PHYSICAL REVIEW D 108, 095034 (2023)

Simple modular invariant model for quark, lepton, and flavored QCD axion
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We propose a minimal extension of the Standard Model by incorporating sterile neutrinos and a QCD
axion to account for the mass and mixing hierarchies of quarks and leptons and to solve the strong CP
problem and by introducing Ggy x I'y x U(1)y symmetry. We demonstrate that the Kéhler transformation
corrects the weight of modular forms in the superpotential and show that the model is consistent with the
modular and U(1)y anomaly-free conditions. This enables a simple construction of a modular-independent
superpotential for scalar potential. Using minimal supermultiplets, we demonstrate a level-3 modular form-
induced superpotential. Sterile neutrinos explain small active neutrino masses via the seesaw mechanism
and provide a well-motivated U(1)-breaking scale, whereas gauge singlet scalar fields play crucial roles in
generating the QCD axion, heavy neutrino mass, and fermion mass hierarchy. The model predicts a range
for the U(1)y-breaking scale from 10" to 10" GeV for 1 TeV < mj, < 10° TeV. In the supersymmetric
limit, all Yukawa coefficients in the superpotential are given by complex numbers with an absolute value of
unity, implying a democratic distribution. Performing numerical analysis, we study how model parameters
are constrained by current experimental results. In particular, the model predicts that the value of the quark
Dirac CP phase falls between 38° to 87°, which is consistent with experimental data, and the favored value
of the neutrino Dirac CP phase is around 250°. Furthermore, the model can be tested by ongoing and future

experiments on axion searches, neutrino oscillations, and Ovff decay.
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I. INTRODUCTION

Despite being theoretically self-consistent and success-
fully demonstrating experimental results in low-energy
experiments so far, the Standard Model (SM) of particle
physics leaves unanswered questions in theoretical and
cosmological issues and fails to explain some physical
phenomena such as neutrino oscillations, muon g — 2, etc.
Various attempts have been made to extend the SM in
order to address these questions and account for exper-
imental results that cannot be explained within the SM.
For instance, the canonical seesaw mechanism [1] has
been proposed to explain the tiny masses of neutrinos
by introducing new heavy neutral fermions alongside
the SM particles. Additionally, the Peccei-Quinn (PQ)
mechanism [2] has been suggested to solve the strong CP
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problem in QCD by extending the SM to include an
anomalous U(1)y symmetry.

Recently, Feruglio [3] proposed a new idea regarding the
origin of the structure of lepton mixing. He applied modular
invariance' under the modular group to determine the flavor
structure of leptons without introducing a number of scalar
fields. This approach requires the Yukawa couplings among
twisted states to be modular forms. It is a string-derived
mechanism that naturally restricts the possible variations in
the flavor structure of quarks and leptons, which are
unconstrained by the SM gauge invariance. However,
explaining the hierarchies of the masses and mixing in
the quark and lepton sectors remains a challenge. As studied
in most references [5], the Yukawa coefficients are assumed
to be free parameters2 which can be determined by matching
them with experimental data on fermion mass and mixing
hierarchies. This approach is not significantly different from
that in the SM, except for the introduction of modular forms.
Alternatively, it is also possible to take the Yukawa coef-
ficient to be of order unity, accommodating the hierarchies of

'Modular invariance was analyzed for supersymmetric field
theories in Ref. [4].

’In Ref. [6], the Yukawa coefficients are assumed to be of
order unity.
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the fermion masses and mixing. Recently, Ref. [7] has
demonstrated that the vanishing QCD angle, a large
Cabibbo-Kobayashi-Maskawa (CKM) phase, and the
reproduction of quark and lepton masses and mixings
can be achieved by using coefficients up to order 1; see
also Ref. [8].

To incorporate sterile neutrinos and a QCD axion into the
SM and provide a natural explanation for the mass and
mixing hierarchies of quarks and leptons, we propose an
extension of a modular invariant model based on the
four-dimensional (4D) effective action derived from super-
string theory with Gy X I'y x U(1)y symmetry. The non-
Abelian discrete symmetry 'y with N = 2, 3, 4, 5 plays a
role of modular invariance and may originate from super-
string theory in compactified extra dimensions, where it
acts as a finite subgroup of the modular group [9]. To
ensure the validity of a modular invariant model with
Gsy x 'y x U(1)y, we take the followings into account:

(i) T-duality relates one type of superstring theory to

another, and it also appears in the 4D low-energy
effective field theory derived from superstring theory
(for a review, see Ref. [10]). In particular, 4D low-
energy effective field theory of type-IIA string
theory with a certain compactification is invariant
under the modular transformation of the modulus 7,

at+b
ToYT= ,
Y ct+d

(a,b,c,deZ,ad—bc=1). (1)

So, the 4D action we consider is required to be
invariant under the modular transformation and
gauged U(1)y symmetry as well as the Kihler
transformation [refer to Eq. (9)]. This is necessary
to cancel out the modular anomaly (see Ref. [11])
associated with the modular transformation (1) under
the nonlocal modular group I'y and the gauged
U(1)y anomaly, at the quantum level.

(i) While type-II string theory allows for low axion
decay constant models via D-branes, leading to the
gauged U(1)y that becomes a global PQ symmetry
when the U(1)y, gauge boson is decoupled [12],
heterotic string theory typically has a U(1)y-breaking
scale with a decay constant close to the string scale.
The broken U(1)y gauge symmetry leaves behind a
protected global U(1), that is immune to quantum-
gravitational effects, achieved via the Green-Schwarz
(GS) mechanism [13]. The PQ-breaking scale, or the
low axion decay constant, can be determined by
taking into account both supersymmetry (SUSY)-
breaking effects [14] and supersymmetric next-
leading-order Planck-suppressed terms [15-17].

The model features a minimal set of fields that trans-
form based on representations of Ggy X I'y x U(1)y and
includes modular forms of level N. These modular forms

act as Yukawa couplings and transform under the modular
group ['y. It should be noted that the Kéhler transformation
[refer to Eq. (9)] corrects the weight of modular forms in
the superpotential due to the modular invariance of both
the superpotential and Kéhler potential; see Eq. (20). This
enables a simple construction of a rz-independent super-
potential for scalar potential. The so-called flavored-PQ
symmetry U(1)y guarantees the absence of bare mass
terms [18]. We minimally extend the model by incorpo-
rating three right-handed neutrinos N and SM gauge
singlet scalar fields y(j). The scalar fields with a modular
weight of zero and charged by +(—) under U(1)y play a
crucial role in generating the QCD axion, heavy neutrino
mass, and fermion mass hierarchy. Then, the complex
scalar field F = y(7) with modular weight zero acts on
dimension-4 (dimension-3) operators well sewn by Ggyy X
I'y x U(1)y and modular invariance with different orders,
which generate the effective interactions for the SM and the
right-handed neutrinos as follows:

finite f n
a@(f)wo@cn(x) @)

n=0

Here, A is the scale of flavor dynamics above which
unknown physics exists as a UV cutoff, and Yukawa
coefficients ¢, (¢;) are all complex numbers assumed to
have a unit absolute value (|¢,|, |c,| = 1). The dimension-4
(dimension-3) operators Oy are determined by Ggy X
I'y x U(1)y and modular invariance in the supersymmetric
limit. These operators include modular forms of level N,
which transform according to the representation of I'y [3].
We will demonstrate that any additive finite correction terms,
which could potentially be generated by higher weight
modular forms, are prohibited due to the modular weight
of the y(f) fields being zero. Note that there exist the infinite
series of higher-dimensional operators induced solely by
the combination of yy in the supersymmetric limit. These
operators, represented by dots in Eq. (2), can be absorbed
into the finite leading-order terms and effectively modify the
coefficients ¢; and c, at the leading order. Furthermore, to
avoid the breaking effects of the axionic shift symmetry
caused by gravity that spoil the axion solution to the strong
CP problem [19], we imposed a U(1)y-mixed gravitational
anomaly-free condition [17,20,21].

The rest of this paper is organized as follows. The next
section discusses modular and U(1)y anomaly-free con-
ditions under Ggy x I'y x U(1)y symmetry, along with
the modular forms of superpotential corrected by Kéhler
transformation. Section III presents an example of a
superpotential induced by level-3 modular forms. We
introduce minimal supermultiplets to address the chal-
lenges of tiny neutrino masses, the strong CP problem
and the hierarchies of SM fermion mass and mixing.
For our purpose, we show how to derive Yukawa
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superpotentials and a modular-independent superpotential
for the scalar potential and determining the relevant
U(l)y PQ symmetry-breaking scale (or seesaw scale).
Additionally, we provide comments on the modular invari-
ant model. In Sec. IV, we visually demonstrate the inter-
connections between quarks, leptons, and a flavored-QCD
axion. In Sec. V, we present numerical values of physical
parameters that satisfy the current experimental data on
flavor mixing and mass for quarks and leptons while also
favoring the assumption in Eq. (2). The study predicts the
Dirac CP phases of quarks and leptons as well as the mass
of the flavored-QCD axion and its coupling to photons
and electrons. The final section provides a summary of
our work.

II. MODULAR AND U(1) ANOMALY FREE

T-duality relates different types of superstring theory
and is also present in the 4D low-energy effective field
theory derived from superstring theory (see Ref. [10] for a
review). In particular, type-IIA intersecting D-brane mod-
els are related to magnetized D-brane models through
T-duality [10]. The group T'(N) acts on the complex
variable 7, varying in the upper-half complex plane
Im(z) > 0, as the modular transformation Eq. (1). Then,
the low-energy effective field theory of type-IIA intersect-
ing D-brane models must have the symmetry under the
modular transformation (1). First, we shortly review the
modular symmetry. The infinite groups I'(N), called
principal congruence subgroups of level N =1,2,3,...,
are defined by

r(zv):{(j Z)esuz,z),(j Z)
~(y 1) moam}. )

which are normal subgroups of homogeneous modular
group '=T(1) ~SL(2,Z), where SL(2,Z) is the group
of 2 x 2 matrices with integer entries and determinant
equal to 1. The projective principal congruence subgroups
are defined as ['(N) =T'(N)/{%I} for N =1, 2. For
N >3, we have I'(N) = T'(N) because the elements —/
do not belong to I'(N). The modular group I' = T'/{%1} is
generated by two elements S and 7,

S: 7> ——,
T

T:t->7+1, (4)
satisfying
§? = (ST)> = (TS)* =1. (5)

They can be represented by the PSL(2, Z) matrices

(G e

The groups I'y are finite modular groups obtained by
imposing the condition 7V =1 in addition to Eq. (5),
where I'y = I'/T°(N). The groups I'y are isomorphic to the
permutation groups S3, A4, Sy, and A5 for N =2, 3, 4, 5,
respectively [9].

We work in the 4D N =1 string-derived supergravity
framework defined by a general Kihler potential G(®, ®)
of the chiral superfields @ and their conjugates,

_ K(®, D W(D)]?
G(®, ) = ( 5 )—l—ln‘ (6)|
M3 M&

; (7)

and by an analytic gauge kinetic function f(®) of the
chiral superfields ®, where M, = (82Gy)~"/? = 2.436 x
10" GeV is the reduced Planck mass with Newton’s
gravitational constant G, K(®, ®) is a real gauge-invari-
ant function of ® and ®, and W(®) is a holomorphic
gauge-invariant function of ®@. Based on the 4D effective
field theory derived from type-IIA intersecting D-brane
models, we build a modular-invariant model with minimal
chiral superfields transforming according to representations
of Ggy X'y x U(1)y. Here, we assume that the non-
Abelian discrete symmetry I'y as a finite subgroup of the
modular group [3] and the anomalous gauged U(1)y
including the SM gauge symmetry Ggy may arise from
several stacks on D-brane models [10]. In the 4D global
supersymmetry, the most general form of the action can be
written as

S= / d*xd20dPOK (D, D)

+ { / d4xd26<W(q>) +J€“”T@Www§) —I—H.c.},
(8)

where A = A“T“ is the gauge multiplet containing Yang-
Mills multiplet, 7¢ are the gauge group generators, and
W, is a gauge-invariant chiral spinor superfield containing
the Yang-Mills field strength. The chiral superfields ®
denote all chiral supermultiplets with Kéhler moduli,
complex structure moduli, axiodilaton, and matter super-
fields, transforming under Ggy x I'y x U(1)y. We assume
that the low-energy Kéhler potential K, superpotential W,
and gauge kinetic function f for moduli and matter
superfields are given at a scale where Ké&hler moduli
and complex structure moduli are stabilized through fluxes
(see Refs. [22-24]), leading to a consistent low-energy SM
gauge theory.

095034-3



Y. H. AHN and SIN KYU KANG

PHYS. REV. D 108, 095034 (2023)

Under the modular transformation Eq. (1) and the
gauged U(1)y symmetry, the action (8) should be invariant
with the transformations’

K(®, De*') — K (D, ®e?) 4 (g(P@) + g(P@)) M3,
W(D) = W(D)e 9@,
F( @)W W, = f(@IWIW,, )

where g(®) = g(z) is a function of modulus z. Then, the
given symmetry Ggy X I'y X U(1)y can be violated at the
quantum level by (i) an anomalous triangle graph associated
with modular transformation Eq. (1) under the nonlocal
modular group I'y and (ii) anomalous triangle graphs with
external states AZASVy,, where A and A? are gauge bosons
of the SM gauge group Ggy and V% is the connection
associated with the gauged U(1)y. These anomalies can be
canceled by the GS mechanism [13].

A. Modular anomaly-free and modular forms of level N

To demonstrate the invariance of K(®,®e*) and
F(@W*W,, of Eq. (8) under the finite modular group
'y and the gauged U(1l)y, we consider a low-energy
Kihler potentlal

K =-M3} ln{(S + 8 —3¢In(—it +i7))

2
<Ux+UX 16 T~ )HZ/I +Ui) }
— M3 In(=it + i7) + (=it + i7) *|g]?
_I_Zx(p;e—XVX(px + - -, (10)

where —k is the modular weight, Zy is the normalization
factor, S denotes the axiodilaton field, z represents the
overall Kéhler modulus, and Uy and U; correspond to
the complex structure moduli. The dots in Eq. (10) denote
the contributions of nonrenormalizable terms scaled by an
UV cutoff Mp invariant under Ggy x I'y x U(1)y. We
note that the matter fields ¢y with U(1)y charge, complex
structure modulus Uy, and the vector superfield Vy of the
gauged U(1)y including the gauge field A% participate in
the 4D GS mechanism. We take the holomorphic gauge
kinetic function to be linear in the complex structure
moduli Uy and U;, f.;(®) D 8, (S + Ux +U,;). These
moduli are associated with the SM gauge theory, which
we will not be focusing on. The GS parameter 5%°
characterizes the coupling of the anomalous gauge boson

The upper two shifts in Eq. (9) of the Kéhler potential and
superpotential are known as the “Kihler transformation” with
reference to Eq. (7).

*It is similar to the one-loop Kihler potential presented in
Ref. [11].

to the axion @y. The matter superfields in K consist of all
scalar fields that are not moduli and do not have Planck-
sized vacuum expectation values (VEVs). The scalar
components of ¢ and @y are neutral under the U(1)y
symmetry and the modular group I'y, respectively.

Calculating K;; = 0;0; from the Kihler potential (10),
we obtain the kinetic terms for the scalar components
of the supermultiplets which are approximated well for
Mp > (@), (px) and Vx =0 as

My e Mi 5o
(—it+ 22 0T T U+ Oy)2 WX X
M3 _

9,508
<S+S 3¢In(—iz +i7))> ¥

+ K 39,009 + K, 5, 0,x @x. (11)

'Ckinetic =

where K ,;, = K, 5, = 1 for canonically normalized scalar
fields achieved by rescaling the fields ¢ and @y for given
values of the VEVs of r and Uy. The U(1)y charged
modulus Uy and scalar field ¢y can be decomposed as

Px | . 1
Uy ==+ iy, iy = ——=e€ X hy), 12
X=5 +i0x,  @xlo—a-o \/Ee (vx + hy) (12)

where py/2 =1/g% with gy being 4D U(l)y gauge
coupling and Ay, vy, and hy are the axion, VEV, and
Higgs boson of scalar components, respectively. Because
of the axionic shift symmetry, the kinetic terms of Eq. (11)
for the axionic and size part of Uy do not mix in
perturbation theory, where any nonperturbative violations
are small enough to be irrelevant, and the same goes for
the axion and Higgs boson of the scalar components of ¢y
for vy — .

Since the matter superfields ¢ and axiodilaton §' trans-
form as

“p(v)e.

where p(y) is the unitary representation of the modular
group I'y and ¢ is a constant, the transformation of the
Kihler potential K given in Eq. (9) leads us to

@ — (ct+d)” S—>S-3¢In(ct+d), (13)

g(7) = In(ct + d)3. (14)

Generically, the transformation of K in Eq. (9) incorpo-
rating Eq. (14) gives rise to a modular anomaly arising from

88 = =t [ d*xd*ONVW,g(t) + H.c. [11],

1 , ) 3
—gll9(0) +9(2)) 0" 0 +i(9(2) - (7)) 2 O}, (15)
where qu = m,/,{,Q’ with associated gauge field

strengths O and the first term in the brackets represents
the kinetic term for gauge bosons and the second term is the
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CP-odd term. After receiving a correction due to the
modular transformation of S in Eq. (13), The gauge kinetic
function f,, is given at leading order by

flooP(®) = 65,,(S + Uy) — ¢In(cz + d)?,  (16)

where the second term in the right-hand side is the
correction. It is worthwhile to notice that this correction
cancels the modular anomaly (15) generated by g(z), (7).

The modular invariance W (®) under the modular group
I'y (N >2) provides a strong restriction on the flavor
structure [3]. The superpotential W(®) can be expanded in
power series of the multiplets ¢ which are separated into
brane sectors ¢y),

W((I)) = ZYII...IH (T)(P(I,) Q1) (17)

where the functions ¥, (z) are generically5 7-dependent
in type-IIA intersecting D-brane models [10,26]. The
superpotential W(®) must have modular invariance under
the transformation W(®) — W(®)e=9%), where g(z) is
given by Eq. (14). To ensure this, we need to satisfy
two conditions: (i) the matter superfields ¢; of the brane
sector /; should transform

o,y = (ct+d) ™ ip) (e, (18)

in a representation p ;) () of the modular group I'y,, where
—k;, is the modular weight of sector I;, and (ii) the
functions Y; ; (z) should be modular forms of weight
ky(n) transforming in the representation p(y) of Ty,

Yy, (rt) = (et + d)kY(n)pO/)Yll.ul,, (z), (19)

with the requirements

ky(n) =3 =ky +-+ki,
P)®puy®--®pyy1.  (20)

The weight of modular forms in the superpotential is
corrected by the Kihler transformation in Eq. (9) due to
the modular invariance of both the superpotential and
Kihler potential. For example, a z-independent super-
potential for scalar potential can be simply constructed
by the matter supermultiplets that belong to the untwisted
sector in the orbifold compactification of type-1I string
theory [see Eq. (37)]. We will show an explicit example of
the superpotential induced by the modular forms of level 3
in the Sec. III.

’In type-II string orientifold compactifications, the Yukawa
couplings have modular properties [25].

B. Gauged U(1) anomaly free

The 4D action given by Eq. (8) should also be U(1)y
gauge invariant. Under the U(1)y gauge transformation
Vx = Vx +i(Ax — Ay), the matter superfields ®y and
complex structure modulus Uy transform as

S

88
Uy — Uy + 1#7[2/\)(, (21)

‘Dx N eiXAX(I)X,
where Ay(Ay) are (anti)chiral superfields parametrizing
U(1)y transformation on the superspace. So, the axionic
modulus €y and axion ay have shift symmetries

5
Oy — Ox — @fx, ax — ax + 6—Qfxfx7 (22)
X

where &y = —ReAx|y_5_¢» fx = Xvy is the axion decay
constant and 5% are anomaly coefficients defined in
Eq. (25). Then, the U(1)y gauge field A% transforms as

AL AL — gy (23)

Since the gauged U(1)y is anomalous, the axion ay and
axionic modulus 6y couple to the (non-)Abelian Chern-
Pontryagin densities for the SM gauge group in the
compactification. In type-II string vacuum, the U(1)y
anomalies should be canceled by appropriate shifts of
Ramond-Ramond axions in the bulk [27-30]. The 4D
effective action of the axions, 8y and ay, and its corre-
sponding gauge field A% contains [16,31]

58 N\ 1,
KUXUX aye)( - AX 7FX FX/w

167> B 4g%
— gxE¥Dx + DxgxX|opx|* + [D,ox|* + 6xTr(0"0,,)
0
ay 5X ~
Tr(O* , 24

where the gauge field strengths Q = G, W, Y for SU(3),
SU(2),, and U(1)y, respectively, and their gauge cou-
plings are absorbed into their corresponding gauge field
strengths. F’ is the U(1)y gauge field strength defined by
FY = 0*A% — 0*Al. In |D,px|?, the scalar components of
@x couple to the U(1)y gauge boson, where the gauge
coupling gy is absorbed into the gauge boson A% in the
U(1)y gauge covariant derivative D* = o* — iXA%. The
coefficients of the mixed U(1)y x [SU(3)c]%, U(1)yX
[SU(2),]% and U(1)y x [U(1)y]* anomalies are given,
respectively, by

8% =2Tr[XTg; ).

oy = 2Tr[XT§U(2)], 8% =2Tr[XY?].

(25)
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Here, U(n) generators (n > 2) are normalized according
to Tr[T“T"] = 8,,/2, and for convenience, 6% = 2Tr[XY?]
is defined for hypercharge. The Fayet-Iliopoulos (FI) term
LY = & [d0Vy = —&lgxDy with Dy = gx(&' -
X|gx|?) leads to D-term potential for the anomalous
U1y

1

— _ _gFI X 22’ 26
o T R Xlox) 26)

Vb

where &' is the FI factor produced by expanding the
Kihler potential (10) in components linear in Vy and
depends on the closed string modulus Re[Uy] = px/2.
Since the FI term is controlled by the string coupling,
it cannot be zero. The restabilization of VEVs by ¢y
necessarily implies spontaneous breaking of the anoma-
lous U(1)y, which will be shown later.

The first, third, fourth, and fifth terms in Eq. (24)
result from expanding the Kihler potential of Eq. (10).
The first and sixth terms together, and the fifth and
seventh terms in Eq. (24), are gauge invariant under the
anomalous U(1l)y gauge transformations of Egs. (22)
and (23). The gauge-invariant interaction Lagrangian is
given by

it = —ARJG + 0xTr (0" 0,,) — AYJX

£ onp,) 27)
[x 1672 we

where the anomalous currents Jff and Jﬁ coupling to the

gauge boson Al [that is, 0, J% = %Tr(Q"”QW) = -0,/
with 65 = a$6%] are represented by J§ = K ULy gd,ﬂx
and JX = —iX¢} 0,¢x.

Expanding Eq. (24) and setting 0y = a,/8n%f, with

2Ky . : int
fo= @y o canonically normalize, L, becomes

3 (000 + TR0 0y) + 5 (A
+Ax o Tr(Q" 0 )—A”(JX+J9)+im2A”A
fX 1672 uv X\ u 29% XXX
PP - T - Xl 28)
4g§( x Fxw = 56X Px >

where the gauge boson mass my obtained by

the super-Higgs mechanism is given by my =
\/ 2Ky, i, (655/167%)? + 2f%. Then, the open string axion

ay (decay constant fy) is mixed linearly with the closed
string ay (decay constant fy),

5)(?5 5;‘;5
~ ax5fo—agfx _ag5fot+AxSfx
A=K D070 oy, G=02 0T OXIX G,
TRy 2 5 e \2
fx+ G fo) fx+(F-fo)
(29)

where the approximations are valid under the assumption
that f is much larger than fy. The gauged U(1)y absorbs
one linear combination of ay and ay, denoted G, giving it
a string scale mass through the U(1), gauge boson, while
the other combination, A ~ ay, remains at low energies and
contributes to the QCD axion. At energies below the scale
my, the gauge boson decouples, leaving behind an anoma-
lous global U(1)y symmetry.

III. MINIMAL MODEL SETUP

For our purpose, we take into account I'(3) modular
symmetry, which gives the modular forms of level 3. The
group 5 is isomorphic to A,, which is the symmetry group
of the tetrahedron and the finite groups of the even
permutation of four objects having four irreducible repre-
sentations. Its irreducible representations are three singlets
1,1’, and 1” and one triplet 3 with the multiplication rules
33=3, 03,0101 ®1"and1' &1 =1", where
the subscripts s and a denote symmetric and antisymmetric
combinations, respectively. Let (a;, a,, a3) and (b, b,, b3)
denote the basis vectors for two 3’s. Then, we have

1
(a® b)sx =—=(2a1b, — ayb3 — asb,,2a3bs — a,by — ayby, 2aby — asby — abz),

V3

(a ® b)3a = (a2b3 - a3b2,a1b2 - Clzbl, a3b1 - Cl]bg),

(a ® b); = ayby + aybz + asb,,
(a ® b)l’ = a3b3 + a1b2 + (12[?1,
((1 ® b)l” = a2b2 + a3b1 + a1b3.

(30)

The details of the A4 group are shown in Appendix A. The modular forms f(z) of level 3 and weight k, such as Eq. (19), are
holomorphic functions of the complex variable z with well-defined transformation properties
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flr0) = (ex v sy = (00 )er @

with an integer k£ > 0, under the group I';. The three
linearly independent weight-2 and level-3 modular forms
are given by [3]

oo L[1B) n (5 (5 27 (37)
ho=a 'O n(=h - n(=2)  n(3q) }
I LAC L (G W AG o)
L= e T En w%}
UL w B G
B = e T wEy Wﬁ} (32

where @ = —1/2 4 i1/3/2 and 7(z) is the Dedekind eta
function defined by

n(r)=q'/* ﬁ(l —q") with g=¢?" and Im(z)>0.
n=1
(33)
The Dedekind eta function satisfies
n(=1/7) = V=im(z),  n(z+1)=e""y(x).  (34)

The three linear independent modular functions transform
as a triplet of Ay, i.e., Ygz)

of Y,(z) reads

= (Y,,Y,,Y3). The g expansion

Yi(r) =1+ 12 +36¢> + 124> + - --
Y,(r) = —64'3(17qg +8¢* +--+)
Yi(z) = —18¢*3(1 +2q + 54> + - - -). (35)

Y :(,2) is constrained by the relation

(YY), = Y2 +2v,v;, = 0. (36)

A. Modular invariant supersymmetric potential
and a Nambu-Goldstone mode

Using Egs. (17)—(20), we construct unique supersym-
metric and modular invariant scalar potential by introduc-
ing minimal supermultiplets. Those include SM singlet
fields y,° with modular weight 3 and y(7) with modular
weight 0. Additionally, we have the usual two Higgs
doublets H, ; with modular weight 0, which are respon-
sible for electroweak (EW) symmetry breaking. The fields
x and ¥ are charged by +1 and —1, respectively, and are

®The field y, can act as an inflaton [16].

ensured by the extended U(1)y symmetry due to the
holomorphy of the superpotential. (If the seesaw mecha-
nism [1] is implemented, the field y or 7 may be responsible
for the heavy neutrino mass term).

Under k; x Ay x U(1)y with the modular weights k;
according to Eq. (20), we assign the two Higgs doublets
H, ,tobe (0,1, 0) and three SM gauge singlets y, ¥, x, to be
(0,1,+1),(0,1,-1),(3,1,0), respectively.7 The A,4-singlet
o field with modular weight 3 ensures that the functions
Y, 1 (7) are independent of 7. The,n the supersymmetric
scalar potential invariant under Ggy X U(1)y X Ay is given
at leading order by

W, = g, 00HHa + xo(g07 — 12), (37)

where dimensionless coupling constants g, and g, are
assumed to be equal to 1 but are modified to Eq. (60) by
considering all higher-order terms induced by yjy combi-
nations. Note that the PQ-breaking parameter p, corre-
sponds to the scale of the spontaneous symmetry breaking.

In the global SUSY limit, i.e., Mp — oo, the scalar
potential obtained by the F and D terms of all fields is
required to vanish. Then, the relevant F' term from Eq. (37)
and D term of the scalar potential given by Eq. (26) reads

lobal ~
VS = gz — 12
XPg% (& ?
yelobal _ | X (_5x 2_ 1712 . 38
i 7\ TP - (38)

The scalar fields y and 7 have X charges +1 and —1,
respectively, i.e.,

x— ety ety (39)
with a constant £. So, the potential Vgygy has U(1)y
symmetry. Since SUSY is preserved after the spontaneous
breaking of U(1)y, the scalar potential in the limit of
M p — co vanishes at its ground states; i.e., (V%k’bﬂ) =0as

well as (V&) = 0. From the minimization of the F-term
scalar potential, we obtain

with p, =v,\/%  (40)

W) = ) =% W5

V2
where we have assumed (y), (¥) > (H, ). The above
supersymmetric solution is taken by the D-flatness con-
dition for [16,17]

"As a consequence of k; x Ay x U(1)y, the other superpoten-
tial term «,L,H, and the terms violating the lepton and baryon
number symmetries are not allowed. Besides, dimension-6
supersymmetric operators like Q;Q;Q0L; (where i, j, k must
not all be the same) are also not allowed. This restriction is crucial
for stabilizing the proton.
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x=0. (= (41)

The tension between (y) = (7) and &Y #0 arises
because the FI term cannot be canceled, unless the VEV
of flux in the FI term is below the string scale [14,32]. The
FI term acts as an uplifting potential,

o A
P ]67[2 Po ’

FI __
X =

(42)
where Ap = py — py, Which raises the anti-de Sitter mini-
mum to the de Sitter minimum [14]. To achieve this, the F'
term must necessarily break SUSY for the D term to act as
an uplifting potential. The PQ scale y, can be determined
by taking into account both the SUSY-breaking effect,
which lifts up the flat direction, and supersymmetric
next-leading-order Planck-suppressed terms [15—17]. The
supersymmetric next-to-leading-order term invariant under
Ay x U(1)y satisfying Eq. (20) is given by

a -
AW, ~ Wﬂ(o()ﬁ(ﬂ (43)
P

where a is assumed to be a real-valued constant being of
unity. Since soft SUSY-breaking terms are already present
at the scale relevant to flavor dynamics, the scalar potential
for y, 7 at leading order reads

e * el
My

V(r.7) = —aim3 x> — aom3 o |71* + o . (44)

where mj3/, represents soft SUSY-breaking mass and «;
and a, are real-valued constants. This leads to the PQ-
breaking scale (equivalently, the seesaw scale),

6 1
gy X100\ 12 1
Fe= (W) (ma2M3) )

indicating that u, lies within the range of approximately
1.2x 103 to 1.7 x 10" GeV (or 2.6 x 1013 to 1.2 x
10" GeV) for ms,, values ranging from 1 to 10° TeV
(or from 10 to 10° TeV) for a; and a, of order unity.

The model includes the SM gauge singlet scalar fields y
and 7 charged under U(l)y, which have interactions
invariant under Ggy x U(1)y x A4 with the transforma-
tions Eq. (9). These interactions result in a chiral sym-
metry, which is reflected in the form of the kinetic and
Yukawa terms, as well as the scalar potential Vgygy in the
SUSY limit,

LD 6#)(*0“)( + dﬂ;?*a“)? + £y - VSUSY + »Cg + l/_/lﬂl//

1_ 1

where y denotes Dirac fermions and Vgygy is replaced by
Vot When SUSY-breaking effects are considered. The
above kinetic terms for y(7) are canonically normalized
from the Kihler potential (10). Here, four component
Majorana spinors (N =N and v =v) are used. The
global U(1)y PQ symmetry guarantees the absence of bare
mass term in the Yukawa Lagrangian Ly in Eq. (46). The
QCD Lagrangian has a CP-violating term

g

Lo=10
§ PP 3y 2

Gamv Ga

Hw

(47)

where g, stands for the gauge coupling constant of SU(3) .
and G is the color field strength tensor and its dual
G,‘j,, = 3€,,0G* [here, a is an SU(3)-adjoint index],
coming from the strong interaction. After obtaining
VEV (y) # 0, which generates the heavy neutrino masses
given by Eq. (53), the PQ U(1)y symmetry breaks
spontaneously at a much higher scale than EW scale.
This is manifested through the existence of the Nambu-
Goldstone (NG) mode Ay, which interacts with ordinary
quarks and leptons via Yukawa interactions; see
Egs. (71), (81), and (92). To extract the associated boson
resulting from spontaneous breaking of U(1)y, we set the
decomposition of complex scalar fields [17,18,20] as

U)( Ax l’l)(> - ’U)? _idx ( l’lj)
=—TZeu|1+-7], =—=e Y| 1+-+
SRV ( w) ATz u,

vl + 0, (48)

with u, = 7

x
in which Ay is the NG mode and we set v, = v; and
h, = h; in the supersymmetric limit. The derivative
coupling of NG boson Ay arises from the kinetic term

SR | r\2 1
0 'y + 0,70y = E(GMAX)2<1 —l—u—)() +§(aﬂhx)2.
Y

(49)

Performing u, — oo, the NG mode Ay, whose interaction is
determined by symmetry, is distinguished from the radial
mode %, which is invariant under the symmetry U(1)y.

B. Modular-invariant Yukawa superpotentials
and anomaly coefficients

By introducing just two A4-singlet fields, y and }, with
modular weight 0 and charged under U(1)y by +1 and —1,
respectively, and using economic weight modular forms, we
construct Yukawa superpotentials that are invariant under
Ggm X U(1)y x Ay satisfying Eq. (20). This approach can
explain the observed hierarchy of fermion masses and
mixing given by the CKM matrix for quarks as well as
by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for
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TABLE L

Representations and quantum numbers of the quark fields under Ggy x A4 X U(1)y and modular

weight k; according to Eq. (20). In (Q, ©,), of Gy, Q; and Q, are the representations under SU(3) and SU(2),
respectively, and the script ¥ denotes the U(1) hypercharge.

Field Ql Q2 Q3 u¢ c¢ ¢
Gsm G2 B2y B2y Gl (3.1) a3 (3.1) a3 (3.1) a3
Ay 1 1” 1 3 1 1 1”
ky 0 0 0 -3 -3 -3 3
U(1)x Jo—Ja Jo = s 0 —f» Jfa=Jp=fu fs=Fv—Tc 0

leptons. Furthermore, the approach provides a solution to
the strong CP problem by breaking down the U(1)y flavor
symmetry. Since the modular weights of the fields y(7)
are 0, any additive correction terms induced by higher
weight modular forms are forbidden in the superpotential
[see Egs. (37), (50), and (53)]. However, higher-order
corrections arising from the combination yjy are allowed,
but they do not modify the leading-order flavor structure.

Now, let us assign A, x U(1)y representations and
quantum numbers as well as modular weights k; to the
SM quarks and leptons including SM gauge singlet
Majorana neutrinos as presented in Table L.} Here, three
quark SU(2), doublets and three up-type quark singlets
are denoted as Q1,3 and (u¢,c¢ 1), respectively.
D¢ = {d°, 5, b°} represents the down-type quark singlets.
Then, the quark Yukawa superpotential invariant under
Ggm X Ay X U(1)y with modular forms is sewn with
F = {y or y} through Eq. (2) as

N\ el
W, = a1 Q3H,, + o <A> Y56>CCQ2HM

A\ 6
+ay (A) Y\ ucQ,H,

0 F ‘fh‘ 6 ¢
+ 0‘57 : (X) (Yg "D )1 Q3Hy

rava
+al (X) (¥ D) 02 H,

F Il
) (5) oo w0

where al(»o) denotes coefficient at leading order and WEIM

stand for higher-order contributions, which are simply
constructed by the leading-order operators in Eq. (50)

multiplied by 3% | (£)". Note that all Yukawa coefficients

P
in the above superpotential, a§°), are assumed to be
complex numbers with an absolute value of unity. Since
it is hard to reproduce the experimental data of fermion

masses and mixing with Yukawa terms constructed with

SAll fields appearing in Table I are left-handed particles/
antiparticles.

modular forms of weight 4 in quark and charged-lepton
sectors in this model, we take into account Yukawa terms
with modular forms of weight 6 which are decomposed as
1 ® 3 & 3 under A, given explicitly by [3]

Y\ = ¥3 4+ Y3+ ¥3 -3y, 1LY,

Yf) = (Y3 +2Y,Y,Y5,Y}Y, +2Y3Y5, Y3Y; + 2Y3Y,)

Yg,z = (Y3 +2Y,Y,Y3, Y3Y, +2Y]Y,, Y3Y, + 2V3Y)).
(51)

In the above superpotential, only the top-quark operator is
renormalizable and does not contain a modular form,
leading to the top-quark mass as the pole mass, while

the other quark operators driven by y (or ¥) are dependent

on modular forms. Using modular forms of weight 6, ¥ ;6>

and Ygﬁ), with the quark fields charged under A4 x U(1)y,
which does not allow mixing among up-type quarks, the
off-diagonal entries in the up-type quark mass matrix are
forbidden, as indicated in Eq. (65). From the above
superpotential, the effective Yukawa couplings of quarks

can be visualized as functions of the SM gauge-singlet

fields y(7) and modular forms Y %), except for the top

Yukawa coupling (see the details given in Sec. IV).
According to the quantum numbers of the quark

sectors as in Table I, the color anomaly coefficient of

U(1)x x [SU(3)c]* defined as N¢ = 2Tr[X,, T§;, 5 | reads

NC:_(le+fC+fd+fS+fb)' (52)

Note that U(n) generators (n > 2) are normalized accord-
ing to Tr[T°T"] = §%° /2. The U(1)y is broken down to its
discrete subgroup Zy . in the backgrounds of the QCD
instanton, and the quantity N (nonzero integer) is given by
the axionic domain-wall number Npyw. At the QCD phase
transition, each axionic string becomes the edge to Npw
domain walls, and the process of axion radiation stops.
To avoid the domain-wall problem, one should consider
Npw = 1 or the PQ phase transition occurred during (or
before) inflation for Npyw > 1.

Next, we turn to the lepton sector, where the fields are
charged under Ggy; x A4 x U(1), with modular weight k;.
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TABLE II.
weight k; determined according to Eq. (20).

Representations and quantum numbers of the lepton fields under Ggy x A4 x U(1)y and modular

Field L, L, L. e u 7¢ N¢
Gsm (172)—1/2 (Lz)—l/z (172)—1/2 (1, 1), (1, 1), (1, 1), (1, 1),

Ay 1 1/ 1” 1 1” 1 3

k 5 S S 1 _ 1 _n _3
1 2 2 2 2 2 2 2
U(l)X %_ge 2 g;t %_g‘r gL_%_fE gﬂ_%_fﬂ gr_%_f‘r _%

Remark that the sterile neutrinos N¢ (which interact with
gravity) are introduced (i) to solve the anomaly-free
condition of U(1) x [gravity]?, (ii) to explain the small
active neutrino masses via the seesaw mechanism, and
(iii) to provide a theoretically well-motivated PQ symmetry-
breaking scale. In Table II, the representations and quantum
numbers of the lepton fields as well as modular weight k,
determined along with Eq. (20) are presented. Here, L,, L,,
and L, denote SU(2), lepton doublets, and e¢, u¢, and ¢ are
three charged-lepton singlets. The field N represents the
right-handed SU(2), singlet neutrino, which is introduced
|

to generate active neutrino masses via canonical seesaw
mechanism [1].

We note that the mixing between different charged
leptons does not occur when the lepton Yukawa super-
potential is economically constructed with modular forms
of weight 6, resulting in the diagonal form of the charged
lepton mass matrix as can be seen in Eq. (78). In contrast,
modular forms Y;z), Yl6 , and Y36 are used to construct
neutrino mass matrices.” Then, the Yukawa superpoten-
tial for lepton invariant under Ggy X Ay x U(1)y with
economic modular forms are sewn with F = {y or 7}
through Eq. (2), respectively, as

F\ If a1 F\ el F lgel
qu = aS'O) () YEG)TCL‘er + aLO) <A> Y56>IMCL#Hd + a(eO) <> Y§6)60L6Hd +ﬂ(10) <> (Y(32)NC)]LeHu

A

F F

19, || 1
B0 (—) (VONY L, H, + p (—) (YONY L Hy + 70170 (vewe) 410

A A

where a,(-o), ﬁ,(.o), and yl(-o) denote coefficients at leading

order and ngf' ) stands for higher-order contributions
triggered by the combination yj. Like in the quark sector,
the Yukawa coefficients in the above superpotential, such

as a§°>, ﬂﬁ"), and yl(o), are assumed to be complex numbers
with an absolute value of unity. In the above superpotential,
the charged-lepton and Dirac neutrino parts have three

distinct Yukawa terms each, with their common modular

forms being Y (16) and Ygz), respectively. Each term involves

F/A to the power of an appropriate U(1)y quantum
number. The flavored U(1)y PQ symmetry allows for
two renormalizable terms for the right-handed neutrino N¢,
which implement the seesaw mechanism [1] by making
the VEV (y) large. The details on how the active neutrino
masses and mixing are predicted will be presented in
Sec. IV C.

Nonperturbative  quantum  gravitational — anomaly
effects [19] violate the conservation of the corresponding
current, aﬂJ’;( « RR, where R is the Riemann tensor and R
is its dual, and make the axion solution to the strong CP
problem problematic. To consistently couple gravity to

A A

L 6) / nre nre h
. VSV (NN 4+ W,

(53)

[
matter charged under U(1)y, the mixed-gravitational
anomaly U(1)y X [gravity]? (related to the color anomaly
U(l)y x [SU(3)-]*) must be canceled, as shown in
Refs. [17,20,21], which leads to the relation,

BNe=fe+futfetge+9,+ 9 (54)

Thus, the choice of U(1)y charge for ordinary quarks and
leptons is strictly restricted.

9By selecting appropriate modular weight of particle contents,

lower-weight modular forms can be used, such as Ygz)

Dirac neutrino sector, and Y(;;)l,.l,,) and Yg4) in the Majorana

neutrino sector. However, this leads to additional interactions,
including § Y<14> (N°N)yx, 3 YY,‘) (NN, 3 Y(;,t,) (N°N€)yx, and
%Y(;)(N"N”)y(. Another option is to use Yéz) in the Dirac
neutrino sector and no modular form in the Majorana neutrino
sector, which results in only 1 (N°N¢),y and degenerate heavy
Majorana neutrino mass states at the seesaw scale. However,
we have found that this approach is difficult to reconcile with
experimental neutrino data.

in the
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region and vertical red lines indicate the conventional QCD axion predictions and the exclusion region of various axion search

experiments, respectively; see Ref. [35].

Below the U(1)y symmetry-breaking scale (here, equiv-
alent to the seesaw scale), the effective interactions of QCD
axion with the weak and hypercharge gauge bosons and
with the photon are expressed through the chiral rotation of
Eq. (62), respectively, as

AX 1 T %
LY = LS AN W W+ GNYRT,) ()
Ay € ~
y X v
_ X ¢ ppup 26
AT 43202 " o0

where gy, gy, and e stand for the gauge coupling constant
of SU(2);, U(1)y, and U(1)gy, respectively, while their
corresponding gauge field strengths WH Y*, and FH

with their dual forms W and F,,, respectively.

uvs L opws
Here, Ny = 2Tr[X,, T, ,)] and Ny = 2Tr[X,, (Qf)?] are
the anomaly coefficients of U(1)y x [SU(2),]*> and
U(1)y x [U(1)y]?, respectively. And the electromagnetic
anomaly coefficient E of U(1)y x [U(1)gy]* defined by
E=2%, X,( pm)? with Q5 being the U(1)gy charge
of field y is expressed as

E:NW+NY:_2(fL’+fﬂ+fT>

2
_5(4fu+4fc+fd+fs+fb> (57)
The physical quantities of QCD axion, such as axion mass
m, and axion-photon coupling g, are dependent on the
ratio of electromagnetic anomaly coefficient E to color
one N. The value of E/N( is determined in terms of the
X charges for quarks and leptons by the relation,

E 2(fetfutf) 3@ A et fat S+ )
N¢ futfetfatfs+ T
C6(fet fut fo) +24f +Af e+ fat fo+ f)
B ~fe=fu=Tfe=9e—9u— e ’
(58)

where the first and second equalities follow from Egs. (52)
and (54), respectively. Our model with a specific value of
E/Nc can be tested by ongoing experiments such as
KLASH [33] and FLASH [34] [see Eq. (76) and Figs. 1
and 2] by considering the scale of U(1), breakdown
induced by Eq. (45).

Compared to conventional A, symmetry models result-
ing in tribimaximal [36] or nearly tribimaximal [37] mixing
in the neutrino sector, the modular invariant model leads
to neutrino mixing without the need for special breaking
patterns and the introduction of multiple scalar fields.
Our model can be uniquely realized for quark sector by
assigning A4 x U(1)y quantum numbers to matter fields
with appropriate modular forms based on Eq. (2). Some
comments are worth noting. First, by selecting the appro-
priate modular weight for the right-handed down-type
quark fields, it is possible to construct down-type quark
Yukawa superpotential with lower modular weight forms
Ygz) or Y:(;‘) while keeping the same up-type quark Yukawa
superpotential given in Eq. (50). However, it is hard to
reproduce the experimental data for quark masses and
mixing hierarchies in this way due to the limited number of
parameters. Second, unlike the case in Table I, the quark
SU(2), doublets and singlets can be assigned to Ay triplets
and singlets by choosing appropriate modular weight forms
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and U(1)y quantum numbers, respectively. In this case, the
quark mass hierarchies can be realized in the limit of () =
i (ie.,Y; - 1,Y, - 0,and Y3 — 0), whereas it is hard to
reproduce the CKM mixing angles since additive correction
terms induced by higher weight modular forms are for-
bidden by the modular weight zero of y(7) fields. Third, in
the opposite scenario where the quark SU(2), doublets and
singlets are assigned to A, singlets and triplets, respectively,
it is not possible to account for the observed quark mass
hierarchy due to the charge assignment of U(1)y. Fourth,
for leptons, unlike the case in Table II, the left-handed
charged-lepton SU(2), doublets L can be assigned to the A4
triplet, and their U(1)y quantum numbers are taken to be
1 — g1, whereas SU(2), singlets (e¢, u, 7°) are assigned to
the A, singlets (1, 17, 1), and U(1)y quantum numbers are
taken to be (g, = fo =3.91 = fu=35.91 = fe —3)- To gen-
erate neutrino mass through the seesaw mechanism, N¢ is
assigned to the A, triplet, and the U(1)y quantum number is
taken to be — % In this case, we have the freedom to select
the weights. For instance, we can choose the following
weights: k, =3, ke = ko = ko = —3, and kyc = 1. Then,
the lepton Yukawa superpotential reads

f |fr‘ . F ‘fﬂ‘
ny = |:a£—0) (X) (Y;Z)L)I//TL -+ a,(,o) (X) (Ygz)L

f ‘f@‘
+al (X) (Ygz)L)lec] Hy

F\lal 1 o
+/5'<0)(A> (NL)yHy 7O S (NN o

(59)

where dots stand for higher-order contributions triggered
by the combination yjy. It is worth noting that the
above superpotential enables mixing between different
charged leptons, analogous to the down-type quark
sector. Additionally, the Dirac neutrino Yukawa matrix,
denoted as myp, exhibits a proportional relationship to
mymp  (1,1,1), and the heavy Majorana neutrino
mass term follows a similar form, as found in Ref. [3].
By selecting other specific weights, namely, k; :%,
ke =k = ke =—1, and kyc = —3, a notable change

occurs in the modular form of the Majorana neutrino

operator. Specifically, the term Y f) transforms into Y gﬁ(;),

resulting in an expression that aligns with the form
presented in Eq. (53). While these cases show potential
for reproducing lepton mass and mixing, further inves-
tigation is necessary to confirm its viability. Fifth, it is
difficult to explain the mass hierarchy of the charged
leptons when we assign the three right-handed charged
leptons, the left-handed charged leptons and N¢ to the A4
triplet, three A, singlets (1, 1”, 1’) and the A, triplet,
respectively. This difficulty is caused by the charge
assignment of U(1)y.

IV. QUARK AND LEPTON INTERACTIONS
WITH QCD AXION

Let us discuss how quark and lepton masses and mixings
are derived from Yukawa interactions within a framework
based on A4 x U(1)y symmetries with modular invariance.
Nonzero VEVs of scalar fields y(¥) spontaneously break
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the flavor symmetry U(1)y'" at high energies above EW
scale and create a heavy Majorana neutrino mass term.
Then, the effective Yukawa structures in the low-energy
limit depend on a small dimensionless parameter
(F)/A= Af The higher-order contributions of super-

,) become p

ators) with ¢; = ¢’ ', which make the Yukawa coefficients
of the leading-order terms in the superpotentials given in
Egs. (37), (50), and (53) shifted. Denoting the effective
Yukawa coefficients shifted by higher-order contributions
as a;, f;, and y;, we see that they are constrained as

potentials W ciA)z(”- (leading-order oper-

2 2
1- , <1 L4
1 — A2 |ﬂ\ |7’z| <l+ 1— A)%
with A, 60
=, (60

where the lower (upper) limit corresponds to the sum of
higher-order terms with 0; = 7(0). When H 4 acquire
nonzero VEVs, all quarks and leptons obtain masses. The
relevant quark and lepton interactions with their chiral
fermions are given by

-L£> ﬂMqu + QRMd‘IL \fWJr }’”‘IL
T
_ 1, 0 mp v
+fRMfI/ﬁL+_(I/Z NR) Ax ( I;)
2 mp e”lMR NR
g _—
+—==W:?¢;y*v; + H.c., 61
\/§ ulLYVL ( )

where g is the SU(2), coupling constant, ¢* = (u, c, t),

= (d,s.b), ¢ =(e.p.7), v=(V,.1,.1,), and N =
(Ny,N,,N3). My contains a VEV of y presented by
Eq. (48). The explicit forms of M, ,, will be given later.
The above Lagrangian of the fermions, including their
kinetic terms of Eq. (46), should be invariant under U(1)y,

W — o3 wy, t=invardant, N — eTN, (62)
where y; = {u,c,d,s,b,e,u, v} and a is a transformation

constant parameter.

A. Quark and flavored-QCD axion

As axion models, the axion-Yukawa coupling
matrices and quark mass matrices in our model can be
simultaneously diagonalized. The quark mass matrices
are diagonalized through biunitary transformations

"OIf the symmetry U(1)y is broken spontaneously, the massless
mode Ay of the scalar y appears as a phase.

VEM, VYT = M, (diagonal form), and the mass eigen-
states are wi = Viwg and y) = VY. These transfor-
mation include, in particular, the chiral transformation of
Eq. (62) that necessarily makes M, ,, real and positive.
This induces a contribution to the QCD vacuum angle in
Eq. (46), i.e.,

dqcp = Jerr = dqcp + arg{det(M,) det(My)}  (63)
with —z < 9.4 < 7. Then, one obtains the vanishing QCD
anomaly term

AX a/s auv Fa . fa
£8:<8eff+F_a>§GﬂGm/ with Fa:N—C, (64)

where o, = g2 /4 and the axion decay constant F, with
fa = u, of Eq. (48). At low energies, Ay will get a VEV,
(Ay) = —F .5, eliminating the constant 9.z term. The
QCD axion then is the excitation of the Ay field,
a=Ax - (Ax).

Substituting the VEV of Eq. (40) into the superpoten-
tial (50), the mass matrices M, and M, for up- and
down-type quarks given in the Lagrangian (61) are
derived as

.o A
a, ALY i 0 0
— oA
M, = 0 acAJémY;ﬁ)ezf(% o |vw (65)
0 0 a,
a A" axal ayyal
M= adyA)‘(f"‘ aSA;'{f“ abe)l(fbl (1+42xy)
O{dXA)‘(fd‘ asyA)\{fs\ abA)\{fb\
ayald g Al g Al
+ | @Al ayalt @At |67 +2x) | CYivg,

A Al G, yalf

(66)

where v, = (H,) = vcos /2, v, = (H,) = vsin /2
with v ~ 246 GeV, and

- ) i Ax A ax Y Y
C:dmg(elf""; ef”‘jz( elf”“;), x:Y—z, y:Y_3' (67)
1 1

The terms with a,, in Eq. (66) generate by taking the
(6)

modular form Y3 given in Eq. (51), whereas the terms

with @, , in Eq. (66) generate by taking Yg?%.
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The quark mass matrices M, in Eq. (65) and M, in
Eq. (66) generate the up- and down-type quark masses:

M, = VEM, V' = diag(m,, m, m,),
My = VIM VI = diag(my. m,, my,). (68)

Diagonalizing the matrices M}Mf and MfM; (f =u,d
determines the mixing matrices V{ and V{e, respectively
[38]. The left-handed quark mixing matrices V¥ and V¢ are
components of the CKM matrix Vegy = V4V, which is
generated from the down-type quark matrix in Eq. (66)
due to the diagonal form of the up-type quark mass matrix
in Eq. (65). The CKM matrix is parametrized by the
Wolfenstein parametrization [39] [see Eq. (B1)] and has
been determined with high precision [40]. The current best-
fit values of the CKM mixing angles in the standard
parametrization [41] read in the 3¢ range [42]

05[] = 2376555,

01, [°] = 13.0037555.

015[7) = 0.210%95;5.,
56p[7) = 65.5133. (69)
|

The physical structure of the up- and down-type quark
Lagrangian should match up with the empirical results
calculated from the Particle Data Group (PDG) [35],

my = 4.67°01% MeV,
my, = 4.187003 GeV,

m, = 1.27+£0.02 GeV,

my =931 MeV,
m, =2.16105 MeV,
m,=173.1£0.9 GeV, (70)

where #-quark mass is the pole mass; c- and b-quark masses
are the running masses in the MS scheme; and the light u-,
d-, and s-quark masses are the current quark masses in the
MS scheme at the momentum scale u ~ 2 GeV. Below the
scale of spontaneous SU(2), x U(1), gauge symmetry
breaking, the running masses of ¢ and b quarks receive
corrections from QCD and QED loops [35]. The top-quark
mass at scales below the pole mass is unphysical since the
t-quark decouples at its scale, and its mass is determined
more directly by experiments [35].

After diagonalizing the mass matrices of Eqgs. (65)
and (66), the flavored-QCD axion to quark interactions
are written at leading order as

d,a _ _ - _ _
—L ~ ﬁ {fultr*ysu + f.ey'ysc + fady'ysd + fSy'yss + frby'ysh}
X

2”;(

d,a A2 - 9
+ 5 {(fd - fs)/1<1 - 2) dytyss + (fs = fu)AaA"5y"ysb

A Falp+ in) = fo+ Fo(1 = p— in)bpiysd + H}

/12
+ 121 {(fd _fs)/1<1 _E> (md - ms)ds + (fs _fb)Ad/IZ(mS - mb)gb

Uy

+ AR (falp+ i) = £y + Fo(1 = p = in))(my — mg)bd + H.c.}

+ myiiu + m.ec + m,it + mydd + mgss + m,bb — giPq, (71)

where VZT = Vcekm of Eq. (B1) is used by rotating the
phases in M, away, which is the result of a direct
interaction of the SM gauge singlet scalar field y with
the SM quarks charged under U(1)y. The flavored-QCD
axion a is produced by flavor-changing neutral Yukawa
interactions in Eq. (71), which leads to induced rare flavor-
changing processes. The strongest bound on the QCD
axion decay constant is from the flavor-changing process
KT — n" +a [43-47], induced by the flavored-QCD
axion a. From Eq. (71), the flavored-QCD axion inter-
actions with the flavor-violating coupling to the s and d
quarks are given by

i 22

a
N
NCFa

|
Then, the decay width of K™ — z™ + a is given by

m3 m2 3 f _f~ }LZ 2
F(Kt -t +a)=—K(1-—=) [2254(1-2 )|,
(KT =27 +a) 1671( m%) 2F N 2

(73)

where m g+ = 493.677 +0.013 MeV, m = = 139.57061+
0.00024 MeV [35]. From the present experimental upper
bound Br(K" — zta) < (3-6) x 10711(1 x 107!) for
m, = 0-110 (160-260) MeV at 90% C.L. with Br(K+ —
atvp) = (1061570 £ 0.954) x 1071 at 68% C.L. [48],
we obtain the lower limit on the QCD axion decay constant,
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2IN
Nl > (0.86 — 1.90) x 10! GeV.  (74)

Falra=ri?

The QCD axion mass m,, in terms of the pion mass and
pion decay constant reads [17,18]

mgFg = m3, f2F(z.w), (75)

where f, ~92.1 MeV [35] and F(z,w) =z/(1 +2)(1 +
z+w) with @ = 0.315z. Here, the Weinberg value lies
in z=mYS(2 GeV)/mM¥5(2 GeV) = 0.4770% [35]. After
integrating out the heavy z° and # at low energies, there is
an effective low-energy Lagrangian with an axion-photon
coupling g,,,: L, = —gmaf . B where E and B are the
electromagnetic field components. The axion coupling is
expressed as,

ey M, 1 ( E

24+z74w
= _— — . 76
gay}/ 2 f,,m,ro F(Z, W) ) ( )

N_C_gl—l—z—i-w

The upper bound on the axion-photon coupling, derived
from the recent analysis of the horizontal branch stars in
galactic globular clusters [49], can be translated to

|Gayy| < 6.6 x 107" GeV~'(95% CL)

& F,22.525% 107

E
= 1.903' GeV, (77)
Nc

where z = 0.47 is used.

B. Charged-lepton and flavored-QCD axion

Substituting the VEV of Eq. (40) into the super-
potential (53), the charged-lepton mass matrix given in
the Lagrangian (61) is derived as

a, A)\.(fe\eifeﬁ—f 0 0
M= 0 aﬂA;'(f”‘eif“% 0 Y 56) vg-
0 0 aTA;'(f"eif’%
(78)

Recall that the coefficients a; are complex numbers with
an effective absolute value satisfying Eq. (60). Then, the
corresponding charged-lepton masses are given by

m, = a V00 o, my, = a, YAy,

m, = a, YO Ay, (79)

where Y;6> is given in Eq. (51) and the phases in each term

can be absorbed into (/;)z. They are matched with the
empirical values from the PDG [35] given by

m,=0511 MeV,  m, = 105.658 MeV,
m, = 1776.86 & 0.12 MeV. (80)

Flavored axions typically interact with charged leptons
(electrons, muons, and taus) [17,18,20,21] and can be
emitted through atomic axiorecombination, axiodeexcita-
tion, axiobremsstrahlung in electron-ion or electron-electron
collisions, and Compton scatterings [50]. Then, the flavored-
QCD axion to charged-lepton interactions read

d,a
L~ ﬁ (feer'yse + fulir'ysu + f:3r'yst)
X
+ > (mett —Zige). (81)

f=eu,t

Like rare neutral flavor-changing decays in particle physics,
the interaction of the flavored-QCD axion a with leptons
makes it possible to search for the QCD axion in astro-
particle physics through stellar evolution. The flavored-
QCD axion coupling to electrons reads

m,
Yaee = |fe . (82)
Uy

Stars in the red giant branch of color-magnitude diagrams
in globular clusters provide a strict constraint on axion-
electron couplings, which leads to a lower bound on the
axion decay constant. This constraint is expressed as [51]

|Gace| <43 x10713(95% C.L.)
& NcF, 2 1.19|f| x 10° GeV. (83)

Bremsstrahlung off electrons e +Ze — Ze +e¢+a in
white dwarfs (WDs) is an effective process for detecting
axions, as the Primakoff and Compton processes are sup-
pressed due to the large plasma frequency. Comparing
the theoretical and observed WD luminosity functions
(WDLFs) provides a way to place limits'' on |g,..| [56].
Recent analyses of WDLFs, using detailed WD cooling
treatment and new data on the WDLF of the Galactic disk,
suggest electron couplings |[gae.| <2.8 x 10713 [52].
However, these results come with large theoretical and
observational uncertainties.

We note that the entries of the quark and charged-lepton
mass matrices given in Egs. (65), (66), and (78) except for

""Note that Refs. [52,53] have pointed out features in some
WDLFs [54,55] that could imply axion-electron couplings in the
range 7.2 X 1071 < [gaee| £2.2 x 10713,
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the entry corresponding to the top quark are expressed as a
combination of A‘ /<l and modular forms for each compo-
nent. Accurate determlnatlon of the values of A, its power,
and the value of 7 is crucial to reproduce the observed
CKM mixing angles given in Eq. (69) and quark masses in
Eq. (70). The values of those parameters are also closely
linked to those in the lepton sector, and they should
necessarily be determined in order to reproduce the

observed values of charged-lepton masses and to predict
|

light active neutrinos derived from Egs. (84) and (86). The
U(1)y PQ scale, which corresponds to the seesaw scale [as
shown n Eq. (85)], can be estimated as 1, ~ 6 x 10'* GeV
from Eq. (45) for m3,, ~ 100 TeV.

C. Neutrino

Similar to the case of charged-lepton mass matrix, the
heavy Majorana mass matrix given in the Lagrangian (61)
is derived from the superpotential (53) as

1+y*—5xy 0 0
Mpr=M 0 0 1+ y3=5xy
0 1 +y* —Sxy 0
Fp+ryr) = Rlyp+var) —Js(pxp+1'r)
+M| —Fyp+vxr)  Flxp+y'r)  —HZp+ryr) | (84)
—Rxp+yr)  —Gp+ryr)  FH(ryp+rxr)
|
where p = 1+ 2xy, r =y> +2xy, y = v2/71, ¥ =v5/71,  The coefficients ; and y, in the neutrino sector, like in the

and the common factor M can be replaced by the QCD
axion decay constant F,

|71|

M= nYi(| =" FaNcYil. (85)

The terms with y, in Eq. (84) are derived by taking the

(6)

modular form Y3 satisfying Eq. (51), whereas the terms

with y are derived by taking Yé@. Equation (84) has three
unknown complex parameters, y, y’, and y;, where the
phase of y; contributes as an overall factor after seesawing.
Other variables such as x, y, and Y| are determined from
the analysis for the quark and charged-lepton sectors,
and (y) is fixed from the seesaw formula (87) whose scale
is given by PQ scale (45). The Dirac mass term in the
Lagrangian (61) reads

piag! ﬁz)’A;léq” RN
mp = | gya ,52XA;|2%| i
prxay ﬁzA;‘(g”‘ pryAy
Y00
X 0 e"-‘/ﬁ_f 0 Y v, (86)
0 0 &

095034-

quark and charged-lepton sectors, are complex numbers
corrected by higher-dimensional operators, resulting in an
effective absolute value satisfying Eq. (60). Equation (86)
contains three complex parameters (3, ., and f3), where
one of the phases can be removable as an overall factor
after seesawing. As shown before, the parameter A, can be
determined from quark and charged-lepton sectors. In
addition, its U(1)y quantum number g, can be determined
from the numerical analysis for the neutrino sector with
the help of the condition of U(1)y-mixed gravitational
anomaly free given in Eq. (54).

After integrating out the right-handed heavy Majorana
neutrinos, the effective neutrino mass matrix M, is given at
leading order by

M, =~ —mL Mz 'm;, = Uydiag(m,, ,m,,,m, )UI,

(87)
where U, is the rotation matrix diagonalizing M, and m,,
(i = 1,2, 3) are the light neutrino masses. Then, the PMNS
mixing matrix becomes

Upmns = U, (88)

The matrix Upyns 1S expressed in terms of three mixing
angles, 015, 013, 053, and a Dirac-type CP-violating phase
Ocp and two additional CP-violating phases ¢;, if light
neutrinos are Majorana particles as [35]

16
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TABLE III. The global fit of three-flavor oscillation parameters at the best-fit and 3¢ level with Super-Kamiokande atmospheric
data [61]. Amd, = m, —m; , Am3,,, = mi, —m}, for NO, and Am3,, = m, —m;, for 10.
013(°) 5cp (%) 012(°) 03 (°) Amg, (1075 eV?) Amy,, (107 eV?)
NO 8.581033 232748 33417353 422758 7411058 2,507 08
10 8.571031 27618 49.0727 2.4867 008
C13C12 C13512 sy3€”0cr
Upmns = | —C23812 = 5231285138 2315 = 823512813877 523¢13 | Qus (89)
23812 = €23C12813€77  —5y3¢10 — C3512813€°7 x3073
|
where s;; =sin6;;, ¢;; =cos,; and Q, = Diag(e=1/2, LayN_Zy ,)Im[V],;
emir/2 1). Then, the neutrino masses are obtained by the X i#)
transformation ) oa
= iys(my, +my, JRe[V];;}v;+ NmsN (92)

UPMNSM Upmns = Dlag(m s My, , My, ) (90)

Here, m,, (i =1, 2, 3) are the light neutrino masses. The
observed hierarchy |Am3 .| = |mi, — (mi +m)/2| >
Ami,=ml —m? >0 and the requirement of a
Mikheyev-Smirnov-Wolfenstein resonance [57] for solar
neutrinos lead to two possible neutrino mass spectra:
normal mass ordering (NO) m?, < m?, < m, and inverted
mass ordering (I0) m7, <m; < m;,. Nine physical
observables can be derived from Egs. (89) and (90):
0r3, 013, 012, S¢cps @15 @2, My, m,, and m, . Recent
global fits [58—60] of neutrino oscillations have enabled a
more precise determination of the mixing angles and mass
squared differences, with large uncertainties remaining for
6,3 and Oc-p at 30. The most recent analysis [61] lists
global fit values and 3¢ intervals for these parameters in
Table III. Furthermore, recent constraints on the rate of
Ovpp decay have added to these findings. Specifically, the
tightest upper bounds for the effective Majorana mass
(M,),.. which is the modulus of the ee entry of the
effective neutrino mass matrix, are given by

(M,),, <0.036-0.156 eV ('**Xe-based experiment[62])

O1)

at 90% confidence level. Oyff decay is a low-energy probe
of lepton-number violation, and its measurement could
provide the strongest evidence for lepton-number violation
at high energy. Its discovery would suggest the Majorana
nature of neutrinos and, consequently, the existence of
heavy Majorana neutrinos via the seesaw mechanism [1].

Transforming the neutrino fields by chiral rotations of
Eq. (62) under U(1)y, we obtain the flavored-QCD axion
interactions to neutrinos

where m, are real and positive,
QUU] + (94 = 5) QUxUs ] + (9. —3) QU3 US| with
Q = Re or Im, and Im[V];; = ~Im[V];; with U = Upys-
Since the light neutrino mass is less than 0.1 eV, the coupling
between the flavored-QCD axion and light neutrinos is
subject to a stringent constraint given by Eq. (74), which
significantly suppresses the interaction. Therefore, we will
not take it into consideration. Reference [62] provides the
latest experimental constraints on Majoron-neutrino cou-
pling, which are below the range of (0.4 —0.9) x 107,
Once the lepton U(1)y quantum numbers are fixed, the
seesaw scale M ~ v, of Eq. (85) comparable to the PQ scale
of Eq. (45) can be roughly determined using the seesaw
formula (87). By putting Egs. (84) and (86) into the seesaw
formula (87), we obtain numerically a range of values for
(x). For instance, see Table IV; it implies that for normal
mass ordering the maximum scale should be below
~10" GeV and for inverted mass ordering the maximum
scale should be below ~5 x 10'* GeV. Refer to Tables V
and VI for NO and Table VII for 10, with F,, = 2|(y)/N¢|-
By using the seesaw formula (87), one can set the scale (y)

Q[V]ij = (9. — %)

TABLE IV. U(1)y charges linked to seesaw scale.

lg.| 9] 9. | (r)/GeV
NO 6 4 5 1013
5 3 4 5x 1013
4 2 3 10
3 1 2 5x 10
2 0 1 105
10 2 3 3 5% 1013
1 2 2 10
0 1 1 5% 104
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along with the U(1)y quantum numbers g, without loss of
generality. Doing so results in an effective mass matrix with
nine physical degrees of freedom,

2 2
moz%&—”g, W Wl 1B Bl are().
xarg(y), arg(,), arg(Bs). (93)

in which m, is an overall factor of Eq. (87), p,=
Ba/B1. By = P3/Pr, and 1 =247 < |Bys)]. 7], [¥] < 1_ITA12~
Out of the nine observables corresponding to Eq. (93), the
five measured quantities (6,5, 0,3, 013, Am?, Am3,,,) can
be used as constraints. The remaining four degrees of
freedom correspond to four measurable quantities (Ocp,
@12, and the Oupp-decay rate), which can be determined
through measurements.

V. NUMERICAL ANALYSIS FOR QUARK,
LEPTON, AND A QCD AXION

To simulate and match experimental results for quarks
and leptons [Egs. (69) and (70) and Table III], we use linear
algebra tools from Ref. [63]. By analyzing experimental
data for quarks and charged leptons, we determined the
U(1)y quantum numbers listed in Tables V and VI for
normal neutrino mass ordering and Table VII for inverted
neutrino mass ordering. We also ensured the U(1)y-mixed
gravitational anomaly-free condition of Eq. (54) and
consistency of the seesaw scale discussed above Eq. (93)
with the PQ-breaking scale of Eq. (45).

Notably, in our model, the flavored-QCD axion mass
(and its associated PQ-breaking or seesaw scale) is closely
linked to the soft SUSY-breaking mass. Our analysis covers
the PQ scale (y) from roughly 103 to 10'> GeV due to
Table IV, corresponding to m3, values of 1 to 10° TeV, by
considering Eq. (45) and Table IV. The given U(l)y
quantum numbers can then be used to predict the branching
ratio of Kt — z™ +a [Eq. (73)] as well as the axion
coupling to photon [Eq. (76)] and electron [Eq. (82)]. See
Tables V, VI, and VII for more details. The predictions of
our proposed model can be tested by current axion search
experiments. KLASH [33] is sensitive to the mass range of
0.27 — 0.93 peV, whereas FLASH [34] covers the mass
range of 0.5 — 1.5 peV. The predictions corresponding to
those range of m, covered by those experiments will be
tested in foreseeable future. Figure 1 illustrates plots of the
axion-photon coupling |g,,,| as a function of the flavored-
QCD axion mass m, for NO (left) and IO (right), respec-
tively. Each plotted point corresponds to values listed in
Tables V-VII, which are consistent with the experimental
constraints described in Egs. (74), (77), and (83). And Fig. 1
illustrates that certain data points in Table V (I-c, I-d, I-e)
have been fully excluded by the ADMX experiment [64],
while another data point (II) in Table V has been marginally

excluded by the same experiment. Figure 2 shows plots for
axion-electron coupling |g,..| as a function of the flavored-
QCD axion mass m, for NO (left) and IO (right).

A. Quark and charged-lepton

The Yukawa matrices for charged fermions in the SM, as
given in Egs. (65), (66), and (78), are taken at the scale of
U(1)y symmetry breakdown. Hence, their masses are
subject to quantum corrections. Subsequently, these matri-
ces are run down to m, and diagonalized. We assume that
the Yukawa matrices at the scale of U(1)y breakdown are
the same as those at the scale m,, since the one-loop
renormalization group running effect on observables for
hierarchical mass spectra is expected to be negligible. The
low-energy Yukawa couplings required for experimental
values are obtained from the physical masses and mixing
angles compiled by the PDG [35] and CKMfitter [42].

We have 13 physical observables in the quark
and charged-lepton sector: my, mg, my,, m,, m., n,,
m,, my,, m,, and 07,,0%;,01;,5(,. These observables are
used to determine 13 effective model parameters: 21
parameters (|ay|, |ol, |ap|, |@qls |ogl, |@], @ @, ay,
Apy Ay Ay arg(ad)9 arg(as)’ arg(&d)’ arg(&s)7 arg(ab)’ A)(’
tan f; Re[r],Im[z]) among which eight parameters are
fixed by quantum numbers (f,,: fasp>fuc) Using
highly precise data as constraints for both quarks and
charged leptons, with the exception of the quark Dirac CP
phase, as described in Egs. (69), (70), and (80), we
scanned all parameter ranges and determined that

s > ) ’

A, =[0.596,0.602,  tanf = [6.8,7.3],
7= (0.0001 ~ 0.046) + (1.0906 ~ 1.1086)i.  (94)

The real part of 7, denoted as Re(z), contributes to the phase
of the Yukawa coupling, while the imaginary part of 7,
denoted as Im(z), influences the magnitude of Yukawa
coupling, as demonstrated in Egs. (65), (66), (78), (85),
and (86). When (z) = i, resulting in real values of x and y in

Eq. (67) as Ygz) =Y, (i)(1,1- V3, -2+ \/§) it becomes
apparent that it is challenging to satisfy the empirical results
of quark masses and CKM mixing angles due to the overall
factors in Eq. (66) being real. Therefore, it is imperative to
deviate 7 from i in order to accommodate the phase in CKM
matrix. Figure 3 shows how the quark Dirac CP phase 5p
behaves based on certain constrained parameters. Our
model predicts that 5%, falls between 38° and 87°, which
aligns well with experimental data. The horizontal black-
dotted lines in Fig. 3 represent the 30 experimental bound
for §%p. Notably, the effective Yukawa coefficients satisfy-
ing the experimental data fall well within the bound
specified in Eq. (60), as shown in the top-left panel of
Fig. 3. This reflects that these coefficients have a natural size
of unity, as stated in Eq. (2).
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FIG. 3. Model predictions for 6&p are shown, left-upper, right-upper, and left-lower panels, as functions of the parameters that are
constrained by other empirical results. The horizontal black-dotted lines indicate the 3¢ experimental bound.

We choose reference values, for example, that satisfy the experimental data,

A, = 0597,

= 0.0074 + 1.0997i,

which result in effective Yukawa coefficients from Eq. (60) satisfying 0.45 < |a;| < 1.55. With the inputs

arg(ay) = 1.007, arg(a,) = 2.232,

a, = 1320 for |f,| =21(a, = 0.788 for |f,| = 20),
|| = 0.790,

lay| = 1.039, |a,| = 1.218,

we obtain the mixing angles and Dirac CP phase 07, =
12.980°, 63, = 2.320° 07, = 0.218°, 5%, = 64.216° com-
patible with the 30 Global fit of CKMfitter [42] [see
Eq. (69)]; the quark masses m, = 4.593 MeV, m, =
103.819 MeV, m;, = 4.206 GeV, m, =2.164 MeV,
m, = 1.271 GeV, and m, = 173.1 GeV compatible with

arg(a,) = 4.723,

tan f = 6.8, (95)
arg(a,) = 3.388, arg(a,) = 1.164,
a, = 0.950, a, = 1.006,
|Gy = 0.896, |&| =0.822, |&| = 1.158, (96)

|
the values in PDG [35] [see Eq. (70)]. Here, without loss of
generality, the up-type quark masses m,, m,., and m, are a
one-to-one correspondence with a,,, a,, and a,, which have
been taken real, and we have set arg(a,) = 0.

The masses of the charged leptons m,, m,,, and m, are in
a one-to-one correspondence with the real parameters «a,,
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FIG. 4. Plots for Ouyff-decay rate (upper panel) and leptonic Dirac CP phase 6-p (lower panel) as a function of the neutrino masses
m,, and the atmospheric mixing angle 6,3, respectively, for NO (left) and IO (right). Vertical and horizontal dashed lines represent the
1o bounds for 6,5 and J.p, respectively, in Table III. Horizontal red lines indicate the upper bound of KamLLAND-Zen result of

Eq. (91) [65].

a,, and a, from Eq. (79). Using the numerical results of
Eq. (95) from the quark sector, with the inputs

a, =1.268 for |f,| =20 (a,=0.757 for |f,| = 19),
a, =0.900, a,=1.148, (97)

we obtain the charged-lepton masses, which agree well
with the empirical values of Eq. (80).

B. Neutrino

The seesaw mechanism in Eq. (87) operates at the
U(1)y symmetry breakdown scale, while its implications
are measured by experiments below the EW scale.
Therefore, quantum corrections to neutrino masses and
mixing angles can be crucial, especially for degenerate

neutrino masses [63]. However, based on our observation
that the neutrino mass spectra exhibit hierarchy at the scale
of U(1)y breakdown (as depicted in Fig. 4), we can safely
assume that the renormalization group running effect on
observables can be ignored.

Neutrino oscillation experiments currently aim to make
precise measurements of the Dirac CP-violating phase dcp
and atmospheric mixing angle 6,3. Using our model, we
investigate which values of 6.p and 0,5 can predict the mass
hierarchy of neutrinos (NO or 10) and identify observables
that can be tested in current and next-generation experi-
ments. To explore the parameter spaces, we scan the
precision constraints {63, 03, 015, Am?, Am%,,} at 3¢
from Table III. Using the reference values from Eq. (95) in
the quark and charged-lepton sectors, we determine the
input parameter spaces of Eq. (93) for both NO and IO at the
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Plots for Oypp-decay rate as a function of leptonic Dirac CP phase §-p for NO (left) and IO (right). Vertical dashed lines

indicate the 1o bound for §.p listed in Table III, while horizontal red lines represent the upper bound of KamLAND-Zen result of

Eq. (91) [65] for the Ovpf-decay rate.

U(1)y-breaking scale, for example, taking (y) =5 x 10'3 GeV (see Tables V, VI, and VII); for NO

p, = [0.48,1.10], B3 =1[0.61,1.18], arg(B)) = [0, 27]
mo(y)/v: = [0.59, 1.84], y = [0.37,0.84], Y =[0.37,0.65]
arg(y) = [4.42,5.55], arg(y') = [1.30,2.19], (98)

where f#; = [0.97,1.47], p, = [0.61,1.11], and B3 = [0.69, 1.15]; and for 10

B, = [0.55,0.87], B3 =[0.56,0.86], arg(f3)) = [0, 27]
mo(y)/v: = [0.81,1.39], y = [0.758,1.154], Y =[0.350,0.618]
arg(y) = [2.92,4.19], arg(y’) = [0.1,1.29] & [5.66, 6.26], (99)

where f; =[0.98,1.29], f, =10.69,0.95], and p; =
[0.68,0.93]. For these parameter regions, we investigate
how the Ovpp-decay rate and Dirac CP phase can be
determined for the normal and inverted mass ordering.
These predictions are represented by crosses and X marks
for NO and IO, respectively, in Fig. 5. Referring to the two-
dimensional allowed regions at 3¢ presented in Ref. [61],
we note that the most favored regions correspond to
Ocp ~ 250°, whereas there are no favored regions with
respect to 0,3. Ongoing experiments like DUNE [66], as
well as proposed next-generation experiments such as
Hyper-K [67], are poised to greatly reduce uncertainties
in the values of 0,3 and dp, providing a rigorous test for
our proposed model. Furthermore, ongoing and future
experiments on Ouvff decay like NEXT [68], SNO+ [69],
KamLAND-Zen [65], Theia [70], and SuperNEMO [71]
may soon reach a sensitivity to exclude the inverted
mass ordering of our model. In addition, the sum of the
three neutrino masses, »  m, = m, + m,, + m,,, can be

7
0.1~ ik 10
s i
)
. 0.081—
E -
sl S NO
0.041~
)

10° 10
mlightest [eV]

~
S

FIG. 6. Plot for ) m, =m, + m,, 4+ m,, as a function of
Miighiese Tor NO (red) and 1O (black).
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constrained by cosmological and astrophysical observa-
tions. The current upper bound on the sum of three neutrinos
is given by > m, < 0.120 eV at 95% C.L. for TT, TE, and
EE + lowE + lensing + BAO [72]. The bound is obtained
by assuming that neutrinos are stable on timescales of order
the age of the Universe and gets weakened if neutrinos
decay, so values of ) m, as large as 0.9 eV are still by the
data [73]. On the other hand, the sum of neutrino masses is
predicted from the atmospheric and solar mass splittings
when the lightest neutrino mass is fixed. Figure 6 represents
the prediction of the sum of neutrino masses. From our
numerical analysis carried out as described before, the
lightest neutrino mass is constrained to be 0.0003397 <
Miightest = My, < 0.0007945 €V for the case of NO, which
results in 0.0582 < >~ m, < 0.0605 eV. In contrast, for the
case of 10, the sum of neutrino masses falls within the range
of 0.1003 to 0.1038 eV. This range results from the
constraint on the lightest neutrino mass, 0.001125 <
Miightest = My, < 0.001647 eV, which is obtained from
our numerical analysis.

VI. CONCLUSION

We proposed a minimal extension of a modular-invariant
model that incorporates sterile neutrinos and a QCD axion
(as a strong candidate of dark matter) into the SM to
account for the mass and mixing hierarchies of quarks and
leptons, as well as the strong CP problem. Our model,
based on the 4D effective action, features the Ggy X I'y X
U(1)y symmetry. To ensure the reliability of our model, we
have examined the modular forms of the superpotential,
corrected by Kéhler transformation, under the Gy x I'y X
U(1)y symmetry, while also considering the modular and
U(1)y anomaly-free conditions. The model features a
minimal set of fields that transform based on representa-
tions of Gy X I'y x U(1)y and includes modular forms of
level N. These modular forms act as Yukawa couplings and
transform under the modular group I'y. Our numerical
analysis guarantees that, in the supersymmetric limit, all
Yukawa coefficients in the superpotential are complex
numbers with a unit absolute value, implying a democratic
distribution.

We demonstrated, as an explicit example, a level-3
modular form-induced superpotential by introducing min-
imal supermultiplets. The extension includes right-handed
neutrinos (N¢) and SM gauge singlet scalar fields (y and )
with zero modular weight and (+ and —) charge under
U(1)y. These scalar fields are crucial in generating the
QCD axion, heavy neutrino mass, and fermion mass
hierarchy. Modular invariance of both the superpotential
and Kihler potential allows for Kéhler transformation to
correct modular form weight in the superpotential, enabling
a r-independent superpotential for the scalar potential. The
sterile neutrinos are introduced to satisfy the U(1)y-mixed
gravitational anomaly-free condition, explain small active

neutrino masses via the seesaw mechanism, and provide a
well-motivated PQ symmetry-breaking scale. As the fields
x(¥) have modular weights of 0, any additional correction
terms arising from higher-weight modular forms are not
permitted in the superpotentials. However, the combination
¥ can trigger higher-order corrections that are permissible
and do not modify the leading-order flavor structures.
Taking into account both SUSY-breaking effects and
supersymmetric next-leading-order  Planck-suppressed
terms, we have determined the low axion decay constant
(or seesaw scale). This leads to an approximate range for
the PQ scale (y) (equivalently, the seesaw scale) of 10'3 to
10 GeV for mj), values between 1 and 10° TeV; see
Tables V-VII. Interestingly enough, in our model, the PQ-
breaking scale (or axion mass) is closely linked to the
seesaw scale and the soft SUSY-breaking mass. Our model
with E/N could be tested by ongoing experiments such
as KLASH [33] and FLASH [34], see Figs. | and 2, by
considering the scale of U(1)y breakdown.

We explored numerical values of physical parameters that
satisfy the highly precise data on the mass of quarks and
charged leptons, as well as the quark mixing angles, except
for the quark Dirac CP phase. Our model predicts that the
value of 5%, falls within the range of 38° to 87°, which is
consistent with experimental data. Notably, the effective
Yukawa coefficients satisfying the experimental data fall
well within the bound specified in Eq. (60), as shown in the
top-left panel of Fig. 3. This suggests that our assumption,
as stated in Eq. (2), that the Yukawa coefficients have a
natural size of unity is plausible. Using precise neutrino
oscillation data as constraints, we investigated how the
Ovpp-decay rate and Dirac CP phase could be determined
for the normal and inverted mass ordering in the neutrino
sector. Referring to the 3¢ allowed regions in Ref. [61], we
note that the most favored regions for our proposed model
are 6cp ~ 250°, with no favored regions with respect to 655.
Ongoing experiments, such as DUNE [66], and proposed
next-generation experiments, such as Hyper-K [67], are
expected to greatly reduce uncertainties in the values of
0,3 and 6c-p, providing a rigorous test for our model.
Additionally, ongoing and future experiments on Ovff
decay, such as NEXT [68], SNO+ [69], KamLAND-Zen
[65], Theia [70], and SuperNEMO [71], may soon have
the sensitivity to exclude the inverted mass ordering in
our model.
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APPENDIX A: THE GROUP A4,

The group A, is the symmetry group of the tetrahedron,
isomorphic to the finite group of the even permutations of
four objects. The group A, has two generators, denoted S
and T, satisfying the relations §> = 7° = (ST)? = 1. In the
three-dimensional complex representation, S and 7 are
given by

(122 1 0 0
s=zl2 -1 2|, T={0w 0] (A]
2 2 -1 00 o

where @ = 273 = —1/2 +i\/3/2 is a complex cubic
root of unity. A4 has four irreducible representations: three
singlets 1,1’, and 1” and one triplet 3. An A, singlet a is
invariant under the action of S (Sa = a), while the action of
T produces Ta = a for 1, Ta = wa for 1/, and Ta = w?a
for 1”. Products of two A, representations decompose into
irreducible representations according to the following

multiplication rules: 3®3=3, 03,101 1",
1"®1 =1" and 1” & 1” = 1. Explicitly, if (a,,a,, a3)
and (b, b,,b3) denote two A, triplets, then we
have Eq. (30).

APPENDIX B: THE CKM MIXING MATRIX

The CKM mixing matrix is given in the Wolfenstein
parametrization [39] by

1—34? A A2 (p —in)
Verm = —A - %ﬂz AN’
AN (1 =p—in) =AML 1
+ O(2%), (B1)

where 1 = 0.22500"000%:, A, =081370%8, p=p/
(1-2%/2) =0.1570%%¢, and  7=1/(1-2%/2) =
0.347700% with 3¢ errors [42].

TABLE V. The quark and lepton U(1), quantum numbers that satisfy experimental results, including Eqs. (69), (70), and (74) and
Table III as well as the U(1)-mixed gravitational anomaly-free condition for normal neutrino mass ordering. We present numerical
results for QCD anomaly coefficient N, QCD axion decay constant F,, QCD and QED anomaly ratio E/N ., axion-electron coupling
Gae (z = 0.47), axion-photon coupling g,,, (z = 0.47), axion mass m,, and branching ratio Br(K* — 7z + a) = Br(Kza).

|9ay,| "y

U(I)X fu fc fd f: fb fe fu f‘r e gu 9: NC Gi“v NLC ]EJ)[+17 107 Gev-T 10~ oV Br(K;m)
20 8 14 11 5 20 9 4 6 4 5 42719 x 1071
I-a F £ £ F £ £ F £ £ F F +4 5x10%2 -2 3613 6600 10.89
I-b F + £+ ¥ £ £ F F £ 4+ F +4  5x101? B 3613 2694 10.89
I-c F £ F £ £ £ F £ + £ £ £10 2x10? L 3613 11271 2721
I-d F £ F £ £ £ £ F £ £ F £10 2x10? -2 3613 22888 2721
I-e F £ F £ £ £ £ £ £ F F £10 2x10? -3 3613 32182 2721
21 8 14 11 5 20 9 4 5 3 4 42519 x 10713
I F £ £ F F £ £+ £+ £ + £ £15 13x102 -2 3706 35809 41.87
20 8 14 11 5 19 9 4 5 3 4 17598 x 10716
M-a F £ £ F £ £ F F £ F £ +4 25x10% U 687 7.71 2.18
mb ¥ + £ F £ £ £ F F F F +4 25x10% -1 68 3411 218
M-c F £ £ F £ £ F = £ F F 44 25x10% -1 68 1088 2.8
md F + ¥ £ £ £ £ £ £ F F %10 1013 -0 687 6204 544
Me F + ¥ £ £ £ £ F £ F £ %10 1013 -2 687 4345 544
20 8 14 11 5 20 9 4 4 2 3 42412 x 1077
IVa F £ £ F £ £ F £ F F £ 4  5x108 -2 36l 6.60 1.09
Vb F £ £ F £ £ F F £ F £ +4 5x108 ¥ 361 2.69 1.09
Ve F £ F = + £ £ F £ F £ £10 2x10% -2 361 228 272
IvVd F £ F + + £ +£ £ F F £ £10 2x10% -3 361 3218 272
Ve F £ + F F £ £ + + £ + +14 143x10% -I 361 3530 381
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TABLE VI. The same as in Table V.

U(] )X fu fc fd fs fb fe f/A fr e gﬂ 9z NC GITT“V NLC l(g)ieﬂ lo—l‘gage‘v—l 10?;{'6\/ Br(Kn'a)
21 8 14 11 5 19 9 4 4 2 3 42412 x 1077
V-a F £ + F £ £ F £ F £ + £5 4x10® 4 343 5.05 1.36
V-b F o+ £ F £ £ F F £ £ + £ 4x108 2 343 4.24 1.36
V-¢ F o+ £ F £ + £ F F F F A5 4x108 -% 343 1667 1.36
V-d F £ F + £ £ = £ F £ F+ 11 18x10% -2 343 3064 2.99
V-e F £ F + £ £ = F £ £ F+ 11 18x10% % 343 2134 2.99
20 8 14 11 5 19 9 4 3 1 2 17598 x 10718
Via ¥ + 4+ F £ +£ F £ F F £+ +4 25x10% -1 069 1.09 0.22
VIb ¥ + 4+ F £ +£ F F £ + £+ +4 25x10% L 069 0.77 0.22
Ve F + ¥ £ £+ 4+ + 4+ F F £+ =10 10" -1 0.69 6.20 0.54
Vld F + ¥ £ +£ 4+ + F + +£ £+ =10 10" -2 0.69 4.35 0.54
21 8 14 11 5 20 9 4 3 1 2 17508 x 10718
Via ¥ + + F + £ F + F + £ £5 2x10% -Z 072 1.24 0.27
VIlb ¥ £+ F 4+ + +£ £ +£ 4+ F F 11 9x10® - 072 636 0.60
21 8 14 11 5 19 9 4 2 0 1 42412 % 1071
Vila ¥ + + F + + F 4+ £ 0 F +£5 4x10% 4 034 051 0.14
VI-b ¥ + F £ £ + + +£ + 0 F *I11 1.8x10% -2 034 3.06 0.30
20 8 14 11 5 20 9 4 2 0 1 42112 x 1071
Xa F £ £ F + £ F £ F 0 F +4 5x10% -3 036 066 0.11
Xb F £ F £ £ £ £ +£ F 0 F £10 2x10% -3 036 3.22 0.27
TABLE VII. The same as in Table V, except for the inverted neutrino mass ordering.
U(I)X fu fc fd fs fb fe f;l f‘r Ge Gy 9e NC GI;”V % lg%ﬂ % 1()1/'3”3\/ BI'(KIT{Z)
19 8 14 11 5 20 9 4 2 3 3 17598 x 10716
I-a F £ £ F £ £ F F £ F £ 43 333x10° L 723 462 1.63
+ F
I-b F £+ F £ £ £ + F £ F £ 9 LlIx10® -2 723 4654 4.90
+ F
20 8 14 11 5 19 9 4 2 3 3 17108 x 10716
II-a F £+ £+ F £ + F £+ F F £ +4 25x10% -1 687 1088 2.18
+ F *
II-b F £ F £ £ £ £ £ F F £ £10 1013 -9 687 6204 544
+ F
20 8 14 11 5 20 9 4 1 2 2 42412 x 1077
Ma F £ + F £ £ F F + +£ £ +4 5x108% L2 36l 6.60 1.09
mb F £ + F £ £ F + + F F +4  5x108 -3 36l 2.69 1.09
Mec F £ F £ £ +£ +£ F + +£ £ 10 2x10% -2 361 2289 272
md F + F + + £ +£ £ £ F F +10 2x10% -3 361 3218 272
19 8 14 11 5 19 9 4 1 2 2 42512 x 1077
IVa F + +£ ¥ +£ + F F F £ + 43 667x103 4 343 347 8.16
Vb F £+ £ F = £ F £ F F F 3 667x10% -4 343 5.82 8.16
IV-c F £+ F £ £ £ + F F £ £ $9 222x108 - 343 2211 245
IvVd F + F + £ + 4+ £ F F F 49 22x10% -4 343 3140 2.45
19 8 14 11 5 20 9 4 0 1 1 17598 x 10718
V-a F £ £ F £ £ F F 0 £ £ 43 333x10% L 072 046 0.16
V-b F £ F £ £ £ £ F 0 £ £ 49 1.11x10% -2 072 465 0.49
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