓ̃ðα0β0ÞΛðk0Þ

i
: ð13Þ

Now a clarification of the various symbols in Eq. (13) is in
order. First, the hadronic tensor J ðαβ;α0β0Þ is given by

J ðαβ;α0β0Þ ¼ 1

2

X
ss0

JðαβÞH Jðα
0β0Þ†

H

¼ 1

2
Tr
h
Λðp0ÞMðαβÞΛðpÞfMðα0β0Þi; ð14Þ

where MðαβÞ denotes the Dirac γ structure of the hadronic

matrix element hΛcjc̄OðαβÞ
H djni in Eq. (9). Clearly, MðαβÞ

involves not only the WCs gi but also the form factors. The
prefactor 1=2 accounts for the spin average over the neutron

spin. Second, fMðα0β0Þ ¼ γ0Mðα0β0Þ†γ0, Γ̃ðα0β0Þ ¼ γ0Γ†
ðα0β0Þγ

0,

and ΛðkÞ ¼ ð=kþmkÞ is the spin projection operator for a
spin 1=2 fermion with momentum k and mass mk.
The polarization four-vector Pμ

h of the produced Λc
baryon can be obtained in a similar way, with the spin
density matrix ρhðp0Þ given by

ρhðp0Þ ¼ Lðαβ;α0β0Þ
h
Λðp0ÞMðαβÞΛðpÞfMðα0β0ÞΛðp0Þ

i
; ð15Þ

where the leptonic tensor Lðαβ;α0β0Þ can be written as

Lðαβ;α0β0Þ ¼
1

2

X
rr0

JLðαβÞJ
L†
ðα0β0Þ

¼ 1

2
Tr
h
Λðk0ÞΓðαβÞPLΛðkÞPRΓ̃ðα0β0Þ

i
: ð16Þ

The polarization vectors Pμ
l;h of the outgoing lepton and

baryon can be decomposed as

Pμ
l;h ¼ Pl;h

L ðNl;h
L Þμ þ Pl;h

P ðNl;h
P Þμ þ Pl;h

T ðNl;h
T Þμ; ð17Þ

where the two sets of four-vectors Nl;h
L , Nl;h

T , and Nl;h
P are

defined, respectively, as

ðNl
LÞμ ¼

�jk0j
mτ

;
k00k0

mτjk0j
�
;

ðNl
TÞμ ¼

�
0;

k × k0

jk × k0j
�
;

ðNl
PÞμ ¼

�
0;

k0 × ðk × k0Þ
jk0 × ðk × k0Þj

�
; ð18Þ

and

6 8 10 12 14
0

5

10

15

20

FIG. 1. Criteria for selecting the neutrino beam energy E, where
the red (green) curve denotes the E-Q2

maxðminÞ relation given by

Eq. (11), and the blue line represents the condition Q2 ≤
16 GeV2 required by our theoretical framework. The yellow
range indicates the eligible E.
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ðNh
LÞμ ¼

� jp0j
mΛc

;
p00p0

mΛc
jp0j

�
;

ðNh
TÞμ ¼

�
0;

p0 × k
jp0 × kj

�
;

ðNh
PÞμ ¼

�
0;

p0 × ðp0 × kÞ
jp0 × ðp0 × kÞj

�
; ð19Þ

indicating the longitudinal (L), transverse (T), and
perpendicular (P) directions of the final τ lepton and Λc
baryon in their reaction planes accordingly. It is then fairly
straightforward to obtain the components of Pμ in Eq. (17)
through

Pl;h
a ¼ −ðP · Nl;h

a Þ; a ¼ L;P; T: ð20Þ

In order to study the dependence of these polarization
vectors on the neutrino energy E, one often introduces the
average polarizations hPl;h

a i, which are defined as [26,45]

hPl;h
a i ¼

RQ2
max

Q2
min

Pl;h
a ðQ2Þ dσ

dQ2 dQ2RQ2
max

Q2
min

dσ
dQ2 dQ2

: ð21Þ

To characterize the overall degree of polarization of the
outgoing particles, one can also define the overall average
polarization hPl;hi as

hPl;hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hPl;h

L i2 þ hPl;h
P i2 þ hPl;h

T i2
q

: ð22Þ

D. Constraints on the WCs of Leff

Here we discuss briefly the most relevant and stringent
constraints on the WCs gi from the charmed-hadron weak
decays and the high-pT dilepton invariant mass tails.
Given that the semitauonic decays of charmed hadrons

are kinematically forbidden, the D-meson tauonic decays
become the only decay processes that can be used to con-
strain the WCs gi in Eq. (3). Here we consider the Dþ →
τþντ decay with its branching ratio given by [18,19,46]

BðDþ → τþντÞ ¼
G2

FjVcdj2f2DþmDþm2
τ

8π

�
1 −

m2
τ

m2
Dþ

�
2

×

				1 − gA þ gP
m2

Dþ

mτðmc þmdÞ
				2τDþ ;

ð23Þ
where gA and gP are introduced in Eq. (5). With the inputs
listed in Table I, jVcdj ¼ 0.22438� 0.00044 from the global
fit [47], and fDþ ¼ 212.0� 0.7 MeV from an average of the
LQCD simulations [48–50], we can obtain the parameter
space of the WCs gi allowed by the measured branching
fraction BðDþ → τþντÞ ¼ ð1.20� 0.24stat � 0.12systÞ ×
10−3 [17]; similar works have also been conducted in
Refs. [18,19]. At the same time, constraints on these WCs
can also be set through the analysis of the dilepton invariant
mass tails in pp → τντ processes at high pT [22].
We combine in Fig. 2 the aforementioned constraints at

the 1σ level. It can be seen that the most stringent
constraints on gLS , gRS , and gLT are set by the high-pT

dilepton invariant mass tails, whereas the bound on gRV is
entirely dominated by the measured branching fraction of
Dþ → τþντ decay. Meanwhile, although the boundary of
the real part of gLV is set by the high-pT dilepton invariant
mass tails, the imaginary part is bounded by theDþ → τþντ
decay, as indicated by the overlapped region in color. It
should be pointed out that all the constraints denoted by the
colored regions in Fig. 2 are obtained by setting the rest of
WCs to zero. In order to fully constrain the NP operators in
Eq. (3), more processes and observables are clearly needed.
Our proposed QE scattering process together with the

polarization vectors, as will be shown in the next section, is

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03

�0.5

0.0

0.5

0.0 0.5 1.0 1.5 2.0

�1.0

�0.5

0.0

0.5

1.0

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03
�0.03

�0.02

�0.01

0.00

0.01

0.02

0.03

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03
�0.03

�0.02

�0.01

0.00

0.01

0.02

0.03

�0.010 �0.005 0.000 0.005 0.010
�0.010

�0.005

0.000

0.005

0.010

FIG. 2. Constraints on the WCs gi within the 1σ level. The region colored in pink is set by the measured branching fraction of
Dþ → τþντ decay [17], while the region colored in light blue is allowed by the high-pT dilepton invariant mass tails in pp → τντ
processes [22].

TABLE I. Values of the input parameters relevant for Eq. (23),
which are all from Ref. [47].

Parameter Value

mτ 1.77686 GeV
mDþ 1.86965 GeV
τDþ 1.04 ps
GF 1.1663787 × 10−5 GeV−2

mc 1.27 GeV
md 0 MeV
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exactly what one is looking for. Before delving into
detailed numerical analyses to justify this statement, let
us take the gRV case (i.e., except for gRV ≠ 0 all the other WCs
vanish) for a simple illustration. From Fig. 2 we have
observed that the WC gRV is solely constrained by theDþ →
τþντ decay, as denoted by the pink ring area. For simplicity,
let us drop the errors of the constraint for the moment,
so that the ring now becomes a circle [see Eq. (23)].
Meanwhile, the (differential) cross section of our proposed
scattering process can also provide a constraint, which will
be denoted by another circle [see Eq. (B1)]. Assuming
these two circles intersect at two points—as it happens
quite often—one then obtains two sets of possible values
for the real and imaginary parts of gRV . To further identify
the correct one, one must invoke another observable that
involves gRV . Clearly, the detailed formulas of Pl;h

a in
Appendix C indicate that those polarization observables
can fill the gap. Nevertheless, it should be pointed out that
compared with the cross sections of the scattering process,
the polarization observables are generally more difficult to
measure, and thus it will be experimentally more demand-
ing to obtain the same accuracy of those observables as of
the cross sections.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Total cross section and average polarizations

We start with studying the dependence of the total cross
section σ0, with σ0 ¼ 8πm2

nσ=ðG2
FjVcdj2Þ, and the average

polarizations hPl;h
a i on the neutrino energy E. To this end,

by considering the range E∈ ½8.33; 13� GeV and varying
randomly theWCs gi within the overlapped regions in color
shown in Fig. 2, we plot in Fig. 3 the total cross section σ of
the scattering process ντ þ n → τ− þ Λc as a function of E,
both within the SM and in various NP scenarios.2 It can be
seen that a few interesting features already emerge. First, a

higher beam energy clearly favors a larger total cross
section. Second, the cross section can be significantly
affected by the allowed parameter space of gRV and gLV
shown in Fig. 3, especially by the former. This in turn
indicates a larger opportunity for improving the limits on
gL;RV through the proposed QE scattering process. On the
other hand, for gLS , g

R
S , and g

T
S , stringent constraints from the

high-pT dilepton invariant mass tails do not leave much
room for possible deviations from the SM predication.
Thus, to further improve the constraints on these gi,
demanding experimental setup for the scattering process
is certainly necessary. Finally, although the allowed param-
eter spaces for gLS and gRS are identical to each other [see
Eq. (23) and Fig. 2], their imprints on the total cross section
are slightly different, especially at the high-E range, as
shown vaguely in Fig. 3. Such a small difference in fact
results from the different interference between OL

V and
OL;R

S ; more details could be found in Appendix B.
In Fig. 4, we show the average polarizations hPl

Li, hPl
Pi,

hPl
Ti, and hPli of the τ lepton as a function of the neutrino

beam energy E in various scenarios. Let us start with the
SM case. As depicted by the red curves in Fig. 4, both
the absolute values of hPl

Li and hPli increase along with the
increase of E, which is not surprising, since the τ lepton
produced through the scattering process ντ þ n → τ− þ Λc

is left-handed in the SM. On the other hand, hPl
Pi reaches

its peak around E ¼ 10 GeV, while hPl
Ti ¼ 0 irrespective

of E because Pl in this case misses the terms containing
εfkgfk0gfNagfpg,

3 which essentially characterize the T com-
ponent of Pl; see Appendix C for more details. Note that
hPl

Ti ¼ 0 in the SM qualifies itself as a null test observable.
Measuring a tiny but nonzero hPl

Ti induced by NP effects
could be, however, challenging, as indicated by the plots in
the third column of Fig. 4.
We now move on to the NP scenarios. From the four

figures on the top panel in Fig. 4, we observe that
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FIG. 3. The total cross section σ0, with σ0 ¼ 8πm2
nσ=ðG2

FjVcdj2Þ, of the scattering process ντ þ n → τ− þ Λc as a function of the
neutrino energy E. The dark red curve denotes the SM contribution, while the dark blue points represent the total contributions from both
the SM and the NP in the presence of a single gi, whose values are varied randomly within the overlapped regions in color shown
in Fig. 2.

2For simplicity, we will neglect the possible nuclear effects
[26,51–54] when discussing all the observables, which induce
additional important uncertainties besides the experimental ones
and the ones to be discussed in the Secs. III D and III E.

3Note that Pl;h
T will also vanish if all the WCs gi are real, since

εfkgfk0gfNagfpg is always accompanied by the imaginary unit i, as
shown in Appendix C.

KONG, LAI, LI, YAN, YANG, and ZHENG PHYS. REV. D 108, 095036 (2023)

095036-6



contributions to the average polarization hPl
ai from the SM

and the WC gLV are indistinguishable, because they share
the same effective operator OL

V [see Eq. (3)]. For the WC
gRV , on the other hand, large deviations of hPl

L;Pi from their
SM predictions are possible due to the sizable allowed
parameter space of gRV , while hPl

Ti still remains zero in this
case due to the same reason as in the SM. Similar to the
case of total cross section, possible deviations of all hPl

ai

from their SM predictions are relatively small for the WCs
gLS , g

R
S , and g

L
T due to the stringent constraints on them from

the current data, as shown in Fig. 2.
Similar to the SM case, we can make the following

observations in the NP scenarios. First, there exist small
differences between hPl

ai associated with the WCs gLS and
gRS due to their different operator structures. One can see
that the overall blue bands from gLS are slightly broader than
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FIG. 4. The average polarizations hPl
Li, hPl

Pi, hPl
Ti, and hPli for the scattering process ντ þ n → τ− þ Λc as a function of the neutrino

energy E. The color captions are the same as in Fig. 3.
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from gRS in the hPl
ai-E planes. Second, the fuzzy blue bands

in the hPl
Li-E plane from gL;RS imply that a relatively low E

is more favored to further constrain these two WCs,
whereas a relatively high E would be more advantaged
for further limiting gLT through hPl

Li. The situation is,
however, totally opposite in probing gLS , g

R
S , and g

L
T through

hPl
Ti. Finally, only a relatively high E is favored for probing

gLS , g
R
S , and gLT through hPl

Pi.

We also show in Fig. 5 the average polarizations hPh
Li,

hPh
Pi, hPh

Ti, and hPhi of the Λc baryon as a function of E.
Contrary to the τ-lepton case, the predominant polarization
mode of the Λc baryon produced through the QE scattering
process is perpendicular in the SM. Although hPh

Li increases
along with the increase ofE, its overall polarization degree is
only of Oð10−2Þ. Meanwhile, hPh

Ti is always zero irrespec-
tive of E for a similar reason as hPl

Ti in the τ-lepton case.
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FIG. 5. The average polarizations hPh
Li, hPh

Pi, hPh
Ti, and hPhi for the scattering process ντ þ n → τ− þ Λc as a function of the neutrino

energy E. The color captions are the same as in Fig. 3.
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For the NP scenarios in this case, we observe some
similar features too. First, the average polarizations hPh

ai
induced by gLV are also indistinguishable from the SM case,
as shown by the first four plots on the top panel in Fig. 5,
due to the same reason as mentioned in the τ-lepton case.
Second, a large opportunity exists clearly for improving the
limit on gRV through the measurements of these polarization
vectors of the Λc baryon. Note that, contrary to hPl

Ti, hPh
Ti

would be nonzero in the presence of the very same NP
scenario. Finally, all hPh

ai induced by gLS, g
R
S , and gLT are

small due to the stringent constraints on these WCs.
However, given the small value of hPh

Li predicted in the
SM, possible deviations induced by these NP effects,
especially by gLS, could still reach more than 100% at
the low-E range.

B. Differential cross section
and Q2-dependent polarizations

Taking into account the interesting behavior of hPl
Pi

shown in Fig. 4 and the neutrino beam flux at the DUNE
[41,42], we will set E ¼ 10 GeV as our benchmark beam
energy and explore how the differential cross section and
the polarizations Pl;h

a vary with respect to Q2. To this end,
by letting the WCs gi vary randomly within the overlapped
regions in color shown in Fig. 2, we plot in Fig. 6 the
resulting differential cross sections and polarizations Pl

a as
a function of Q2 in various NP scenarios, together with the
SM predictions. Let us scrutinize the SM case first. As
indicated by the red curves in Fig. 6, the differential cross
section of the scattering process clearly prefers the low-Q2

range in the SM. A similar conclusion also holds for the
polarization Pl

L, even though it experiences a crossover at
Q2 ≃ 8 GeV2. Pl

P peaks roughly at Q2 ≃ 8 GeV2, while
unsurprisingly Pl

T remains zero irrespective of Q2.
We now move on to discuss the NP scenarios shown in

Fig. 6, from which an overall pattern similar to that found in
the previous subsection is observed. First, large deviations
from the SM prediction for the differential cross section
are only possible for gL;RV , while large deviations for the
polarizations Pl

L;P can be expected only for gRV. Second, due
to the stringent experimental constraints on gLS , g

R
S , and gLT ,

deviations from the SM predictions for the differential cross
section and the polarizations Pl

a in these three NP scenarios
become much smaller.
To have a clearer view of these deviations from the

corresponding SM predictions, let us define δ½dσ0�=dQ2 ¼
dσ0=dQ2jNP − dσ0=dQ2jSM and δPl;h

a ¼ Pl;h
a jNP − Pl;h

a jSM,
and plot them explicitly in Fig. 7. It can be seen that the
deviations δPl

a remain zero for the gLV scenario, making the
(differential) cross section the only avenue to probe gLV
through the scattering process. For gRV, a relatively high Q2

is certainly preferred to observe the potentially maximum
deviations of δPl

L;P but at the expense of observing the

maximum deviation of the differential cross section,
whereas δPl

T ¼ 0 in the whole Q2 range. In the case of
gLS and gRS , the overall deviation patterns are similar for
the three polarizations Pl

a, but opposite for the differential
cross section. Nonetheless, a relatively high Q2, e.g.,
Q2 ≃ 7.5 GeV2, can be of benefit for probing gLS and gRS
through these observables. In the presence of gLT , on the
other hand, the situation is a little complicated. From the
four plots on the bottom panel, we observe that the low-Q2

range clearly favors the deviations of the differential cross
section and the polarization Pl

L, whereas the slightly high-
Q2 range favors the deviations δPl

P;T . Overall, the maxi-
mum δPl

L and δPl
P could reach 1 and 0.45 in the gRV

scenario, respectively. However, the maximum δPl
L

for the gLS , g
R
S , and gLT scenarios could only amount to

0.02 at most, and the situation is even more challenging
for δPl

P;T.
Similar analyses can be applied to the polarizations Ph

L,
Ph
P, and Ph

T of the Λc baryon. In Fig. 8, we show the
variations of these observables with respect to Q2 both
within the SM and in the various NP scenarios. It is found
that Ph

a exhibit similar characteristics as Pl
a shown in Fig. 6.

For instance, both Pl
T and Ph

T remain zero irrespective of
the kinematics Q2. In addition, both Pl

L and Ph
L experience

a crossover and peak at the low-Q2 range. Finally, both Pl
P

and Ph
P drop down to zero at Q2

min and Q2
max. Nevertheless,

distinct differences between these two sets of observables
are also observed. An obvious example is that Pl

P and Ph
P

peak at different Q2, Q2 ≃ 7 GeV2 for the former whereas
Q2 ≃ 4 GeV2 for the later. In addition, the crossover
positions of Pl

L and Ph
L lie at different Q2, Q2 ≃ 8 GeV2

for the former whereas Q2 ≃ 4 GeV2 for the later.
With regard to δPh

a, the deviations from the correspond-
ing SM predictions for the polarizations Ph

a, our results are
shown in Fig. 9. Compared to the deviations δPl

a shown in
Fig. 7, δPh

a are characterized by some new features. First,
for the gRV scenario, in contrast to δPl

L and δPl
P, δP

h
L and

δPh
P prefer a relatively low Q2, which is also favored by the

deviation of the differential cross section shown in Fig. 7. In
addition, contrary to δPl

T , δP
h
T is not equal to zero in this

scenario. Second, the overall sizes of δPh
a in the presence of

gLS , g
R
S , and gLT are smaller than that of δPl

a, especially of
δPl

P;T . Finally, for the gRS and gLT scenarios, the minima
of δPh

L arise both at the medium-Q2 range, whereas the
minima of δPl

L arise at the Q2
min and Q2

max, respectively.
Thus far, we have explored in detail the behaviors of the

differential cross section and the polarizations Pl;h
a with

respect to Q2 and pointed out the possible Q2 regions, in
which these observables reach their maxima in various
scenarios. However, we have not provided any explana-
tions of these observed behaviors. Wewill postpone it to the
next subsection, where it will be worked out in the small-
gi limit.
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C. Polarization observables in the small-gi limit

In the previous subsections, we have let the WCs gi vary
randomly within the overlapped regions in color shown
in Fig. 2, which are set by the measured branching frac-
tion of Dþ → τþντ decay [17] and the high-pT dilepton
invariant mass tails in pp → τντ processes [22]. However,
the stringent experimental constraints on gLS , g

R
S , and gLT ,

together with the overall small deviations δPl;h
a shown in

Figs. 7 and 9, strongly motivate us to focus on the small-gi
regions. In this case, we can expand the polarizations Pl;h

a in
terms of gi and keep only the terms up to OðgiÞ. As will be
shown in the following, examining Pl;h

a in such a limit can
shed light on the interesting behaviors of the deviations
δPl;h

a shown in Figs. 7 and 9.
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FIG. 6. Variations of the differential cross section as well as the polarizations Pl
L, P

l
P, and P

l
T with respect toQ

2, where we have set the
neutrino beam energy at E ¼ 10 GeV, after taking into account the interesting behavior of hPl

Pi shown in Fig. 4 and the neutrino beam
flux at the DUNE [41,42]. The color captions are the same as in Fig. 3.
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Given that only a single nonzero gi is activated at a time,
the two traces in the polarization four-vector Pμ [see, e.g.,
Eq. (12)] can be written, respectively, as

Tr½ρ� ¼ DSM þ ðgiÞ�DVL;i þ ðgiÞD�
VL;i þOðjgij2Þ

¼ DSM þ 2Re½g�i DVL;i� þOðjgij2Þ; ð24Þ

and

Tr½ργμγ5� ¼ N μ
SM þ 2Re½g�iN μ

VL;i� þOðjgij2Þ; ð25Þ

where DSM and N μ
SM stand for the SM contributions to the

two traces Tr½ρ� and Tr½ργμγ5� respectively, whileDVL;i and
N μ

VL;i denote the contributions to these two traces from the
interference between the SM and the NP operator asso-
ciated with gi; explicit expressions of the various terms in
the two traces can be found in Appendixes B and C.

0.0

0.2

0.4

0.6

0.8

0

2

4

6

8

10

�0.02

�0.01

0.00

0.01

0.02

�0.015

�0.010

�0.005

0.000

0.005

0.010

0.015

�0.04

�0.02

0.00

0.02

0.04

2 3 4 5 6 7 8 9

�0.10

�0.05

0.00

0.05

0.10

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

�0.04

�0.02

0.00

0.02

0.04

�0.04

�0.02

0.00

0.02

0.04

�0.04

�0.02

0.00

0.02

0.04

2 3 4 5 6 7 8 9

�0.02

�0.01

0.00

0.01

0.02

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

0.1

�0.02

�0.01

0.00

0.01

0.02

�0.02

�0.01

0.00

0.01

0.02

�0.02

�0.01

0.00

0.01

0.02

2 3 4 5 6 7 8 9

�0.02

�0.01

0.00

0.01

0.02

�0.02

�0.01

0.00

0.01

0.02

�0.02

�0.01

0.00

0.01

0.02

�0.02

�0.01

0.00

0.01

0.02

�0.02

�0.01

0.00

0.01

0.02

2 3 4 5 6 7 8 9

FIG. 7. Deviations from the SM predictions for the differential cross section and the polarizations Pl
L, P

l
P, and Pl

T in different NP
scenarios.
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FIG. 8. Variations of the polarizations Ph
L, P

h
P, and Ph

T with respect to Q2, where the neutrino beam energy has also been set at
E ¼ 10 GeV for consistency. The color captions are the same as in Fig. 3.
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T in different NP scenarios.
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Clearly, the pure NP contributions are of Oðjgij2Þ and can
be, therefore, neglected in the small-gi regions.
The polarization four-vector can now be approximated as

Pμ ≃
N μ

SM þ 2Re½g�iN μ
VL;i�

DSM þ 2Re½g�i DVL;i�

≃
N μ

SM

DSM
þ 2Re½g�iN μ

VL;i�
DSM

−
2Re½g�i DVL;i�

DSM

N μ
SM

DSM

¼ Pμ
SM þ 2Re½g�iN μ

VL;i�
DSM

−
2Re½g�i DVL;i�

DSM
Pμ

SM

¼ Pμ
SM þ Pμ

Int; ð26Þ

where we have ignored all the contributions from the
higher-order terms of gi, and introduced the new polari-
zation four-vector Pμ

Int, with

Pμ
Int ≡

2Re½g�iN μ
VL;i�

DSM
−
2Re½g�i DVL;i�

DSM
Pμ

SM; ð27Þ

which is induced by the interference between the SM and
the NP operator associated with gi. Projecting P

μ
SM and Pμ

Int
onto the orthogonal bases [see Eqs. (18) and (19)], we
eventually obtain

Pl;h
L;P ¼ ðPSMÞl;hL;P þ Re½gi�ðPIntÞl;hL;P; ð28Þ

Pl;h
T ¼ Im½gi�ðPIntÞl;hT ; ð29Þ

where ðPSMÞl;hT ¼ 0 has been used.
From the definition of Pμ

Int in Eq. (27), one can already
see that N μ

VL;VL ¼ N μ
SM and DVL;VL ¼ DSM for the gLV

scenario. Since both N μ
SM and DSM are real, Pμ

Int vanishes,
which in turn leads to PInt ¼ 0. In other words, it is
impossible to distinguish the gLV scenario from the SM
through the polarization vectors, which has already been
observed repetitively in the previous subsections.
We then show in Fig. 10 the variations of ðPSMÞl;ha and

ðPIntÞl;ha with respect to Q2 in various NP scenarios, where,
for simplicity, we have labeled them by Pl;h

a uniformly.
From the Pl

L-Q
2 plot (the left-top one in Fig. 10), one can

see that ðPIntÞlL behave in a very similar way for the gLS and
gRS scenarios, which are denoted by the blue and green
dashed curves, respectively. Together with another straight-
forward observation that the magnitude of ðPIntÞlL at anyQ2

in the gLS case is always larger than in the gRS case, it is
expected that the maximum deviation δPl

L for the gLS and gRS
scenarios must have a similar shape but with the former
broader than the latter. Such a behavior has already been
observed explicitly in Fig. 7. From the dot-dashed red
curve, one can see that, belowQ2 ¼ 5 GeV2, ðPIntÞlL for the
gRV scenario behaves just like that for gLS , indicating a similar
shape of δPl

L within this Q2 range. However, the shape of
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FIG. 10. Variations of ðPIntÞla (top panel) and ðPIntÞha (bottom panel) with respect toQ2 in different NP scenarios. Note that the mixing
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δPl
L will become narrower as Q2 increases, even narrower

than that for the gRS scenario at the high-Q2 range. Such an
expectation is, unfortunately, buried by the vast shadow of
the δPl

L-Q
2 plot shown in Fig. 7, due to the large parameter

space of gRV . Compared with ðPSMÞlL denoted by the black
curve, the absolute value of ðPIntÞlL for the gLT scenario (see
the long-dashed purple curve) is always larger. However,
their difference decreases as Q2 increases, justifying that a
low Q2 is favored to observe a maximum deviation of δPl

L
in the gLT scenario, as shown in Fig. 7.
We now turn to discuss the various curves in the Pl

P-Q
2

plot (the middle-top one in Fig. 10). It can be seen that the
blue and green dashed curves behave in a similar way—
both peak roughly at Q2 ¼ 7.5 GeV2—but with different
magnitudes. Although the dashed purple curve also peaks
at a similarQ2, it behaves less dramatically within the range
Q2 ∈ ½3; 7� GeV2. Nonetheless, all of these three curves
drop to zero at Q2

min and Q2
max. Taking all these points into

account, one can understand the interesting features of the
deviation δPl

P observed in the gLS , g
R
S , and gLT scenarios, as

shown in Fig. 7. For the gRV scenario, as indicated by the
dot-dashed red curve, the deviation δPl

P shall behave
similarly to that for the gRS scenario but with a more
flattened curvature at the high-Q2 range. This is different
from the behaviors of the deviation δPl

L in the same NP
scenarios, as can be clearly seen from Fig. 7.
Let us move on to the Ph

L-Q
2 plot (the left-bottom one in

Fig. 10). A couple of observations can already be made.
First, all of the curves except the dashed blue one
experience a crossover, indicating that the deviations
δPh

L become zero at a certain Q2 for the gRV , g
R
S , and gLT

scenarios, while in the gLS case δPh
L increases along with the

increase of Q2. Second, both the green and purple dashed
curves cross the Ph

L ¼ 0 line at Q2 ≃ 5 GeV2, suggesting a
similar behavior of δPh

L for the gRS and gLT scenarios.
However, the pattern of small at the Q2

min while relatively
large at theQ2

max region of ðPIntÞhL reveals that the deviation
δPh

L must be narrower at the Q2
min than at the Q2

max one for
the gRS scenario. This is contrary to the pattern of δPh

L
observed for the gLT scenario, as can be clearly seen from
Fig. 9. Finally, the similar behavior between the green and
blue dashed curves indicates that the deviation δPh

L shall
behave similarly for the gRV and gRS scenarios, provided they
are both assumed at the small-gi limit.
With regard to the Ph

P-Q
2 plot (the middle-bottom one in

Fig. 10), one can draw some similar observations as from
the Pl

P-Q
2 plot. For instance, the similar behavior between

the green and blue dashed curves predicts a close shape of
δPh

P for the gLS and gRS scenarios. The small difference
between the resulting values of ðPIntÞhP, however, suggests
that the deviation δPh

P for the former must be broader than
for the latter, as shown in Fig. 9. Meanwhile, the blue and
green dashed curves in the Ph

P-Q
2 and Pl

P-Q
2 plots indicate

that both δPh
P and δPl

P in these two scenarios shall peak at
Q2 ≃ 7 GeV2. Another example is that the red and purple
dashed curves reveal that the maximal δPh

P occurs at low
Q2,Q2 ≃ 3.4 GeV2, contrary to its counterpart δPl

P, for the
gRL and gLT scenarios.
We conclude this subsection by giving a brief discussion

of the Pl
T-Q

2 and Ph
T-Q

2 plots in Fig. 10. Since the SM
contribution to Pl;h

T denoted by the dark line is zero, the
shapes of other curves reveal not only the behaviors of the
polarizations Pl;h

T but also the deviations δPl;h
T directly. It

can be seen that the blue, green, and purple dashed curves
in the Pl

T-Q
2 plot behave similarly in general with only

some small differences, indicating a similar pattern of the
deviation δPl

T for the gLS , g
R
S , and gLT scenarios. The blue,

green, and purple dashed curves in the Ph
T-Q

2 plot, on the
other hand, behave quite differently in both their curvatures
and peak positions, justifying the distinct shapes of δPh

T for
the gLS , g

R
S , and g

L
T scenarios, as shown in Fig. 9. Finally, the

deviation δPh
T for the gRV scenario in Fig. 9 behaves just like

the dashed red curve in Fig. 10, even though the latter
works only in the small-gi limit.

D. Observables with uncertainties due
to the form factors

As mentioned in Sec. II B, one of the reasons that we
adopt the LQCD calculations of the Λc → N transition
form factors is that they provide us with an error estimation.
Yet our calculation has only involved the central values of
these inputs so far. In this subsection, we study how our
predictions of the observables are affected by the uncer-
tainties of these form factors. As a simple illustration, we
focus on the NP scenarios in the presence of the WCs gRV
and gRS , and consider only the Q2-dependent observables,
i.e., the differential cross section and the polarizations Pl;h

a .
To this end, we first scan randomly gRV and gRS within the
available parameter space shown in Fig. 2 and propagate
the uncertainties of the form factors to each observable for
all the allowed data points of gRV and gRS . We then plot in
Figs. 11 and 12 the central, upper, and lower values of each
observable in blue, green, and red accordingly, instead of
presenting them in error bars. In this way, the combined
regions of the green and red ones as well as the regions
between them can be naively understood as the overall
uncertainty of the observable considered.
From Figs. 11 and 12, we see that there exist large

overlaps among the three colored regions in the low-Q2

region for each observable in the gRV scenario, indicating
that the dominant factor determining the overall shape of
these observables is still due to the vast available parameter
space of gRV . But the impact from the uncertainties of the
form factors becomes gradually distinct, particularly in
the relatively high-Q2 region where the uncertainty from
the form factors for each observable can more than double.
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As for the gRS scenario, the large blank spaces between the
blue and green (red) regions represent the impacts on the
observables from the uncertainties of the form factors,
which clearly dwarf the effect of the WC gRS due to the
stringent experimental constraint on it. The only exceptions
are Pl

T and Ph
T in both NP scenarios, on which the impacts

from the uncertainties of the form factors and the available
parameter space of the WCs seem comparable. These
observations can be easily applied to other NP scenarios too.
Besides the above comparisons, it may be also interest-

ing to explore how the uncertainties of the observables
propagate along the kinematicsQ2. To this end, let us focus
on the observables in the gRS scenario as an illustration.
First, the green and red regions on the bottom panel of
Figs. 11 and 12 clearly indicate that the overall uncertain-
ties of the differential cross section and the polarizations
Pl;h
L increase along with the increase of Q2. Second, the

uncertainties of Pl;h
P and Pl;h

T shrink at the Q2
min and Q2

max

regions, mainly due to the characteristic behaviors of Pl;h
P

and Pl;h
T , but the general pattern is still consistent with what

we have just observed. Such a pattern is closely related to
the behaviors of the form factors with respect toQ2. As can
be seen from Fig. 16, the uncertainties of all the form
factors follow the same pattern as the observables do—the
total uncertainties in particular increase dramatically along
with the increase of Q2. Because of the relatively milder
behaviors of the statistical uncertainties, we take them
instead of the total uncertainties into account in Figs. 11
and 12, as well as in the rest of this work.
In short, although the LQCD calculation [30] of the

Λc → N transition form factors comes with an error
estimation—one of its advantages over the model evalu-
ations presented in Refs. [55–57], the persistently increas-
ing uncertainties along with the increase of Q2 have
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become one of the major obstacles to further probe or
constrain the NP scenarios through the QE neutrino
scattering process. This calls for either better control of
the uncertainties of the form factors in future LQCD
calculations or new model estimations of these form factors
with a good error estimation within the relevant kinematic
ranges.

E. Observables with different form-factor
parametrizations

The parametrization scheme adopted in Ref. [30] is not
the only way to describe the q2 dependence of the Λc → N
transition form factors; nor is the LQCD the only method
for evaluating the form factors. As discussed in Sec. II B
and detailed in Appendix A, there exist already three
different parametrization schemes, which can be extended
to the q2 < 0 range, and have been employed by the
MBM, NRQM, and RCQM models, as well as the LQCD
calculations. Moreover, these parametrization schemes are
validated against the experimental measurements of the Λc
semileptonic decays reported by the BESIII Collaboration
[58,59].4 However, direct calculations of the QE weak
production of the Λc baryon through the νμ scattering off
nuclei reveal that large deviations arise by using the
different schemes of the form factors, demonstrating a
direct consequence of the ambiguities induced by extrapo-
lating the form factors to the moderately large positive

Q2 [29]. Given that our analysis is based on the same
extrapolation, we examine in this subsection if the same
observation applies to the observables considered here in
various NP scenarios.
In Fig. 13, we evaluate the differential cross section and

the polarizations Pl;h
a with the form factors calculated in

LQCD (blue), NRQM (green), and RCQM (red), respec-
tively.5 To be thorough, we also take account of the 1σ-level
statistical uncertainties of the form factors in the LQCD
case. As an illustration, we focus only on the NP scenario in
the presence of gRS . From Fig. 13, it can be seen that there
exists large disparity between the red (green) and blue
regions, indicating that the resulting deviations of dσ, Pl;h

L ,
and Pl;h

P due to the different parametrization schemes of the
form factors dwarf that from the 1σ-level statistical uncer-
tainties of the form factors in LQCD. For the polarization
Pl
T , on the other hand, the overall blue region prevails over

the others, indicating a totally opposite situation. Finally,
comparing the red region with the overall blue one in the
Ph
T-Q

2 plot, one can see that the deviation of Ph
T in RCQM

from the LQCD predication can be comparable to that from
the 1σ-level statistical uncertainties of the form factors
in LQCD.
The SM predictions of ðPIntÞla and ðPIntÞha are presented

in the first columns of Figs. 14 and 15, respectively. One
can see that among the three cases, the LQCD predicts the
largest differential cross section of the QE scattering
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FIG. 13. The differential cross section as well as the polarizations Pl;h
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factors calculated in LQCD (blue), NRQM (green), and RCQM (red), respectively. Here we focus only on the gRS scenario. Note that
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4Note that the BESIII collaboration has improved the meas-
urement of the absolute branching fraction of Λþ

c → Λeþνe
decay [60].

5We do not present the results with the form factors calculated
in MBM, because both MBM and NRQM employ the dipole
form for the q2 dependence of the form factors [55,56] (see
Appendix A for details).
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process in the SM, while the NRQM yields the smallest.
Such a pattern is also consistent with that observed in the
QE weak production of the Λc baryon through the process
νμ þ 16O → μ− þ Λc þ X [29]. However, the situation
becomes more complicated for other observables. For
instance, the crossover behavior of Pl;h

L makes the Pl;h
L ¼ 0

line a watershed: above it the RCQM (LQCD) predicts the
largest Pl

L (Ph
L), while below it the LQCD (RCQM)

predicts the largest Pl
L (Ph

L). In addition, the RCQM always
seems to produce a larger Pl;h

P than the NRQM does.
The small width of each fuzzy colored region in Fig. 13

results from the variation of the WC gRS within the allowed
parameter space shown in Fig. 2. To have a clearer view of
this effect, we work in the small-gi limit and plot in Figs. 14
and 15 the variations of ðPSMÞl;ha and ðPIntÞl;ha with respect
to Q2 with the form factors calculated in LQCD (blue),
NRQM (green), and RCQM (red), both within the SM and
in the gRV , g

L
S , and gRS scenarios. Note that the gLT scenario is

not considered here, because the relevant tensor form
factors have not been calculated in NRQM and RCQM.
Once again, the 1σ-level statistical uncertainties of the form
factors have been taken into account in the LQCD case (see
the yellow regions shown in Figs. 14 and 15).
Since the resulting Pl;h

a due to the mixing OL
V-O

L
V

correspond exactly to the SM case, which has been
discussed above, let us now move on to the next three
mixing scenarios. For the mixing OL

V-O
R
V , it can be seen

that, contrary to ðPIntÞhT , the resulting ðPIntÞl;hL;P from NRQM
and RCQM are opposite in sign. At the same time, the
absolute values of all the ðPIntÞl;ha in these two models are
compatible with the LQCD results at the 1σ level. These
observations can be applied to the mixing OL

V-O
R
S as well,

except that the NRQM forecasts the largest absolute value
of ðPIntÞl;hT . For the mixing OL

V −OL
S , on the other hand,

one can see that the RCQM always predicts the smallest
absolute values of all the ðPIntÞl;ha , while the NRQM results
are in general compatible with that of the LQCD at the
1σ level.
All in all, despite the complicated behaviors of each

polarization observable calculated with various form-factor
parametrization schemes in different scenarios, an overall
observation is that the uncertainties of the polarization
observables due to the different schemes even overwhelm
that from the error propagation of the statistical uncertain-
ties of the form factors.

IV. CONCLUSION

The absence of semitauonic decays of charmed hadrons
makes the decay processes mediated by the quark-level
c → dτþντ transition inadequate for probing a generic NP
with all kinds of Dirac structures. To fill in this gap, we
have considered in this paper the QE neutrino scattering
process ντ þ n → τ− þ Λc, and proposed searching for NP

through the polarizations of the τ lepton and the Λc baryon.
Working in the framework of a general low-energy effec-
tive Lagrangian given by Eq. (3) and using the combined
constraints from the measured branching fraction of the
purely leptonic Dþ → τþντ decay and the analysis of the
high-pT dilepton invariant mass tails in pp → τντ proc-
esses, we have performed a comprehensive analysis of the
(differential) cross sections and polarization vectors of the
ντ þ n → τ− þ Λc process both within the SM and in
various NP scenarios.
For the SM, we have shown that the dominant polari-

zation mode of the outgoing τ lepton is longitudinal and
that of the Λc baryon is perpendicular, whereas the trans-
verse polarizations hPTi of both the τ andΛc remain zero in
such a QE scattering process. We have also explored the
variations of the polarization vectors with respect to the
kinematics Q2, and observed that both Pl

L and Ph
L expe-

rience a crossover, and the peaks of Pl
P and Ph

P are both
reached within the available kinematic range, though
happening at different Q2 points.
For the various NP scenarios, the overall observation we

have made is that, due to the stringent experimental
constraints on the WCs gLS , g

R
S , and gLT , there exist only

small [of Oð10−2Þ] deviations between the SM and the gLS ,
gRS , and gLT scenarios for the polarizations Pl;h

a . By contrast,
the larger available parameter space of the WC gRV makes all
the deviations δPl;h

a much bigger, except for δPl
T which

remains zero. As for the gLV scenario, since it shares the
same effective operator OL

V with the SM, all the deviations
δPl;h

a always remain zero, making the (differential) cross
section the only avenue to probe gLV through the QE
scattering process.
We have also explored the impacts of the uncertainties of

the Λc → N transition form factors, and shown that they
have become one of the major challenges to further probe
or constrain the NP scenarios through the QE neutrino
scattering process. Furthermore, we have considered three
different form-factor parametrization schemes employed by
NRQM, RCQM, and LQCD respectively, and discovered
large differences among their predictions in the SM, which
is also consistent with the observation made in the QE weak
production of the Λc baryon through the νμ scattering off
nuclei [29]. For the NP scenarios, although the deviations
δPl;h

a predicted in NRQM and RCQM are still compatible
with the LQCD results at the 1σ level, the overall
observation is that large uncertainties of the polarization
observables arise from using the different schemes and
dwarf that from the error propagation of the form factors,
which demonstrates a direct consequence of the ambigu-
ities induced by extrapolating the form factors to the large
positive Q2.
Finally, we would like to make a comment on the

detection of the outgoing τ lepton. It is known that the τ
lepton decays rapidly and its decay products contain at least
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one undetected neutrino, making its identification very
challenging and its polarization states hard to be measured.
However, its kinematic and polarization information can
be inferred from the visible final-state kinematics in its
subsequent decays [61–71]. In our upcoming work, we will
incorporate this idea into our further analysis of the QE
scattering process.
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APPENDIX A: DEFINITIONS
AND PARAMETRIZATIONS
OF THE Λc → N TRANSITION

FORM FACTORS

The Λc → N transition form factors used in this work are
defined in the helicity basis [30,32,33]. For the vector and
axial-vector currents, their hadronic matrix elements are
defined, respectively, by

hNðp; sÞjd̄γμcjΛcðp0; s0Þi

¼ ūNðp; sÞ
�
f0ðq2ÞðmΛc

−mNÞ
qμ

q2

þ fþðq2Þ
mΛc

þmN

sþ

�
p0μ þ pμ − ðm2

Λc
−m2

NÞ
qμ

q2

�

þ f⊥ðq2Þ
�
γμ −

2mN

sþ
p0μ −

2mΛc

sþ
pμ

��
uΛc

ðp0; s0Þ;

ðA1Þ

and

hNðp;sÞjd̄γμγ5cjΛcðp0; s0Þi

¼−ūNðp;sÞγ5
�
g0ðq2ÞðmΛc

þmNÞ
qμ

q2

þ gþðq2Þ
mΛc

−mN

s−

�
p0μþpμ− ðm2

Λc
−m2

NÞ
qμ

q2

�

þ g⊥ðq2Þ
�
γμþ 2mN

s−
p0μ−

2mΛc

s−
pμ

��
uΛc

ðp0; s0Þ; ðA2Þ

where q ¼ p0 − p and s� ¼ ðmΛc
�mNÞ2 − q2. From

Eqs. (A1) and (A2), we can obtain the hadronic matrix
elements of the scalar and pseudoscalar currents through
the equation of motion, which are given, respectively, by

hNðp; sÞjd̄cjΛcðp0; s0Þi

¼ ðmΛc
−mNÞ

mc −md
f0ðq2ÞūNðp; sÞuΛc

ðp0; s0Þ; ðA3Þ

hNðp; sÞjd̄γ5cjΛcðp0; s0Þi

¼ ðmΛc
þmNÞ

mc þmd
g0ðq2ÞūNðp; sÞγ5uΛc

ðp0; s0Þ; ðA4Þ

where mdðcÞ denotes the dðcÞ-quark running mass. Finally,
the hadronic matrix element of the tensor current is given by

hNðp; sÞjd̄iσμνcjΛcðp0; s0Þi

¼ ūNðp; sÞ
�
2hþ

p0
μpν − p0

νpμ

sþ
þ h⊥

�
mΛc

þmN

q2

× ðqμγν − qνγμÞ − 2

�
1

q2
þ 1

sþ

�
ðp0

μpν − p0
νpμÞ

�

þ h̃þ

�
iσμν −

2

s−
½mΛc

ðpμγν − pνγμÞ −mNðp0
μγν − p0

νγμÞ

þ p0
μpν − p0

νpμ�
�
þ h̃⊥

mΛc
−mN

q2s−

�
ðm2

Λc
−m2

N − q2Þ

× ðγμp0
ν − γνp0

μÞ − ðm2
Λc

−m2
N þ q2Þðγμpν − γνpμÞ

þ 2ðmΛc
−mNÞðp0

μpν − p0
νpμÞ

��
uΛc

ðp0; s0Þ; ðA5Þ

where σμν ¼ i½γμ; γν�=2.
The parametrization of these Λc → N transition form

factors calculated in LQCD takes the form [30,39]

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

Xnmax

n¼0

afn½zðq2Þ�n; ðA6Þ

with the expansion variable defined by

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ðA7Þ

where tþ ¼ ðmD þmπÞ2 is set equal to the threshold ofDπ
two-particle states, t0 ¼ ðmΛc

−mNÞ2 determines which
value of q2 gets mapped to z ¼ 0, and the lowest poles are
already factored out before the z expansion, with their
quantum numbers and masses listed in Table IVof Ref. [30]
for the different form factors. The central values and the
statistical uncertainties of af0;1;2 in Eq. (A6) for different
form factors fðq2Þ have been evaluated in Ref. [30] by the
nominal fit (nmax ¼ 2), while their systematic uncertainties
can be obtained by a combined analysis of both the nominal
and higher-order (nmax ¼ 3) fits; we refer the readers to
Ref. [30] for further details.
In Fig. 16, we depict the central values as well as the

statistical and total uncertainties of these form factors with
respect to the kinematics Q2. It can be seen that the yellow
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region in each plot increases dramatically along with the
increase of Q2, indicating a larger total uncertainty in the
larger Q2 range. Although the statistical uncertainties also
increases along with the increase of Q2, their behaviors are
much milder. Therefore, we only take the statistical
uncertainties into account throughout this work.
Often, the hadronic matrix elements of the vector and

axial-vector currents are expressed in terms of another set
of form factors fV;Ai with i ¼ 1, 2, 3, which are related to
the ones introduced in Eqs. (A1) and (A2) by

f0 ¼
q2

mΛc
ðmΛc

−mNÞ
fV3 þ fV1 ;

fþ ¼ fV1 þ q2

mΛc
ðmΛc

þmNÞ
fV2 ;

f⊥ ¼ fV1 þ fV2
ðmN þmΛc

Þ
mΛc

;

g0 ¼ −
q2

mΛc
ðmΛc

−mNÞ
fA3 þ fA1 ;

gþ ¼ fA1 −
q2

mΛc
ðmΛc

−mNÞ
fA2 ;

g⊥ ¼ fA1 þ fA2
ðmN −mΛc

Þ
mΛc

: ðA8Þ

To parametrize the q2 dependence of this set of form
factors, the RCQMmodel adopts the following double-pole
form [57]:

fðq2Þ ¼ fð0Þ
1 − aŝþ bŝ2

; ðA9Þ

with ŝ ¼ q2=m2
Λc
, where the values of the parameters fð0Þ,

a, and b are listed in Table II. On the other hand, the
MBM and NRQM models employ both the monopole and
dipole parametrizations for these form factors [55,56].
For simplicity, we only consider the later, which has the
following form:

TABLE II. Values of the parameters employed in Eq. (A9) to
construct the q2 dependence of the form factors associated with
the vector and axial-vector currents [see Eqs. (A1) and (A2)] for
the RCQM model [57].

fð0Þ a b

fV1 0.470 1.111 0.303

fV2 0.247 1.240 0.390

fV3 0.038 0.308 1.998

fA1 0.414 0.978 0.235

fA2 −0.073 0.781 0.225

fA3 −0.328 1.330 0.486
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FIG. 16. The Q2 dependence of the different form factors, where the red and blue dashed lines denote the statistical and total
uncertainties of the form factors within 1σ error bars, respectively.
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fðq2Þ ¼ A
ð1 − q2=M2

RÞ2
; ðA10Þ

where the values of the parameters A andMR are reported in
Table III. We refer the readers to Ref. [29] for more details
about the form-factor parametrizations in different models.
In Fig. 17, we show theQ2 dependence of these six form

factors associated with the matrix elements of the vector
and axial-vector currents in the suitable kinematic range
(Q2 > 0) for the low-E QE scattering process. It can be
seen that the LQCD predicts the largest values for all these
six form factors. Especially for f0, fþ, and gþ, the central
values provided by the three models lie outside the 1σ error
bars of the LQCD calculations. Interestingly enough, the
NRQM model produces the lowest values for f0;þ;⊥, while
the MBM model provides the lowest values for g0;þ;⊥.
Finally, it should be mentioned that another set of form

factors has also been employed to parametrize the transition
matrix elements of the vector and axial-vector currents.
They can be related to fV;Ai in a trivial way, and have been
investigated in the (light-cone) QCD sum rule approach
(see, e.g., Refs. [72–74]) and the light-front constituent
quark model (see, e.g., Refs. [75,76]). However, since the

form factors fV;A3 were not calculated, the results presented
in these references will not be considered in this work.

APPENDIX B: AMPLITUDE SQUARED
OF THE QE SCATTERING PROCESS

For the convenience of future discussions,we provide here
the explicit expression of the amplitude squared jMj2 of
the QE scattering process ντðkÞ þ nðpÞ → τ−ðk0Þ þ Λcðp0Þ
mediated by the general effective Lagrangian Leff [see
Eq. (3)]. With all the operators of Leff taken into account,
the amplitude square jMj2 is given explicitly by

jMj2 ¼ j1þ gLV j2AVL−VL
þ jgRV j2AVR−VR

þ ðjgLS j2 þ jgRS j2ÞASL−SL þ jgLT j2ATL−TL
þ 2Re½gLSgR�S �ASL−SR

þ 2Re½gRVð1þ gL�V Þ�AVR−VL
þ 2Re½gLS ð1þ gL�V Þ þ gRSg

R�
V �ASL−VL

þ 2Re½gRS ð1þ gL�V Þ þ gLSg
R�
V �ASR−VL

þ 2Re½gLTð1þ gL�V Þ�ATL−VL
þ 2Re½gLTgR�V �ATL−VR

þ 2Re½gLTgLL�S �ATL−SL þ 2Re½gLTgR�S �ATL−SR; ðB1Þ
where the various subscripts attached to the different A on the right-hand side represent the possible interference between
the two operators (see Ref. [24] for more details). Note that, because of the chiral structures of the lepton and quark currents
involved,Awith different subscripts can be identical to each other, e.g.,ASL−VL

¼ ASR−VR
and thus only one of them is kept

in Eq. (B1). The amplitudes associated with other interference terms that are not shown in Eq. (B1) are all zero. For
convenience, we provide here the explicit expressions of the A on the right-hand side of Eq. (B1) as

AVL−VL
¼ m2

τðm2
τ − q2Þ
2q4

½f20ðmΛc
−mnÞ2sþ þ g20ðmΛc

þmnÞ2s−� −
m2

τðm2
Λc

−m2
nÞ

q4

× ðf0fþ þ g0gþÞ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ� þ
�
f2þðmΛc

þmnÞ2
2q4sþ

TABLE III. Values of the parameters employed in Eq. (A10) to
construct the q2 dependence of the form factors associated with
the vector and axial-vector currents [see Eqs. (A1) and (A2)] for
the MBM and NRQM models [55,56].

NRQM MBM

A MR (GeV) A MR (GeV)

fV1 0.22 2.01 0.33 2.01
fV2 0.11 2.01 0.18 2.01
fV3 0.27 2.01 0.00 2.01

fA1 0.58 2.42 0.41 2.42

fA2 −0.04 2.42 −0.07 2.42

fA3 −0.10 2.42 −0.50 2.42
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FIG. 17. The Q2 dependence of the N → Λc transition form
factors deduced from extrapolating to Q2 > 0 the results of
LQCD [30], RCQM [57], NRQM [55,56], and MBM [55,56],
respectively.
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þ g2þðmΛc
−mnÞ2

2q4s−

�

4m2

nq4ð4E2 −m2
τ þ q2Þ þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ

× ½8Emnq2 þm2
τðm2

Λc
−m2

n − q2Þ�
�
þ
�
f2⊥
sþ

þ g2⊥
s−

�

8E2m2

nq2 þ ðm2
τ − q2Þ

×
h
2m2

Λc
q2 − 4Emnðm2

n −m2
Λc

þ q2Þ − ðm2
Λc

−m2
nÞ2 þ 2m2

nm2
τ − q4

i�
− 2f⊥g⊥½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�; ðB2Þ

AVR−VR
¼ m2

τðm2
τ − q2Þ
2q4

½f20ðmΛc
−mnÞ2sþ þ g20ðmΛc

þmpÞ2s−� −
m2

τðm2
Λc

−m2
nÞ

q4

× ðf0fþ þ g0gþÞ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ� þ
�
f2þðmΛc

þmnÞ2
2q4sþ

þ g2þðmΛc
−mnÞ2

2q4s−

�

4m2

nq4ð4E2 −m2
τ þ q2Þ þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ

× ½8Emnq2 þm2
τðm2

Λc
−m2

n − q2Þ�
�
þ
�
f2⊥
sþ

þ g2⊥
s−

�

8E2m2

nq2 þ ðm2
τ − q2Þ

×
h
2m2

Λc
q2 − 4Emnðm2

n −m2
Λc

þ q2Þ − ðm2
Λc

−m2
nÞ2 þ 2m2

nm2
τ − q4

i�
þ 2f⊥g⊥½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�; ðB3Þ

ASL−SL ¼ m2
τ − q2

2m2
c

½f20ðmΛc
−mnÞ2sþ þ g20ðmΛc

þmnÞ2s−�; ðB4Þ

ATL−TL
¼ −8

�
h2þ
sþ

þ h̃2þ
s−

�

4m4

τm2
n þm4

Λc
ðq2 −m2

τÞ þ 2m2
Λc
ðm2

τ − q2Þð4Emn þm2
n

þ q2Þ þ q2ð4Emn þm2
n þ q2Þ2 −m2

τ ½m4
n þ 6m2

nq2 þ q4 þ 8Emnðm2
n þ q2Þ�

�

þ 16

�
h2⊥ðmΛc

þmnÞ2
sþq4

þ h̃2⊥ðmΛc
−mnÞ2

s−q4

�

2mnð2EþmnÞq4ð2Emn þ q2Þ

−m2
τq2ðm2

n þ q2Þð4Emn þm2
n þ q2Þ þm4

Λc
m2

τðm2
τ − q2Þ þm4

τðm4
n þ q4Þ

− 2m2
Λc
ðm2

τ − q2Þ½m2
τðm2

n þ q2Þ − 2Emnq2�
�
−
32m2

τðm2
Λc

−m2
nÞ

q4

× ½m2
Λc
ðm2

τ − q2Þ −m2
τðm2

n þ q2Þ þ q2ð4Emn þm2
n þ q2Þ�h⊥h̃⊥; ðB5Þ

AVR−VL
¼ m2

τðm2
τ − q2Þ
2q4

½f20ðmΛc
−mnÞ2sþ − g20ðmΛc

þmnÞ2s−� −
m2

τðm2
Λc

−m2
nÞ

q4

× ðf0fþ − g0gþÞ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ� þ
�
f2þðmΛc

þmnÞ2
2q4sþ

−
g2þðmΛc

−mnÞ2
2q4s−

�

4m2

nq4ð4E2 −m2
τ þ q2Þ þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ

× ½8Emnq2 þm2
τðm2

Λc
−m2

n − q2Þ�
�
þ
�
f2⊥
sþ

−
g2⊥
s−

�
f8E2m2

nq2 þ ðm2
τ − q2Þ

× ½2m2
Λc
q2 − 4Emnðm2

n −m2
Λc

þ q2Þ − ðm2
Λc

−m2
nÞ2 þ 2m2

nm2
τ − q4�g; ðB6Þ
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ASL−VL
¼ mτðq2 −m2

τÞ
2mcq2

½f20ðmΛc
−mnÞ2sþ þ g20ðmΛc

þmnÞ2s−� þ
mτðm2

Λc
−m2

nÞ
2mcq2

× ðf0fþ þ g0gþÞ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�; ðB7Þ

ASR−VL
¼ mτðq2 −m2

τÞ
2mcq2

½f20ðmΛc
−mnÞ2sþ − g20ðmΛc

þmnÞ2s−� þ
mτðm2

Λc
−m2

nÞ
2mcq2

× ðf0fþ − g0gþÞ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�; ðB8Þ

ATL−VL
¼ −

2mτ

q2
f½m2

Λc
ðm2

τ − q2Þ −m2
τðm2

n þ q2Þ þ q2ð4Emn þm2
n þ q2Þ�½ðmΛc

−mnÞ

× ðf0hþ þ 2f⊥h̃⊥Þ þ ðmΛc
þmnÞðg0h̃þ þ 2g⊥h⊥Þ� − ðm2

τ − q2Þ½ðmΛc
þmnÞ

× s−ðfþhþ þ 2f⊥h⊥Þ þ ðmΛc
−mnÞsþðgþh̃þ þ 2g⊥h̃⊥Þ�g; ðB9Þ

ATL−VR
¼ −

2mτ

q2
f½m2

Λc
ðm2

τ − q2Þ −m2
τðm2

n þ q2Þ þ q2ð4Emn þm2
n þ q2Þ�½ðmΛc

−mnÞ

× ðf0hþ þ 2f⊥h̃⊥Þ − ðmΛc
þmnÞðg0h̃þ þ 2g⊥h⊥Þ� − ðm2

τ − q2Þ½ðmΛc
þmnÞ

× s−ðfþhþ þ 2f⊥h⊥Þ − ðmΛc
−mnÞsþðgþh̃þ þ 2g⊥h̃⊥Þ�g; ðB10Þ

ATL−SL ¼ 2

mc
½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ�

h
f0hþðmΛc

−mpÞ þ g0h̃þðmΛc
þmnÞ

i
; ðB11Þ

ATL−SR ¼ 2

mc
½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�

h
f0hþðmΛc

−mpÞ − g0h̃þðmΛc
þmpÞ

i
; ðB12Þ

ASL−SR ¼ m2
τ − q2

2m2
c

h
f20ðmΛc

−mnÞ2sþ − g20ðmΛc
þmnÞ2s−

i
: ðB13Þ

APPENDIX C: DETAILS OF THE
POLARIZATION VECTORS OF τ AND Λc

We now present the explicit expressions of Pl;h
L , Pl;h

P , and
Pl;h
T of the outgoing τ and Λc. These components of the

polarization vectors are defined in Eq. (20) and read

Pl;h
a ¼ −ðP · NaÞl;h

¼ Tr½ρl;hγ5=Na�
Tr½ρl;h�

¼ Aðl;hÞ
a

2mðτ;ΛcÞjMj2 : ðC1Þ

Note that the trace over the spin density matrices ρl;h has
been replaced in the last step by

Tr½ρl;h� ¼ 2mðτ;ΛcÞjMj2; ðC2Þ

which can be inferred from Eqs. (13) and (15), and the
amplitude squared jMj2 has been given in Eq. (B1). In
addition, the trace in the numerator has been redefined as

Aðl;hÞ
a , which are given, respectively, by

Al
a ¼ j1þ gLLV j2Al

VL−VL
þ jgRV j2Al

VR−VR
þ ðjgLS j2 þ jgRS j2ÞAl

SL−SL

þ jgLT j2Al
TL−TL

þ 2Re½gRVð1þ gL�V ÞAl
VR−VL

þ 2Re½gLTð1þ gL�V ÞAl
TL−VL

�
þ 2Re½ðgLS ð1þ gL�V Þ þ gRSg

R�
V ÞAl

SL−VL
� þ 2Re½gLSgR�S Al

SL−SR �
þ 2Re½ðgRS ð1þ gL�V Þ þ gLSg

R�
V ÞAl

SR−VL
� þ 2Re½gLTgR�V Al

TL−VR
�

þ 2Re½gLTgL�S Al
TL−SL � þ 2Re½gLTgR�S Al

TL−SR �; ðC3Þ
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Ah
a ¼ j1þ gLLV j2Ah

VL−VL
þ jgRV j2Ah

VR−VR
þ ðjgLS j2 − jgRS j2ÞAh

SL−SL

þ jgLT j2Ah
TL−TL

þ 2Re½gRVð1þ gL�V ÞAh
VR−VL

� þ 2Re½gLTð1þ gL�V ÞAh
TL−VL

�
þ 2Re½gLS ð1þ gL�V ÞAh

SL−VL
� þ 2Re½gRS ð1þ gL�V ÞAh

SR−VL
�

þ 2Re½gRSgR�V Ah
SR−VR

� þ 2Re½gLSgR�V Ah
SL−VR

� þ 2Re½gLTgR�V Ah
TL−VR

�
þ 2Re½gLTgL�S Ah

TL−SL � þ 2Re½gLTgR�S Ah
TL−SR � þ 2Re½gLSgR�S Ah

SL−SR �: ðC4Þ

The explicit expressions of all the Al;h on the right-hand side of Eqs. (C3) and (C4) are presented as follows:

Al
VL−VL

¼ 2m4
τðNa · kÞ
q4

½f20ðmΛc
−mnÞ2sþ þ g20ðmΛc

þmnÞ2s−� −
2m2

τðm2
Λc

−m2
nÞ

q4

× ðf0fþ þ g0gþÞfðNa · kÞ½4Emnq2 þ ðm2
τ − q2Þð2m2

Λc
− 2m2

n − q2Þ�

−q2ðm2
τ − q2ÞðNa · pþ Na · p0Þg þ 2m2

τ

�
f2þðmΛc

þmnÞ2
q4sþ

þ g2þðmΛc
−mnÞ2

q4s−

�

×



ðNa · kÞ

h
ðm2

Λc
−m2

nÞ
�
m2

τðm2
Λc

−m2
n − q2Þ − q2ð2m2

Λc
− 4mnE − 2m2

n þ q2Þ
�

þq4ð4m2
Λc

− q2Þ
i
− q2ðNa · pþ Na · p0Þ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�

�
− 8m2

τf⊥g⊥½ðNa · pÞðm2
τ − q2 − 2EmnÞ þ 2EmnðNa · p0Þ�

þ 4m2
τ

�
f2⊥
sþ

þ g2⊥
s−

�

ðNa · pÞ½2Emnðm2

Λc
−m2

p þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

p − q2Þ�

þ 2mnðNa · p0Þ
h
Eðm2

n −m2
Λc

þ q2Þ þmnðq2 −m2
τÞ
i�

; ðC5Þ

Al
VR−VR

¼ 2m4
τðNa · kÞ
q4

½f20ðmΛc
−mpÞ2sþ þ g20ðmΛc

þmnÞ2s−� −
2m2

τðm2
Λc

−m2
nÞ

q4

× ðf0fþ þ g0gþÞfðNa · kÞ½4Emnq2 þ ðm2
τ − q2Þð2m2

Λc
− 2m2

n − q2Þ�

− q2ðm2
τ − q2ÞðNa · pþ Na · p0Þg þ 2m2

τ

�
f2þðmΛc

þmnÞ2
q4sþ

þ g2þðmΛc
−mnÞ2

q4s−

�

×



ðNa · kÞ

h
ðm2

Λc
−m2

nÞ
�
m2

τðm2
Λc

−m2
n − q2Þ − q2ð2m2

Λc
− 4mnE − 2m2

n þ q2Þ
�

þ q4ð4m2
Λc

− q2Þ
i
− q2ðNa · pþ Na · p0Þ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�

�
þ 8m2

τf⊥g⊥½ðNa · pÞðm2
τ − q2 − 2EmnÞ þ 2EmnðNa · p0Þ�

þ 4m2
τ

�
f2⊥
sþ

þ g2⊥
s−

�
fðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ�

þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ�g; ðC6Þ

Al
SL−SL ¼ ASL−SL

4m2
τðk · NaÞ
m2

τ − q2
; ðC7Þ
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Al
TL−TL

¼ 32m2
τ

�
h2þ
sþ

þ h̃2þ
s−

�n
2ðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ�

þ 4mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ� þ ðNi · kÞsþs−
o

− 32m2
τ

n
ðNa · kÞðm2

τ − q2Þs−sþ − ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�

× ½ðNa · pÞðm2
Λc

−m2
n þ q2Þ þ ðNa · p0Þðm2

n −m2
Λc

þ q2Þ�
o�ðmΛc

−mnÞ2h̃2⊥
q4s−

þ ðmΛc
þmnÞ2h2⊥
q4sþ

�
−
128m2

τðm2
Λc

−m2
nÞh⊥h̃⊥

q4

n
ðNa · pÞ½2Emnq2 þ ðm2

Λc
−m2

pÞðm2
τ − q2Þ�

− ðNa · p0Þ½2Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�
o
; ðC8Þ

Al
VR−VL

¼ 2m4
τðNa · kÞ
q4

½f20ðmΛc
−mnÞ2sþ − g20ðmΛc

þmnÞ2s−� −
2m2

τðm2
Λc

−m2
nÞ

q4

× ðf0fþ − g0gþÞfðNa · kÞ½4Emnq2 þ ðm2
τ − q2Þð2m2

Λc
− 2m2

n − q2Þ�

− q2ðm2
τ − q2ÞðNa · pþ Na · p0Þg þ 2m2

τ

�
f2þðmΛc

þmnÞ2
q4sþ

−
g2þðmΛc

−mnÞ2
q4s−

�

×
n
ðNa · kÞ½ðm2

Λc
−m2

nÞðm2
τðm2

Λc
−m2

n − q2Þ − q2ð2m2
Λc

− 4mnE − 2m2
n þ q2ÞÞ

þ q4ð4m2
Λc

− q2Þ� − q2ðNa · pþ Na · p0Þ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�
o

þ 4m2
τ

�
f2⊥
sþ

−
g2⊥
s−

�n
ðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ þ ðm2
τ − q2Þ

× ðm2
Λc

þm2
n − q2Þ� þ 2mnðNa · p0Þ½Eðm2

n −m2
Λc

þ q2Þ þmnðq2 −m2
τÞ�

o
; ðC9Þ

Al
SL−VL

¼ −
2m3

τðNa · kÞ
mcq2

ff20ðmΛc
−mnÞ2sþ þ g20ðmΛc

þmnÞ2s−g −
2mτðm2

Λc
−m2

nÞ
mcq2

× ðf0fþ þ g0gþÞ
n
q2ðm2

τ − q2ÞðNa · p0Þ þ ðNa · p − Na · p0Þ

× ½2Emnq2 þ ðm2
Λc

−m2
nÞðm2

τ − q2Þ� − 2iq2εfkg;fk0g;fNag;fpg
o
; ðC10Þ

Al
SR−VL

¼ −
2m3

τðNi · kÞ
mcq2

ff20ðmΛc
−mnÞ2sþ − g20ðmΛc

þmnÞ2s−g −
2mτðm2

Λc
−m2

nÞ
mcq2

× ðf0fþ − g0gþÞ
n
q2ðm2

τ − q2ÞðNa · p0Þ þ ðNa · p − Na · p0Þ

× ½2Emnq2 þ ðm2
Λc

−m2
pÞðm2

τ − q2Þ� − 2iq2εfkg;fk0g;fNag;fpg
o
; ðC11Þ
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Al
TL−VL

¼ −8m3
τ

�ðmΛc
−mnÞf0hþ
q2

þ ðmΛc
þmnÞg0h̃þ
q2

�
½ðNa · pÞð2Emn −m2

τ þ q2Þ

− 2ðEmnðNa · p0Þ þ iεfkgfk0gfNagfpgÞ� þ ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�
× ½2iεfkgfk0gfNagfpg þ ðNa · pÞðm2

Λc
−m2

n þm2
τ − 2EmnÞ þ ðNa · p0Þð2Emn −m2

Λc
þm2

n þ q2Þ�

×

�
8mτðmΛc

þmnÞf⊥h⊥
sþq2

þ 8mτðmΛc
−mnÞg⊥h̃⊥

s−q2

�
þ 8mτðq2 −m2

τÞ

×

�ðmΛc
−mnÞf⊥h̃⊥
q2

þ ðmΛc
þmnÞg⊥h⊥
q2

�
½2iεfkgfk0gfNagfpg þ ðNa · pÞðm2

Λc
−m2

n þm2
τ − 2EmnÞ

þ ðNa · p0Þð2Emn −m2
Λc

þm2
n þ q2Þ� þ 8mτ



½4m2

nq2ðm2
τ − 2E2Þ

þ 2Emnðm2
τ − 3q2Þðm2

n −m2
Λc

þ q2Þ − q2s−sþ�ðNa · pþ Na · p0Þ − ðm2
τ þ q2Þ

× ½ðm2
τ − q2Þðm2

n −m2
Λc

þ q2Þ − 4Emnq2�ðNa · pÞ − 2i½4Emnq2 þ ðm2
τ − q2Þ

× ðm2
Λc

−m2
n − q2Þ�εfkgfk0gfNagfpg

��ðmΛc
þmnÞfþhþ
sþq2

þ ðmΛc
−mnÞgþh̃þ
s−q2

�
; ðC12Þ

Al
TL−VR

¼ −8m3
τ

�ðmΛc
−mnÞf0hþ
q2

−
ðmΛc

þmnÞg0h̃þ
q2

�
½ðNa · pÞð2Emn −m2

τ þ q2Þ

− 2ðEmnðNa · p0Þ þ iεfkgfk0gfNagfpgÞ� þ ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�
× ½2iεfkgfk0gfNagfpg þ ðNa · pÞðm2

Λc
−m2

n þm2
τ − 2EmnÞ þ ðNa · p0Þð2Emn −m2

Λc

þm2
n þ q2Þ�

�
8mτðmΛc

þmnÞf⊥h⊥
sþq2

−
8mτðmΛc

−mnÞg⊥h̃⊥
s−q2

�
þ 8mτðq2 −m2

τÞ

×

�ðmΛc
−mnÞf⊥h̃⊥
q2

−
ðmΛc

þmnÞg⊥h⊥
q2

�
½2iεfkgfk0gfNagfpg þ ðNa · pÞðm2

Λc
−m2

n

þm2
τ − 2EmnÞ þ ðNa · p0Þð2Emn −m2

Λc
þm2

n þ q2Þ� þ 8mτ



½4m2

nq2ðm2
τ − 2E2Þ

þ 2Emnðm2
τ − 3q2Þðm2

n −m2
Λc

þ q2Þ − q2s−sþ�ðNa · pþ Na · p0Þ − ðm2
τ þ q2Þ

× ½ðm2
τ − q2Þðm2

n −m2
Λc

þ q2Þ − 4Emnq2�ðNa · pÞ − 2i½4Emnq2 þ ðm2
τ − q2Þ

× ðm2
Λc

−m2
n − q2Þ�εfkgfk0gfNagfpg

��ðmΛc
þmnÞfþhþ
sþq2

−
ðmΛc

−mnÞgþh̃þ
s−q2

�
; ðC13Þ

Al
TL−SL ¼ 8m2

τ

mc
½2iεfkg;fNag;fpg;fp0g þ ðNa · pÞð2Emn −m2

τ þ q2Þ − 2EmnðNa · p0Þ�

× ½f0hþðmΛc
−mnÞ þ g0h̃þðmΛc

þmnÞ�; ðC14Þ

Al
TL−SR ¼ 8m2

τ

mc
½2iεfkg;fNag;fpg;fp0g þ ðNa · pÞð2Emn −m2

τ þ q2Þ − 2EmnðNa · p0Þ�

× ½f0hþðmΛc
−mnÞ − g0h̃þðmΛc

þmnÞ�; ðC15Þ

Al
SL−SR ¼ ASL−SR

2mτðk · NaÞ
m2

τ − q2
; ðC16Þ
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Ah
VL−VL

¼ −2mΛc
fðNa · kÞ½4Emnðm2

n −m2
Λc
Þ þ ðq2 −m2

τÞðm2
Λc

þ 3m2
n − q2Þ þ 2sþs−�

þ ðNa · pþ Na · p0Þ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�g

×
�ðmΛc

þmnÞfþf⊥
sþ

þ ðmΛc
−mnÞgþg⊥
s−

�
þ 2f0g0m2

τðm2
Λc

−m2
nÞ

q4
ðm2

τ − q2Þ

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ� þ 4mΛc
½4Emnq2 þ ðm2

τ − q2Þ
× ðm2

Λc
−m2

n − q2Þ�f½sþs− − 2Emnðm2
Λc

−m2
n þ q2Þ þ ðq2 −m2

τÞðm2
Λc

þm2
n − q2Þ�ðNa · pÞ

− ½sþs− þ 2Emnðm2
n −m2

Λc
þ q2Þ þ 2m2

nðq2 −m2
τÞ�ðNa · p0Þg

×
½ðmΛc

þmnÞfþg⊥ þ ðmΛc
−mnÞf⊥gþ�

q2s−sþ
þ
�ðmΛc

−mnÞf0g⊥
q2s−

þ ðmΛc
þmnÞf⊥g0
q2sþ

�
× 4mΛc

m2
τfðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ�

þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ� þ ðNa · kÞsþs−g þ 2

�
f2⊥
sþ

þ g2⊥
s−

�
× ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�

þ 4f⊥g⊥
s−sþ

f8E2m2
nq2 þ ðm2

τ − q2Þ½2m2
Λc
ðm2

n þ q2Þ − 4Emnðm2
p −m2

Λc
þ q2Þ

−m4
n þ 2m2

nm2
τ − q4�g½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�
− 2m2

τf½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�½2m2
Λc
ðNa · pÞ − ðNa · p0Þ

× ðm2
Λc

þm2
n − q2Þ�g

�
f0gþðmΛc

−mnÞ2
q4s−

þ fþg0ðmΛc
þmnÞ2

q4sþ

�
−
2ðm2

Λc
−m2

nÞfþgþ
q4s−sþ

×



16E2m2

nq4 þ ðm2
τ − q2Þ

�
m2

τðm2
n −m2

Λc
þ q2Þ2 − 4mnq2ð2Eðm2

n −m2
Λc

þ q2Þ þmnq2Þ
��

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�; ðC17Þ

Ah
VR−VR

¼ −2mΛc
fðNa · kÞ½4Emnðm2

n −m2
Λc
Þ þ ðq2 −m2

τÞðm2
Λc

þ 3m2
n − q2Þ þ 2sþs−�

þ ðNa · pþ Na · p0Þ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�g

×

�ðmΛc
þmnÞfþf⊥
sþ

þ ðmΛc
−mnÞgþg⊥
s−

�
þ 2f0g0m2

τðm2
Λc

−m2
nÞ

q4
ðm2

τ − q2Þ

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ� þ 4mΛc
½4Emnq2 þ ðm2

τ − q2Þ
× ðm2

Λc
−m2

n − q2Þ�f½sþs− − 2Emnðm2
Λc

−m2
n þ q2Þ þ ðq2 −m2

τÞðm2
Λc

þm2
n − q2Þ�ðNa · pÞ

− ½sþs− þ 2Emnðm2
n −m2

Λc
þ q2Þ þ 2m2

nðq2 −m2
τÞ�ðNa · p0Þg

×
½ðmΛc

þmnÞfþg⊥ þ ðmΛc
−mnÞf⊥gþ�

q2s−sþ
þ
�ðmΛc

−mnÞf0g⊥
q2s−

þ ðmΛc
þmnÞf⊥g0
q2sþ

�
× 4mΛc

m2
τfðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ�

þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ� þ ðNa · kÞsþs−g þ 2

�
f2⊥
sþ

þ g2⊥
s−

�
× ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

p − q2Þ�

−
4f⊥g⊥
s−sþ

f8E2m2
nq2 þ ðm2

τ − q2Þ½2m2
Λc
ðm2

n þ q2Þ − 4Emnðm2
n −m2

Λc
þ q2Þ

−m4
n þ 2m2

nm2
τ − q4�g½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�
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− 2m2
τf½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ − ðNa · p0Þ

× ðm2
Λc

þm2
n − q2Þ�g

�
f0gþðmΛc

−mnÞ2
q4s−

þ fþg0ðmΛc
þmnÞ2

q4sþ

�
þ 2ðm2

Λc
−m2

nÞfþgþ
q4s−sþ

× f16E2m2
nq4 þ ðm2

τ − q2Þ½m2
τðm2

n −m2
Λc

þ q2Þ2 − 4mnq2ð2Eðm2
n −m2

Λc
þ q2Þ

þmnq2Þ�g½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�; ðC18Þ

Ah
SL−SL ¼ 2f0g0ðm2

Λc
−m2

nÞðm2
τ − q2Þ

m2
c

½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�; ðC19Þ

Ah
TL−TL

¼ 32m2
τ

�
h̃2⊥ðmΛc

−mnÞ2
s−q4

þ h2⊥ðmΛc
þmnÞ2

sþq4

�
½ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ þ 4Emnq2�

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ� − 64mΛc
½ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ

þ 4Emnq2�f½s−sþ − 2Emnðm2
Λc

−m2
n þ q2Þ þ ðq2 −m2

τÞðm2
Λc

þm2
n − q2Þ�ðNa · pÞ

− ½s−sþ þ 2mnEντðm2
n −m2

Λc
þ q2Þ þ 2m2

nðq2 −m2
τÞ�ðNa · p0Þg

×
hþh̃⊥ðmΛc

−mnÞ þ h̃þh⊥ðmΛc
þmnÞ

s−sþq2
þ
�
hþh⊥ðmΛc

þmnÞ
sþq2

þ h̃þh̃⊥ðmΛc
−mnÞ

s−q2

�
× 64mΛc

m2
τf½s−sþ − 2Emnðm2

Λc
−m2

n þ q2Þ þ ðq2 −m2
τÞðm2

Λc
þm2

n − q2Þ�ðNa · pÞ
− ½s−sþ þ 2mnEðm2

n −m2
Λc

þ q2Þ þ 2m2
nðq2 −m2

τÞ�ðNa · p0Þg

−
64h⊥h̃⊥ðm2

Λc
−m2

nÞ
s−sþq4

fðm2
τ − q2Þ½m2

τðs−sþ þ 2m2
nq2Þ − 4mnq2Eðm2

n

−m2
Λc

þ q2Þ − 2m2
nq4� þ 8E2m2

nq4g½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�

−
32hþh̃þ
s−sþ

fðm2
τ − q2Þ½−4m2

nðq2 −m2
τÞ − 8mnEðm2

n −m2
Λc

þ q2Þ − s−sþ� þ 16E2m2
nq2g

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�; ðC20Þ
Ah

VR−VL
¼ 8imΛc

½fþg⊥ðmΛc
þmnÞ − f⊥gþðmΛc

−mnÞ�εfkgfk0gfNagfpg þ 2½4Emnq2

þðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�
�
f2⊥
sþ

−
g2⊥
s−

�
− 2mΛc

f½2sþs− þ 4Emnðm2
n −m2

Λc
Þ þ ðq2 −m2

τÞðm2
Λc

þ 3m2
n − q2Þ�ðNa · kÞ

þ ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�gðNa · pþ Na · p0Þ

×

�
fþf⊥ðmΛc

þmnÞ
sþ

−
gþg⊥ðmΛc

−mnÞ
s−

�
; ðC21Þ

Ah
SL−VL

¼ −
4imΛc

mτεfkgfNagfpgfp0g
mc

½ðmΛc
þmnÞg0g⊥ þ ðmΛc

−mnÞf0f⊥�

−
2mΛc

mτ

mc


ðmΛc
þmpÞf⊥g0
sþ

þ ðmΛc
−mnÞf0g⊥
s−

�
fðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ

þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ� þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ�
þ ðNa · kÞsþs−g þmτ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ

− ðNa · p0Þðm2
Λc

þm2
n − q2Þ�

�ðmΛc
þmnÞ2fþg0
mcq2sþ

þ ðmΛc
−mnÞ2f0gþ
mcq2s−

�

þ 2f0g0mτðm2
Λc

−m2
nÞ

mcq2
ðq2 −m2

τÞ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�; ðC22Þ
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Ah
SR−VL

¼ 4imΛc
mτεfkgfNagfpgfp0g

mc
½ðmΛc

þmnÞg0g⊥ − ðmΛc
−mnÞf0f⊥�

−
2mΛc

mτ

mc


ðmΛc
−mnÞf0g⊥
s−

−
ðmΛc

þmnÞf⊥g0
sþ

�
fðNa · pÞ½2Emnðm2

Λc
−m2

p þ q2Þ

þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ� þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ�
þ ðNa · kÞsþs−g þmτ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ

− ðNa · p0Þðm2
Λc

þm2
n − q2Þ�

�ðmΛc
−mnÞ2f0gþ
mcq2s−

−
ðmΛc

þmnÞ2fþg0
mcq2sþ

�
; ðC23Þ

Ah
SL−VR

¼ 4imΛc
mτεfkgfNagfpgfp0g

mc
½ðmΛc

þmnÞg0g⊥ − ðmΛc
−mnÞf0f⊥�

þ 2mΛc
mτ

mc


ðmΛc
−mnÞf0g⊥
s−

−
ðmΛc

þmnÞf⊥g0
sþ

�
fðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ

þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ� þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ�
þ ðNa · kÞsþs−g −mτ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ

− ðNa · p0Þðm2
Λc

þm2
n − q2Þ�

�ðmΛc
−mnÞ2f0gþ
mcq2s−

−
ðmΛc

þmnÞ2fþg0
mcq2sþ

�
; ðC24Þ

Ah
SR−VR

¼ 4imΛc
mτεfkgfNagfpgfp0g

mc
½ðmΛc

þmnÞg0g⊥ þ ðmΛc
−mnÞf0f⊥�

þ 2mΛc
mτ

mc


ðmΛc
−mnÞf0g⊥
s−

þ ðmΛc
þmnÞf⊥g0
sþ

�
fðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ

þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ� þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ�
þ ðNa · kÞsþs−g −mτ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ

− ðNa · p0Þðm2
Λc

þm2
n − q2Þ�

�ðmΛc
−mnÞ2f0gþ
mcq2s−

þ ðmΛc
þmnÞ2fþg0
mcq2sþ

�

−
2f0g0mτðm2

Λc
−m2

nÞ
mcq2

ðq2 −m2
τÞ½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�; ðC25Þ

Ah
TL−VL

¼ 16imΛc
mτ

�ðm2
Λc

−m2
nÞðf0h⊥ þ g0h̃⊥ þ fþh̃⊥ þ gþh⊥Þ

q2
þ f⊥h̃þ þ g⊥hþ

�
εfkgfk0gfNagfpg

þ 8mΛc
mτ

�
gþh̃⊥ðmΛc

−mnÞ2
s−q2

þ fþh⊥ðmΛc
þmnÞ2

sþq2

�
f½s−sþ − 2Emnðm2

Λc
−m2

n þ q2Þ

þ ðq2 −m2
τÞðm2

Λc
þm2

n − q2Þ�ðNa · pÞ − ½s−sþ þ 2Emnðm2
n −m2

Λc
þ q2Þ

þ 2m2
nðq2 −m2

τÞ�ðNa · p0Þg −
�
g⊥h̃þ
s−

þ f⊥hþ
sþ

�

× 8mΛc
mτ



s−sþðNa · kÞ þ ðNa · pÞ½2Emnðm2

Λc
−m2

n þ q2Þ þ ðm2
τ − q2Þðm2

Λc

þm2
n − q2Þ� þ 2mnðNa · p0Þ½Eðm2

n −m2
Λc

þ q2Þ þmnðq2 −m2
τÞ�

�

þ 4mτ

�ðmΛc
−mnÞð2g⊥h̃⊥ − f0h̃þÞ

s−q2
þ ðmΛc

þmpÞð2f⊥h⊥ − g0hþÞ
sþq2

�
½4Emnq2
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þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�

− 4mτ

�ðmΛc
þmnÞð2g⊥h⊥ − fþh̃þÞ

q2
þ ðmΛc

−mnÞð2f⊥h̃⊥ − gþhþÞ
q2

�
ðm2

τ − q2Þ

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ� þ 4mΛc
mτ



ðm2

τ þ q2Þs−sþðNa · kÞ

þ ½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�½ðNa · pÞðm2
Λc

−m2
n þ q2Þ

þ ðNa · p0Þðm2
n −m2

Λc
þ q2Þ�

��
f0h̃⊥ðmΛc

−mnÞ2
s−q4

þ g0h⊥ðmΛc
þmnÞ2

sþq4

�
; ðC26Þ

Ah
TL−VR

¼ 16imΛc
mτ

�ðm2
Λc

−m2
nÞðf0h⊥ − g0h̃⊥ þ fþh̃⊥ − gþh⊥Þ

q2
þ f⊥h̃þ − g⊥hþ

�
εfkgfk0gfNagfpg

þ 8mΛc
mτ

�
fþh⊥ðmΛc

þmnÞ2
sþq2

−
gþh̃⊥ðmΛc

−mnÞ2
s−q2

�
f½s−sþ − 2Emnðm2

Λc
−m2

n þ q2Þ

þ ðq2 −m2
τÞðm2

Λc
þm2

n − q2Þ�ðNa · pÞ − ½s−sþ þ 2Emnðm2
n −m2

Λc
þ q2Þ

þ 2m2
nðq2 −m2

τÞ�ðNa · p0Þg −
�
f⊥hþ
sþ

−
g⊥h̃þ
s−

�
8mΛc

mτfs−sþðNa · kÞ þ ðNa · pÞ½2Emnðm2
Λc

−m2
n þ q2Þ

þ ðm2
τ − q2Þðm2

Λc
þm2

n − q2Þ� þ 2mnðNa · p0Þ½Eðm2
n −m2

Λc
þ q2Þ þmnðq2 −m2

τÞ�g

þ 4mτ

�ðmΛc
þmnÞð2f⊥h⊥ þ g0hþÞ

sþq2
−
ðmΛc

−mnÞð2g⊥h̃⊥ þ f0h̃þÞ
s−q2

�
½4Emnq2

þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�

− 4mτ

�ðmΛc
−mnÞð2f⊥h̃⊥ þ gþhþÞ

q2
−
ðmΛc

þmnÞð2g⊥h⊥ þ fþh̃þÞ
q2

�
ðm2

τ − q2Þ

× ½2m2
Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ� þ 4mΛc
mτfðm2

τ þ q2Þs−sþðNa · kÞ
þ ½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½ðNa · pÞðm2

Λc
−m2

n þ q2Þ

þ ðNa · p0Þðm2
p −m2

Λc
þ q2Þ�g

�
f0h̃⊥ðmΛc

−mnÞ2
s−q4

−
g0h⊥ðmΛc

þmnÞ2
sþq4

�
; ðC27Þ

Ah
TL−SL ¼ 4½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�

×

�ðmΛc
−mnÞf0h̃þ
mcs−

þ ðmΛc
þmnÞg0hþ
mcsþ

�
−
16imΛc

ðm2
Λc

−m2
nÞεfkgfk0gfNagfpg

mc

× ðf0h⊥ þ g0h̃⊥Þ − 4f½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

n − q2Þ�½ðNa · pÞðm2
Λc

−m2
n þ q2Þ

þ ðNa · p0Þðm2
n −m2

Λc
þ q2Þ� þ ðNa · kÞðm2

τ þ q2Þ½m4
Λc

− 2m2
Λc
ðm2

n þ q2Þ

þ ðm2
n − q2Þ2�g

�
mΛc

ðmΛc
−mnÞ2f0h̃⊥

mcq2s−
þmΛc

ðmΛc
þmnÞ2g0h⊥

mcq2sþ

�
; ðC28Þ

Ah
TL−SR ¼ 4½4Emnq2 þ ðm2

τ − q2Þðm2
Λc

−m2
n − q2Þ�½2m2

Λc
ðNa · pÞ − ðNa · p0Þðm2

Λc
þm2

n − q2Þ�

×

�ðmΛc
−mnÞf0h̃þ
mcs−

−
ðmΛc

þmnÞg0hþ
mcsþ

�
−
16imΛc

ðm2
Λc

−m2
nÞεfkgfk0gfNagfpg

mc

× ðf0h⊥ − g0h̃⊥Þ − 4f½4Emnq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�½ðNa · pÞðm2
Λc

−m2
p þ q2Þ

þ ðNa · p0Þðm2
n −m2

Λc
þ q2Þ� þ ðNa · kÞðm2

τ þ q2Þ½m4
Λc

− 2m2
Λc
ðm2

n þ q2Þ

þ ðm2
n − q2Þ2�g

�
mΛc

ðmΛc
−mnÞ2f0h̃⊥

mcq2s−
−
mΛc

ðmΛc
þmpÞ2g0h⊥

mcq2sþ

�
; ðC29Þ
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Ah
SL−SR ¼ 0; ðC30Þ

where εfkgfk0gfNagfpg ≡ εμναβkμk0νNα
apβ, with ε being a totally antisymmetric tensor. From the equations above, it is clear

that Al;h with the same subscripts are always real.
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