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Both parameters in the Higgs field’s potential, its mass and quartic coupling, appear fine-tuned to near-
critical values, which gives rise to the hierarchy problem and the metastability of the electroweak vacuum.
Whereas such behavior appears puzzling in the context of particle physics, it is a common feature of
dynamical systems, which has led to the suggestion that the parameters of the Higgs potential could be set
through some dynamical process. In this article, we discuss how this notion could be extended to physics
beyond the Standard Model (SM). We first review in which sense the SM Higgs parameters can be
understood as near-critical and show that this notion can be extrapolated in a unique way for a generic class
of SM extensions. Our main result is a prediction for the parameters of such models in terms of their
corresponding Standard Model effective field theory Wilson coefficients and corresponding matching
scale. For generic models, our result suggests that the scale of new (bosonic) physics lies close to the
instability scale. We explore the potentially observable consequences of this connection, and illustrate
aspects of our analysis with a concrete example. Lastly, we discuss implications of our results for
several mechanisms of dynamical vacuum selection associated with various beyond-the-Standard-Model
constructions.
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I. INTRODUCTION

Modern particle physics can be understood in terms of
the principles of symmetry, unitarity, and naturalness.
The former two have been essential in the construction
of the Standard Model (SM) in general and the prediction
of the Higgs boson in particular, while the latter has played
a crucial role in the search for theories beyond this
framework. Yet the data collected since the discovery of
the Higgs boson seem to indicate that these celebrated
principles might fail to explain the properties of the Higgs
field itself. Most important, the idea of naturalness seems to
be in conflict with the surprising degree of fine-tuning of
both parameters in the Higgs field’s potential; the mass
term and the quartic self-coupling [1–8].1
Perhaps as remarkable as the apparent tuning of

these parameters is the observation that they seem to be

fine-tuned to near-critical values, that is, they lie close to
special values marking the transition between qualitatively
different types of potentials. Due to the smallness of the
mass parameter, it lies close to the transition from a strictly
convex potential near its origin to one with a nontrivial
minimum. Meanwhile, the quartic coupling’s running
towards small (negative) values at high energies can also
be understood as the trajectory of its running under
renormalization group (RG) flow being close to the
transition point from a stable, convex potential to one that
is unstable and unbounded from below. Although highly
unusual in the context of particle physics, such behavior is a
common feature of dynamical systems [10].
It thus appears plausible that some physical mechanism

has tuned the Higgs field’s mass and quartic coupling
towards critical values. Several authors have explored
dynamical scenarios that could account for this near-critical
behavior [11–31]. If some mechanism has tuned the
parameters of the Higgs potential in the SM to near-critical
values, this raises the question whether and how such
mechanisms might relate to yet undiscovered beyond-the-
Standard-Model (BSM) physics.
Of course, it is impractical to investigate potential tuning

mechanisms across the huge range of proposed BSM
models. Instead we consider the possibility that whatever
mechanism causes the mass and quartic coupling para-
meters within the SM Higgs potential to be tuned to near-
critical values also yields near-critical behavior of the full
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1This simple observation could be extended to the cosmo-
logical constant problem, which could be understood as the
constant part of the Higgs potential being fine-tuned against the
purely gravitational term. See also Ref. [9].
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theory underlying the SM itself. In other words, we explore
scenarios in which some dynamical mechanism yields a
coordination among apparently unrelated parameters, such
that the Higgs potential lies near a critical configuration
separating distinct phases within the full theory.
Such scenarios may be investigated in a remarkably

efficient way and with reasonable accuracy by employing
standard techniques from effective field theory (EFT). In
this work, we consider the possibility that the Higgs sector
is extended at some large energy scale Λ. At low energies,
the effects of such new physics can then be incorporated
into the SM through the addition of higher-dimensional
operators, such as corrections to the potential of the form

Veffðμ; HÞ ¼ −
1

4
m2

effðμ; HÞH2 þ 1

4
λeffðμ; HÞH4

þ C6

Λ2
H6 þ � � � ; ð1Þ

where μ is the scale at which the effective potential is
evaluated.2

As long as we are interested in field values smaller than
the cutoff scale Λ, the properties of the SM extension of
interest can be entirely understood to leading order through
the combination C6=Λ2, including the effects of this new
term on the mass parameter and the quartic coupling.
Having established that the latter two appear fine-tuned to
lie close to critical values corresponding to phase transi-
tions, Eq. (1) suggests that the relevant question becomes:
How would mechanisms driving the Higgs potential’s
parameters towards critical values affect the coefficient
C6=Λ2?
The crucial observation is that, given the observed values

of meff and λeff , there is exactly one critical value for the
combination C6=Λ2. For large enough values of C6=Λ2, the
dimension-six term becomes dominant at sufficiently low
field values that λeff has not yet crossed zero (due to its RG
running), thereby yielding a convex potential. For suffi-
ciently small values of C6=Λ2, on the other hand, the
potential still flips over near the instability scale and
develops a lower-lying minimum at some even larger
energies (if C6 > 0) or remains unbounded from below
(if C6 < 0). These two regimes are separated by the critical
value given below in Eq. (2) and illustrated in Fig. 1.
This behavior is strikingly similar to that of the mass

term and quartic coupling, whose critical values correspond
to transitions between similar regimes. This motivates the
following conjecture: Assume that some mechanism tuning
the Higgs field’s parameters to values near critical values,
marking the transition between qualitatively different

classes of potentials, is realized in nature. If this mechanism
also influences some yet unknown and suitable UV
extension of the SM, the leading-order correction arising
from integrating it out at low energies should lie near the
critical value

C6ðμIÞ
Λ2

¼ rðm2Þ · jβλðμIÞj
μ2I

: ð2Þ

Here μI denotes the loop-corrected instability scale, i.e., the
scale at which the one-loop corrected effective quartic
coupling vanishes,

λeffðμI; H ¼ μIÞ ¼ 0: ð3Þ

The term βλ governs the running of λ under RG flow.
The function rðm2Þ encodes the coefficient’s dependence
on the mass term relative to the instability scale. For an
approximately vanishing m2=μ2I , marking the emergence
of a nontrivial vacuum near the origin of the potential,
it is given by rð0Þ ¼ 1=ð12 ffiffiffi

e
p Þ. Meanwhile, for m2

max ¼
e−1jβλðμIÞjμ2I , the largest value allowing for such a vacuum,
we find rðm2

maxÞ ¼
ffiffiffi
e

p
=12.

The remainder of this article is structured as follows. In
Sec. II, we review the near-criticality of the Higgs poten-
tial’s parameters in greater detail. This includes approaches
leading to an alternative critical value for the Higgs mass
near m2

max. Sections III and IV analyze the Higgs potential
enhanced by a (near-)critical dimension-six operator, as in
Eq. (1), and the implications of our results for the
applicability of our EFT approach. This includes a dis-
cussion of possible observable consequences of such a
BSM extension, as well as the relation of our result to the

FIG. 1. In the absence of a dimension-six term, the effective
potential for the Higgs field with a small mass term becomes
negative at the instability scale μI , at which λeff ¼ 0 [curve (a),
gray]. If the effective potential includes a dimension-six term, as
in Eq. (1), the behavior of the potential depends on the coefficient
C6=Λ2, which may be less than [curve (b), blue], greater than
[curve (c), green], or equal to [curve (d), orange] a critical value.

2Throughout this article, we consider the behavior of the zero-
temperature effective potential. The quantityH is defined through
H2 ¼ 2H2, whereH is the full Higgs doublet, including the wave
function renormalization factor.
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absolute stability scale [32] and the multiple-point
principle [33–64]. We also consider a recent analysis that
predicts the existence of an additional, low-lying de Sitter
vacuum below the Planck scale [65].
In Sec. V we use a simple toy model to illustrate how

our results relate to the parameters of concrete BSM
models. Lastly, in Sec. VI we demonstrate how near-critical
dimension-six terms naturally relate to a wider class of
proposed explanations for the criticality of meff and λeff , in
particular self-organized localization [11,66] and search
optimization on the landscape [12,29–31].

II. NEAR-CRITICALITY OF THE SM HIGGS
POTENTIAL

In the SM, the dynamics of the Higgs field are deter-
mined by its potential, which in unitary gauge takes the
form

VeffðHÞ ¼ −
1

4
m2

effðμ; HÞH2 þ 1

4
λeffðμ; HÞH4: ð4Þ

An astonishing feature of this potential is that both of its
parameters appear fine-tuned towards critical values, cor-
responding to the emergence of new qualitative features. In
the case of the mass term, this behavior leads to the well-
known hierarchy problem, whereas the RG trajectory of
the quartic coupling is linked to the vacuum’s apparent
metastability.
Assuming the existence of some more fundamental

theory underlying the SM, the potential in Eq. (4) is to
be understood as an effective potential, obtained by
integrating out the degrees of freedom heavier than the
theory’s cutoff Λ. Besides the introduction of higher-
dimensional terms, one would expect that doing so should
also induce a threshold correction at the matching scale
μmatch ∼ Λ. Assuming the Higgs to be a fundamental scalar,
these corrections are generally of the form

δm2 ∼� γ

ð4πÞ2 Λ
2 þ � � � ; ð5Þ

with “þ” for a boson and “−” for a fermion, and where
γ represents a suitable combination of couplings.3

Meanwhile, the absence of new physics in observations
near the SM electroweak symmetry-breaking scale vEW
suggests either that Λ ≫ vEW ∼m, or that the couplings
between the SM and the new physics nearly vanish. Near-
vanishing couplings would be consistent with the relation
in Eq. (5), but would raise the question of why these
couplings are so small in the first place. Meanwhile, for
nonvanishing couplings, a small Higgs mass in the IR

theory would only be possible if the threshold correction
were almost exactly cancelled by the UV mass term, i.e., if
the latter were fine-tuned.
A simple way to avoid corrections of the form given in

Eq. (5) is offered by theories in which the Higgs field
is not a fundamental scalar, but rather emerges from
some underlying theory, such as in composite Higgs
models [67–69]. However, such theories typically still
predict m2 ∼ ðone-loopÞ · Λ2. As a consequence, the small
observed Higgs mass typically requires some tuning
between the parameters of the UV theory, causing an
almost-exact cancellation of the coefficient.
Alternatively, the smallness of the mass parameter can be

understood as a manifestation of near-criticality, that is, that
m2 is close to its critical value m2

crit ¼ 0. The value m2
crit

marks the transition between two phases of the potential:
For m2 > 0, the potential is convex at the origin, allowing
for spontaneous symmetry breaking, whereas for m2 < 0
the potential is strictly concave and no additional structure
is formed. For m2 ¼ 0, the potential is still strictly convex
due to the quartic term, but features a relatively flat region
around H ¼ 0, which may be understood as an example of
a critical feature. In other words, the hierarchy problem
may be rephrased as the question of why the mass
parameter lies so close to its critical value.
The apparent tuning of the quartic coupling λ follows

directly from the values of the running couplings near the
top-quark mass scale. Its running towards higher energies is
determined by its beta function, which, to leading order and
neglecting numerical coefficients for now, is of the form

βλ ∝ λ2 − y4t þ λð…Þ þ ðgauge termsÞ: ð6Þ

Depending on the relative size of the couplings, this
expression gives rise to two distinct phases with a clear
transition line. Assuming a small enough Yukawa coupling
for the top quark yt, λ either grows towards higher energies
or declines slowly enough to remain positive until some
large energy scale. Since the Yukawa coupling itself runs
toward smaller values due to its QCD charge, its negative
contribution to βλ is eventually outmatched by the gauge
terms, causing λ to run back towards larger values,
preventing it from ever becoming negative. This corre-
sponds to a strictly increasing potential, and thus a stable
electroweak vacuum.
If, on the other hand, the Yukawa coupling is large

enough, its effect can drive λ to negative values at a sub-
Planckian scale. This behavior makes the Higgs potential
“flip” and become negative, thus giving rise to regions of
field space with energies lower than that of the electroweak
vacuum. As a consequence, the field can tunnel into the
corresponding part of field space through the nucleation
and subsequent expansion of a true vacuum bubble,
triggering electroweak vacuum decay [1,70,71].

3Note that in our EFT treatment the corrections induced by the
heavy degrees of freedom are absorbed into the mass parameter of
the effective theory.
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These two classes of potentials may be understood as
different phases, determined by the trajectory of λ under
RG flow, or, equivalently, by the values of the running
couplings at some given reference scale μ. Much like the
behavior of VeffðHÞ for values of meff above or below mcrit,
one of these phases describes a strictly concave potential,
while the other contains a turning point and gives rise to a
lower-lying, nontrivial vacuum. The critical point can be
identified as the value λcrit at which the potential develops a
saddle point or a second minimum degenerate with the
electroweak vacuum. In terms of the RG trajectory of λ,
λ ¼ λcrit corresponds to λ developing a minimum at a sub-
Planckian scale, at which it either vanishes or becomes
comparable to the logarithmic one-loop terms.4

All current observations imply that the relevant cou-
plings lie remarkably close to such a critical point,
suggesting that the quartic coupling becomes negative
around the instability scale μI ∼ 1011 GeV, beyond which
it remains negative at least until the Planck scale; −0.01 ≤
λðμÞ < 0 for μI ≤ μ < Mpl. This implies that the electro-
weak vacuum can decay, but only at a rate small enough to
ensure a lifetime much longer than current age of the
Universe, τSM ∼ 10983 years [6,29].
The predicted lifetime of the metastable electroweak

vacuum is sensitive to yet-unobserved new physics, since
the large value of the instability scale μI allows for many
types ofBSMfields to affect the running of λ. For example, if
the Higgs field were a composite rather than a fundamental
scalar, or if bosonic BSM fields coupled to the Higgs field
and thereby modified the running of λ to avoid negative
values, then λwould no longer appear tuned to a near-critical
value. On the other hand, fermionic BSM couplings, such as
heavy right-handed neutrinos, could drive λ tomore negative
values, lowering the instability scale μI < 1011 GeV (per-
haps to as low as a few hundred TeV) and yielding a
significant destablization of the vacuum [11,29,72,73]. In
the latter scenario, themass term could also be understood as
being close to an alternative critical value at

m2
crit ¼

jβλj
e
3
2

μ2I : ð7Þ

For m2 < m2
crit, the potential would take a form similar to

that of the SM, with a nontrivial vacuum at some scale of
order v2 ∼m2 followed by a potential barrier and ultimately
a lower-lying vacuum at very high energies. Form2 > m2

crit,
the potential would be strictly concave, with no minimum
below the Planck-scale.5 (See Fig. 2.)

III. CRITICAL EXTENSION
OF THE HIGGS POTENTIAL

If both parameters of the SM Higgs potential are indeed
tuned toward critical values, it is interesting to consider
mechanisms that would yield such near-critical behavior;
not only for the parameters within the SM itself (considered
as an effective theory), but also within some more funda-
mental, UV-complete theory.
The most efficient way to investigate this question is to

work with an effective theory, in which BSM effects can be
described via higher-dimensional operators. In this frame-
work, the Higgs potential takes the form

Veffðμ; HÞ ¼ −
1

4
m2

effðμ; HÞH2 þ 1

4
λeffðμ; HÞH4

þ C6

Λ2
H6 þ � � � ; ð8Þ

where Λ is the scale of new physics and m2
effðμ; HÞ,

λeffðμ; HÞ are the one-loop-improved mass term and quartic
self-coupling respectively. Equation (8) offers a reliable
approximation if the critical feature of the potential occurs
at scales μ; H ≲ Λ. This assumption does not cover every
possible scenario, but, as we will see, any BSM model that
can be approximated by Eq. (8) allows for at least one phase
transition below the scale Λ.
An important subtlety of our argument is the possibility

that BSM physics also influences the Higgs field’s criti-
cality through corrections to the running of the quartic
coupling λ, for example via momentum-dependent higher-
dimensional terms in the effective theory. To leading order
and in the Warsaw basis [74], this class of operators can be
fully characterized through two dimension-six terms,

Lð6Þ
D ¼ CH□

Λ2
·H2

□ðH2Þ þ CHD

Λ2
·H2DμHDμH: ð9Þ

FIG. 2. The critical value for the mass term favored by the
mechanisms outlined in Refs. [11,12,29–31]. For m2 < m2

crit, a
potential barrier forms (green), whereas m2 > m2

crit yields a
strictly concave potential, with no stable vacua in the IR (blue).

4Due to the high sensitivity of the potential near its critical
points, the parameters corresponding to these two scenarios are
nearly degenerate.

5This insight, together with the observation that such a
minimum does indeed exist, implies an upper bound on the
Higgs mass for metastable vacua: the metastability bound [29].
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These terms, as well as all other dimension-six terms
including the correction to the potential, affect the running
of the quartic coupling through additional terms of the form
Δβλ ∼ C ·m2=Λ2 [75–79]. Here m2 is the (running) Higgs
mass parameter and C represents the Wilson coefficient of
the operator of interest. Throughout the remainder of
this article, we will find that the scale of new physics lies
near or above the instability scale μI , which itself lies
multiple orders of magnitude above the Higgs mass. As an
immediate consequence, the corrections of the higher-
dimensional terms on the running are subdominant in
the context of our discussion, ensuring the validity of
our analysis at the given level of accuracy.

A. Critical dimension-six operator

In order to calculate the critical valueC6=Λ2, we note that
the number of distinct phases associated with the potential
can, in general, be characterized by the number of local
extrema of the potential. The strictly convex phase is
characterized by a single minimum (at the origin), whereas
in the potentially unstable phase an additional local maxi-
mum and minimum emerge. The transition between the two
regimes occurs when the local extrema (away from the
origin) merge into a single saddle point. Taking into account
theminimum induced in a similar way by themass term, this
implies that the critical point is marked by the existence of
two local extrema away from the origin. See Fig. 1.
In other words, the potential exhibits critical behavior if

there exist precisely two nonzero solutions to the equation

0 ¼ ∂Veffðμ; HÞ
∂H

����
μ¼H¼H̄

¼ −
m2

eff

2
H̄ −

1

4

�
∂m2

eff

∂H

�
H̄2 þ λeffH̄3

þ 1

4

�
∂λeff
∂H

�
H̄4 þ 6

C6

Λ2
H̄5: ð10Þ

As the critical point corresponds to a saddle point near the
instability scale, we can simplify this equation to leading
order by using the following relations:

m2
eff ≃m2ðμIÞ; λeff ≃ βλðμIÞ log

H̄
μI

; C6 ≃ C6ðμIÞ;

∂λeff
∂H

≃
1

H̄
βλðμIÞ;

∂m2
eff

∂H
¼ m2 · ð1-loopÞ ≪ m2:

These allow us to bring Eq. (10) to the following form:

m2 ¼ 2βλ

�
log

H̄
μI

þ 1

4

�
H̄2 þ 12

C6

Λ2
H̄4; ð11Þ

where all parameters are to be understood as evaluated at
the instability scale. To make the algebraic structure of this

relation more transparent, we may introduce the following
set of rescaled parameters:

μt ≔ e−
1
4μI; n2 ≔

m2

jβλjμ2t
;

c ≔ 12
C6

jβλj
·
μ2t
Λ2

; x ≔
H̄2

μ2t
: ð12Þ

Thus, we ultimately arrive at the relation

c ¼ n2

x2
þ log x

x
≕Rn2ðxÞ: ð13Þ

The function Rn2ðxÞ is shown in Fig. 3 for multiple values
of n2, corresponding to different masses. It is easy to see
that the solutions of Eq. (13) describe the intersection
points of this function with horizontal lines at y ¼ c.
Let us first consider the case c ¼ 0, which corresponds to

C6 ¼ 0 and hence the pure SM case. In this limit, the local
extrema can be identified with the intersection points of
Rn2ðxÞ with the x-axis. For n2 < 1=e, i.e., a small Higgs
mass relative to the instability scale, we find two such
points, corresponding to the electroweak vacuum and the
top of the potential barrier. Meanwhile, for n2 > 1=e, there
exists no such solution. In terms of the potential, this can be
understood as the potential being dominated by the
negative mass term for small H, while the quartic term
becomes dominant only in a regime in which the quartic
coupling λ has already become negative, such that no
minimum exists. The transition between these two phases is
given by the critical point n2 ¼ 1=e, for which the
electroweak vacuum and the potential barrier merge into
a saddle point. Thus, demanding the existence of the
electroweak vacuum implies an upper bound on the mass

FIG. 3. The function Rn2ðxÞ for different values of n2. The
case n2 ¼ 0 describes a potential with a large hierarchy
(m2 ≪ μ2I ∼ Λ2), whereas the cases n2 ¼ 1=e and n2 ¼ 1=2
are related to the metastability bound. The value n2 ¼ 1 lies
beyond the latter, corresponding to a potential with a single
minimum near the matching scale.
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parameter, known as the metastability bound [6,29]. Based
on the simple picture given in Fig. 3, it is easy to see that a
similar bound can be recovered for a nonvanishing dimen-
sion-six term. Due to its sign, the latter contributes to the
formation of the electroweak vacuum, thus allowing for a
larger mass term and thereby weakening the bound from
n2 < 1=e up to n2 < 1=2. For larger values, there exists
only one minimum at which the negative quadratic and
quartic terms become comparable to the dimension-six
term. For smaller values, one recovers the two extrema of
the SM-like potential and an additional (typically lower-
lying) minimum at some larger value of the Higgs field at
which the dimension-six term becomes dominant.
On the other hand, for any given value of n2, the number

of local extrema depends on the value of c. Assuming
n2 < 1=2, let cn;crit denote the local maximum of Rn2 . Then,
for c > cn;crit, there exists only one minimum, as the sign
flip of the quartic term occurs in a regime in which the
dimension-six term is already dominant. For smaller values
of c, we again find three extrema, corresponding to the
electroweak vacuum, the top of the potential barrier, and a
second minimum at the value ofH where the dimension-six
term becomes dominant. Thus, in terms of our dimension-
less quantities, the critical point is given by cn;crit, which
represents two extrema: the electroweak vacuum as well as
a saddle point near the instability scale. (See Fig. 4.)
Returning to conventional units, the critical value of the

coefficient C6=Λ2 is given by

�
C6

Λ2

�
crit

¼
ffiffiffi
e

p
12

· cn2;crit ·
jβλj
μ2I

: ð14Þ

For the two most interesting values of n2, corresponding to
a large hierarchy (n2 ¼ 0) and to a value almost saturating
the metastability bound (n2 ≲ 1=2), the coefficient cn2;crit is
easily determined analytically,

c0;crit ¼
1

e
for n2 ¼ 0 ðm2 ≪ μ2I ∼ Λ2Þ; ð15Þ

c1=2;crit ¼
1

2
for n2 ≲ 1

2
ðm2 ≲ e−

3
2jβλjμ2I Þ: ð16Þ

By construction, the critical value in Eq. (14) gives rise to a
saddle point. Using Eq. (14), it is straightforward to find
that the potential at its saddle point H̄2

n2 satisfies

V0ðH̄0Þ ¼
e
48

jβλjμ4I at H̄2
0 ¼

ffiffiffi
e

p
μ2I ¼

1

12

jβλj
C6

Λ2; ð17Þ

V1
2
ðH̄1

2
Þ ¼ −

jβλj
48e

μ4I at H̄2
1
2

¼ μ2Iffiffiffi
e

p ¼ 1

24

jβλj
C6

Λ2: ð18Þ

Note from Eqs. (14)–(16) that the critical value of C6=Λ2

itself depends on n2, which is incorporated into our
expressions for H̄2

n2 in Eqs. (17) and (18).
The defining feature of the critical dimension-six term,

the formation of a saddle point, also immediately implies
the gauge invariance of our result through the Nielson
identity [80,81].6

B. Implications of criticality

Equation (14) relates the scale of new (bosonic) physics,
represented through Λ and C6, to the instability scale μI as
well as the running of the quartic coupling in its vicinity,
described by βλ. Although the exact interpretation of this
relation depends on the details of the mechanism ultimately
responsible for the near-criticality and the choice of free
parameters, it is nevertheless possible to anticipate some of
its aspects.
We may first note that Eq. (14) is independent of which

parameters are assumed to be subject to an underlying
dynamical mechanism. As the presence of some dimen-
sion-six term is arguably less surprising than the vanishing
of the quartic coupling, one possible interpretation of our
result is that the parameter sensitive to dynamical selection

FIG. 4. The effective potential for various near-critical values of
the dimension-six operator. n2 ¼ 1=2: Saturation of the gener-
alized metastability bound implies a unique minimum for all
nonvanishing dimension-six terms. For the critical value this
minimum is flat V 00 ¼ 0 (orange), while smaller (blue) as well as
larger values (green) differ from one another by the existence of a
turning point. n2 < 1=2: Below the metastability bound the
potential has the same qualitative features as for a large hierarchy
(that is, for m2 ≪ μ2I ∼ Λ2). The critical dimension-six term thus
corresponds to a saddle-point (orange), separating the phases
generated by smaller (blue) and larger (green) values.

6This feature can also be understood directly from Eq. (14).
The running of the m̄s-coupling λ is gauge independent, and so is
βλ. It was furthermore shown that the gauge dependence of its
loop corrections vanish at the one-loop level near the instability
scale [82]. Together, these two observations imply that μI , as
defined in Eq. (3), is indeed gauge invariant at the order of
interest.
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is the quartic coupling at the matching scale, λeffðμI; μIÞ,
while the dimension-six term is either a relic of the physics
underlying the selection mechanism or some unrelated
physics, such as a spectator field or even quantum gravity.7

This perspective would suggest that the critical behavior
described by Eq. (14) is not an intrinsic property of the
dimension-six term, but rather determines the scale at
which the critical feature of the quartic coupling manifests.
An alternative approach would be to understand Eq. (14)

as a prediction for the dimension-six term and treat the RG
trajectory of λ (governed by βλ) as given. This is not
necessarily favored by any theoretical arguments, but is
nevertheless the more convenient choice for the purpose of
making concrete predictions; the quartic coupling has been
inferred with great accuracy in the vicinity of the electro-
weak symmetry-breaking scale, and its running under RG
flow is well-understood, even taking into account the
effects of yet unknown BSM physics at scales below Λ.
We will therefore adopt this perspective for the remainder
of this article.
Next we note that Eqs. (17) and (18) imply that the critical

feature in the effective potential, separating distinct phases,
emerges at field values at or slightly above the instability
scale μI , independent of details of the UV theory.
Considering βλ as given, these equations also imply a simple
relation between the Wilson coefficient C6 and the scale of
new physics Λ. First, large C6 imply a relatively large Λ,
typically ensuring the validity of our EFT approach.
Conversely, large values ofΛ relative to the instability scale
are only possible for relatively large values of C6. If the
coefficient C6 is entirely loop-induced, such that C6 is a
function of other couplings, then large values of C6 would
violate perturbativity in the UV theory. As a consequence,
criticality of the dimension-six term implies an upper bound
on the scale Λ of new physics for such theories.
Meanwhile, small values of C6 imply the emergence of

the critical feature beyond the self-consistent regime of the
effective theory, where the logarithmic corrections mani-
festing in the dimension-six term would typically be
absorbed into the RG-running. We discuss an explicit
example for such a case in Sec. V, where we illustrate
that this indeed prevents the formation of a critical feature
in the sense we discussed in this article, rather suggesting
the notion of criticality proposed in Refs. [9,83–90].

C. Range of scales

Equation (14) implies that the critical value of C6=Λ2 is
given, up to numerical coefficients, by the one-loop
instability scale μI . Assuming C6 ∼Oð1Þ, our conjecture
then suggests that the scale Λ of new (bosonic) physics
should roughly coincide with the instability scale. The

value of the latter is therefore not only crucial for the search
for concrete realizations of our conjecture, but also for the
possibility of experimental tests of our conjecture, and by
extension the more fundamental idea of some BSM physics
favoring near-critical behavior.
The value of the instability scale μI is primarily deter-

mined by the RG trajectory of λ, with some corrections
coming from its loop-corrections. It can therefore be easily
determined by integrating the SM β functions, which can be
found, e.g., in the appendices of Refs. [1,29,73], starting
from the measured values of the relevant couplings at the
top-quark mass scale Mt [91],

λðMtÞ¼0.12607�0.00030; ytðMtÞ¼0.9312�0.0022;

gðMtÞ¼0.64765�0.00028; gsðMtÞ¼1.1618�0.0045;

g0ðMtÞ¼0.358545�0.000070: ð19Þ

The couplings’ error bars are a direct result of observational
uncertainties of the masses of the top quark and the Higgs
boson as well as the QCD coupling, from which they were
obtained by a combination of linear error propagation and
Monte Carlo simulations by the authors of Ref. [91]. This
allows for a straightforward construction of error ellipsoids
in the space of the couplings at the IR matching scale Mt.
By scanning over a lattice of 718 points on their surfaces
each for 68% and 95% confidence, we ultimately arrive at
the following ranges for the one-loop improved instability
scale (with three-loop accuracy in the running) as well as
the scale μI:

8 × 109 GeV < μI;68% < 1016 GeV; ð20Þ

3 × 109 GeV < μI;95%: ð21Þ

These values are illustrated in Fig. 5. Note that the near-
criticality of the RG trajectory of λ also manifests in the
error bar. The critical behavior corresponds to a positive
quartic coupling for all scales, such that approaching it
leads to a quickly growing μI . We find in particular that the
error ellipsoid corresponding to a 95% confidence level
also contains a subset of points corresponding to absolutely
stable vacua. (See Fig. 5.)
Assuming that all relevant BSM effects on the Higgs

effective potential (up to scale Λ) are represented by the C6

term in Eq. (8), and given the relation μI ∼ Λ, the expected
scale for new physics lies many orders of magnitude
beyond existing and anticipated experiments. Hence our
conjecture of near-criticality for the Higgs sector could
easily be contradicted if new bosonic degrees of freedom
are detected with masses below μI and with couplings
to the Higgs field of nontrivial strength. On the other hand,
if such degrees of freedom remain absent even in next-
generation experiments, the hypothesis of near-criticality
for Veffðμ; HÞ may provide a useful basis for BSM model

7Wewill explore the range of relevant scales forΛ in Sec. III C,
where we find that the Planck scale lies indeed within the
95% confidence interval.
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building. Hence the lower end of the interval in Eq. (20),
μI ≳Oð109Þ GeV, is of particular interest in the context of
direct-detection efforts. Following our previous discussion,
this provides a lower bound on the scale of new physics in
general agreement with our conjecture.
We note further that the instability scale μI is sensitive to

new physics. In particular, BSM fermions, such as right-
handed neutrinos, could significantly lower μI, since they
typically introduce a negative contribution to βλ. In the
absence of a C6H6=Λ2 term in Veff , such BSM fermions
would significantly destablize the electroweak vacuum. In
the presence of a C6H6=Λ2 term, however, such BSM
fermions could shift μI as low as the mass of the lightest
additional fermion without triggering vacuum instability
(given the stabilizing effect of the additional H6 term
on Veff ). As concrete and well-motivated examples,
right-handed neutrinos involved in a low-scale seesaw
mechanism and vector-like quarks could yield μI ∼ TeV
[29,73,92]. If evidence for new fermions emerges, then in
the context of our near-criticality proposal, that would
suggest that new bosonic physics should also emerge at
energy scales about one order of magnitude greater.8

On the other end of the range for μI in Eq. (21), we
observe that the 95% confidence interval contains the
Planck scale. At this end of the range for μI ∼ Λ, we
would not expect to find evidence of new physics via
direct-detection experiments, though the critical features
of Veffðμ; HÞ could have important implications for

early-universe models such as Higgs inflation [83,93–99].
For the central values, the feature emerges at energy scales
typically reached during reheating [100,101], where they
could trigger bubble nucleation events. We explore such
cosmological scenarios in future work.

IV. NEAR-CRITICAL EXTENSION OF THE
HIGGS POTENTIAL

In Sec. III, we have found that the critical value of the
dimension-six term corresponds to a potential with a saddle
point at H̄n2 , as given in Eqs. (17) and (18) for n2 ¼ 1

2
and

n2 ¼ 0. As, however, both the Higgs field’s mass term and
quartic coupling are only near-critical, as is to be expected
if they were the result of some dynamical selection
mechanism, our analogy-based reasoning would suggest
that the same can be expected for the dimension-six term.
In other words, we would expect that the parameter C6=Λ2

takes values close to its critical value, within one of the two
phases depicted in Fig. 4.
Let us first consider the caseC6=Λ2 ≳ ðC6=Λ2Þcrit as in the

green curves in Fig. 4, which correspond to a strictly convex
potential (besides the behavior near the electroweak scale).
This would render the electroweak vacuum absolutely stable,
and more generally erase the qualitative features in the
potential linked to the critical point. This scenario would
still allow an interpretation of the quartic coupling as near-
critical in the sense that its value at the Planck scale lies close
to the conformal value λ ¼ 0, which is, however, not
obviously correlated to the notion used in our initial argu-
ments: Both the mass term and the quartic coupling are tuned
precisely such that their corresponding feature manifests, but
just barely so. We therefore focus instead on the scenario
C6=Λ2 ≲ ðC6=Λ2Þcrit, as in the blue curves in Fig. 4.
While subdominant in the context of particle physics, the

existence of a second minimum at higher energies can be
crucial for the possibility of observational consequences on
cosmological scales. First, as pointed out in the previous
subsection, it remains possible that the near-critical features
appear at scales just slightly below the Planck scale, where
they could have a significant impact on the possibility of
Higgs inflation [93–99]. Meanwhile, the central values of
the couplings suggest that the second minimum lies within
the range of reasonable reheating temperatures [100,101].
This allows for its occupation through thermal fluctuations
in the early Universe, and, more importantly, its subsequent
decay through a first-order phase transition, causing the
emission of gravitational waves.9

A. The near-critical potential

The case C6=Λ2 ≲ ðC6=Λ2Þcrit corresponds to the emer-
gence of a local minimum. The deviation from the critical
point can be quantified through the parameter

FIG. 5. The phenomenologically favored range of the two IR
parameters determining the properties of the critical point, βλðμIÞ
and μI , obtained by integrating the SM β functions at three-loops,
starting from the IR matching values in Eq. (19). The central
value (black) is μI ∼ 4 × 1011 GeV and βλðμIÞ ¼ 1.65 × 10−3.
The dark and light gray regions represent the 68% and 95% con-
fidence ellipses, which we obtained by scanning over the
corresponding ellispoids in fλðMtÞ; yðMtÞ; gsðMtÞg-space.

8It is important to note that this second conclusion would be
true independent of our conjecture, as such large couplings would
require some sort of stabilization. The special role our conjecture
plays in this context is discussed further in Sec. IV B. 9We will explore both of these possibilities in future works.
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ϵ2 ¼ cn2;crit − cn2 ; ð22Þ

which for near-critical potentials can be used as a pertur-
bative expansion parameter. Recall from Eq. (12) that
c ¼ 12e−1=2jβλj−1ðC6=Λ2Þ.
We will first consider the case n2 ≃ 0, corresponding to

m2 ≪ μ2I ∼ Λ2. Assuming δϵ > 0 in the sign convention
used in Eq. (22), this leads to a potential with two solutions
to Eq. (11), corresponding to a local maximum and
minimum. As they replace a saddle point in the critical
potential, the splitting in their energies emerges only at
next-to-leading order in the perturbative expansion.
Meanwhile, the leading-order correction manifests through
the change of the dimension-six term, δV ∼ −ϵ2 · H̄2

0=Λ2,
which amounts to a lowering of the region around the
saddle point as a whole. Taking into account next-to-
leading order corrections in order to resolve the splitting of
the extrema, their positions and corresponding energies as
depicted in Fig. 6 are given by

H2
� ¼ H̄2

�
1�

ffiffiffiffiffi
2e

p
· ϵþ 5

3
e · ϵ2 þ � � �

�
; ð23Þ

V� ¼ V̄ð1 − 4e · ϵ2 ∓ 8
ffiffiffi
2

p
e
3
2 · ϵ3 þ � � �Þ: ð24Þ

An important subtlety of this perturbative approach is its
limited range of applicability due to the high sensitivity of
the potential near its local extrema, arising from its near-
criticality. These effects are distinct already for a relatively
minor deviation from the critical value in Eq. (14), such that
a reliable perturbative treatment requires to take into account

relatively high orders in ϵ. On the other hand, this also
implies that Eq. (14) offers a reliable order-of-magnitude
estimate for the entire range of near-critical values.
The case n2 ≃ 1

2
, corresponding to a near-saturation of the

metastability bound (7), shows some qualitative differences
compared to the one of a large hierarchy n2 ≃ 0. Due to the
properties of this critical point, simply perturbing the
dimensionless parameter c when n2 ¼ 1

2
holds exactly

amounts to a shift of the still unique minimum of the
potential, see Fig. 4. We can thus focus on the leading order
in ϵ, where we find

H̃2¼ H̄2
�
1þð6ϵ2Þ13þ���

�
; Ṽ¼ V̄ð1þ4ϵ2þ���Þ: ð25Þ

That no second vacuum forms is, however, unique to the
critical value n2 ¼ 1

2
. It is easy to see that for slightly

smaller masses, n2 ¼ 1
2
− δn2, the familiar structure

emerges as long as ϵ≳ δn, in principle allowing for an
extended perturbative treatment.

B. Examples for near-criticality

In the absence of new physics such as the dimension-six
term, the electroweak vacuum is most likely metastable,
i.e., it can decay by tunneling through the potential barrier.
The walls of the resulting bubble carry a positive gradient
energy density, which needs to be compensated for by the
negative potential energy of the field in its center. As an
immediate consequence, this channel of vacuum decay
becomes impossible if the potential’s two minima are
precisely degenerate.

FIG. 6. Left: The effective potential with a critical (orange) and near-critical (blue) dimension-six term. H̄ and V̄ represent the saddle
point of the critical potential, as given in Eqs. (17) and (18). Considering instead a near-critical dimension-six term, this feature is
replaced by a local minimum and maximum atH−,Hþ, with potential energy V−, Vþ. See Eqs. (23) and (24). This splitting arises on top
of an overall downward shift of the potential, whose leading-order effect is represented by the lower horizontal line. Right: The
corresponding equation visualized using the function Rn2ðxÞ. x� and x̄ correspond to H2

� and H̄2, respectively.
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For a potential of the form in Eq. (8) with a small mass
term m2 ≪ μ2I , whether or not this is the case can be
understood as a condition on the dimension-six term.
This motivated the introduction of the absolute stability
scaleΛabs in Ref. [32], which is defined as the value ofΛ for
which the potential’s minima are degenerate, assuming the
remaining parameters to begiven and settingC6 ¼ 1.Within
our framework, the latter can be understood as a special case
of a near-critical dimension-six term. The perturbative result
in Eq. (24) implies that the latter should roughly correspond
to ϵ2 ∼ 0.3, clearly outside of the range of its applicability.
It is, however, trivial to obtain a full numerical value

ϵ2abs ≃ 0.033; ð26Þ

demonstrating the typical sensitivity near a critical point.
A special case of such behavior is the multiple-point

principle [33–64], which describes the conjecture that there
should exist a second minimum of the Higgs potential
degenerate with the electroweak vacuum. Assuming only
the SM particle content, this is naturally achieved in the
conformal scenario in which λeffðMplÞ ¼ βλðMplÞ ¼ 0,
which lies at the boundary of the 95% confidence ellipse.
[If Planck-suppressed quantum-gravitational corrections
are incorporated, the degeneracy of the vacua would require
small negative values of λðMplÞ and βλðMplÞ near the
critical feature.]
Nearly degenerate vacua are of particular interest in the

context of recent results concerning cosmological vacuum
selection. It was argued inRef. [65] that Bayesian arguments
favor potentials with a tower of near-degenerate vacua
converging towards the critical point marking the transition
from de Sitter (dS) to anti–de Sitter (AdS) spacetimes.
Setting out from the observed values of the electroweak
scale and the cosmological constant, this corresponds to the
existence of a series of additional, near-degenerate vacua
with vacuum energies 0 < V0 < vEW below the Planck
scale. Assuming the lowest-lying of these minima to be
the result of the dimension-six term, the corresponding value
of Λ is essentially identical with the absolute stability scale,
due to the high sensitivity near-critical values.

V. EXPLICIT REALIZATION
IN A SINGLET EXTENSION

To illustrate the main points of our work, we apply it to
the simplest suitable SM extension, that is, the addition of a
scalar singlet S with massM ∼ Λ ≫ m. We parametrize the
potential of this theory as

VUVðH; SÞ ¼ 1

2
M2S2 þ 1

2
m2

HH
2 þ 1

2
κH2S2

þ 1

4
λHH4 þ 1

4
λSS4 þ νH2S; ð27Þ

where we adopt the normalization conventions of
Ref. [102] to allow easy comparison with prior literature.
For simplicity, we assume all parameters in this potential

to be positive, which implies in particular that hSi ¼ 0
in the absence of a background Higgs field. To further
simplify our discussion, we will focus exclusively on the
critical point corresponding tom2

IR ¼ 0 for the remainder of
this section and drop the index n2. Upon integrating out the
heavy field S at scales smaller than M, this implies that the
mass parameter for the Higgs field as well as the coefficient
of the induced dimension-six term are given at the matching
scale by

m2
IR;eff ¼ 0; C6 ¼

M2

μ2I

jβλj
12

ffiffiffi
e

p ¼ M2

H̄2

jβλj
12

: ð28Þ

Consistent with our previous assumptions, we will fur-
thermore assume a small enough separation between the
instability scale μI and the matching scale M to approxi-
mate the quartic coupling as

λð1‐loopÞIR;eff ðMÞ ≃ −jβλj
1

2
log

M2

μ2I
¼ −jβλj

�
1

2
log

M2

H̄2
þ 1

4

�
:

ð29Þ

In Sec. VA, we first consider the most general case ν ≠ 0.
This amounts to the generation of a dimension-six term at
tree-level, which, following our arguments in Sec. III B, is
the least restrictive in terms of suitable scales of new
physics. In Sec. V B, we then consider the more restricted
and hence predictive scenario in which the dimension-six
term is entirely induced by loop-corrections, which is the
case, e.g., for ν ¼ 0.

A. Criticality at tree level

We begin by matching the full theory to the leading-
order potential of the effective theory,

VIRðHÞ ¼ 1

2
m2

IRH
2 þ 1

4
λIRH4 þ C6

M2
H6 þ � � � : ð30Þ

At tree level, this can be achieved by inserting the
solution for the equation of motion for S into the full
potential of Eq. (27). Expanding the result as a series in
H2=M2 and comparing with the potential of the effective
theory in Eq. (30),10 we find

10Integrating out the heavy mode S also induces terms
∝ H2 □

M2 H2, which can be eliminated by a nonlinear rescaling
of H. We find that the resulting corrections to the coefficients
vanish in near-critical scenarios. This can be traced back to the
critical features’ nature as local extrema, whose existence and
type is invariant under the rescalings of interest here.
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m2
IR ¼ m2

H; λIR ¼ λH − 2
ν2

M2
; C6 ¼

κ

2

ν2

M2
: ð31Þ

These matching conditions next allow us to identify the
critical point of the UV theory at tree-level,

m2
H ≃ 0; λH ≃ 2

ν2

M2
; κ

ν2

M2
≃
M2

μ2I

jβλj
6

ffiffiffi
e

p : ð32Þ

The first of these relations implies that m2
H ∼

ðone-loopÞ ·M2, which is necessary to cancel one-loop
corrections from integrating out the heavy mode. In
contrast, the second relation allows for λIR ∼ 0 near the
matching scale even for typical values of the tree-level
coupling λH.
The third relation, derived from the criticality of the

dimension-six term, restricts the combination of UV
parameters κ · ν2 as a function of the matching scale as
well as βλ and μI , which are fully determined by the
observed values of the related IR couplings. We note that
the combination κ · ν2 as a function of the matching scaleM
is of the simple form

κ ·
ν2

M2
¼ M2

M2
0

; where M2
0 ¼

6
ffiffiffi
e

p
jβλj

· μ2I : ð33Þ

Repeating our numerical analysis of Sec. III C, we find for
the central value of this coefficient

M0;central ¼ 3 × 1013 GeV: ð34Þ

Meanwhile, the allowed ranges at 68% and 95% confidence
are given by

5 × 1011 GeV < M0;68% < 3 × 1018 GeV;

M0;95% > 1011 GeV: ð35Þ

We once again find a significant error bar, which arises
predominantly from the experimental uncertainties associ-
ated with the IR matching conditions of Eq. (32). Adding
right-handed neutrinos (RHNs) subject to a low-scale
seesaw, the parameter M0 can be lowered to energy scales
that (in principle) could be accessible with realistic
accelerators. Taking the most extreme case of RHN masses
Mν ∼OðTeVÞ and Yukawa couplings jYνj ∼Oð1Þ, their
effect can lower the feasible values of this parameter down
to values as low asM0 ∼ 106 GeV [29,73]. Lastly, demand-
ing perturbativity of the UV couplings provides an upper
bound on the matching scale M: M2 < ð4πÞ3M2

0 for any
given M2

0.
The relation corresponding to a critical dimension-six

term also determines the scale corresponding to the critical
feature,

H̄2 ≃
M2

ν2
jβλj
6κ

M2: ð36Þ

This relation can now be used to determine the limitations
of our perturbative treatment, which can be inferred from
the condition that the dimension-six term be larger than
higher-dimensional terms, and in particular the dimension-
eight term. Having at hand a concrete theory it is straight-
forward to determine its respective Wilson coefficient,

C8 ¼ −
κ2

2

ν2

M2
þ λS

4

ν4

M4
: ð37Þ

Using Eqs. (36) and (37), the condition jC6jH6=Λ2 >
jC8jH8=Λ4 can now be translated to a bound on the
parameters of the UV theory in terms of the IR beta
function βλ. Scanning over the entirety of the 95% error
ellipsoid, we find that

κ ·
ν2

M2
·

���� − κ þ 1

2

λS
κ

ν2

M2

����
−1

>
jβλj
6

≳ 3 × 10−4; ð38Þ

with even weaker bounds on the end of the error ellipsoid
corresponding to larger instability scales. Even in the
previously discussed scenario of right-handed neutrinos
in a low-scale seesaw with Oð1Þ-Yukawa couplings, this
bound remains of order Oð10−2Þ.
The critical feature also has a clear interpretation from

the perspective of the full theory. Integrating out the heavy
mode S amounts to restricting the dynamics to the relatively
flat “valley” roughly parallel to the H-axis, as shown in
Fig. 7. For large values of H, the terms ∝ ν, κ cause an
excitation along the S direction, which manifests as a
positive contribution to the overall potential. If these terms
are smaller than some critical value, this upward shift only
becomes important after the running of λH has driven the
potential to negative values. For larger values of the ν and κ
terms, this effect becomes important for small enough
values of H, preventing the formation of a critical feature.
The critical behavior thus corresponds to the exact point at
which the “flipping” of the H4 term is precisely balanced
by the positive contribution of the field S, which to leading
order manifests through the dimension-six term.
It is easy to see that such a behavior can be realized even

if our perturbative treatment breaks down through the
combined effect of the dimension-six as well as higher-
dimensional terms, as long as the effect of the new physics
does not prevent the quartic coupling from turning neg-
ative. The condition μI ≲M can thus be understood as a
restriction of our perturbative treatment rather than a strict
limit for the actual values of the physical scales. In contrast,
the upper bound M2 < ð4πÞ3M2

0 has a clear physical
interpretation, representing perturbativity of the UV theory.

HIGGS POTENTIAL CRITICALITY BEYOND THE STANDARD … PHYS. REV. D 108, 095035 (2023)

095035-11



B. Criticality at one-loop

In the case ν ¼ 0, the leading-order contribution to the
dimension-six term arises at the one-loop level. In general,
the coefficients in the UV and IR theory are—in this
scenario, at one-loop accuracy and near the instability scale
where λ ∼ ðone-loopÞ—related to one another through

m2
IR ¼ m2

H −
κ

ð4πÞ2 M
2; λIR ¼ λH;

C6 ¼
κ3

12ð4πÞ2 ; ð39Þ

where the threshold correction ∝ κ2 to the quartic coupling
vanishes through cancellations.11

Criticality thus leaves us, in principle, with two free
parameters, jβλj and M2=H̄2, where βλ can again be
considered a parameter determined by electroweak-scale
measurements. Similarly, μI can for this purpose be
considered as given, leaving only M as a free parameter.
Using the matching relations of Eq. (31), criticality of the

UV potential corresponds to

m2
HðMÞ ¼ κðMÞ

ð4πÞ2M
2; λIR ∼ 1-loop; ð40Þ

κ3ðMÞ
ð4πÞ2 ¼ M2

μ2I

jβλjffiffiffi
e

p ¼ M2

H̄2
jβλj: ð41Þ

While the relations for the quartic coupling and the mass
parameter m2

H could have been deduced directly from the
well-known values of all relevant couplings in the IR,
demanding criticality of the dimension-six term fixes the
coupling κ of the H2S2 term. We find a similarly simple
structure as in Sec. VA,

κðMÞ ¼
�
M2

M2
1

�1
3

; where M2
1 ¼

ffiffiffi
e

p
ð4πÞ2jβλj

· μ2I : ð42Þ

Once again repeating the numerical analysis of Sec. VA,
we find for the central value of this parameter

M1;central ¼ 3 × 1010 GeV; ð43Þ

while the allowed ranges at different confidence levels are
given by

5 × 108 GeV < M0;68% < 3 × 1015 GeV; ð44Þ

M0;95% > 108 GeV: ð45Þ

This can, once again, be translated into an upper bound on
the matching scale M by demanding perturbativity of the
UV coupling κ, which yields M2 < ð4πÞ3M2

1.
Meanwhile, the applicability of the effective theory can

again be used to deduce a lower bound on κ. The Wilson
coefficient of the dimension-eight term is now given by

H

V
ef
f(
H
,S
(H
))

FIG. 7. Left: The critical UV potential at tree-level for a generic set of UV parameters, taking into account only the running of λH . The
black line represents the subspace on which the static equation of motion for S is satisfied. The displacement along this line represents
the effective field of the low-energy theory. Right: The potential along the low-energy subspace highlighted by the black curve in the left
panel. The critical feature is clearly visible.

11Integrating out the heavy scalar field S also induces a
momentum-dependent term ∝ κ2

ð4πÞ2 H
2 □

M2 H2, which, as in the
previous case, vanishes to leading order for near-critical
parameters.
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C8 ¼ −
κ4

48ð4πÞ2 : ð46Þ

Again demanding the dimension-six term to be larger than
the dimension-eight term this then implies that

κ >
1

2
½ð4πÞ2jβλj�12: ð47Þ

Repeating our numerical analysis, we find for the precise
values of the bound

1

2

�ð4π2Þjβλj	12central ¼ 0.25; ð48Þ

1

2

�ð4π2Þjβλj	1268% ∈ ½0.12; 0.36�; ð49Þ

1

2

�ð4π2Þjβλj	1295% < 0.36: ð50Þ

We note that this bound is significantly stronger than its
equivalent in Sec. VA, in agreement with our general
discussion from Sec. III, where we concluded that large
values of the Wilson coefficient C6 provide the most
reliable effective descriptions.
To understand this bound, we can consider the case in

which it is violated, i.e., in which the critical feature is not
reliably described by the effective theory. If indeed
hSi ¼ 0, the effect of the second scalar field on the
Higgs field’s potential is reduced to its loop contribution,

ΔVeff;S ¼ 1

ð4πÞ2


log

�
M2 þ κH2

μ2

�
−
3

2

�
ð51Þ

×

�
M4

4
þ κM2

2
H2 þ λ

4
H4

�
: ð52Þ

For κH2 ≪ M2, where S is integrated out, expanding this
term leads to the higher-order operators and threshold
corrections of Eq. (39). Meanwhile, for κH2 ≫ M2 it can
be partially absorbed into the RG running of the full
theory’s parameters. Most importantly, the resulting effec-
tive potential contains only terms up to fourth order in H,
preventing the formation of the critical feature discussed
throughout this article.12

To better understand this behavior, it is helpful to revisit
the corresponding scenario H̄ ∼M ∼ μI together with
κ ≪ 1. In general, the last relation justifies an expansion
of the correction in Eq. (52) as a series in κH̄2=M2, even in
the full theory for which H̄2 ≳M2. This is, however, not

always possible, as the field value at the critical feature
generally scales as H̄2 ∝ M2=C6, andC6 is a function of the
couplings. In the model at hand, we have C6 ∝ κ3, which
overcompensates the small factor of κ within the expansion
parameter.

VI. ACHIEVING (NEAR-)CRITICALITY

While the emergence of critical parameters is at least
puzzling in the context of conventional particle physics
model-building, it is a common feature of dynamical
systems. In the context of the Higgs sector, this can been
understood as a hint that its parameters are not fundamental
constants, but rather arise through the coupling to some
dynamical sector, e.g., involving one or more additional
scalar fields. In this section, we review two qualitatively
different examples for such mechanisms, unfolding
during inflation and on the larger timescales of the
multiverse.

A. Self-organized localization

The central idea of self-organized localization (SOL) is
that critical points in the effective potential VeffðHÞ serve as
global attractors during early-Universe inflation. A con-
crete realization of this idea has been proposed in Ref. [11],
which we summarize in the context of our conjecture.
Just as in our work, SOL sets out from the hypothesis

that the near-critical parameters of the Higgs potential are
functions of some additional light scalar field(s) under-
going large fluctuations during inflation. It is furthermore
assumed that these fields are subject to some nontrivial
vacuum structure, such that the number and properties of
these fields’ vacua depend on the Higgs field’s parameters.
It is then feasible that the dynamics of the additional fields
are such that their probability distributions peak around
values of the Higgs field’s parameters corresponding to the
coexistence of two distinct phases.
Taking into account only terms up to dimension four in

the effective potential, the SOL hypothesis can account for
the metastability of the electroweak vacuum, as the latter is
necessary for the existence of minima in addition to the
electroweak vacuum. Crucially for our result, however, the
extrapolated RG-trajectory of the quartic coupling does not
imply the existence of such a vacuum at sub-Planckian
scales, as the minimum of the effective potential lies
beyond Mpl for all values of the couplings near their
central values. Within the context of SOL, this could easily
be fixed through the effects of additional bosons on the
running of λ, but introducing such new fields would
inevitably also induce a dimension-six term in the effective
potential for the Higgs field. Moreover, if one insists on
requiring that two distinct phases coexist within the
effective potential (central to SOL), then the coefficient
of the induced dimension-six term should assume a near-
critical value.

12It is nevertheless possible for a critical point to form if the
modified running is such that both λHðμIÞ ∼ βλH ðμIÞ ∼ 0 at one-
loop order. This notion of criticality is usually invoked in the
context of Higgs inflation [9,83–90].
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The dimension-six term is also required by the mecha-
nism potentially responsible for determining the Higgs
field’s mass. As pointed out in Ref. [11], the requirement of
two coexisting phases suggests that meff should assume a
value close to the metastability bound given in Eq. (7). As
pointed out in Sec. III C, the only possibility for this to
occur, given the measured values of the couplings, is
through the effect of some additional, as yet unobserved
fermions, such as right-handed neutrinos. Such new fer-
mionic couplings, however, would destablize the vacuum,
implying a vacuum lifetime significantly shorter than the
current age of the Universe. Avoiding this tension, in turn,
requires the introduction of additional bosonic physics,
again implying the existence of a dimension-six term.

B. Multiverse selection

A related but independent approach to vacuum selection
relies on statistics of the vacuum landscape itself, which is
assumed to be populated througheternal inflation [12,29–31].
A commonly considered scenario is that our Universe
exists an exponentially long time after the onset of eternal
inflation, which would imply that the notion of a likely
vacuum would have to be defined based on some near-
equilibrium probability distribution, although, to date, all
such discussions are limited by the measure problem. An
alternative scenario considered in Ref. [12] is that we
instead live in the early times of eternal inflation, in which it
is possible to define the accessibility measure, which
quantifies how quickly a vacuum can be accessed [31].
A central result of this approach is that it favors relatively

short-lived vacua, with lifetimes of order of the Page
time, τPage ∼M2

pl=H
3
0 ∼ 10130 years (where H0 denotes

the present value of the Hubble parameter), compared to
the SM central value τ ∼ 10983 years [6,29]. The require-
ment of a metastable vacuum furthermore implies a small
Higgs mass through the metastability bound of Eq. (7). Just
as in the case of SOL, thesemismatches can be understood to
suggest the existence of additional fermionic degrees of
freedom, capable of lowering the instability scale as well as
the lifetime of the vacuum. As noted above, however,
lowering the metastability bound to values near the electro-
weak scalewould destabilize thevacuum toomuch,which in
turn would require additional bosonic physics capable of
partially stabilizing the vacuum; such new degrees of free-
dom would typically manifest through a dimension-six
operator in the effective potential. Thus, the value of the
coefficient C6=Λ2 of the induced dimension-six term would
need to be large enough to compensate for a large desta-
bilizing effect of the additional fermions, but not so large as
to fully stabilize the vacuum. This, once again, can be
understood as requiring a near-critical value for C6=Λ2.
An alternative approach based on Bayesian reasoning

has been put forward in Ref. [65]. That model features
a series of local minima nearly degenerate with the

electroweak vacuum. Such features arise as a special case
of the near-critical behavior we discussed in Sec. IV.

VII. CONCLUSION

Both parameters in the Higgs field’s potential, its mass
and quartic self-coupling, appear fine-tuned to values near
critical points that mark the transition between qualitatively
different types of effective potentials. Such behavior is a
common feature of dynamical systems, which has moti-
vated many attempts to explain such peculiar behavior
based on dynamical-selection mechanisms. Taking seri-
ously the idea that such a mechanism might be realized in
nature poses the question of how it would affect as yet
unobserved BSM physics.
An obvious possibility is that the dynamical selection of

critical values for various parameters also applies to new
physics, which allows concrete predictions to be made
regarding novel phenomena. Using an effective field theory
description, we have identified such a critical point for a
wide class of SM extensions. This critical point corre-
sponds to a tuning of the coefficient of the dimension-six
term in conjunction with the RG trajectory of the quartic
coupling λ and manifests through the formation of a saddle
point in the effective potential at a particular scale.
Remarkably, such tuning yields novel features in the

effective potential at energy scales well below the scaleΛ at
which one might expect BSM contributions to become
important. In general, we find that the critical feature
manifests near the instability scale μI , at which the one-
loop-corrected SM potential changes sign, defined via
λeffðμI; H ¼ μIÞ ¼ 0; we quantify both the central value
for μI and its allowable range, based on present measure-
ments of relevant SM couplings and masses. We find that
the requirement of perturbativity in the UV theory trans-
lates to an upper bound on the scale of new physics, while
the very existence of the dimension-six term can, in many
cases, be translated to a lower bound. Plausible scenarios—
such as a combination of heavy right-handed neutrinos plus
a near-critical dimension-six term in the Higgs potential—
suggest that the scale of new physics could be as low as
Λ ∼Oð106–109Þ GeV. On the other hand, a region of
allowed parameter space corresponds to Λ ∼Mpl, which
could have implications for cosmological scenarios such as
Higgs inflation. For the central values of the relevant
parameters, the relevant feature lies within the range of
typical postinflation reheating temperatures, allowing for
the possibility of a first-order phase transition during the
early Universe. We illustrate this range with the concrete
example of a singlet extension of the SM, both with and
without a tree-level mixing of the Higgs field with the new,
heavy scalar field.
The notion of the dimension-six term being near-critical

also offers a new perspective on previous works. First, it
allows for a natural realization of the multiple-point
principle [33–64], which assumes that some special scale
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μ exists at which VeffðμÞ ¼ VeffðvEWÞ; the absolute stabil-
ity scale for the Higgs potential can be considered as a
special case of such a scale. We further demonstrate that a
tuned, near-critical dimension-six term in the effective
potential is a natural consequence of several vacuum
selection models, which favor a lowering of the instability
scale compared to the SM value [11,12,29–31,65].
Another interesting possibility would be to explicitly

investigate the interplay between the dimension-six term
with other mechanisms that favor near-criticality. Partic-
ularly relevant are models that invoke cosmological relax-
ation [18–27]. These are usually based on some dynamical
backreaction of the Higgs-vev on some additional scalar
field, whose properties are such that regions of space in
which the Higgs mass takes a large value undergo rapid
collapse. Allowing for a second minimum in the Higgs
field’s effective potential thus allows for a multi-staged
selection process, so long as the Higgs field is temporarily
trapped in the second minimum [103].
The ongoing tensions between observations and the

well-established principles of naturalness and symmetry
pose a significant challenge for particle-physics model
building beyond the Standard Model. Whereas many
attempts have been made to bring forward new guiding
principles, most specific predictions rely on concrete
models, which are often based on nontrivial assumptions.
In comparison, our results have broad applicability, and can

be understood as a first step towards a more unified
perspective on dynamical-selection models. By exploiting
EFT techniques to explore consequences of a near-critical
effective potential, our approach builds on a minimal set of
assumptions and remains independent of concrete mech-
anisms that might underlie any such dynamical-selection
processes. As such, it may help guide the search for as yet
unobserved BSM phenomena.
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