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We explore the impact of highly excited bound states on the evolution of number densities of new
physics particles, specifically dark matter, in the early Universe. Focusing on dipole transitions within
perturbative, unbroken gauge theories, we develop an efficient method for including around a million
bound state formation and bound-to-bound transition processes. This enables us to examine partial-wave
unitarity and accurately describe the freeze-out dynamics down to very low temperatures. In the non-
Abelian case, we find that highly excited states can prevent the particles from freezing out, supporting a
continuous depletion in the regime consistent with perturbativity and unitarity. We apply our formalism to a
simplified dark matter model featuring a colored and electrically charged t-channel mediator. Our focus is
on the regime of superWIMP production which is commonly characterized by a mediator freeze-out
followed by its late decay into dark matter. In contrast, we find that excited states render mediator depletion
efficient all the way until its decay, introducing a dependence of the dark matter density on the mediator
lifetime as a novel feature. The impact of bound states on the viable dark matter mass can amount to an
order of magnitude, relaxing constraints from Lyman-α observations.
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I. INTRODUCTION

Understanding the composition of matter in our Universe
constitutes a major challenge of today’s fundamental
physics. Notably, explanations of both the observed dark
matter density and matter-antimatter asymmetry necessitate
the introduction of physics beyond the Standard Model
(SM) and therewith the computation of interactions
among new—and presumably heavy—particles in the early
Universe. If such new particles interact via a light force
carrier, a significant contribution to their depletion may be
given by the formation and subsequent decay of bound
states, which has intriguing consequences for their thermal
history. For instance, in the context of electroweakly
charged dark matter [1–3] and colored coannihilation
scenarios [4–15], it has been shown that the inclusion of

bound state effects can strongly alter the prediction for the
relic density.
Generally, we can classify radiative bound state forma-

tion (BSF) processes in terms of its leading multipole
contribution:
(1) Monopole: Bound-state formation via emission

of a charged scalar field can be extremely relevant
[16,17]. As the emission carries away charge, it
changes the initial and final two-particle state,
leading to nonorthogonal states and ultimately to
a nonvanishing monopole contribution. The BSF
cross section via monopole transitions has been
worked out for arbitrary excited states. However,
partial-wave unitarity can be problematic already for
capture into the ground state [16].

(2) Dipole: Known examples where radiative BSF is
dominated by the contribution of the (dark electric)
dipole moment, are Uð1Þ [18–21] or SUðNcÞ
[9,21–27] gauge symmetry extensions of the SM.
In these cases, the emitted particle is a massless
gauge vector field. Another possibility considers
the accompanying dark matter particle to have SM
electroweak [1–3,28] and/or color charge [4–15,29].
A famous example of the latter is squark coannihi-
lation in the context of the minimal supersymmetric
extension of the Standard Model (MSSM), or
simplified t-channel mediator models inspired by it.
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(3) Quadrupole: One example where quadrupole mo-
ments contribute at the leading order, considers the
emission of a real scalar field in the radiative bound
state formation process [30–34]. Beyond capture
into the ground state, little is known about higher
excited states and bound-to-bound transitions.

In this work, we will present a more detailed investigation
of the second case, where BSF and transitions among
bound states in unbroken gauge theories are dominated by
the (chromo) electric dipole contribution. While it is indeed
the most considered scenario, it still remains unclear by
how much the inclusion of highly excited bound states into
the chemical network contributes to the depletion of the
dark matter relic density. As shown recently in Ref. [14],
the impact of higher excitations can be sizeable, in
particular, when considering scenarios beyond the para-
digm of weakly interacting massive particles (WIMPs),
such as conversion-driven freeze-out [35], and for bound
states driven by a perturbative, unbroken non-Abelian
gauge symmetry.
The greatest obstacle is the accurate evaluation of the

dipole matrix elements for BSF and for transitions among
highly excited states, especially in non-Abelian theories.
General formulas to evaluate the dipole matrix elements for
all principle and angular momentum quantum numbers, n
and l, respectively, have been provided in [14]. Here, we
significantly improve on efficiency and numerical stability
of their evaluation, which allows us to explore the con-
tribution of up to half a million bound states (all n ≤ 1000,
l ≤ n − 1 states) when considering BSF. For bound-to-
bound matrix elements, we are able to include all electric
dipole transitions up to n ≤ 100;l ≤ n − 1, which are
about one million transitions in total for the processes
allowed by the selection rules.
These improvements allow us to address several key

scientific questions. First, we consider the velocity depend-
ence of the BSF cross section in vacuum and investigate
partial wave unitary properties in Abelian and non-Abelian
gauge theories. For the case of SUðNcÞ, the inclusion
of a large number of excitations sheds light on the break-
down of our theoretical framework and the necessity of its
unitarization.
Next, we consider the interplay of BSF, ionization, bound-

to-bound transitions and bound state decays in the thermal
bath of the early Universe. Following the formalism of
[14,36], we describe their effect on the bound state constitu-
ents’ abundance via an effective thermally averaged cross
section. Focusing on the perturbative coupling regime which
turns out to be consistentwith unitarity, we pose the important
question whether the effective cross section grows slower or
faster than the inverse temperature, implying freeze-out or a
continuous depletion of the abundance, respectively. The
latter case is found for non-Abelian interactions and yields
important phenomenological implications.
We exemplify these implications in detail in the last part

of our work, where we apply our numerical framework to

the superWIMP scenario [37,38], considering a simplified
model with a colored and electrically charged t-channel
mediator [39,40]. We showcase the effect of highly excited
bound states and find that the combined effect of strong and
elecromagnetic interactions conspire to reduce the relic
density by more than an order of magnitude compared to
the case when including Sommerfeld-enhanced annihila-
tions only. Thereby we improve on earlier results within
this scenario considering the ground state only [40,41]. We
find that this has important implications on the viable
parameter space, in particular to relief Lyman-α constraints.
The remainder of this paper is organized as follows. In

Sec. II, we discuss BSF in vacuum and investigate the
velocity-dependence of the BSF cross section in view of
partial wave unitarity. In Sec. III, we study the scaling of
the effective cross section with temperature and discuss the
implications for freeze-out. The setup and relevant quan-
tities for the t-channel model are reviewed in Sec. IV, and
our results for the impact of highly excited states on the
superWIMP mechanism for dark matter production are
discussed in Sec. V. We conclude in Sec. VI. Appendix A
details the evaluation of BSF and transition matrix elements
and Appendix B provides expressions for the cross sections
and rates used in our analysis. Finally, in Appendix C, we
show implications for the cosmologically viable parameter
space of dark QED including highly excited bound states.

II. BOUND-STATE FORMATION IN VACUUM

A. Matrix elements

Our starting point for computing radiative BSF in gauge
theories is potential nonrelativistic effective field theory
[42–45]. In this framework, the interaction of two non-
relativistic particles with SUðNcÞ or Uð1Þ gauge vector
fields at the ultrasoft scale can effectively be described by a
(chromo)electric dipole operator, gr ·E, with gauge cou-
pling g, relative distance r, and electric field E. In the
two-particle subspace of the nonrelativistic particles, this
operator leads to matrix elements of the form

hψfjrjψ ii ¼
Z

d3rψ⋆
f ðrÞrψ iðrÞ: ð1Þ

The squared absolute value of these matrix elements is
directly related to our physical quantities of interest: bound-
state formation cross sections and bound-to-bound rates for
electric dipole transitions. For concrete examples related to
dark matter, see Refs. [20,21,24,46].
In Appendix A, we develop an efficient way of evalu-

ating the matrix elements for systems, where the initial state
ψ i and the final state ψf are the solutions of two-body
Schrödinger equations with corresponding potentials of
Coulomb type:

Vi;fðrÞ ¼ −
αeffi;f

r
: ð2Þ
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The effective coupling strength αeff of the initial and final
state incorporates the details of the underlying particle
physics model. We will consider Abelian gauge theories
where the effective couplings are equal, and non-Abelian
gauge theories where they can be different. We denote the
effective couplings by αeffb and αeffs when referring to bound
and scattering states, respectively. In the following, we
explore the contribution of highly excited bound states in
concrete realizations.

B. Abelian case

As a first concrete model, we consider quantum electro-
dynamics (QED) in the nonrelativistic regime of the
fermionic particles. The two-particle states of interest then
consist of two oppositely charged particles forming gauge
singlets. Standard Model examples are hydrogen recombi-
nation and positronium formation. In QED, the potential of
both the initial and final state is attractive with identical
strength. The corresponding BSF cross section, describing
the electric dipole transition process of a scattering state
into a bound state with quantum numbers n and l, is

ðσvÞnl ¼ 4α

3
ΔE3jhψnljrjψpij2; ð3Þ

where α is the fine-structure constant. The difference of
the initial and final state energy is the positive quantity

ΔE ¼ p2

2μ þ EBnl
, where p2 ¼ μ2v2 with v being the relative

velocity and μ the reduced mass. Here, the absolute value of

the binding energy is given by EBnl
¼ μα2

2n2 as in QED
α ¼ αeffi ¼ αefff . The BSF cross section as defined in Eq. (3)
is averaged over initial and summed over final spin degrees
of freedom, as well as summed over the magnetic quantum
numbers of the bound state (see App. B for details). Since
the electric dipole operator is spin conserving, the same
equation that applies to the fermionic case (QED) also
applies to, e.g., a complex scalar field charged under aUð1Þ
gauge symmetry [31]. For simplicity, we will commonly
refer to both cases as Uð1Þ in the following, as we are
mainly interested in physics beyond the SM and we would
like to cover both the fermionic and complex scalar case
simultaneously in our discussion.
We numerically evaluate the Uð1Þ BSF cross section in

Eq. (3), as detailed in Appendix A, for various n;l. We
present the result in Fig. 1 in a model independent way, i.e.,
we multiply the cross section by vμ2=α3 to (i) show the
remaining dependence on α=v and (ii) to highlight devia-
tions of the velocity dependence from 1=v. Let us begin
with the well-known case of capture into the ground state
n ¼ 1, l ¼ 0 (blue dotted line). For v ≪ α, the cross
section for capture into the ground state scales as 1=v so
that the shown product, v × ðσvÞ, approaches a constant
(see e.g., Ref. [31], also regarding its magnitude relative to

annihilation). Similarly, we find the same velocity scaling
when fixing the final state l and summing over all n ≤ 1000
(gray lines). Specifically, the l ¼ 0 gray line is larger by a
factor 1.268 than the n ¼ 1, l ¼ 0 blue dotted line (capture
into the ground state). We note that this factor is smaller than
the upper bound 1.6 derived analytically inRefs. [18,47]. For
l ¼ 0, we additionally checked that our result for each n ≤ 5
coincides with the analytic results available in Ref. [48] and
up to n ¼ 10 for all l with those of [14].
Interestingly, when summing the BSF cross section both

in n and l (blue lines), the velocity scaling becomes stronger
than 1=v. Here, we sum all n ≤ 10 (dot-dashed), 100
(dashed), 1000 (solid) and always l ≤ n − 1 accordingly.

FIG. 1. Upper: bound-state formation cross section Eq. (3) for
Uð1Þ, summed over all possible final bound-state quantum
numbers n and l ≤ n − 1. From the truncation of the sum for
n ≤ 1; 10; 100; 1000 (blue), one can infer that higher excited
states contribute more for decreasing velocity. The red line shows
the analytic approximation Eq. (4) when summing over all n;l,
known as Kramer‘s logarithm. The gray lines show the con-
tribution to the sum for fixed l, all of which approach a constant
value at large α=v, respecting partial-wave unitarity. Lower: ratio
of Eq. (4) and the summed result.
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We compare our summed result to the well-known Kramer’s
logarithm [49,50] (red line):

X
n;l

ðσvÞnl ≃
32π

3
ffiffiffi
3

p α2

μ2
α

v
½logðα=vÞ þ γE�; for v ≪ α: ð4Þ

The ratio of the Kramer’s logarithm and our fully summed
numerical result is shown in the bottom panel of Fig. 1.
For v ≪ α this ratio is expected to approach unity when
including a very large number of excited states. We confirm
this trend within the range of our numerical limitations,
n ≤ 1000, l ≤ n − 1, which can also be seen as a nontrivial
check of our code.1 The Kramer’s logarithm has also been
mentioned in earlier dark matter related works [48,51–53].
Although the logarithm leads to a slope steeper than 1=v,

partial-wave unitarity is not violated here as the sum over
different l automatically includes different initial state
angular momenta. However, we have checked that each
individual angular momentum contribution of the initial
state does not violate partial-wave unitarity as it does scale
as 1=v for v ≪ α. For instance, in this limit, the BSF cross
section of the s → np processes summed over all 2 ≤ n ≤
1000 is larger by a constant factor 3.8 than the s → 2p.
Each angular momentum contribution therefore remains
below the partial wave unitarity limit for all v, provided the
coupling is sufficiently small. In the non-Abelian case, we
will observe a qualitatively different behavior, that implies
partial wave unitarity violation even for (in principle)
arbitrarily small couplings.

C. Non-Abelian case

As our second example, we consider a non-Abelian
SUðNcÞ gauge theory, specifically SUð3Þ. Interestingly, it
provides a qualitatively different phenomenology from
QED even though in both cases the leading BSF processes
are based on dipole transitions. While in QED the initial
and final state potentials are both attractive with the same
strength, in quantum chromodynamics (QCD), the initial
state potential of the adjoint pair is repulsive. As we shall
point out and explore in the following, this feature is

accompanied by partial-wave unitarity violation in QCD or
in a general SUðNcÞ for Nc ≥ 2.
In particular, we consider pairs of nonrelativistic fer-

mionic particles in the fundamental and antifundamental
representation of SUð3Þ, i.e., the two-particle space is
spanned by the direct sum of singlet and adjoint pair states:
3 ⊗ 3̄ ¼ 1 ⊕ 8. A SM example is heavy quarkonium
formation in SM QCD. The BSF cross section describing
the chromoelectric dipole transition process of an adjoint
scattering state into a singlet bound state is given by

ðσvÞnl ¼ CF

N2
c

4α

3
ΔE3jhψ ½1�

nljrjψ ½adj�
p ij2; ð6Þ

where an average over color degrees of freedom is
performed. Since the final state is necessarily attractive
to support bound states and the gluon carries away an octet
color charge, the initial scattering state is always in the
repulsive adjoint representation. The same equation also
holds for the more general SUðNcÞ gauge group, as well as
for a complex scalar field (see, e.g., Refs. [24,46] for the
case of nonfundamental representations). For simplicity,
when referring to the case SUðNcÞ in the following we
mean either pairs of Fermions or complex scalars in the
fundamental and antifundamental representation.
In the remainder of this section, we consider a constant

coupling in the perturbative regime. We do this to inves-
tigate the unitarity violation independently of the effects
induced by a running coupling. As long as the beta function
is negative, running coupling effects can only enlarge the
regime where partial wave unitarity is violated. We will
return to the impact of running in the sections below.
Adopting this setting, we evaluate the SUð3Þ BSF cross

section in Eq. (6) for various n;l and present the results in
Fig. 2 in analogy to the previous case of Uð1Þ. In the upper
panel, one can notice that the velocity dependence of the
summed BSF cross section may approach a power law when
including as many excited states as our numerical limit
allows for (n ≤ 1000, l ≤ n − 1) and considering only the
region of α=v≲ 100 where n ≤ 1000 are expected to be
sufficient to capture the full result accurately. The scaling is
much stronger than the previous Kramer’s logarithm in
Uð1Þ. In fact, it is even stronger than 1=v2. Specifically,
when fitting the summed cross section

P
n;lðσvÞnl ∝ v−γ

for v ≪ α with a power law, we obtain γ ≈ 4.0.
Such a velocity dependence raises concerns regarding

the partial-wave unitarity. To investigate this issue, a
scattering state with fixed initial angular momentum,
denoted by l0, needs to be considered. From Eq. (6) we
separate out this contribution by splitting Eq. (A1) into two
contributions and denote the corresponding cross section
by ðσvÞl0nl, where the superscript denotes the fixed initial
scattering state angular momentum. For a given l0, we then
sum ðσvÞl0nl over all possible final state quantum numbers
n;l, compatible with the selection rules l ¼ l0 � 1,

1For a given α=v, the amount of excited states needed for a
convergent sum can be estimated. To this end, we consider the
sum that leads to the Kramer’s logarithm:

X
n

1

n½n2 þ ðα=vÞ2� ≃ ½logðα=vÞ þ γE�; for v ≪ α: ð5Þ

From the denominator, one can estimate that for a percentage
accuracy, the maximum principle quantum number n needs to be
roughly an order of magnitude larger than a given α=v. This is
also what we observe for our summed numerical result in Fig. 1.
For instance, summing all bound state contributions up to our
numerical limit n ≤ 1000;l ≤ n − 1, provides a percentage-level
accuracy for α=v≲ 100 only, while n ≤ 100;l ≤ n − 1 would
require α=v≲ 10 for the same accuracy.
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ðσvÞl0 ¼
X
n;l

ðσvÞl0nl: ð7Þ

We require that this quantity respects the l0th-partial wave
unitarity bound. Specifically, as done in Refs. [18,53–55],
we consider the partial-wave unitarity cross section for
2 → 2 total inelastic collisions given by [56]

ðσvÞl0uni: ¼
πð2l0 þ 1Þ

μ2v
: ð8Þ

In the lower panel of Fig. 2, we show the introduced
summed ðσvÞl0 divided by the corresponding l0th-partial
wave unitarity cross section from Eq. (8). This ratio is
multiplied by α−3, leaving only a dependence on α=v. In
this way, the partial-wave unitarity limits for a given α
correspond to horizontal lines with values equal to α−3. We
show l0 ¼ 0 (s-wave) to l0 ¼ 3 (f-wave) BSF cross section
summed in n ≤ 1000 and one particular high initial angular

momentum with l0 ¼ 100. The maximum principle quan-
tum number is taken as our numerical limit (n ≤ 1000),
which is sufficient for the first four partial-wave summed
cross sections to converge for α=v≲ 100. From these
results, one can infer that each summed ðσvÞl0 grows
faster than 1=v, i.e., the unitarity limit will be exceeded at a
finite velocity, respectively, for any l0 we can resolve. This
is independent of the chosen coupling strength. We point
out that among all partial waves the s-wave unitarity bound
is always violated at the largest velocities, though all curves
approach a common behavior for decreasing velocity.
We explicitly checked for the s-wave case that partial wave
unitarity is even violated when including only a single,
large n bound state, implying that it is not the summation
over all possible final states for a given l0 which is
problematic.
Moreover, we observe the same situation for various

SUðNcÞ. To make an even more general statement, let us
consider ðσvÞl0 as a function of the ratio αeffs =αeffb . Now,
SUðNcÞ is a special case which lies in the region
αeffs =αeffb ¼ ½−1=3; 0½, where the lower limit corresponds
to Nc ¼ 2 and the upper to the large Nc limit. The Uð1Þ
case corresponds to αeffs =αeffb ¼ 1. Our numerical results
suggest that in the range αeffs =αeffb < 1, ðσvÞl0 scales stronger
than 1=v, while for αeffs =αeffb ≥ 1 no evidence of partial wave-
unitarity violation is found within our numerical boundaries.
Note that the mechanism behind the unitarization of BSF

for αeffs =αeffb < 1 is still an open problem. While we point
out this problem here for BSF via dipole transitions, it is
worth noting that a similar question has been recently
raised for monopole transitions in Ref. [16] where partial-
wave unitarity can be violated already for capture into the
ground state level n ¼ 1.
For non-numerical evidence of unitarity violation in non-

Abelian gauge theories, a simple analytic expression would
be warranted. We managed to get an approximate analytic
result by taking two limits in Eq. (6): (i) αeffs → 0 and sub-
sequently (ii) ζ̃b → ∞ where ζ̃b ¼ αeffb =ðnvÞ. Taking these
limits, we obtain the result for the s-wave case in SUðNcÞ

ðσvÞl0¼0
n;l¼1 ≃

CF

N2
c

4α

3

32παeffb

μ2
nðn2 − 1Þ; for ðiÞ and ðiiÞ: ð9Þ

The two limits are justified for relative velocitieswhich fulfill
the condition2

2πjαeffs j ≪ v ≪
αeffb
2n2

: ð10Þ

In this velocity regime, we compared our direct numerical
evaluation of Eq. (6) to the analytical result in Eq. (9) for a

FIG. 2. Upper: the adjoint-to-singlet bound-state formation
cross section in Eq. (6) shown for SUð3Þ, summed over all
possible final bound-state quantum numbers n and l ≤ n − 1.
From the truncation of the sum for n ≤ 1; 10; 100; 1000 (blue),
one can infer that higher excited states contribute more for
decreasing velocity. Lower: rescaled ratio of BSF cross section
for fixed initial angular momentum l0 and the corresponding
partial-wave unitarity limit. For a given α, unitarity is violated
when the rescaled ratio is above 1=α3, for which two examples
are shown by the horizontal lines.

2For adjoint-to-singlet BSF in SUðNcÞ αeffs ¼ −α=ð2NcÞ and
αeffb ¼ CFα, where CF ¼ ðN2

c − 1Þ=ð2NcÞ.

EXCITED BOUND STATES AND THEIR ROLE IN DARK … PHYS. REV. D 108, 095030 (2023)

095030-5



variety ofNc andn values and find very good agreement. The
fact that the s-wave BSF cross section reaches a constant
value for the above velocity regime is another nontrivial
check of our numerical implementation also for very large n.
However, the velocity regime may be too restricted to

analytically proof unitarity violation for contributions of a
single n. Namely, while for SUðNcÞ the s-wave BSF cross
section approaches the unitarity limit for increasing n, the
velocity regime where the analytic expression is valid
becomes smaller and eventually—(very) close to the
unitarity bound—the condition in Eq. (10) cannot be
met. Nevertheless, if there exists a theory with αeffs ¼ 0,
then there is no lower bound on v and violation of s-wave
unitarity can be shown with the above formula. Notice that
αeffs ¼ 0 corresponds to the large Nc limit of SUðNcÞ,
which is, however, not justified for all velocities for a
finite Nc.
In the following, we explore phenomenological conse-

quences focusing on the regime compatible with perturba-
tivity and partial wave unitarity bounds.

III. SUPER CRITICAL BEHAVIOR

The impact of a set of bound states on the freeze-out
dynamics of some particle species, j, can under very
general conditions be described by the Boltzmann equation

ṅj þ 3Hnj ¼ −hσvieff ½n2j − ðneqj Þ2�; ð11Þ

where nj is the number density and H the Hubble
expansion rate. The effective cross section, hσvieff , includes
all the effects of pair annihilation as well as scattering-
bound [4] and bound-bound transitions [1,14,36]. Here, we
investigate whether the inclusion of an increasing number
of excited states can lead to an effective cross section that
grows sufficiently fast to maintain efficient depletion of the
(comoving) particle number density and, hence, prevent
the particle species (e.g., dark matter) from freezing out.
We call this condition a super critical behavior.
To obtain the threshold for such a super critical behavior,

let us consider a typical scenario where a particle species
with mass m is initially in thermal equilibrium with a
heat bath with temperature T and entropy density s. We
assume s ∝ T3, H ∝ T2, i.e., no (significant) change in the
relativistic degrees of freedom of the bath. Introducing
the yield as Yj ≡ nj=s and parametrizing time by x≡m=T
in Eq. (11), one can estimate the yield evolution as a
function of x as follows. For times where the yield YjðxÞ
starts to deviate significantly from its equilibrium value,
YjðxÞ ≫ Yeq

j ðxÞ, also known as the time of chemical
decoupling, xcd, one can neglect the impact of Yeq

j ðxÞ in
the Boltzmann equation. This allows for an analytic
solution for the yield evolution after chemical decoupling
(see e.g., Ref. [57]), which up to constants, can be
estimated to scale as

Yjðx0Þ ∝
1R

x0
xcd

dxx−2hσvieffðxÞ
: ð12Þ

The integral converges for x0 → ∞ only if hσvieffðxÞ grows
slower than x while for hσvieff ∝ xγ with γ ≥ 1 the integral
diverges. Accordingly, the particle species only freezes
out for γ < 1 (typical WIMP) while the particle continues
to deplete for γ ≥ 1. The critical value γ ¼ 1 leads to
logarithmic depletion and sets the threshold for what we
define a super critical behavior. Above this threshold, the
evolution of the yield approaches the scaling Yj ∝ x1−γ for
x ≫ xcd. In this case, the effective annihilation rate Γeff ≡
njhσvieff is dynamically driven to be proportional to the
Hubble rate Γeff ∝ H.
In the presence of bound states, the effective cross

section introduced above can be written as [14,36]

hσvieff ¼ hσviann þ
X
n;l

hσvinlRnl; ð13Þ

where the first term is the usual pair annihilation cross
section, thermally averaged. In all cases considered in
this work, it includes the Sommerfeld effect [58,59].
The second term contains the thermal average of the
BSF cross sections, denoted as hσvinl. The summation
over all bound-state quantum numbers contains a dimen-
sionless, temperature dependent quantity, which obeys
0≤Rnl ≤ 1.3 Thus, the presence of bound states always
increases the value of the effective cross section and could
eventually lead to a super critical behavior. Introducing a
simpler index to label a specific combination of quantum
numbers, i ¼ ðnlÞ, Ri can explicitly be written as [14,36]

Ri ≡ 1 −
X
k

ðM−1Þik
Γk
ion

Γk ; ð14Þ

Mik ≡ δik −
Γi→k
trans

Γi ; ð15Þ

Γi ≡ Γi
ion þ Γi

dec þ
X
k≠i

Γi→k
trans: ð16Þ

The last line defines the total width of a particular bound
state. It consists of the ionization rate, the rate of decay (via
annihilation of the bound state’s constituents), and bound-
to-bound transition rates, respectively. The latter contains
bound state excitation and deexcitation rates. In practice,
we use the Milne relation (cf., Appendix B 1) to obtain the
excitation rate from the deexcitation rate, and Γnl

ion from
hσvinl. Note that the inclusion of bound-to-bound tran-
sition rates increases

P
n;lhσvinlRnl [36].

3Within the electric dipole approximation, bound states with
different spin are not directly coupled to each other. We thus leave
the spin sum implicit, see Appendix B for details.
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A. Dark QED

We now investigate the behavior of the effective cross
section in Eq. (13) for our first example of a concrete
model. In particular, we consider dark matter as a Dirac
fermion charged under aUð1Þ gauge group, which has been
studied e.g., in Refs. [18,19,21]. We shall call it dark QED
in the following, where dark photons set the thermal
environment with temperature T.
Dark QED has only two parameters, which are the dark

matter mass, m, and the dark fine structure constant, α.
For our analysis, we consider Sommerfeld enhanced
annihilation and s-wave spin-singlet bound state decay
into two dark photons. Relevant expressions are listed in
Appendix B 2. We briefly comment on the influence of
spin-triplet states below. The electric dipole interaction
allows for transitions among the excited states in dark
QED. The deexcitation rate is given by

Γn0l0→nl
deex ¼ 4αð2lþ 1Þ

3
ΔE3jhψnljrjψn0l0 ij2; ð17Þ

see Appendix A 2. The excitation rate is related via detailed
balance, see Appendix B.
Taking into account all leading processes, we show our

results for the dark QED effective cross section in Fig. 3.
Let us start by neglecting all bound state contributions,
considering the case of Sommerfeld enhanced dark matter
pair annihilation into two dark photons only (gray line). As
is well known, the Sommerfeld effect in this case intro-
duces a 1=v dependence of the annihilation cross section
for v ≪ α, leading to hσvieff ∝ x1=2 for sufficiently low
temperatures. Next, we add the contribution of the spin-
singlet ground state (blue dotted). Similarly to the
Sommerfeld effect, the cross section for capture into the
ground state also scales as 1=v for v ≪ α (as seen in Fig. 1).
For T much lower than the binding energy, this leads to
hσvi10 ∝ x1=2. In this regime, the spin-singlet decay rate is
much faster than the ionization rate due to Boltzmann
suppression and consequently R10 → 1, resulting again
in an overall hσvieff ∝ x1=2 scaling. Compared to the
Sommerfeld enhanced pair annihilation only, the effective
cross section is larger by a constant factor in the low
temperature regime, as expected [18].
Let us finally add many excited spin-singlet states to the

system. We include, according to the selection rules, all
possible electric dipole transitions among them via Eq. (17)
to evaluate the effective cross section in Eq. (13). In Fig. 3,
it can be seen that for n ≤ 10 and l ≤ n − 1 (dashed blue
line) the effective cross section increases strongly until
around x ∼ 103, although within this regime also even
higher excited states become important as seen by the solid
and dashed lines separating. One could therefore not
deduce that dark QED does not exceed the critical power
scaling γ ¼ 1 (indicated by the dashed red line) when
including only n ≤ 10. However, the result for n ≤ 100 and

l ≤ n − 1 (blue solid line), which includes about 5000
bound states and about 106 transitions among them, clearly
shows that the effective cross section does not continue a
strongly increasing trend but rather converges to a smaller
power scaling. When fitting a power law in the regime
104 ≲ x≲ 105, where n ≤ 100 is trustworthy, we get a
scaling of about hσvieff ∝ x0.6. Note that from the Kramer’s
logarithm in Sec. II, it is not clear that the temperature
dependence actually follows a power law.
The no-transition limit follows closely, but lies slightly

above, the n ¼ 1 line as we explicitly checked. From this
we conclude that transitions among the bound states are an
important effect, which needs to be taken into account for
predicting the relic abundance in dark QED precisely.
We verified, by varying the included n between the two

shown cases, that this less steep scaling, hσvieff ∝ x0.6, is
already found for including only n ≤ 80, from which we
deduce that the inclusion of even higher excited states
would not change the scaling. The scaling power is trivially
unaffected by the value of the dark matter mass, as the mass
cancels out in the shown product hσvieff ×m2. Moreover,
one can show analytically that the scaling power is even
unaffected when changing the value of α, which we have
confirmed numerically in a wide range of α. We also
explicitly checked that the inclusion of spin-triplet bound
states leaves the scaling power of the effective cross section
at low temperatures unaffected. This numerical observa-
tion can be understood since they only differ from the
spin-singlet bound states by a smaller decay rate which

FIG. 3. Effective cross section for heavy fermions charged
under a Uð1Þ for constant coupling α ¼ 0.1, including the
contribution from bound states for all n;l up to n ¼ 1; 10,
and 100 (blue dotted, dashed, and solid, respectively) and
excluding BSF (gray solid). The effective cross section includes
Sommerfeld enhanced annihilation, BSF, ionization, and all
possible bound-to-bound transitions arising from the electric
dipole interaction, as well as spin-singlet s-wave bound state
decay. The red long-dashed line displays the slope ∝ x1 for
comparison.
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suppresses their contribution at small x but does not alter
the late time scaling of the effective cross section (although
it does increase the overall magnitude at late times).
From all this, we conclude that dark QED does not reach

a critical scaling of the effective cross section in the low
temperature regime within the electric dipole approxima-
tion. In other words, dark QED indeed freezes out within
the approximations made.4 We show the impact of excited
states on the relic abundance within dark QED in
Appendix C, refining earlier results on this subject [18,53].

B. Dark QCD

As our second example of a concrete model, we consider
dark matter as a Dirac fermion in the fundamental repre-
sentation of a new SUð3Þ gauge group, see e.g., [21,23],
which is often called dark QCD. In the following analysis
of dark QCD, we include standard expressions for the
Sommerfeld enhanced pair annihilation cross section and
the decay rate of the color singlet s-wave states, listed in
Appendix B 3 neglecting spin-triplet states. Further, for the
octet-to-singlet BSF cross section in the chromoelectric
dipole approximation we use Eq. (6). No singlet-to-singlet
transitions can be mediated via the chromoelectric dipole
operator. Therefore, the effective cross section in Eq. (13)
reduces to the no-transition limit Γi→j

trans ¼ 0 (cf., App. B 3)
when allowing only for the leading chromoelectric dipole
interactions. This simplification allows us to focus exclu-
sively on s-wave bound states which are the only ones with
a nonvanishing decay rate in our approximations.
While in dark QED the coupling is frozen, in dark QCD,

we take into account the one-loop running effect induced
by gluon self-interactions in all considered quantities,
as detailed in Appendix B 3. Yet, m remains the only
dimensionful scale in the theory, implying that hσvieff ×m2

is independent of the choice of m.
In Fig. 4, we show hσvieff ×m2 for the specific choice

αðmÞ≡ 0.025 across the regime αðm=xÞ≲ 1. We checked
that the BSF cross sections are compatible with partial
wave unitarity bounds for the velocities that give a sizeable
contribution to the thermal average, within the perturbative
regime. The scaling power in the absence of bound states
(Sommerfeld only) is, unsurprisingly, the same as in the
dark QED case at low temperatures, i.e., hσvieff ∝ x1=2. The
inclusion of s-wave bound states, however, leads to a much
steeper scaling of the effective cross section. Even when
omitting the running of the coupling strength, i.e., α ¼
0.025 at all scales (light blue line, using n ≤ 1000), we get a
scaling power of about x0.9 for x > 105, which is close to
the critical line. When fully including one-loop running
(darker blue lines), the scaling of the effective cross section

for dark QCD becomes super critical with a scaling of
around x1.1.
We also find super critical behavior for other choices

than αðmÞ≡ 0.025. From this we conclude that dark QCD
does not freeze-out even in the perturbative regime.
However, since the scaling exceeds the critical one only
slightly, we find a moderate effect on the abundance. For
instance, assuming the dark sector is in thermal equilibrium
with the SM bath, the addition of excitations 2 ≤ n ≤ 1000
leads to a reduction of the dark matter abundance by around
50% at x ¼ 109 for m ∼ 106 GeV and a slightly larger
percentage for smaller masses.
In the following sections, we consider a model featuring

dark matter and an accompanying particle that is charged
under SM QED and QCD, and hence subject to bound state
effects. The electric charge of that particle will allow for
color singlet-to-singlet transitions, implying that the inclu-
sion of l > 0 states pushes the scaling of the effective cross
section further inside the super critical regime (cf., Fig. 6).
As a consequence, the corrections to the relic abundance in
the perturbative regime will be much larger.

IV. COLORED T-CHANNEL MEDIATOR MODEL

We consider a singlet Majorana fermion χ being the dark
matter candidate, and a scalar mediator q̃ with gauge
quantum numbers identical to those of either an up- or
down-type right-handed SM quark qR (we focus on
the latter case in our numerical results for concreteness).

FIG. 4. Effective cross section for heavy fermion triplets under
SUð3Þ, assuming αðmÞ ¼ 0.025. The critical scaling hσvieff ∝ x1

(red dashed) is exceeded when respecting running couplings
(darker blue), i.e., no freeze out occurs, as opposed to using
constant coupling strength (lighter blue). The effective cross
section includes Sommerfeld enhanced annihilation, BSF and
ionization via chromoelectric dipole interactions, as well as spin-
singlet s-wave bound state decay. Note that no bound-to-bound
transitions occur in dark QCD in dipole approximation. The gray
line shows the case without including bound states.

4Interestingly, when considering processes with infinitely
many dark photons (classical picture), other works come to a
different conclusion [51,60]. We only included ultrasoft proc-
esses with one dark photon.
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The dark matter field χ interacts with the SM only via the
Yukawa interaction

Lint ¼ λχ q̃q̄Rχ þ H:c:; ð18Þ
while the mediator q̃ has additional interactions with the
SUð3Þc and Uð1ÞY SM gauge fields given by the usual
kinetic term with covariant derivatives. We assume a mass
mq̃ > mχ such that the mediator can decay into the dark
matter particle rendering only the latter stable on cosmo-
logical timescales. This model belongs to the class of
so-called t-channel mediator models, see e.g., [61], that are
being actively considered in the context of LHC dark matter
searches, see, e.g., [62] for a recent account on the subject.5

Dark matter production is governed by the interaction
of χ with the mediator field q̃, controlled by λχ, as well as
the dynamics of the mediator itself, largely driven by its
gauge interactions. In particular, as the q̃ and q̃† particles
are color and electrically charged, they can form bound
states, that have an important impact on the freeze-out
[1,9–11,14,15,40,41]. Here, we are particularly interested
in including excited bound states, following [9,14].

A. Review of production mechanisms

There are three distinct possibilities for how the freeze-
out dynamics occurs, known as coannihilation [63,64],
conversion-driven freeze-out [35,65] and superWIMP pro-
duction [37,38], respectively. In addition, the model can
also feature freeze-in production [66–68].
All of them can be described by the following set of

coupled Boltzmann equations for the yields Yj,

dYq̃

dx
¼ 1

3H
ds
dx

�
1

2
hσq̃q̃†vieffðY2

q̃ − Yeq2
q̃ Þ

þ hσχq̃viðYχYq̃ − Yeq
χ Y

eq
q̃ Þ þ

Γq̃→χ
conv

s

�
Yq̃ − Yχ

Yeq
q̃

Yeq
χ

��
;

ð19Þ
dYχ

dx
¼ 1

3H
ds
dx

�
hσχχviðY2

χ − Yeq2
χ Þ

þ hσχq̃viðYχYq̃ − Yeq
χ Y

eq
q̃ Þ −

Γq̃→χ
conv

s

�
Yq̃ − Yχ

Yeq
q̃

Yeq
χ

��
;

ð20Þ
where x ¼ mq̃=T, s is the entropy density, H the Hubble
rate, and

Yeq
j ¼ gj

s

Z
d3p
ð2πÞ3 e

−
ffiffiffiffiffiffiffiffiffiffiffi
m2

jþp2
p

=T; ð21Þ

all of which depend on x. Here gj denotes the number of
internal degrees of freedom, with gq̃ ≡ 2Nc ¼ 6 denoting
the sum of q̃ and q̃† densities, gχ ¼ 2, and gBnl

¼ 2lþ 1

for bound states with angular momentum l, capturing the
degenerate magnetic quantum number. Note that the factor
of 1=2 in Eq. (19) is due to our convention of including
both the q̃ and q̃† density in Yq̃.
Equations (19) and (20) contain the following colli-

sion terms:
(1) The effective cross section hσq̃q̃†vieff includes direct

annihilation (including Sommerfeld enhancement
following [35,69]) as well as the impact of bound
states, as given by Eq. (13). We discuss the relevant
BSF, transition and decay processes within the sim-
plified model below, following and extending [14].

(2) The rate Γq̃→χ
conv describes the conversion rate of q̃ into

χ particles. It is controlled by the Yukawa coupling,
Γq̃→χ
conv ∝ λ2χ , and its size determines whether the

freeze-out happens in the coannihilation, conver-
sion-driven or superWIMP regime (see below). At
high temperatures, it is dominated by scatterings
Xq̃ → Yχ with appropriate SM particles X, Y, while
at low temperatures the decay process q̃ → qχ
dominates. Accordingly, in the low temperature
limit—relevant for the superWIMP mechanism con-
sidered below—it reads

Γq̃→χ
conv ¼ Γq̃→qχ

K1ðmq̃=TÞ
K2ðmq̃=TÞ

; ð22Þ

where Γq̃→qχ ¼ λ2χ=ð16πÞmq̃ð1 −m2
χ=m2

q̃Þ2 is the
vacuum decay rate of a single mediator particle in
the limit mq → 0 (not to be confused with the bound
state decay rates, that are dominated by the strong
interaction).

(3) The dark matter pair annihilation rate hσχχvi ∝ λ4χ
and coannihilation rate hσχq̃vi ∝ λ4χ are strongly sup-
pressed for λχ ≪ 1 and practically irrelevant within
the conversion-driven and superWIMP regimes.

In addition, the Boltzmann equations could be comple-
mented by collision terms for the conversion process
q̃q̃† → χχ, which are, however, negligible within the
conversion-driven and superWIMP regimes as they are,
again, proportional to λ4χ , and irrelevant in the coannihila-
tion limit, and therefore not displayed here.
Let us now discuss in more detail the various possible

regimes for dark matter genesis. As mentioned above,
which regime is realized depends on the size of the
conversion rate. More precisely, the most relevant quantity
is the conversion rate for χ into q̃ particles,

Γχ→q̃
conv ¼ Γq̃→χ

conv
Yeq
q̃

Yeq
χ
→ Γq̃→qχ

gq̃m
3=2
q̃

gχm
3=2
χ

e−
mq̃−mχ

T ; ð23Þ
5The term mediator refers to the dark matter-SM interaction,

not to be confused with the long-range force carrier which in this
case is the gluon (and photon). Occasionally, this class of models
has alternatively been dubbed charged parent particle model.
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where the last expression is the low temperature limit. Dark
matter genesis is qualitatively different depending on the
size of this rate relative to the Hubble rate for temperatures
around the mediator mass (during the time when the
mediator starts to chemically decouple from the SM bath),

Γχ→q̃
conv ≫ Hðmq̃Þ coannihilation; ð24aÞ

Γχ→q̃
conv ∼Hðmq̃Þ conversion−driven; ð24bÞ

Γχ→q̃
conv ≪ Hðmq̃Þ superWIMP=freeze− in: ð24cÞ

(a) In the coannihilation regime the q̃ and χ populations
are in mutual chemical equilibrium. The actual size of
the conversion rate is irrelevant as long as it is strong
enough to maintain chemical equilibrium [63,64].
Within the coannihilation regime, the dark matter abun-
dance is determined by the cross sections hσq̃q̃†vi,
hσχχvi and hσχq̃vi (and in addition, as for all cases,
the bound state dynamics), and generically here
λχ ∼Oð1Þ [9,14,15,61].

(b) In the conversion-driven case, the freeze-out of
chemical equilibrium among χ and q̃ drives the
dynamics and the size of the conversion rate Γq̃→χ

conv

largely influences the dark matter abundance [35,65].
In addition, the efficiency by which the q̃ (and q̃†)
abundance is depleted is relevant [35], controlled by
hσq̃q̃†vi and bound state effects [14]. The conver-
sion-driven case occurs for small couplings, typically
λχ ∼Oð10−6Þ, for which the χχ and χq̃ terms in
Eqs. (19) and (20) can be safely neglected.

(c) Finally, in the superWIMP scenario [37,38], the
mediator has an even smaller decay rate, and can
usually be considered as stable while the freeze-out of
q̃q̃† annihilation occurs. The population of remaining
q̃ and q̃† particles then decays into χ at a temperature T
for which HðTÞ ∼ Γχ→q̃

conv, thereby generating the dark
matter abundance [39]. Technically, this means that
the terms corresponding to inverse decays in Eqs. (19)
and (20) can be neglected, in addition to those for χχ
and χq̃ annihilation, while the size of hσq̃q̃†vi and the
bound state dynamics are most important [39–41]. To
the extent that decay and freeze-out occur on different
timescales, the dark matter abundance is also insensi-
tive to the size of the conversion (or equivalently
decay) rate in that limit, since eventually each q̃ (and
q̃†) produces one dark matter particle. Note that in
addition to the superWIMP contribution a contribution
from freeze-in [66–68] has to be considered which
stems from inefficient decays (or scatterings) around
x ∼ 1, i.e., when the mediator is in thermal equilibrium
with the SM bath. The relative importance of super-
WIMP versus freeze-in contributions depend on the
couplings and masses, see, e.g., [39,40]. However, in

our analysis we are particularly interested in regions
with a dominant superWIMP contribution.

In this work, we reevaluate the superWIMP regime when
including excited bound state effects. In particular, since
the mediator is relatively long lived within this regime, its
abundance crucially depends on how much of the mediator
is depleted due to bound state dynamics.

B. Bound state rates and processes

The impact of bound states on Yq̃ is captured by the
effective cross section defined in Eq. (13) entering in the
Boltzmann equation, Eq. (19). It depends on the set of
bound states that are included as well as their formation,
transition and decay rates, discussed in the following.
In the considered model, the scalar mediator particle q̃

interacts both via electromagnetic interaction with bottom-
like charge Q ¼ −1=3 and strong interactions in the funda-
mental representation. This leads to differences compared
to the case of pure Abelian or non-Abelian interactions
discussed in Sec. III. In particular, the potentials determin-
ing the bound state spectrum and wave-functions as well as
BSF and decay are driven by QCD, while QED is relevant
for transitions among the various energy levels [14]. In the
following, we briefly review the bound state processes
included in our analysis, and then comment on the rele-
vance of further extensions.
Bound state formation is dominated by the chromo-

electric dipole transition,

ðq̃q̃†Þ½8� → B½1�
nl þ g; ð25Þ

going from an octet scattering state to a singlet bound state,
and emitting an (ultrasoft) gluon. The effective interaction
potentials VsðbÞ ¼ −αeffsðbÞ=r for the scattering (s) and bound
states (b) are

αeffs ¼ −
1

6
αsðμsÞ; αeffb ¼ 4

3
αsðμbÞ; ð26Þ

with running strong coupling6 evaluated at MS-scale μs ¼
mq̃vrel=2 for the scattering state, and at the Bohr momen-
tum scale μb ¼ mq̃α

eff
b =2=n for the bound state Bnl. Note

that the latter definition is implicit, but can be easily solved
either iteratively or numerically for each level n. The BSF
cross section is then given by Eq. (6), with the effective
running coupling entering the respective initial and final
state wave-functions. Furthermore, we evaluate the cou-
pling in the prefactor of Eq. (3), associated to the gluon
emission, at the ultrasoft scale of the gluon energy
μBSF ¼ mq̃=4ðv2 þ ðαeffb =nÞ2Þ. Bound state formation is

6In all numerical computations involving running αs we used
RunDec 3 [70] to evaluate the SM strong coupling (employing
5-loop running).
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also possible via an electromagnetic dipole transition, but is
negligible due to the smaller interaction strength [14] (see
also Fig. 5 below). Computational details can be found
in Appendix B 3.
Transitions among bound states are not possible via a

single insertion of the QCD dipole interaction due to color
conservation. Therefore, we consider electromagnetic dipole
interactions as the leading bound-to-bound transitions:

B½1�
nl ↔ B½1�

n0l�1
þ γ; ð27Þ

with rates computed as detailed in Appendix B 4. We
use the wave-functions evaluated with the corresponding
effective QCD couplings at their respective Bohr momen-
tum scales for level n and n0 and the electromagnetic fine
structure constant αEM ¼ 1=128.9 in the coupling prefactor
of Eq. (17).
For bound state decay we include the process

Bn;l¼0 → gg, see Appendix B 3. The next-to-leading order
correction to this decay channel within QCD has been
shown to have only a minor effect in [14], and we therefore
omit it here.
Let us briefly comment on possible further transition

and decay processes. By simple power counting, electric
quadrupole and magnetic dipole transitions are suppressed
relative to electric dipole transitions. Nevertheless, they
could potentially have an impact by allowing new transition
channels due to the modified selection rules. We checked
(up to n ≤ 6) that electric quadrupole transitions have a
negligible impact on the effective cross section. Furthermore,
the decay of l ¼ 1 bound states is suppressed by at least a
factor α3s relative to its deexcitation rate when assuming a
power counting αEM ∼Oðα2sÞ. This is due to the higher
derivatives of the radial wave function entering for higher l,
as well as the fact that decays into two gluons vanish for
l ¼ 1 states at tree-level, leading to additional suppression
due to a three-gluon decay or two-gluon decay at one-
loop [71]. Lastly, two-gluon transitions in SUðNcÞ are
expected to be suppressed by phase space factors and the
repulsive potential of the necessarily adjoint intermediate
state. Nevertheless, it would be interesting to investigate their
impact in future work.

V. RESULTS FOR SUPERWIMP SCENARIO

We now discuss our results and phenomenological
implications considering superWIMP production within
the model introduced in Sec. IV. In the superWIMP
scenario, the standard assumption has been that the
freeze-out and decay of q̃ are well separated in time, such
that the late time χ abundance depends on the mediator
freeze-out abundance only. The resulting dark matter
density has thus been considered to be independent of
the mediator lifetime τq̃ ¼ 1=Γq̃→qχ . In our model, we will
show that the superWIMP mechanism proceeds in a
qualitatively different way as the consequence of the super

critical behavior of the effective cross section in non-
Abelian gauge theories found in Sec. III B.
We assume that the mediator decays well before the QCD

phase transition, such that the entire freeze-out dynamics
takes place within the unconfined phase and involves αs in
the perturbative regime (T > 1 GeV) only.Numerical results
presented throughout this section are shown for the repre-
sentative benchmark point mq̃ ¼ 4 × 106 GeV. We discuss
the mass dependence of our findings in Sec. V C.

A. Effective cross section

The abundance of the mediator q̃ is governed by the
effective cross section Eq. (13), that encapsulates the
impact of bound states. In Fig. 5, we show the rates that
enter this quantity for an exemplary subset with n ≤ 4 and
for all l ≤ n − 1, for a wide range of x ¼ mq̃=T corre-
sponding to mq̃=10 ≥ T ≥ 4 GeV. Since the mediator is
charged under both SUð3Þc and Uð1ÞY it combines features
of the Abelian and non-Abelian cases discussed in Sec. III.
As expected, ionization (and correspondingly BSF) is

clearly dominated by the QCD-mediated process, as can be
seen by comparing the long-dashed and dotted lines in
Fig. 5. Since q̃q̃† bound states exist only for the attractive
color singlet configuration, color conservation dictates that
bound-to-bound transitions are only contributing via an
electric dipole interaction mediated by QED. The total
transition rate from a given bound state ðn;lÞ into any
higher or lower state is shown by the blue lines in Fig. 5.
For the ground state (1,0) only excitation occurs such that
the rate becomes exponentially Boltzmann suppressed once
the temperature drops below the corresponding difference
of binding energies. The same is true for (2,0) due to the
selection rule Δl ¼ �1 for dipole transitions. For all other
levels, the total transition rate approaches a finite value for
low temperature (i.e., large x), corresponding to the rate of
deexcitation into lower levels. In addition, we include the
direct decay of l ¼ 0 states into a pair of gluons, which is
the analog of mediator pair annihilation. This rate is
practically temperature independent for x ≫ 1. Overall,
the total width of any given level is dominated by the QCD-
mediated ionization rate at temperatures T above or around
the binding energy. For much lower temperatures, decay
dominates for l ¼ 0, and QED-mediated transitions (to
lower levels) for l ≥ 1.
The resulting effective cross section, which combines

QCD mediated BSF and QED transitions among bound
states, is shown in Fig. 6, where we take excited states Bnl
with 0 ≤ l ≤ n − 1 and up to a given maximal n into
account. For the various blue lines, we include all possible
electric dipole transitions. For any given temperature, the
effective cross section converges when including a suffi-
cient number of excited states. The reason for this con-
vergence is that each excited state contributes in a limited
temperature range only. While the underlying velocity
dependence of the BSF cross section becomes increasingly
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complex at large n, a given bound state n;l only starts to
contribute significantly once the temperature drops down to
roughly its respective binding energy, T ∼ EBnl

. In fact, this
is important for the validity of the dipole approximation, as
it ensures that the temperature is well below the typical
momenta of bound states that contribute significantly i.e.,
below their respective Bohr momenta. For T ≪ EBnl

in
contrast, its contribution is negligible due to the repulsive
potential in the scattering state [9,14].

Introducing xn ≡mq̃=EBnl
, we find x1 ≃ 7 × 102,

x10 ≃ 5 × 104, x100 ≃ 3 × 106 for our benchmark mq̃ ¼
4 × 106 GeV, which correspond to the x values at which
the respective excited levels are expected to start contrib-
uting significantly to the effective cross section. Overall,
the lower the temperature (i.e., the higher the x), the more
relevant higher excited levels become for achieving a
converged effective cross section. We include states up
to n ¼ 100, taking all transitions among them into account

FIG. 5. Ionization, decay and transition rates for all bound state levels ðn;lÞ up to n ¼ 4 for mq̃ ¼ 4 × 106 GeV. The gray dashed
vertical line indicates the temperature that corresponds to the binding energy EB of the respective bound state. Note that the transition
rates contain all possible excitations and deexcitations (here summed up to n0 ¼ 20).
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(blue solid line). We checked that this suffices to reach
converged results within the perturbative regime. In par-
ticular, the difference between n ≤ 50 and n ≤ 100 is less
than 0.2% for T > 1 GeV.
As visible in Fig. 6, the effective cross section (blue solid

line) clearly shows a super critical behavior, i.e., the power
scaling is significantly larger than ∝ x (red dashed). We
stress that the interplay of bound states formed by the non-
Abelian QCD interaction with transitions mediated by
QED leads to a significant enhancement of the effective
cross section compared to the limit of inefficient transitions,
see green line in Fig. 6. The latter shows the result when
omitting transition processes. It is similar to the case of dark
QCD discussed in Sec. III B. This shows that excited states
play an even more prominent role for a mediator charged
under both QCD and QED considered here. Nevertheless,
the effective cross section increases more steeply than ∝ x
even in the no-transition approximation due to running. All
the same, when including transitions but neglecting run-
ning, the slope is still steeper than ∝ x, i.e., the presence of
bound-to-bound transitions causes a super-critical behavior
in our model even without running coupling effects.

B. Relic abundance

The evolution of the yields Yq̃ðxÞ and YχðxÞ for the
mediator and the dark matter particle as obtained from
solving the coupled Boltzmann equations (19) and (20) are
shown in Fig. 7. Let us first discuss the case when including
either only mediator annihilation (blue dotted line) or in
addition the ground state (blue dot-dashed line, see e.g.,
[40,41]). In these cases, the yield Yq̃ðxÞ freezes out at

x ∼Oð102–103Þ. After freeze-out it remains constant until
the age of the Universe becomes comparable to the
mediator lifetime, i.e., for H ∼ Γq̃→qχ. At this point, the
mediator particles decay into dark matter, such that the final
yield Yχ is identical to the freeze-out value of Yq̃ which is
set at much earlier times already. Accordingly, in a wide
range of lifetimes the dark matter abundance does not
depend on the dark matter coupling. This qualitative picture
of the superWIMP mechanism has widely been adopted
throughout the literature in the past.
Intriguingly, when including excited bound states, the

super critical effective cross section leads to a continuous
depletion such that Yq̃ never freezes out. This can be seen in
the solid line in Fig. 7, where bound states up to n ≤ 100
are included. The depletion of the number density is
dominated by the effective cross section, until the decay
of the mediator, q̃ → qχ, becomes efficient (here x≳ 106).
In fact, the effective annihilation rate Γeff ¼ nq̃hσvieff is
kept on the edge of being efficient, i.e., Γeff ∼H, over
the entire period of bound state induced depletion. The
dynamics is qualitatively different to the standard picture
as there is no temperature regime where the yield of the
mediator has frozen out.
The quantitative impact of bound states up to n ≤ 1, 10,

100 on the dark matter abundance is explicitly shown in

FIG. 6. Effective cross section for the colored and electrically
charged mediator q̃. It includes the contribution from bound state
levels ðn;lÞ for all l and up to n ≤ 1, 10, 100 (blue lines)
accounting for all dipole transitions among them. Also shown is
the no-transition limit for n ≤ 1000 (green). Both grow more
steeply than ∝ x (indicated by a thin black line) when sufficiently
high n are included, implying mediator depletion without freeze-
out. Here mq̃ ¼ 4 × 106 GeV.

FIG. 7. Upper panel: abundance evolution of χ (red) and q̃
(blue) for mq̃ ¼ 4 × 106 GeV and Γq̃→qχ ¼ 10−17 GeV. When
including no (SE only) or one (n ¼ 1) bound state, the mediator
yield Yq̃ freezes out and then subsequently transfers its abun-
dance to Yχ via q̃ → qχ. Taking excited states and transitions
among them into account leads to a continuous decrease of Yq̃

(dashed and solid blue line for n ≤ 10 and n ≤ 100, respectively)
that is only terminated by mediator decay once Γq̃→qχ ≳H.
Lower panel: ratio of χ yield when including bound states up to
n ≤ 1; 10; 100 over the result without bound state contributions.
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lower panel normalized by the result including only
Sommerfeld enhancement and no bound states. Taking
into account the ground state only yields a reduction by a
factor ∼2 in the final abundance. When considering the full
bound state effects (n ≤ 100), we find that the dark matter
relic abundance is lowered by more than an order of
magnitude.
Note that the mediator decays before the QCD transition

such that dark matter production takes place in the uncon-
fined phase involving αs in the perturbative regime. We
explicitly verified that our results are insensitive to the
behavior of the strong coupling at scales below 1 GeV. To
check this we implemented different numerical prescrip-
tions for treating the strong coupling at these low scales,
and find that the final abundance is highly insensitive as
long as the mediator lifetime ensures a decay before the
QCD transition. Furthermore, we checked that our results
are not influenced by contributions for which partial-wave
unitarity is questionable, as the corresponding velocities
are not relevant for the thermally averaged effective cross
section in the regime T > 1 GeV.
In Fig. 8, we show the abundance evolution for three

different values of the mediator lifetime. (The additional
long-dashed line depicts the result when excluding media-
tor decays, i.e., Γq̃→qχ ¼ 0.) For all decay rates, superWIMP
production provides the dominant contribution to the dark
matter density. While for the largest decay rate, Γq̃→qχ ¼
2.5 × 10−14 GeV, freeze-in still contributes almost 10%, it
is fully negligible for the smaller rates chosen. Due to the
continuous depletion of Yq̃ in the presence of excited states,

the time of decay does, indeed, have an impact on the final
dark matter abundance, as can be seen from the three
different values of Yχ (red lines) for x → ∞. In contrast,
when neglecting excited states (dotted lines), the final yield
is identical for all three mediator decay rates. A similar
behavior can be found when including only a small number
of bound states.

C. Implications

In Fig. 9, we finally show the dark matter mass, mχ (left
axis labeling), for which the final χ abundance (displayed
using the right axis labeling) yields the observed dark
matter relic density, Ωχh2 ≃ 0.12 [72], as a function of the
mediator decay rate, Γq̃→qχ . For Γq̃→qχ ≳ 10−12 GeV, dark

FIG. 8. Evolution of mediator and dark matter abundances
when including bound states and transitions among them up
to n ¼ 100 (solid lines) or no bound states (dotted) for three
different decay rates Γq̃→qχ ¼ 2.5× 10−14, 5 × 10−16, 10−17 GeV.
The long dashed line shows the limit Γq̃→qχ ¼ 0, which decreases
due to the large contribution of excited states to the effective cross
section. The final value of Yχ therefore depends on Γq̃→qχ even
in the superWIMP regime where the χ abundance generated via
freeze-in at low x is negligible.

FIG. 9. Dark matter mass mχ and decay rate Γq̃→qχ of the
colored t-channel mediator for which the final yield matches
the observed dark matter density Ωχh2 ¼ 0.12, using mq̃ ¼ 4×
106 GeV. The abundance is set by the superWIMP mechanism
for Γq̃→qχ ≲ 10−13 GeV, while freeze-in dominates for larger
decay rates. When taking only Sommerfeld-enhanced q̃q̃† anni-
hilation into account (dotted line) the relic density is independent
of Γq̃→qχ within the superWIMP regime, i.e., the dotted line is
horizontal. The same is true when taking the ground state n ¼ 1
into account (dot-dashed line). When including excited states, the
mediator depletion due to BSF, transitions and decay of bound
states continues until eventually H ∼ Γq̃→qχ, such that the relic
density does depend on the mediator lifetime, corresponding to
the black dashed (n ≤ 10) and black solid (n ≤ 100) lines. For
Γq̃→qχ ≳ 10−17 GeV the mediator decays before the QCD tran-
sition, i.e., within the perturbative regime. The shaded areas
bracket the possible values for even lower decay rates, see text for
details. The red shaded region is excluded at 95% C.L. by Lyman-
α forest observations [40].
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matter production is dominated by freeze-in, while for
lower decay rates, which we focus on in the following, the
superWIMP mechanism sets the abundance. As discussed
above, within this regime, the mediator abundance has so
far usually been assumed to freeze out. In that case, each
remaining mediator particle subsequently produces one
dark matter particle, such that the precise decay rate is
irrelevant for superWIMP production. This is indeed the
case in Fig. 9, when taking only mediator pair annihilation
(dotted) or in addition the ground state (dot-dashed) into
account.
When including excited bound states, the mediator abun-

dance continues to deplete until the age of the Universe
reaches the mediator lifetime. The remaining mediators then
produce dark matter via q̃ → qχ. This implies that the final
dark matter abundance does, in fact, depend on Γq̃→qχ and,
hence, on the dark matter coupling. Therefore also the dark
matter mass mχ for which Ωχh2 ≃ 0.12 does depend on it.
This can be seen in the solid and dashed curves in Fig. 9
corresponding to taking into account all excited states
(l ≤ n − 1) with n ≤ 10 and 100, respectively. The smaller
dark matter abundance implies a larger dark matter mass, as
compared to the case without excited states.
For Γq̃→qχ ≳ 10−17 GeV, the mediator decay occurs prior

to the QCD transition, i.e., within the perturbative regime
T > 1 GeV. Note that in this regime the inclusion of bound
state up to n ¼ 100 appears to be sufficient. While we find
significant contributions from bound states with n > 10
(cf., the difference between the dashed and solid lines in
Fig. 9) this contribution is dominated by bound states
n < 50. We reiterate that n ¼ 100 is sufficient to find a
convergent effective cross section, hence even higher
bound states are expected to not alter our results.
For illustration, in Fig. 9, we include decay rates down

to around 10−18 GeV for which a significant fraction of
mediators have not decayed atT ¼ 1 GeV. In this region, the
gray shaded areas conservatively bracket the uncertainty
in the effective annihilation rate arising from the impact of
confinement, by assuming that all mediators that are still
present at T ¼ 1 GeV either vanish (upper boundary) or
fully decay into dark matter particles (lower boundary).
However, in this work, we focus on the perturbative regime,
Γq̃→qχ ≥ 10−17 GeV, for which we find that the difference
between the upper and lower boundary is less than 1%.
Due to the late decay and large mass difference between

the mediator and dark matter, the dark matter momentum
distribution for the considered scenario can be significantly
harder than the one of cold dark matter. The resulting free-
streaming effect impacts structure formation on small scales
probedbyLyman-α forest observations.As shown inRef. [40],
this results in a lower bound on the dark matter mass,

mχ

keV
> 3.8 × xdecay

�
106.75

g�SðxdecayÞ
�

1=3
; ð28Þ

that can easily reach into the GeV range. Here, xdecay ¼
ðΓq̃→qχ=Hðmq̃ÞÞ−1=2 is the temperature parameter at which
the decay becomes efficient, Γq̃→qχ ¼ Hðmq̃=xdecayÞ, cf.,
upper axis labeling in Fig. 9. The formula assumes Ωχh2 ¼
0.12 and mq ≪ mq̃.
In Fig. 9, we display the corresponding 95% C.L.

exclusion as a red shaded area. Interestingly, excited bound
state effects have a significant impact on the implications
of this constraint. While with Sommerfeld effect (and
n ¼ 1 bound state) only, a decay rate of around 10−15ð4 ×
10−16Þ GeV would be excluded, the inclusion of excited
bound states reveal that the entire region with Γq̃→qχ ≥
10−17 GeV remains unchallenged by the considered
Lyman-α constraint.
So far, we have focused on the benchmark mass

mq̃ ¼ 4 × 106 GeV. For smaller masses, the effective cross
section becomes larger and the mediator abundance
decreases. Therefore, for a given xdecay, the dark matter
mass that leads to Ωh2 ¼ 0.12 increases and the Lyman-α
bound become less constraining. Accordingly, we find that
current Lyman-α forest constraints do not challenge the
superWIMP scenario for mq̃ < 4 × 106 GeV, if we restrict
ourselves to decays within the perturbative regime of
couplings, i.e., decays that take place before the QCD phase
transition, xdecay < mq̃=1 GeV. However, as the so-defined
maximal xdecay becomes smaller with smaller mq̃, highly
excited states become less relevant somewhat diminishing
the large effect of bound states toward smallmq̃ in our setup.
For masses larger than 4 × 106 GeV, the cosmologically

viable dark matter mass decreases and Lyman-α constraints
become more restrictive. In particular, starting from masses
somewhat above mq̃ ¼ 4 × 106 GeV, they impose an
upper bound on xdecay that is more restrictive than the
above-mentioned perturbativity condition. As a conse-
quence of the tightening Lyman-α constraints on the
allowed range of mediator decay rates, higher excitations
become less important also toward largermasses. Eventually,
for mq̃ > 4 × 108 GeV, the entire superWIMP region is
excluded (assuming thermalization of the mediator).

VI. CONCLUSION

In this work, we studied the impact of excited bound
states on dark matter production. We found that they can
be highly relevant, focusing especially on setups where
unbroken Abelian and/or non-Abelian gauge interactions
are responsible for the bound state dynamics. Considering
bound state formation/ionization and (de)excitation proc-
esses described by dipole transitions, we developed
an efficient way to compute their rates numerically. It
allows us to take into account excitations up to a principal
quantum number n ¼ 100 (n ¼ 1000) in the presence
(absence) of transitions among them involving more than
5000 individual BSF and Oð106Þ transitions rates.
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With this numerical tool at our disposal, we investigated
several theoretical and phenomenological questions. First,
considering an Abelian gauge theory like dark QED, we
compared the summed BSF cross section to the well-known
Kramer’s logarithm, confirming its approximate behavior
toward small v that increases faster than ∝ 1=v. However,
this behavior results from a summation over different initial
state partial waves. We checked that each initial angular
momentum contribution is compatible with partial-wave
unitarity for all velocities, and at sufficiently weak cou-
pling. In contrast, we found that the total BSF cross section
in non-Abelian gauge theories generally does violate
partial-wave unitarity bounds even for perturbatively small
coupling. While a closer investigation of this feature is left
for future work, we focused on the phenomenologically
relevant regime of velocities in our subsequent results for
which unitarity bounds are satisfied.
We exemplified our results for two particle states with

constituents transforming as 3 and 3̄ under SUð3Þ. Due to
the repulsive potential of the adjoint scattering state, in
radiative BSF via gluon emission, each individual bound
state cross section only contributes around a characteristic
velocity. This renders very high excitations to be the
dominant contribution to the thermally averaged effective
cross section at very low temperatures. Consequently, we
investigated the important question whether the effective
cross section increases slower or faster than x ¼ m=T, in
which case the particle’s number density would freeze-out
or would continue to deplete.
For dark QED, we found a scaling hσvieff ∝ x0.6 toward

large x. For dark QCD, hσvieff grows slightly slower
(faster) than ∝ x, if we exclude (include) the effect of a
running coupling (assuming a negative beta function).
However, the dependence of this qualitative difference
on the effects due to the running coupling is only present
in (dark) QCD, i.e., in the absence of transitions among the
states. When color and electric charge is combined, then
singlet-singlet transitions are possible and significantly
enhance the effective cross section toward small x where
higher n dominate, and steepen the effective cross section
beyond ∝ x regardless of running effects.
Finally, we studied such a case in detail by conside-

ring a scenario where an electrically and color charged
mediator—which accompanies dark matter—is subject to
the formation of bound states. Such a setup is realized in so-
called t-channel mediator models. We focused on the very
weak coupling regime for which the dark matter density
can be generated through a late decaying mediator particle,
i.e., by the superWIMP mechanism. The commonly
adopted assumption within this paradigm is that mediator
freeze-out and decays can be considered independently,
thereby rendering the resulting dark matter density to be
independent of the mediator lifetime (and therewith the
dark matter coupling it depends on).
Here we found that considering excited bound state

effects, this picture has to be revised. Due to an interplay of

QCD bound states and transitions mediated by QED, the
resulting effective cross section grows significantly faster
than ∝ x, i.e., features a strongly super critical scaling,
thereby retaining a sizeable depletion of mediator particles
throughout its entire presence before it decays. Therefore,
the dark matter relic density does depend on the mediator
lifetime. In fact, we found that—restricting ourselves to
decays that happen well within the unconfined phase—the
yield reduction due to bound state effects can amount to an
order of magnitude with respect to the result including
Sommerfeld enhanced annihilation only. This has impor-
tant consequences for the cosmologically viable parameter
space. For a given mediator mass, bound state effects shift
the dark matter mass required to match Ωh2 toward larger
values by up to an order of magnitude, thereby weakening
constraints from structure formation through Lyman-α
observations.
While we are choosing dark matter physics as an

application of the considered bound state effects, we note
that they could also play an important role in the context of
baryogenesis. For instance, according to [73], the late
decay of a color-charged scalar can generate the matter-
antimatter asymmetry. A significant enhancement of the
effective cross section due to bound states could open up
parts of the parameter space otherwise excluded by strong
bounds from Neff . In addition, an analysis of phenomeno-
logical consequences within dark sector models, for which
dark matter is charged under an unbroken dark gauge sym-
metry, would be interesting, also in view of phase transitions
and associated gravitational wave signatures [23,25]. On the
theoretical side, our results motivate an investigation of
unitarization of bound state formation processesmediated by
unbroken non-Abelian gauge interactions within the regime
of perturbatively small couplings.
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APPENDIX A: EVALUATION OF LARGE n
DIPOLE TRANSITIONS

The evaluation of ultra-soft transitions such as bound-
state formation and deexcitation for large n is a demanding
task. Here, we briefly summarize the derivation of the used
expressions that enable a numerically stable and suffi-
ciently fast computation of the scattering-to-bound and
bound-to-bound dipole transitions up to about n ¼ 1000
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and n ¼ 100, respectively. A Mathematica notebook
containing the implemented expressions is available on
request.

1. Scattering-to-bound

We turn now to the evaluation of the scattering-to-bound
dipole transitions matrix elements. The angular part can be
performed as [14]:

X
m

jhψnlmjrjψ 0
pij2 ¼

4π

jpj5
X
l0

ðl0δl0;lþ1 þ lδl;l0þ1ÞjIRj2;

ðA1Þ

where we have jpj ¼ mv=2. Our starting point for the
evaluation of the radial integral part is (A.13) in Ref. [14]:

IR;BSF ¼
2ζ3=2b ðlþ l0 þ 3Þ!

n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − l − 1Þ!ðnþ lÞ!p 2l

0
eπζs=2

jΓð1þ l0 − iζsÞj

×

�
2ζb
n

�
l
�
d
dt

�
n−l−1 1

ð1 − tÞ2lþ2

×
Z

1

0

ds
sl

0−iζsð1 − sÞl0þiζs�
ζb
n
1þt
1−t þ ið2s − 1Þ

�
lþl0þ4

����
t¼0

; ðA2Þ

where ζb ¼ αeffb =v and ζs ¼ αeffs =v. To arrive at this
expression, the representation of the bound-state wave
function in terms of associated Laguerre polynomials
and their generating function was used while for the
scattering state the Hypergeometric function 1F1 in terms
of the integral representation was used. In this work, we
directly evaluate the integral first as

Z
1

0

ds
sl

0−að1− sÞl0þa

ð−ibþ ið2s− 1ÞÞlþl0þ4

¼ ð−iÞ−l−l0 Γð1−aþl0ÞΓð1þaþl0Þ
ð1þbÞ4þlþl0Γð2ð1þl0ÞÞ

× 2F1

�
1−aþl0;4þlþl0;2ð1þl0Þ; 2

1þb

�
; ðA3Þ

where a ¼ iζs; b ¼ i ζbn
1þt
1−t. Applying the t derivatives in

Eq. (A2) to the Hypergeometric function 2F1, allows us to
obtain the following recursive relations:

jIl0¼lþ1
R;BSF j ¼ 2n3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þ ζ2sÞððlþ 1Þ2 þ ζ2sÞ

q
Pðn;lÞ

× jðð2þ lÞζ̃b þ ζsÞRn;lðn − l − 5Þ
− 2ðð2þ lÞζ̃b þ 2ζsÞRn;lðn − l − 4Þ
þ 6ζsRn;lðn − l − 3Þ
þ 2ðð2þ lÞζ̃b − 2ζsÞRn;lðn − l − 2Þ
þ ðζs − ð2þ lÞζ̃bÞRn;lðn − l − 1Þj; ðA4Þ

and

jIl0¼l−1
R;BSF j¼n3Pðn;lÞ
× j− ½ðlð1þlÞζ̃bð−3þð1þ2lÞÞζ̃b2Þ
þð−1−3lþ3ð1þlÞð1þ2lÞζ̃b2Þζs
þ6ð1þlÞζ̃bζ2sþ2ζ3s �Rn;lðn−l−5Þ
−2½ðlð1þlÞζ̃bð3þð1þ2lÞζ̃b2Þþ2ζsþ6lζs

−6ð1þlÞζ̃bζ2s−4ζ3s �Rn;lðn−l−4Þ
þ½6ζsð1þ3lþð1þlÞð1þ2lÞζ̃b2−2ζ2sÞ�Rn;lðn−l−3Þ
þ2½ðlð1þlÞζ̃bð3þð1þ2lÞζ̃b2Þ−2ð1þ3lÞζs
−6ð1þlÞζ̃bζ2sþ4ζ3s �Rn;lðn−l−2Þ
þ½lð1þlÞζ̃bð−3þð1þ2lÞζ̃b2Þþζsþ3lζs

−3ð1þlÞð1þ2lÞζ̃b2ζs
þ6ð1þlÞζ̃bζ2s−2ζ3s �Rn;lðn−l−1Þj; ðA5Þ

where ζ̃b ¼ ζb=n. The common prefactor is

Pðn;lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − l − 1Þ!
ðnþ lÞ!

s
22þ2lζ̃b

lþ3
2

n
7
2ζsð1þ ζ̃b

2Þ3þl

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πζs

1 − e−2πζs

r
e−2ζsarccotðζ̃bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYl−1
j¼0

ðj2 þ ζ2sÞ
vuut ðA6Þ

and the common recursion is given by

Rn;lðxÞ ¼

8>>>>>>>><
>>>>>>>>:

0 x < 0

1 x¼ 0
−2ð3þlÞðζ̃b2−1Þþ4ζ̃bζs

1þζ̃b
2 x¼ 1

ð2þlþxÞð1−ζ̃b2Þþ4ζ̃bζs
xð1þζ̃b

2Þ Rn;lðx−1Þ
− ð4þ2lþxÞ

x Rn;lðx− 2Þ else:

ðA7Þ

The expressions allow for a fast generation of the matrix
elements entering the BSF cross section, also for large n;l.
They have been cross-checked against the expressions in
Ref. [14] for n ≤ 10 andl ≤ n − 1 for theQCD case, as well
as for the simpler QED limit ζs ¼ ζb ¼ ζ. To achieve the
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results presented in this work up to n ¼ 1000 we split the
prefactor (A6) into two multiplicative pieces to avoid
numerical underflow.

2. Bound-to-bound

We turn now to the evaluation of the bound-to-bound
dipole transition matrix elements. The angular part can be
performed as [14]:X
m;m0

jhψnlmjrjψ 0
n0l0m0 ij2 ¼ ðl0δl0;lþ1 þ lδl;l0þ1ÞjIR;transj2;

ðA8Þ
leaving only the radial integral over the initial and final
bound state wave-functions. For convenience, we define
jhψnljrjψn0l0 ij2 as the squared matrix element average
over m, m0. We start our evaluation, by representing both
wave functions in terms of the hypergeometric functions

1F1.
7 As pointed out recently in Ref. [21], one can perform

the radial integration and obtain closed expressions in terms
of hypergeometric functions by following Ref. [74].
Adopting this procedure, we obtain for the general case

jIl0¼lþ1
R;trans j¼Nn;lðκ̃ÞNn0;lþ1ðκ̃0Þ

×2−1ðlþ1Þð2lþ3ÞΓð2lþ2Þð1−zÞn0−n2
zlþ1

ðκ̃0Þ2κ̃

×

���� κ̃0− κ̃nþ κ̃0n0

ðκ̃þ κ̃0Þ2 2F1ð−nþlþ1;n0 þlþ2;2lþ2;zÞ

þ2
κ̃n− κ̃0n0

ðκ̃2− κ̃02Þ2F1ð−nþlþ1;n0 þlþ1;2lþ2;zÞ

−
κ̃0 þ κ̃n− κ̃0n0

ðκ̃− κ̃0Þ2 2F1ð−nþlþ1;n0 þl;2lþ2;zÞ
����; ðA12Þ

and

jIl0¼l−1
R;trans j ¼ Nn;lðκ̃ÞNn0;l−1ðκ̃0Þ

× 2−1lð2lþ 1ÞΓð2lÞð1 − zÞn0−n2
zl

κ̃2κ̃0

×

���� − κ̃ þ κ̃n − κ̃0n0

ðκ̃ − κ̃0Þ2 2F1ð−nþ l − 1; n0 þ l; 2l; zÞ

− 2
κ̃n − κ̃0n0

ðκ̃2 − κ̃02Þ 2F1ð−nþ l; n0 þ l; 2l; zÞ

þ κ̃ − κ̃nþ κ̃0n0

ðκ̃ þ κ̃0Þ2 2F1ð−nþ lþ 1; n0 þ l; 2l; zÞ
����;
ðA13Þ

with z ¼ 4κ̃κ̃0
ðκ̃þκ̃0Þ2 < 1 and κ̃ ¼ αμ=n, κ̃0 ¼ α0μ0=n0, and κ̃ ≠ κ̃0.

For the special case α0μ0 ¼ αμ (particularly important for
QED), see Refs. [21,74]. The normalization is given by:

Nn;lðκ̃Þ ¼
κ̃3=2ffiffiffi
n

p 2

ð2lþ 1Þ!
� ðnþ lÞ!
ðn − l − 1Þ!

�
1=2

: ðA14Þ

For large initial state principle quantum numbers
n ¼ Oð10Þ, the numerical evaluation of the hypergeometric
functions can be problematic for transitions where z → 1
(n0 → n). To improve the numerical stability in this regime,
we use a lengthy expression for the hypergeometric
function expanded around 1 − z. For the special arguments
of the hypergeometric functions as given above, we can
further simplify the expression and finally obtain to all
orders in 1 − z:

2F1ða; b; c; zÞ → ð−1Þ−að−1þ zÞ−a−bþc

×
Γð1 − aÞΓðcÞ

ΓðbÞΓð1 − a − bþ cÞ
× 2F1ðc − a; c − b; c − a − bþ 1; 1 − zÞ:

ðA15Þ
Notice that this substitution is an identity for all sets of
fa; b; c; zg arguments given above. In practice, we use the
substitution for z > 0.7, which allows us to obtain stable
numerical results for all bound-to-bound transitions with
n ≤ 100. Increasing the number of digits for z (e.g., via
MAXEXTRAPRECISION in Mathematica) allows for even
larger n values and also to check the stability, with the
cost of losing efficiency.

APPENDIX B: CROSS SECTIONS AND RATES

1. Thermal average and Milne relations

In the nonrelativistic limit, the thermal average of the
bound state formation cross section can be written as

hσvii ¼
�

μ

2πT

�
3=2

Z
d3ve−

μv2

2T ½1þ fðΔEÞ�ðσvÞi; ðB1Þ

7Another evaluation can be made by representing the wave
functions of the bound states in terms of the associated Laguerre
polynomials:

Lα
nðxÞ ¼

Xn
i¼0

ð−1Þi
�
nþ α

n − i

�
xi

i!
: ðA9Þ

Performing the radial integral in this representation leads to

IR;trans ¼ NnlðκÞNn0l0 ðκ0Þðκ̃ þ κ̃0Þ−4−l−l0× ðA10Þ
Xn−l−1
k¼0

Xn0−l0−1
k0¼0

�
nþ l

n − l − k − 1

��
n0 þ l0

n0 − l0 − k0 − 1

�

×
ð−2Þkþk0Γð4þ lþ l0 þ kþ k0Þ

k!k0!
κ̃kðκ̃0Þk0

ðκ̃ þ κ̃0Þkþk0 : ðA11Þ

With the help of Mathematica, both sums can be performed,
resulting in similar recursions as we have obtained for the
scattering-to-bound case. In practice, however, it turns out that
these bound-to-bound recursions are less numerically stablewithin
standard digit precision than what we have obtained by using the
hypergeometric functions in Eqs. (A12), (A13) and (A15).
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where fðΔEÞ ¼ 1=ðeΔE=T − 1Þ. We note that the thermal
averages in non-Abelian gauge theories need to be evalu-
ated carefully due to oscillatory features.8

As usual, the cross section includes an average of
initial state degrees of freedom and a sum over final state
degrees of freedom. For the case of bound states with
fermionic spin-1=2 constituents, one has to distinguish
between bound states in a spin-singlet or spin-triplet
configuration. The main difference between the two cases
occurs for the bound state decay rate, see below. Since
the electric dipole interaction is spin-independent, bound-
to-bound transitions do not change the spin within our
approximations, i.e., transitions occur exclusively among
spin-singlet states or spin-triplet states, respectively. The
transition rates are identical in both cases. Furthermore,
for scattering-to-bound processes, the contribution to the
BSF cross section for formation of any single spin degree
of freedom of the bound state is the same. Therefore, we
account for the formation of spin-singlet or spin-triplet
bound states by the prefactor ξ ¼ 1=4 or ξ ¼ 3=4,
respectively, in Eqs. (B6) and (B16). Furthermore, the
BSF cross sections also apply for bound states composed
of charged scalars, with ξ ¼ 1. The reason is that the
factor 1=4 ¼ 1=2 × 1=2 from averaging over initial state
spin and the factor 4 ¼ 3þ 1 from summing over all
final state spin configurations cancel out in the fer-
mionic case.
For computational efficiency, we use the following

Milne relations based on detailed balance to obtain the
inverse processes of BSF, i.e., ionization, and bound state
deexcitation, i.e., excitation. Assuming leading order
nonrelativistic expansions for the equilibrium yields
Yeq
j (the combined particle and antiparticle yield) and

Yeq
Bi
, the ionization rate can be expressed as

Γi
ion ¼

s
4

ðYeq
j Þ2
Yeq
Bi

hσvii: ðB2Þ

Note that for bound states with fermionic constituents, it
holds for both spin-singlet and spin-triplet states when
using the appropriate BSF cross section as described
above and accounting for the factors of spin degrees of
freedom contained in the equilibrium yields.
The transition rates among the set of bound states are

similarly related via

Γi→j
trans ¼ Γj→i

trans

Yeq
Bj

Yeq
Bi

: ðB3Þ

2. Dark QED

In the absence of light Fermions the coupling is not
running within dark QED and, hence, the effective coupling
strengths are identical for bound and scattering states,
i.e., αeffs ¼ αeffb ¼ α here. The annihilation cross section
into a pair of massless dark photons, including Sommerfeld
enhancement, is given by [75,76]

ðσvÞann ¼
πα2

m2
S0

�
α

v

�
; ðB4Þ

where

S0ðζÞ≡ 2πζ

1 − e−2πζ
: ðB5Þ

The BSF cross section, which includes the summation
over the degenerate magnetic quantum number of the final
state nl and also considers all possible initial angular
momenta, is in the case of Uð1Þ interactions given by

ðσvÞnl ¼ ξ
πα2

m2

29

3
SBSF

�
n;l;

α

nv
;
α

v

�
; ðB6Þ

where ξ accounts for spin factors as defined in Sec. B 1, and

SBSFðn;l; ζ̃b; ζsÞ≡ 1

26nζ̃b
ð1þ ζ̃b

2Þ3

× ½ðlþ 1ÞjIl0¼lþ1
R j2 þ ljIl0¼l−1

R j2�:
ðB7Þ

SBSF can be evaluated numerically in an efficient way by
using the radial integral formulas laid out in App. A 1.
Further analytic simplifications due to the absence of scale
running of the coupling strength and the identical initial and
final state gauge representations are possible, though not
used in our numerical evaluation.
For spin-singlet bound states, we adopt the decay rate into

two dark photons for the s-wave states from Refs. [77,78]:

Γnl→γγ
dec;QED ¼ δl;0

mα5

2n3
: ðB8Þ

For spin-triplet bound states we adopt the decay rate into
three dark photons for the s-wave states from Ref. [79]:

Γnl→3γ
dec;QED ¼ 4ðπ2 − 9Þα

9π
× Γnl→γγ

dec;QED: ðB9Þ

Lastly, the deexcitation rate relates to the dipole matrix
element via

8For example, for effective coupling αeffs < 0 < αeffb relevant
in SUðNcÞ, ðσvÞnl features n − l − 1 local minima in its
velocity dependence. Fewer local minima arise when
0 < αeffs < αeffb .
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Γn0l0→nl
trans;QED ¼ 4α

3
ð2lþ 1Þ

�
mα2

4

���� 1n2 − 1

n02

����
�

3

× jhψn0l0 jrjψnlij2; ðB10Þ

according to Appendix A 2.

3. Dark QCD

In Yang-Mills-theories, gauge Boson self interactions
give rise to running of the coupling strength, even in the
absence of light Fermions. For our numerical benchmark,
we defined the value αðmÞ≡ 0.025 and employ one-loop
running. Using this choice, the nonperturbative regime
αðm=xÞ ¼ 1 starts at x ≈ 4 × 109, which holds for any
mass since m must drop out of dimensionless expres-
sions, being the only mass scale in the theory. The heavy
Fermions are from the fundamental representation of
SUð3Þ and thus can form singlet (1) and octet (8) two
particle states. We evaluate the wave functions of the
initial scattering (bound) states, s (b), at their respective
(Bohr-) momentum scale. The effective couplings are
thus given by

αeffb ≡ CFα

�
m
2

αeffb

n

�
; ðB11Þ

αeffs ≡ 2CF − CA

2
α

�
m
2
v

�
; ðB12Þ

where CF ¼ 4=3 and CA ¼ 3. Eq. (B11) is an implicit
definition easily solved for, either numerically or ana-
lytically order by order. The annihilation into two gluons
is possible from singlet or octet scattering states and
takes the form

ðσvÞann ¼
7

27

παð2mÞ2
m2

�
2

7
S½1�0 þ 5

7
S½8�0

�
: ðB13Þ

The Sommerfeld factors are given by

S½1�0 ¼ αðmv=2Þ
v

2πCF

1 − e−2πCFαðmv
2
Þ=v ; ðB14Þ

S½8�0 ¼ αðmv=2Þ
v

2πðCF − CA=2Þ
1 − e−2πðCF−CA=2Þαðmv=2Þ=v : ðB15Þ

The BSF cross section in a general SUðNcÞ theory takes
the form [14]

ðσvÞnl ¼ ξ
παeffb αBSF

m2

29CF

3N2
c
SBSF

�
n;l;

αeffb

nv
;
αeffs

v

�
; ðB16Þ

with αBSF ¼ αðmv2=4þ EBnl
Þ and SBSF defined in Eq. (B7).

Here ξ accounts for spin factors as defined in Sec. B 1.

The spin-singlet bound state decay rate into two gluons is
given by [9,14,21]

Γnl→gg
dec;QCD ¼ δl;0

mCF

4n3
αðmÞ2ðαeffb Þ3: ðB17Þ

We neglect spin-triplet bound states for dark QCD.
Dark QCD automatically corresponds to the limiting

case of no transitions, i.e., Γi→j
trans ¼ 0, therefore the effective

cross section Eq. (13) simplifies to [14,36]

hσvieff → hσviann þ
X
i

hσvii
Γi
dec

Γi
ion þ Γi

dec
: ðB18Þ

This result can be seen as a straightforward generalization
of the single bound state case [4], extended to a sum over
individual bound states that do not impact each other.

4. SuperWIMP scenario

The expressions for BSF of a colored t-channel scalar
mediator is identical to that for dark QCD in Eq. (B16),
now using m ¼ mq̃ and the SM strong coupling strength αs
to 5-loop accuracy as implemented in RunDec 3 [70] in place
of α, as well as ξ ¼ 1. The annihilation cross section reads

ðσvÞann ¼
14

27

παð2mq̃Þ2
m2

q̃

�
2

7
S½1�0 þ 5

7
S½8�0

�
; ðB19Þ

and the decay rate is given by [9,14]

Γnl→gg
dec ¼ δl;0

mq̃CF

8n3
αðmq̃Þ2ðαeffb Þ3: ðB20Þ

Gauge invariance fixes the gauge representations of q̃ to
that of the bottom quark in our model, hence the electro-
magnetic charge is Q ¼ −1=3. The addition of electro-
magnetic interactions leads to transitions between bound
states in dipole approximation but to no additional relevant
decay or BSF channels. The transition matrix elements
are computed according to Appendix A 2 and enter the
deexcitation rates as

Γn0l0→nl
trans;SW ¼ 4Q2

q̃αem
3

ð2lþ 1ÞðΔEnn0 Þ3jhψ ½1�
n0l0 jrjψ ½1�

nlij2;
ðB21Þ

where the fine structure constant is αem ¼ 1=128.9, and

ΔEnn0 ¼
mq̃

4

���� αeffb ðnÞ
n2

−
αeffb ðn0Þ
n02

����: ðB22Þ

APPENDIX C: RELIC ABUNDANCE
FOR DARK QED

Here, we explore the parameter space of dark QED
consistent with the relic density measurement. We assume

BINDER, GARNY, HEISIG, LEDERER, and URBAN PHYS. REV. D 108, 095030 (2023)

095030-20



that the dark QED sector is in kinetic equilibrium with
the SM heat bath. Solving Eq. (11) for a large number of
points in the two-dimensional parameter space of the
model, we compute the coupling strength α as a function
of the dark matter mass m that provides Ωχh2 ≃ 0.12
[72]. Figure 10 displays the respective results under
various approximations. While the known cases of
Sommerfeld enhanced annihilation and capture into the
ground state further improve the tree-level result, it is
visible from the blue solid line that the inclusion of all
bound states with n ≤ 100 and l ≤ n − 1 (about 5000 in
total), and all possible electric dipole transitions among
them (about 106 in total) results in corrections that are
worth to us to report.
To arrive at this result, we have included spin-singlet

and spin-triplet decay of the s-wave bound states in the
effective cross section, such that all curves other than
the blue solid line confirm the earlier result in Ref. [18].
We have observed convergence regarding the number
of included bound states and transitions. This com-
pletes the discussion within the electric dipole operator
picture, in particular, for ultrasoft processes with one
dark photon.
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