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The muonium-to-antimuonium transition experiment is about to be updated. Notably, the experiment at
Japan Proton Accelerator Research Complex (J-PARC) can explore the magnetic field dependence of the
transition probability. In this paper, we investigate the information that we can extract from the transition
probabilities across different magnetic field strengths, while also taking into account a planned transition
experiment at China Spallation Neutron Source (CSNS). There are two model-independent parameters in
the transition amplitude, and we ascertain the feasibility of determining these parameters, including their
relative physical phase, from experimental measurements. This physical phase can be related to the electron
electric dipole moment, which is severely constrained by experiments. The underlying mediator
responsible for the transition can be either doubly charged particles or neutral particles. In the former
case, typical magnetic fields yield specific probability ratios, while the latter presents a range of the
probability ratio. We investigate several models with neutral mediators and elucidate that the probability
ratio is linked to the sign of new physics contribution to the electron g − 2. The pivotal role of the J-PARC
transition experiment in shedding light on these insights is emphasized.
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I. INTRODUCTION

High-intensity muon beamlines are undergoing upgrades
[1,2], opening the door to various studies on muon material
physics. Among these endeavors, the exploration of lepton
flavor violation (LFV) has garnered significant attention,
encompassing processes such as μ → eγ [3], μ → 3e [4],
and μ → e conversion in nuclei [5]. These investigations
are particularly significant as they delve into physics
beyond the standard model (SM). The muon facilities will
also investigate the transition of muonium (μþe−) into
antimuonium (μ−eþ) (Mu-to-Mu transition) [6–9]. While a
quarter-century has passed since the transition experiment
at Paul Scherrer Institute (PSI) set the most stringent
constraint [10], the upcoming transition experiments
are ready to reinvigorate this pursuit, as exemplified by
the Muonium-to-Antimuonium Conversion Experiment
(MACE) at China Spallation Neutron Source (CSNS)
[11,12] and an experiment using a brand-new approach

at Japan Proton Accelerator Research Complex (J-PARC)
[13]. In the past 25 years, our understanding of the lepton
sector has been improved by other experiments such as
neutrino oscillations, thus developing the theoretical envi-
ronment for the Mu-to-Mu transition [14,15].
Global non-Abelian flavor symmetries in gauge

interactions with quarks and leptons suppress the occur-
rence of flavor changing neutral currents (FCNCs). Mass
differences among quarks and leptons violate the global
flavor symmetries. Therefore, FCNCs are radiatively
induced typically in the down-type quark sector. In the
SM, FCNCs are negligible in the charged lepton sector,
owing to the minuscule mass differences of neutrinos. If
there is a new particle beyond the SM, new couplings
between the new particle and the leptons can serve as new
sources of LFV that are potentially detectable by experi-
ments. Therefore, searching charged lepton flavor changes
can be an effective tool for probing new physics beyond the
SM. The absence of LFV decays requires specific flavor
symmetries or parameter arrangements. For instance, intro-
ducing an additional Higgs doublet that couples to fermions
usually involves the selection of which doublet can couple
to generate the masses of up- and down-type quarks as well
as charged leptons. Alternatively, nearly aligned Yukawa
coupling matrices are required to suppress FCNCs. In the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 095029 (2023)

2470-0010=2023=108(9)=095029(17) 095029-1 Published by the American Physical Society

https://orcid.org/0000-0002-1717-3966
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.095029&domain=pdf&date_stamp=2023-11-17
https://doi.org/10.1103/PhysRevD.108.095029
https://doi.org/10.1103/PhysRevD.108.095029
https://doi.org/10.1103/PhysRevD.108.095029
https://doi.org/10.1103/PhysRevD.108.095029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


lepton sector, we can assume a discrete flavor symmetry to
eliminate muon flavor violating decays, which are severely
constrained by experiments. Even if ΔLe ¼ −ΔLμ ¼ �1
processes are prohibited, ΔLe ¼ −ΔLμ ¼ �2 processes
may still be allowed, resulting in the generation of the
Mu-to-Mu transition at the tree level. Neutral or doubly
charged particles could serve as mediators of the ΔLe ¼
−ΔLμ ¼ �2 process.
The PSI experiment which provides the current bound on

theMu-to-Mu transition attempts to detect electrons from the
decays of μ− in Mu that is expected from the transition in the
presence of a magnetic field. Because the experiment cannot
specify the decay time elapsed since Mu production, it
obtains a bound of the time-integrated transition probability.
We refer to this measurement technique as the PSI method.
The upcoming MACE experiment in China will adopt the
PSI method for measurement. In contrast, the J-PARC
experiment will measure the time-dependent probability of
the transition. At a specific time, a laser ionizes Mu that is
expected from the transition, and the resulting dissolvedμ− is
then carried by an electric field and directed toward a
spectrometer. We refer to this measurement technique as
the J-PARC method. The J-PARC method allows for alter-
ation of the magnetic field where Mu is produced and
enables, in principle, the measurement of the magnetic field
dependence of the transition probability. The dependence of
the transitionprobability on themagnetic field varies depend-
ing on the operators to induce the transition [16,17]. To
distinguish the mediator of the transition, it is crucial to
measure the transition probabilities under different magnetic
fields. If doubly charged particles act as mediators, the
operators induced by them yield specific ratios of the
transition probabilities. Therefore, measuring probability
ratios can quickly identify the operators. On the other hand,
if neutral particles are mediators, the ratios can take on
various values depending on model parameters. Therefore,
closer analyses of models are necessary.
In this paper, we study the magnetic field dependence of

the transition probabilities induced by neutral mediators,
which may be found by the combination of the J-PARC and
MACE experiments. The J-PARC method can measure the
transition probabilities both at a weak magnetic field B≲
1 μT and at a mediummagnetic field approximately equal to
the geomagnetic field ∼Oð10Þ μT. The MACE experiment
(and possibly an upgraded experiment at PSI) will measure
the time-integrated probability at B ¼ 0.1 T. Two parame-
ters exist for the model-independent description of the Mu-
to-Mu transition amplitudes. The transition probabilities at
threemagnetic fields, together with information on themuon
polarization in the produced Mu at B ¼ 0.1 T, enable the
determination of the two parameters with a possible relative
phase in the amplitudes. When the transition is induced by a
single mediator, the relative phase is related to the electric
dipole moment (EDM) of the electron, and thus the phase
should be very small due to the experimental bound on the

electron EDM [18,19]. In this study, we will examine three
possible neutral mediators that can induce the transition: (1)
the axionlike particle (ALP), (2) the inert doublet model, and
(3) the neutral flavor gauge boson. We assume that the
models mentioned above do not induce theΔLe ¼ −ΔLμ ¼
�1 processes. Even under the assumption, the electron and
muon masses as well as their anomalous magnetic moments
(g − 2) can bemodified radiatively. Thesemodels canmake a
significant contribution to the electron g − 2 due to the flavor
violation, resulting from the chirality flip caused by themuon
mass at the internal line of the loop diagram for the electron
g − 2. The current bound of theMu-to-Mu transition restricts
the contributions to the muon and electron g − 2. The new
physics contribution to the electron g − 2 (Δae) can be either
positive or negative [see Eqs. (5.7) and (5.8) for current status
of the electron g − 2]. For the scalar mediators (1) and (2),
the transition bound allows for a significant value of jΔaej.
We emphasize that the magnetic field dependence of the
transition probability is linked to the sign of Δae, and the
measurements at J-PARC can impact these models.
This paper is organized as follows. In Sec. II, we review

Mu-to-Mu transition operators and the transition probability
as a functionof the operator coefficients andmagnetic field in
the presence of nonrelativisticMu. In Sec. III, we explore the
magnetic field dependence of the amplitude in each transition
operator. In Sec. IV, we define the ratios of the transition
probabilities at three magnetic fields in the J-PARC and PSI
methods and analyze what we can deduce from the ratios. In
Sec. V, we study the model with ALP and the relationship
between the electron g − 2 and the magnetic field depend-
ence of the transition probability. In Sec. VI, we study the
inert doubletmodel anddescribe themuon and electron g − 2
in the model. By examining the ratio of the transition
probability, it is possible to investigate the parameters of
the model and its consistency with the electron g − 2. In
Sec. VII, we describe the ratio of the transition probability in
the model with neutral flavor gauge boson. Additionally, we
mention the relationship between a muon decay parameter
and the magnetic field dependence of the transition proba-
bility in this model. Section VIII is dedicated to the
conclusion. In Appendix A, we overview the energy eigen-
states of Mu and Mu in a magnetic field. In Appendix B, the
populations of the states in the produced Mu are described.
In Appendix C, we revisit the transition amplitudes in
nonrelativistic states to help understand the magnetic field
dependence of the amplitude in each operator.We provide an
explanation for the presence of two model-independent
parameters in the transition amplitudes, despite there being
five independent operators.

II. BRIEF REVIEW OF THE Mu-TO-Mu
TRANSITION PROBABILITY

This section reviews the probability of the Mu-to-Mu
transition and its magnetic field dependence [16,17].
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Appendix A describes the four states of the Mu ground
state that arise from combining the spins of μþ and e−:
2 × 2 ¼ 3þ 1. These states can be labeled by quantum
numbers ðF;mÞ, where F denotes the magnitude of total
angular momentum and m signifies the z-component of
total angular momentum. The F ¼ 1 (triplet) and F ¼ 0
(singlet) states can exhibit distinct transition amplitudes
depending on operators that induce the Mu-to-Mu tran-
sition. How these states respond in a magnetic field hinges
on their quantum numbers. Consequently, the magnetic
field dependence on the transition probability assists in
discerning the class of operators.
The four-fermion operators of the Mu-to-Mu transitions

are given as [14]

Q1 ¼ ðμ̄γαð1 − γ5ÞeÞðμ̄γαð1 − γ5ÞeÞ; ð2:1Þ

Q2 ¼ ðμ̄γαð1þ γ5ÞeÞðμ̄γαð1þ γ5ÞeÞ; ð2:2Þ

Q3 ¼ ðμ̄γαð1þ γ5ÞeÞðμ̄γαð1 − γ5ÞeÞ; ð2:3Þ

Q4 ¼ ðμ̄ð1 − γ5ÞeÞðμ̄ð1 − γ5ÞeÞ; ð2:4Þ

Q5 ¼ ðμ̄ð1þ γ5ÞeÞðμ̄ð1þ γ5ÞeÞ: ð2:5Þ

Any four-fermion operators of the transitions can be
expressed as a linear combination of the five operators
utilizing Fierz transformation. For example, S × S and
P × P operators are given as follows:

QS ¼ ðμ̄eÞðμ̄eÞ ¼ 1

4
ð−Q3 þQ4 þQ5Þ; ð2:6Þ

QP ¼ ðμ̄γ5eÞðμ̄γ5eÞ ¼
1

4
ðQ3 þQ4 þQ5Þ: ð2:7Þ

When the Hamiltonian for the Mu-to-Mu transition is
given as

HMu-to-Mu¼
1ffiffiffi
2

p ðG1Q1þG2Q2þG3Q3þG4Q4þG5Q5Þ;

ð2:8Þ

the transition amplitudes MF;m ≡ hMu;F;mjHMu-to-Mu ×
jMu;F;mi for the four states, ðF;mÞ ¼ ð1;�1Þ; ð1; 0Þ;
ð0; 0Þ, in a nonrelativistic limit are obtained as (see
Ref. [15])

M1;m ¼ −
8jφð0Þj2ffiffiffi

2
p

�
G0 þ

1

2
G3

�
; ð2:9Þ

M0;0 ¼ −
8jφð0Þj2ffiffiffi

2
p

�
G0 −

3

2
G3

�
; ð2:10Þ

where we define

G0 ≡G1 þG2 −
1

4
G4 −

1

4
G5: ð2:11Þ

The wave function of an electron at the position of a muon
is given by

jφð0Þj2 ¼ ðmredαÞ3
π

; mred ¼
mμme

mμ þme
; ð2:12Þ

where α is the fine structure constant.
The Mu-to-Mu transition probability at time t is

expressed as

PðtÞ ¼
X
ðF;mÞ

fF;mPðF;m; tÞ; ð2:13Þ

where the coefficients fF;m correspond to the diagonal
elements of the density matrix for the states jMu;F;miB
and represent the population of each state of the produced
Mu. The subscript B attached to the states indicates that
these states are energy eigenstates in a magnetic field.
The transition probabilities of the m ¼ �1 states are

given as

Pð1;�1; tÞ ≃ e−Γt
jM1;�1j2

jM1;�1j2 þ ðΔE=2Þ2

× sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM1;�1j2 þ ðΔE=2Þ2

q
t; ð2:14Þ

where Γ is the decay width of Mu and ΔE is the
energy splitting between jMu; 1;�1iB and jMu; 1;�1iB
in the presence of a magnetic field. For the m ¼ 0 states,
the oscillation time is much longer than the lifetime
τ ¼ 1=Γ ≃ 2.2 μs, and the probabilities are approximately
given as

PðF; 0; tÞ ≃ e−ΓtjMB
F;0j2t2: ð2:15Þ

The m ¼ 0 states are mixed in the presence of a mag-
netic field, and the transition amplitudes are given as (see
Appendix A for their mixing in the presence of the
magnetic field B)

MB
1;0¼C2M1;0−S2M0;0¼

M1;0−M0;0

2
þM1;0þM0;0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

p

¼−
8jφð0Þj2ffiffiffi

2
p

�
G3þ

G0− 1
2
G3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX2
p

�
; ð2:16Þ

MB
0;0¼C2M0;0−S2M1;0¼

M0;0−M1;0

2
þM1;0þM0;0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

p

¼−
8jφð0Þj2ffiffiffi

2
p

�
−G3þ

G0− 1
2
G3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX2
p

�
; ð2:17Þ
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where X is defined in Eq. (A14):

X ≃ 6.31 ×
B

Tesla
: ð2:18Þ

We assume that the coefficients fF;m satisfy

f1;1 þ f1;−1 ¼ f1;0 þ f0;0 ¼
1

2
: ð2:19Þ

Refer to Appendix B for more detailed information. The
total transition probability is then expressed as

PðtÞ≃e−Γt
�
f1;0jMB

1;0j2t2þf0;0jMB
0;0j2t2

þ1

2

jM1;1j2
jM1;1j2þðΔE=2Þ2 sin

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM1;1j2þðΔE=2Þ2

q
t

�
:

ð2:20Þ

The time-integrated transition probability is calculated as

P̄ ¼
Z

∞

0

ΓPðtÞdt

≃ 2τ2
�
f1;0jMB

1;0j2 þ f0;0jMB
0;0j2 þ

1

2

jM1;1j2
1þ ðτΔEÞ2

�
:

ð2:21Þ

We here note the following numerical values:

τΔE ¼ 3.85 × 105 ×
B

Tesla
; ð2:22Þ

ð8jφð0Þj2Þ2τ2G2
F ¼ 64m2

redα
6τ2G2

F

π2
¼ 2.57 × 10−5: ð2:23Þ

As described in Appendix B, we assume that the co-
efficients fF;0 are given by

f1;0 ¼
1

4

�
1 − Pμ

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
;

f0;0 ¼
1

4

�
1þ Pμ

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
: ð2:24Þ

The parameter Pμ is defined by Eq. (B3), and it can be
interpreted as the muon polarization in the produced Mu.
For B≲ 1 mT, the coefficients can be approximated as

f1;0 ≃ f0;0 ≃
1

4
: ð2:25Þ

When the magnetic field is very weak, i.e., B ¼
B0 ≪ 1 μT, the m ¼ �1 states can fully contribute to
the Mu-to-Mu transition. We obtain

Pðt; B ¼ B0Þ ≃ 1.3 × 10−5 × e−Γt
t2

τ2

����� G0

GF

����2 þ 3

4

���� G3

GF

����2
�
:

ð2:26Þ

When the magnetic filed is B≳Oð10Þ μT, the contribution
of them ¼ �1 states can be dropped, and the probability is

PðtÞ ≃ 1.3 × 10−5 × e−Γt
t2

τ2

�
f1;0

��� G3

GF
þ G0 − 1

2
G3

GF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
���2

þ f0;0
��� − G3

GF
þ G0 − 1

2
G3

GF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
���2�: ð2:27Þ

We note
R
∞
0 Γe−Γtt2dt ¼ 2τ2 to obtain the time-integrated

probability P̄. If G3 ¼ 0, one simply obtains

P̄ ¼ 2.6 × 10−5 ×

���� G0

GF

����2 1

2ð1þ X2Þ : ð2:28Þ

The PSI experiment has obtained the bound on the time-
integrated probability under B ¼ 0.1 T [10],

P̄ < 8.3 × 10−11; ð2:29Þ

which is translated to

jG0j
GF

< 3.0 × 10−3: ð2:30Þ

Figure 1 illustrates the ratio of the transition probability
under magnetic field B to the probability when there is
no magnetic field. The muon polarization in the produced
Mu is assumed to be Pμ ¼ 0 for simplicity. A time,
t ¼ τ ¼ 2.2 μs, is chosen for plotting the figure. The
suppression of the transition of the m ¼ �1 states slightly
depends on the chosen time. For B≳Oð10Þ μT, the

FIG. 1. Magnetic field dependence of the ratios of time-
dependent probabilities to those at B ¼ 0, corresponding to
various transition operators.
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transition of the m ¼ �1 states is suppressed, and the ratio
of transition probabilities does not depend on the choice,
resulting in consistent ratios of the time-integrated prob-
abilities P̄ in the magnetic field. The blue line (overlapping
with the green line for B≲ 0.01 T) is the plot for the
ðV � AÞ × ðV � AÞ and ðS� PÞ × ðS� PÞ operators,
which correspond to the case of G3 ¼ 0. The orange line
is the plot for the ðV − AÞ × ðV þ AÞ operator, which
corresponds to the case of G0 ¼ 0. The green and red
lines represent the plots of S × S and P × P operators,
respectively.

III. INTERPRETATION OF THE MAGNETIC
DEPENDENCE IN EACH OPERATOR

This section provides a possible explanation for the
magnetic field dependence of the transition probability
depicted in Fig. 1. The qualitative behavior of the depend-
ence in each operator can be understood by examining the
spins of muons and electrons involved in the transition
process. In the previous section, we presented the transition
amplitudes as formulas derived from Ref. [15], which are
expressed using energy eigenstates in magnetic fields. To
qualitatively understand the magnetic field dependence in
each operator, we can analyze the transition amplitudes in
the spin eigenstates of Mu and Mu in relation to the energy
eigenstates in the magnetic field. Appendix A presents a
description of the energy eigenstates in the magnetic field.
Detailed algebraic calculations for the amplitudes in spin
eigenstates can be found in Appendix C. In this section, we
extract essential points about magnetic field dependence in
each operator, focusing on spin conservation in the tran-
sition via pseudoscalar and scalar exchanges.
We first consider the processes via neutral (pseudo)scalar

exchange as depicted in Fig. 2. The s-channel exchange of
a pseudoscalar (depicted on the left in Fig. 2) can generate
the P × P operator in Eq. (2.7) for the Mu-to-Mu transition.
It should be noted that the F ¼ 0 singlet state of Mu is a
pseudoscalar. The singlet state can transition to Mu via the
s-channel exchange of a pseudoscalar. On the other hand,
the F ¼ 1 triplet state is a 3-vector that has even parity,
and the s-channel exchange of a pseudoscalar cannot
generate the transition for the F ¼ 1 triplet state. Alter-
natively, we may focus on the spins of the muon and
electron in Mu shown in the diagram. Since their spins must
be oriented oppositely, the process depicted in Fig. 2 (left)

cannot involve the transition of the triplet state. From
Eq. (2.7), one can deduce that G0 þ G3=2 ¼ 0 for the
P × P operator, and M1;m ¼ 0 can be confirmed in
Eq. (2.9). In Fig. 1, it can be observed that the P × P plot
remains flat until the m ¼ 0 states experience the magnetic
field at B ∼ 0.01 T. This absence of the triplet transition
amplitude prevents the triplet state from transitioning, even
in a weak magnetic field.
The transition via the S × S operator corresponds to the

t-channel exchange of a scalar (on the right in Fig. 2). From
the diagram, one finds that the spins of μþ in Mu and eþ in
Mu are the same, as are the spins of e− in Mu and μ− in Mu.
This implies that jMu;↑↓i transitions to jMu;↓↑i, and
jMu;↓↑i transitions to jMu;↑↓i, where we denote the
spins of Mu and Mu with up and down arrows in the order
of muons and electrons. As derived in Appendix A, the
m ¼ 0 energy eigenstates in a magnetic field are given by

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
c s

−s c

�� jMu;↓↑i
jMu;↑↓i

�
; ð3:1Þ

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
s c

−c s

�� jMu;↓↑i
jMu;↑↓i

�
; ð3:2Þ

where

c¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX2
p

s
; s¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

p
s

: ð3:3Þ

One finds that

MB
1;0¼B hMu;1;0jQSjMu;1;0iB

¼ s2hMu;↓↑jQSjMu;↑↓iþc2hMu;↑↓jQSjMu;↓↑i;
ð3:4Þ

MB
0;0¼B hMu;0;0jQSjMu;0;0iB

¼−c2hMu;↓↑jQSjMu;↑↓i−s2hMu;↑↓jQSjMu;↓↑i
ð3:5Þ

are derived from spin conservation in the process. Note that
the consistency of the amplitude for B ¼ 0 requires
hMu;↓↑jQSjMu;↑↓i ¼ hMu;↑↓jQSjMu;↓↑i, which can

FIG. 2. s-channel exchange of a pseudoscalar (left) and t-channel exchange of a scalar (right) for the Mu-to-Mu transition.
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actually be obtained in Eq. (C12) through properly con-
figured calculations. Consequently, it can be deduced that
the transition amplitudes do not depend on the magnetic
field due to c2 þ s2 ¼ 1. Furthermore, MB

1;0 ¼ −MB
0;0. In

fact, Eq. (2.6) demonstrates G0 − G3=2 ¼ 0 for the S × S
operator, and one can verify that the amplitudes do not
depend on the magnetic field, along with MB

1;0 ¼ −MB
0;0

from Eqs. (2.16) and (2.17). As a result, the S × S plot
remains flat in the strong magnetic field, as can be seen
in Fig. 1.
Next, let us consider the Mu-to-Mu transition via the

t-channel exchange of doubly charged particles as shown
in Fig. 3. Through the doubly charged scalar exchange
[20,21], a transition operator ðμ̄μcÞðeceÞ is induced. The
operator can include Q1, Q2, Q4, and Q5 [though the Q4,
Q5 contributions through the exchange are expected to be
small in the SUð2ÞL ×Uð1ÞY theory]. In the case of the
scalar exchange, the spins of μþ in Mu and μ− in Mu are the
same, as are the spins of e− in Mu and eþ in Mu, as found
from the Feynman diagram in Fig. 3. By considering spin
conservation and Eqs. (3.1) and (3.2), one can obtain

MB
1;0¼B hMu;1;0jQ1jMu;1;0iB

¼ scðhMu;↓↑jQ1jMu;↓↑iþhMu;↑↓jQ1jMu;↑↓iÞ;
ð3:6Þ

MB
0;0¼B hMu;0;0jQ1jMu;0;0iB

¼ scðhMu;↓↑jQ1jMu;↓↑iþhMu;↑↓jQ1jMu;↑↓iÞ;
ð3:7Þ

and MB
1;0 ¼ MB

0;0 ∝ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
. As pointed out in

Appendix A, the spin orientations need to be reversed
for the Mu-to-Mu transition in a strong magnetic field, and
due to the spin conservation, the transition via doubly
charged scalar exchange will not take place in the limit of a
strong magnetic field. Indeed, this can be verified in the
transition probabilities for G3 ¼ 0 in Eq. (2.27), and the

blue line for the ðV�AÞ×ðV�AÞ and ðS� PÞ × ðS� PÞ
operators in Fig. 1 touches zero for B≳ 1 T. In the case of
doubly charged vector boson exchange [22–24], a tran-
sition operator ðμγαμcÞðecγαeÞ is generated. The induced
operator is proportional to the ðV − AÞ × ðV þ AÞ operator
Q3, which can be obtained from Fierz transformation. In
this case, the spins of the muons and electrons in Mu and
Mu can either be the same or opposite, and the transition
can occur in the limit of a strong magnetic field, as can be
seen from the orange line in Fig. 1.
We have found that the amplitude of the triplet state

vanishes for the P × P operator initially. Then, one may
wonder when the transition amplitude of the singlet state
becomes zero, that is, whenM0;0 ¼ 0. Considering that the
amplitude of the triplet state disappears due to s-channel
pseudoscalar exchange, a case involving s-channel vector
exchange is a candidate. However, due to the Lorentz
invariance, s-channel neutral vector boson exchange intro-
duces an additional term. For example, one can contem-
plate combining S × S with the V × V operator to cancel
the additional term. Another possibility involves consid-
ering 2QS þQP. The rationale behind the vanishing of the
singlet amplitude in these combinations can be compre-
hended by referring to Eqs. (C2), (C6), and (C7). In any
case, it appears that the disappearance of the singlet
amplitude cannot be attributed to a single Lorentz invariant
operator.

IV. WHAT CAN THE MEASUREMENTS
OF PROBABILITY RATIOS TELL US?

In this section, we define ratios of the transition
probabilities under different magnetic fields, and we
elucidate the insights that can be inferred from these ratios,
which would be measured at the MACE and J-PARC
experiments.
Employing Eqs. ((2.24) for f1;0 and f0;0, we obtain

the ratio of the transition probabilities from Eqs. (2.26)
and (2.27) for the magnetic fields B≳Oð10Þ μT and
B ¼ B0 ≪ 1 μT, resulting in

Pðt; BÞ
Pðt; B0Þ

¼ 4jG0j2 − 4ReðG0G�
3Þð1þ 2PμXÞ þ jG3j2ð5þ 4PμX þ 4X2Þ

8ð1þ X2ÞðjG0j2 þ 3
4
jG3j2Þ

; ð4:1Þ

where Pμ is the muon polarization in the produced Mu.

FIG. 3. t-channel exchange of a doubly charged scalar (left) and vector boson (right).
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In the context of the J-PARC experiment, if the tran-
sitions are observed, we anticipate measuring the proba-
bility ratio between B ¼ B0 ≪ 1 μT and B ¼ B1 [where
Oð10Þ μT < B1 < Oð1Þ mT, i.e., X ≪ 1], denoted as R1,

R1 ≡ Pðt; B1Þ
Pðt; B0Þ

¼ jM1;mj2 þ jM0;0j2
3jM1;mj2 þ jM0;0j2

¼ 1

2

jG0j2 − ReG0G�
3 þ 5

4
jG3j2

jG0j2 þ 3
4
jG3j2

: ð4:2Þ

Collecting data from both the MACE and J-PARC experi-
ments, we anticipate obtaining the ratio R2 under a stronger
magnetic field B2,

R2 ≡ Pðt; B2Þ
Pðt; B0Þ

: ð4:3Þ

In the MACE experiment, the magnetic field strength will
be B2 ¼ 0.1 T (corresponding to X ¼ 0.63). Given the
distinct methods used in these two experiments, it is crucial
to convert the time-integrated probability measured by
MACE into a time-dependent probability format within
the framework of the J-PARC methods. This conversion is
necessary to calculate the ratio R2.
As we have explained, doubly charged mediators can

produce either G0 or G3, while neutral mediators can
generate both G0 and G3 elements at the tree level. In
general, the complex phases of G0 and G3 can be different.
It is crucial to note that the relative phase between G0 and
G3 must be extremely small due to the electron EDM if a
single neutral mediator is responsible for generating the
transition operator. This will be explored further in the
subsequent sections, where we delve into concrete models
to provide a clearer understanding.
Suppose that the relative phase is zero (i.e.,

ImG3=G0 ¼ 0). The measurement of the ratio R1 at
J-PARC can provide two potential solutions for G3=G0

[except for the maximum (minimum) value of R1 ¼ 1
(¼ 1=3)] from Eq. (4.2). If the ratio R2 is also obtained,
the true solution can be distinguished, and both G3 and G0

can be determined in principle. Additionally, the value of the
muon polarizationPμ in the producedMu can be determined
(unless R1 ¼ 1=2), as illustrated in Fig. 4 (top). The
intersections of lines on the figure for different Pμ values
correspond to points for theS × S operator (R1 ¼ R2 ¼ 1=2)
and the case ofG3 ¼ 0 [R1 ¼ 1=2,R2 ¼ 1=2ð1þ X2Þ]. The
values ofR2 for these two points are independent ofPμ due to
jMB

1;0j ¼ jMB
0;0j and f1;0 þ f0;0 ¼ 1=2. If the muon polari-

zation Pμ in Mu at B ¼ B2 can be accurately measured
experimentally, it becomes possible to investigate whether
G3=G0 has a phase using the values of R1 and R2, as can be
understood from Fig. 4 (bottom).
We comment on possible further analyses if the tran-

sition is really observed at the experiments. In the J-PARC

method, a narrower laser band can be used to ionize only
the F ¼ 1 states of Mu at a weak magnetic field. If such
selective ionization is possible, the J-PARC experiment by
itself can determine G0 and G3 as well as their relative
physical phase without information of the muon polariza-
tion in the produced Mu. If measurements at stronger
magnetic fields can be performed in the PSI method, it
provides a cross-check for the determination of G0 and G3.

V. AXIONLIKE PARTICLE

In this section, we examine a model incorporating an
axionlike particle. While the intricate specifics of the ALP
are discussed in Refs. [25–27], we focus on the following
effective Lagrangian presented in Ref. [26], which deals
with the Mu-to-Mu transition via the ALP:

L ¼ ðyVaμeþ yAaμ̄γ5eþ H:c:Þ − 1

2
m2

aa2: ð5:1Þ

Here, these yV and yA couplings originate from vector
and axial-vector couplings with the ALP a, respectively.

FIG. 4. Trajectories in the R1 − R2 plain while varying the
value of G3=G0 under ImG3=G0 ¼ 0 with different values of
muon polarization Pμ in the produced Mu (top) and trajectories
for different phases of G3=G0 with a fixed muon polarization
Pμ ¼ 0.5 (bottom).

INSIGHTS FROM THE MAGNETIC FIELD DEPENDENCE OF … PHYS. REV. D 108, 095029 (2023)

095029-7



We have made the assumption that the couplings of the
ALP do not give rise to ΔLe ¼ −ΔLμ ¼ �1 processes. By
integrating out the ALP, we obtain

L ⊃
1

2m2
a
ðy2Vðμ̄eÞ2 þ y2Aðμ̄γ5eÞ2 þ 2yVyAðμ̄eÞðμ̄γ5eÞÞ:

ð5:2Þ
It is worth noting that the final term is proportional to
Q4 −Q5 and has no impact on G0. We obtain

G0 ¼
1

8
ffiffiffi
2

p y2V þ y2A
m2

a
; G3 ¼

1

4
ffiffiffi
2

p y2V − y2A
m2

a
: ð5:3Þ

The experimental bound of the Mu-to-Mu transition
places constraints on the magnitude of y2V=m

2
a for a given

yV=yA, and consequently, the contribution to muon g − 2
cannot be sufficiently significant [26] to account for the
deviation between the theoretical prediction in SM and the
experimental measurement [28,29]. If there is no flavor
violation, one finds a relationship between the electron and
muon g − 2 for their contributions from new physics, and
thus, the contribution to the electron g − 2 is also small.
However, due to the violation of lepton flavor by the ALP
couplings, the electron g − 2 has an additional contribution
[30,31]. By ignoring the term of Oðm2

e=m2
aÞ, we obtain the

contribution to the electron g − 2 [using a widely adopted
convention, we denote Δae as the new physics contribution
to ae ≡ ðge − 2Þ=2, with ge representing the g-factor of the
electron] as

Δae ¼
1

16π2
memμ

m2
a

ðjyV j2 − jyAj2Þf
�
m2

a

m2
μ

�
; ð5:4Þ

where fðxÞ is a loop function, fðxÞ ¼ ð2x3 ln x − 3x3þ
4x2 − xÞ=ðx − 1Þ3, which is positive for any xð> 1Þ.
The electron EDM is given as

de ¼
emμ

32π2m2
a
ImðyVy�AÞf

�
m2

a

m2
μ

�
: ð5:5Þ

One finds that ImðyVy�AÞ must be extremely small to satisfy
the experimental bound of the electron EDM [18,19]. If
yV=yA is real, both yV and yA can be made to be real without
loss of generality by unphysical phase rotation of μ and e
fields. We will consider yV and yA as real values from this
point onward. Then, there is no physical phase present in the
transition amplitudes, as obviously found from Eq. (5.3).
The ratio of the transition probability in Eq. (4.2) is

R1¼
y4V −2y2Vy

2
Aþ2y4A

2ðy4V −y2Vy
2
Aþy4AÞ

¼ 1

2
þ y2Aðy2A−y2VÞ
2ðy4V −y2Vy

2
Aþy4AÞ

: ð5:6Þ

One can confirm that R1 ¼ 1=2 if yA ¼ 0 and R1 ¼ 1 if
yV ¼ 0, reflecting the S × S and P × P cases, respectively.

Upon closer examination of this equation, it becomes
apparent that R1 > 1=2 if y2A > y2V and R1 ≤ 1=2 if
y2V > y2A. We immediately find from Eq. (5.4) that a
negative Δae leads to R1 > 1=2, while a positive Δae
results in R1 ≤ 1=2. This prediction, significant within the
scope of this model, can be tested through the measure-
ments of the Mu-to-Mu transition at J-PARC.
We provide an overview of the current status concerning

the electron g − 2. In 2018, the measurement of the fine
structure constant employing Cs exhibited enhanced pre-
cision [32], thus highlighting a discrepancy between the
experimental measurements and the theoretical calculations
in SM, even in the electron g − 2. In 2020, the fine structure
constant was measured using Rb atoms [33]. However,
these two measurements of the fine structure constant
displayed a 5σ discrepancy. Recently, the experimental
measurement of the electron g − 2 was updated [34]. The
numerical values of the deviation of ae ¼ ðge − 2Þ=2
between the experimental measurement and theoretical
calculations utilizing the measurements of the fine structure
constant are as follows:

ΔaCse ¼ aeðexp :; 2022Þ − aeðSM;Cs; 2018Þ
¼ ð−1.02� 0.26Þ × 10−12; ð5:7Þ

ΔaRbe ¼ aeðexp :; 2022Þ − aeðSM;Rb; 2020Þ
¼ ð0.34� 0.16Þ × 10−12: ð5:8Þ

The 5σ discrepancy between the Cs and Rb measurements
of the fine structure constant is crucial to address the
potential presence of new physics contributions. At present,
the sign of Δae remains indeterminate.
The bound of the Mu-to-Mu transition places a restric-

tion on ðy2V − y2AÞ=m2
a for a fixed yV=yA value. Given the

presence of a logarithmic factor in the loop function,

f

�
m2

a

m2
μ

�
¼ 2 ln

m2
a

m2
μ
− 3ðma ≫ mμÞ; ð5:9Þ

it becomes apparent that Δae can attain greater magnitudes
with increasing ALP mass.
In Fig. 5, we present the contours of Δae as functions of

the ALP couplings yV and yA. The green dashed line
signifies the current bound resulting from the PSI transition
experiment. For the purpose of plotting the dashed lines, we
choose Pμ ¼ 0.5 as the muon polarization in the produced
Mu. In the case of ma ¼ 300 MeV, jΔaej remains modest
and does not fall within the 1σ range given in Eqs. (5.7)
and (5.7). In the case of ma ¼ 10 MeV, on the other hand,
jΔaej can become larger as anticipated earlier. Notably, the
viability of the ALP for ma < 10 GeV can be assessed
through the Belle II experiment [26].
In Fig. 6, we present the relation between Δae and the

ratio R1 when the transition probability is just same as the
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PSI bound, P̄ ¼ 8.3 × 10−11. The blue solid line corre-
sponds to the case of ma ¼ 10 GeV, while the green
dashed line represents the case of ma ¼ 300 MeV. As
explained earlier, the heavier ALP allows a larger magni-
tude of jΔaej. The value of jΔaej with fixed values of ma

and yV=yA is proportional to
ffiffiffiffī
P

p
. Consequently, once the

MACE achieves its targeted goal of P̄ ∼Oð10−14Þ [12], it
will be become feasible to determine whether this model
contributions to the electron g − 2. As explained earlier
from (5.4) and (5.6), this figure underscores that R1 ≤ 1=2
when Δae is positive and R1 > 1=2 when Δae is negative.
These findings will be pivotal if the transition is actually
observed and the probability ratio is measured at J-PARC.

VI. INERT DOUBLET MODEL

The Mu-to-Mu transition can potentially arise from the
inclusion of an additional SUð2ÞL doublet [35]. This type
of the model can be also contemplated within the frame-
work of R-parity violating supersymmetry [36]. In this
section, we consider an inert SUð2ÞL doublet, one that
remains devoid of a vacuum expectation value and thus
preserves a symmetry aimed at diminishing ΔLe ¼
−ΔLμ ¼ �1 processes. Similar models that give rise to
the Mu-to-Mu transition are also considered in recent
works [37,38].
We consider the SM Higgs doublet Φ, accompanied

by an inert doublet η which does not acquire a vacuum
expectation value,

Φ ¼
� ωþ

vþ hþiω0ffiffi
2

p

�
; η ¼

� Hþ

HþiAffiffi
2

p

�
; ð6:1Þ

where ωþ and ω0 represent Nambu-Goldstone bosons that
would be absorbed by the W and Z bosons. The physical
Higgs boson with a mass of 125 GeV corresponds to h. Our
model revolves around the utilization of a global discrete
Z4 symmetry, where the following charges are assigned to
the left-handed lepton doublets, right-handed charged
leptons, and scalar doublets Φ and η,

le∶ 1; lμ∶3; lτ∶0; eR∶1; μR∶3; τR∶0; Φ∶0; η∶2;

ð6:2Þ

leading to permissible LFV couplings as

−L ¼ ρ12leημR þ ρ21lμηeR þ H:c:: ð6:3Þ

FIG. 5. Contour plots illustrating Δae for two ALP masses, ma ¼ 300 MeV and ma ¼ 10 GeV. The green dashed lines delineate
contours of P̄ ¼ 8.3 × 10−11, which correspond to the bound of the Mu-to-Mu transition given by the PSI experiment.

FIG. 6. Plot depicting the relation between the contribution to
the electron g − 2 (Δae) and the transition probability ratio (R1)
in the ALP model for ma ¼ 300 MeV (indicated by the green
dashed line) and ma ¼ 10 GeV (indicated by the blue solid line)
when the time-integrated transition probability is just same as the
PSI bound, P̄ ¼ 8.3 × 10−11. The horizontal dotted line corre-
sponds to R1 ¼ 1=2.

INSIGHTS FROM THE MAGNETIC FIELD DEPENDENCE OF … PHYS. REV. D 108, 095029 (2023)

095029-9



The scalar potential terms are

V ¼ m2
ΦΦ†Φþm2

ηη
†ηþ λ1ðΦ†ΦÞ2 þ λ2ðη†ηÞ2

þ λ3Φ†Φη†ηþ λ4η
†ΦΦ†η

þ λ5
2
ððΦ†ηÞ2 þ H:c:Þ; ð6:4Þ

and the masses of the scalars in η are

m2
H ¼ m2

η þ ðλ3 þ λ4 þ λ5Þv2; ð6:5Þ

m2
A ¼ m2

η þ ðλ3 þ λ4 − λ5Þv2; ð6:6Þ

m2
Hþ ¼ m2

η þ λ3v2: ð6:7Þ

This discrete symmetry arrangement engenders the absence
of any mixing between h and H; in other words, h and H
are brought into alignment (for instance, the couplings of
gauge bosons and h remain consistent with those of SM)
without decoupling H. We note that this discrete symmetry
is not spontaneously broken and remains intact even after
the electroweak symmetry breaking, and the lightest scalar
in the η doublet decays into two leptons via the interaction
in Eq. (6.3).
The discrete charge assignments in Eq. (6.2) forbids

the ΔLe ¼ −ΔLμ ¼ �1 processes, while corrections to the
muon and electron masses are possible, and the muon and
electron g − 2 can be generated as

Δaμ ≃
m2

μ

16π2
1

6

�
ðjρ12j2þ jρ21j2Þ

�
1

m2
H
þ 1

m2
A

�
− jρ12j2

1

m2
Hþ

�
;

ð6:8Þ

Δae ≃
m2

e

16π2
1

6

�
ðjρ12j2 þ jρ21j2Þ

�
1

m2
H
þ 1

m2
A

�
− jρ21j2

1

m2
Hþ

�

þmemμ

16π2
Reðρ12ρ21Þ

��
ln
m2

H

m2
μ
−
3

2

�
1

m2
H

−
�
ln
m2

A

m2
μ
−
3

2

�
1

m2
A

�
: ð6:9Þ

The electron EDM is obtained as

de≃
emμ

32π2
Imðρ12ρ21Þ

��
ln
m2

H

m2
μ
−
3

2

�
1

m2
H
−
�
ln
m2

A

m2
μ
−
3

2

�
1

m2
A

�
:

ð6:10Þ

The experimental constraints on the electron EDM restrict
the model parameters such that they satisfy either
Imðρ12ρ21Þ ≃ 0 or mH ¼ mA. Without loss of generality,
one can make either ρ12 or ρ12 (as well as λ5) real through
unphysical phase rotations of fields while ensuring that the
electron and muon masses remain real. Considering the

constraints on the electron EDM when mH ≠ mA, we will
suppose that both ρ12 and ρ21 are real numbers.
Noting

ρ21μLeRH þ ρ12eLμRH þ H:c:

¼ ρþμeH þ ρ−μ̄γ5eH þ H:c:; ð6:11Þ
iρ21μLeRAþ iρ12eLμRAþ H:c:

¼ iρ−μeAþ iρþμ̄γ5eAþ H:c:; ð6:12Þ
where

ρþ ≡ ρ21 þ ρ�12
2

; ρ− ≡ ρ21 − ρ�12
2

; ð6:13Þ

we obtain the S × S and P × P transition operators by
integrating out H and A scalar fields:

L⊃
1

4

��
ρ2þ
m2

H
−
ρ2−
m2

A

�
ðμ̄eÞ2þ

�
ρ2−
m2

H
−
ρ2þ
m2

A

�
ðμ̄γ5eÞ2

�
: ð6:14Þ

It is also convenient to express as

G0 ¼
1

32
ffiffiffi
2

p ðρ221 þ ρ�212Þ
�

1

m2
H
−

1

m2
A

�
; ð6:15Þ

G3 ¼
1

8
ffiffiffi
2

p ρ21ρ
�
12

�
1

m2
H
þ 1

m2
A

�
: ð6:16Þ

As previously explained, assuming Imðρ12ρ21Þ ¼ 0 due to
the electron EDM constraint leads to the absence of a
physical phase in the transition amplitudes. Alternatively,
the electron EDM can also be eliminated by setting
mH ¼ mA, which also results in no physical phase in the
amplitude because of G0 ¼ 0.
In the preceding ALP model, the contribution to the

muon g − 2 is suppressed due to the constraints imposed by
the Mu-to-Mu transition. In the inert doublet model, the
transition amplitudes can be canceled by choosing mH ≃
mA (which means λ5 → 0) and either jρ12j ≪ jρ21j or
jρ12j ≫ jρ21j. This choice of the parameters yields the
contribution to the muon g − 2 to be Δaμ ∼ 10−9 for ρ21 ∼
Oð1Þ [or ρ12 ∼Oð1Þ] [37,38]. In this case, however, the
contribution to the electron g − 2 becomes diminished due
to mH ≃mA.
The contribution to the electron g − 2 can become

substantial with a value of λ5 ∼ 1, while this choice results
in a small impact on the muon g − 2. Remarking

Reðρ12ρ21Þ ¼ jρþj2 − jρ−j2; ð6:17Þ

one can derive algebraically that Δae is positive for an
S × S-like transition operator (with ρ2−m2

A ≃ ρ2þm2
H), and

Δae is negative for a P × P-like transition operator (with
ρ2þm2

A ≃ ρ2−m2
H), The exploration of the magnetic field
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dependency of the transition probability, along with the
measurements of muon and electron g − 2, can offer
valuable insights into the parameter space of the inert
doublet model.
Figure 7 displays the ratios R1 and Δae for

mH ¼ 150 GeV. The green dashed lines represent the
bound from the PSI experiment. For ρ12 ¼ 1 (left two
plots), the need for mA ∼mH and a small jρ21j arises to
meet the PSI bound. In this case, the contribution to the
electron g − 2 remains small due to mA ∼mH. For ρ12 ¼
0.05 (right two plots), a significant magnitude of Δae
becomes feasible. This case showcases that the ratio R1

corresponds to a larger (smaller) value when Δae is
negative (positive), aligning with expectations.
We comment that the mass splitting amongH, A, andHþ

can give rise to oblique corrections radiatively, and the
anomaly in theW boson mass, as measured using data from
the Collider Detector at Fermilab (CDF), could potentially
be associated with this model [37–40]. This paper primarily

focuses on the Mu-to-Mu transition, considering this model
as one option to generate the transition with a nontrivial R1.
The investigation of the signals at the large hadron collider
(LHC) will be explored in other works like Ref. [37].

VII. NEUTRAL FLAVOR GAUGE BOSON

The LFV neutral gauge boson couplings to induce the
Mu-to-Mu transition are discussed in Ref. [15]. Assuming
the absence of ΔLe ¼ −ΔLμ ¼ �1 processes, we consider
the following Lagrangian for the LFV neutral gauge boson
(for more details, refer to Ref. [41]):

L ¼ gXðlμγαle þ leγαlμÞXα

þ aXgXðe−iφXμRγαeR þ eiφXeRγαμRÞXα

þ 1

2
M2

XX
αXα: ð7:1Þ

FIG. 7. Contour plots illustrating the ratio of the transition probabilities (upper two plots) and the contribution to the electron g − 2
(lower two plots) for a fixed mass of mH ¼ 150 GeV and varying values of ρ12. The green dashed lines represent contours
corresponding to P̄ ¼ 8.3 × 10−11, which is the bound of the Mu-to-Mu transition set by the PSI experiment.
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The coefficients of the induced Mu-to-Mu transition
operators are

G1 ¼
g2X

4
ffiffiffi
2

p
M2

X

; G2 ¼
a2Xe

−2iφXg2X
4

ffiffiffi
2

p
M2

X

; G3 ¼
aXe−iφXg2X
2

ffiffiffi
2

p
M2

X

:

ð7:2Þ

While a general phase φX might exist, it is constrained by
the electron EDM, and we assume φX ¼ 0. It means that
there is no physical phase in the transition amplitudes due
to the electron EDM. The muon and electron g − 2 are
presented in Ref. [15]. The contribution to the muon g − 2
is negative, and thus, it cannot account for the deviation of
the muon g − 2. Due to the bound of the Mu-to-Mu
transition, jΔaμj is small [≲Oð10−11Þ]. The contribution
to the electron g − 2 is

Δae ¼
aXg2X
16π2

memμ

M2
X

g

�
m2

μ

M2
X

�
; ð7:3Þ

where gðxÞ is a loop function, gðxÞ ¼ ð4 − 3x − x3 þ
6x ln xÞ=ð1 − xÞ3, and the value of gðxÞ is positive,
2 < gðxÞ < 4, for 0 < x < 1. The loop function lacks
a log enhancement, which distinguishes it from the
scalar loop in Eq. (5.9). As a result, we obtain jΔaej ≲
Oð10−13Þ [15].
The ratio of the transition probability R1 is calculated as

R1 ¼
1

2
−
2aXða2X − aX þ 1Þ
ð1þ a2XÞ2 þ 3a2X

: ð7:4Þ

One finds R1 > 1=2 if Δae < 0 and R1 < 1=2 if Δae > 0,
though it may be challenging to determine the sign of Δae
for jΔaej≲Oð10−13Þ due to the experimental uncertainties.
We remark that the interaction of the neutral gauge boson

can generate a muon decay operator, gSRRðeRνeÞðνμμRÞ,
which can interfere with the standard muon decay operator
via the W boson. As a result, transverse positron polari-
zation is induced in the decay of μþ. In this model, the
parameter β which represents the transverse positron
polarization is approximately proportional to the parameter
aX, as discussed in Ref. [41]. If the Mu-to-Mu transition is
detected experimentally, the validity of this model can be
assessed through the measurements of β and the ratio R1.

VIII. CONCLUSION

After a quarter of a century of silence, the Mu-to-Mu
transition experiment is on the verge of an update. The
MACE experiment aims to measure the time-integrated
transition probability at a magnetic field B2 ¼ 0.1 T.
The experiment planned at J-PARC aims to measure
the time-dependent probability at weak magnetic fields
of B ¼ B0 ≪ 1 μT and at a medium magnetic field of

B ¼ B1 ∼Oð10Þ μT, which is approximately equal to the
geomagnetic field strength. In the 1s state of Mu, there exist
four states: ðF;mÞ ¼ ð1;�1Þ; ð1; 0Þ; ð0; 0Þ. In a weak
magnetic field, all states, including those with m ¼ �1,
can be involved in the transition. However, in the magnetic
field B1, the m ¼ �1 states are not involved in the
transition due to the energy gap generated by the magnetic
field between Mu and Mu. As the magnetic field increases
to B≳ 0.01 T, them ¼ 0 states begin to mix, leading to the
magnetic field dependence of the transition amplitudes.
The measurements of the transition probabilities at the

three magnetic fields can provide us the following informa-
tion: there are two model-independent parameters and a
physical phase in the transition amplitude. These two
parameters and the phase can, in principle, be determined
if the muon polarization in the produced Mu is measured
experimentally. The physical phase should beminuscule due
to the electron EDM if the transition is induced by a single
mediator. This allows us to ascertain the origin of the
transition operator. The ratio R1 of the probability between
B ¼ B0 and B1 is R1 ¼ 1=2 if the mediator is a doubly
charged scalar and R1 ¼ 5=6 if the mediator is a doubly
charged gauge boson. If themediator is a neutral particle, the
ratioR1 falls within the range of 1=3 to 1. The electron g − 2
induced by the neutral mediator, Δae, is linked to the ratio
R1.We findΔae < 0 for a larger value ofR1 andΔae > 0 for
a smaller value of R1. Refer to Eqs. (5.7) and (5.8) for the
current status of the electron g − 2. The magnitude ofΔae is
constrained by the Mu-to-Mu transition. If the mediator is
a neutral scalar, the current experimental bound of the
transition allows for a significant value of jΔaej.
We have investigated three models for the neutral

mediators: 1) the axionlike particle, 2) the inert doublet
model, and 3) the neutral flavor gauge boson. In model 1, it
is clear how the probability ratio R1 and Δae are linked. In
model 2, only one of the contributions to electron and muon
g − 2 can be sizable, satisfying the bound of the Mu-to-Mu
transition. In model 3, the g − 2 contributions are small due
to the transition bound. However, a new muon decay
operator, gSRRðeRνeÞðνμμRÞ, is induced, and the transverse
positron polarization in the polarized μþ decay is related to
the probability ratio R1. The facilities with upgraded muon
beamlines can also measure the transverse positron polari-
zation. It should be noted that gVRRðeRγανeÞðνμγαμRÞ is
induced in model (2) if the neutrinos are Majorana. Unlike
model 3, the gVRR operator does not directly interfere with
the SM amplitude. For more details, refer to Ref. [41].
By collecting data on the transition probabilities from the
J-PARC and MACE experiments, ample insights into the
origin of the Mu-to-Mu transition can be gained.
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APPENDIX A: Mu STATES IN THE
MAGNETIC FIELD

In this Appendix, we provide a brief summary of the
spin and energy eigenstates of Mu in the presence of a
magnetic field.
The spin operator acts on the spin states as

Szj↑i ¼
1

2
j↑i; Szj↓i ¼ −

1

2
j↓i; ðA1Þ

Sþj↑i ¼ 0; S−j↓i ¼ 0; ðA2Þ

Sþj↓i ¼ j↑i; S−j↑i ¼ j↓i: ðA3Þ

The up arrow represents the state of spin 1=2, and the
down arrow represents the state of spin −1=2. We note
S2 ¼ S2z þ 1

2
ðSþS− þ S−SþÞ ¼ 3

4
1.

We denote the spins of Mu in the order of the muon ðμþÞ
and the electron (e−). For example, jMu;↑↓i represents the
spin configuration where the muon has a spin of 1=2 and
the electron has a spin of −1=2. Noting Sμ · Se ¼ SzμSze þ
1
2
ðSþμ S−e þ S−μSþe Þ, we obtain

Sμ · SejMu;↑↑i ¼ 1

4
jMu;↑↑i;

Sμ · SejMu;↓↓i ¼ 1

4
jMu;↓↓i; ðA4Þ

Sμ · SejMu;↑↓i ¼ −
1

4
jMu;↑↓i þ 1

2
jMu;↓↑i; ðA5Þ

Sμ · SejMu;↓↑i ¼ −
1

4
jMu;↓↑i þ 1

2
jMu;↑↓i: ðA6Þ

The eigenstates of Sμ · Se are

jMu;1;1i¼ jMu;↑↑i; jMu;1;−1i¼ jMu;↓↓i; ðA7Þ

jMu; 1; 0i ¼ 1ffiffiffi
2

p ðjMu;↑↓i þ jMu;↓↑iÞ; ðA8Þ

jMu; 0; 0i ¼ 1ffiffiffi
2

p ðjMu;↑↓i − jMu;↓↑iÞ: ðA9Þ

One can find

Sμ · SejMu; 1; 0i ¼
�
−
1

4
þ 1

2

�
jMu; 1; 0i; ðA10Þ

Sμ · SejMu; 0; 0i ¼
�
−
1

4
−
1

2

�
jMu; 0; 0i: ðA11Þ

The eigenvalues of Sμ · Se are 1=4 for jMu; 1; mi
(m ¼ 1; 0;−1) and −3=4 for jMu; 0; 0i.
Now, let us consider the spin Hamiltonian in the presence

of a magnetic field B,

HS ¼ aHFSSμ · Se − μe− · B − μμþ · B; ðA12Þ

where aHFS is a hyperfine structure coupling constant and
μe− and μμþ are the magnetic moments of the electron and
muon:

μe− ¼ −geμBSe; μμþ ¼ gμ
me

mμ
μBSμ: ðA13Þ

In these equations, ge and gμ are the g-factors of the electron
and muon, and μB is the Bohr magneton. We define two
dimensionless quantities as follows:

X ¼ 1

aHFS
μBB

�
ge þ

me

mμ
gμ

�
≃ 6.31B=Tesla; ðA14Þ

Y ¼ 1

aHFS
μBB

�
ge −

me

mμ
gμ

�
≃ 6.25B=Tesla: ðA15Þ

Then, supposing that the magnetic field is aligned with the
z-direction, we obtain

HSjMu; 1;�1i ¼ aHFS

�
1

4
� Y

2

�
jMu; 1;�1i; ðA16Þ

HSjMu;1;0i¼ aHFS

�
1

4
jMu;1;0i−X

2
jMu;0;0i

�
; ðA17Þ

HSjMu;0;0i¼aHFS

�
−
3

4
jMu;1;0i−X

2
jMu;1;0i

�
: ðA18Þ

Consequently, for B ≠ 0, jMu; 1; 0i and jMu; 0; 0i are not
energy eigenstates. The energy eigenstates in a magnetic
field are given as

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
C −S
S C

�� jMu; 1; 0i
jMu; 0; 0i

�
; ðA19Þ

where C ¼ cosð1
2
arctanXÞ and S ¼ sinð1

2
arctanXÞ:

C2¼1

2

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX2
p

�
; S2¼1

2

�
1−

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

p
�
: ðA20Þ

We obtain

HSjMu; 1; 0iB ¼ aHFS

�
−
1

4
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
jMu; 1; 0iB;

ðA21Þ
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HSjMu; 0; 0iB ¼ aHFS

�
−
1

4
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
jMu; 0; 0iB:

ðA22Þ

It is convenient to give the states as

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
c s

−s c

�� jMu;↓↑i
jMu;↑↓i

�
; ðA23Þ

where c ¼ ðCþ SÞ= ffiffiffi
2

p
and s ¼ ðC − SÞ= ffiffiffi

2
p

:

c2 ¼ 1

2

�
1þ Xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX2
p

�
; s2¼ 1

2

�
1−

Xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

p
�
: ðA24Þ

In the limit of a strong magnetic field (X → ∞), the
following approximations hold:

jMu;1;0iB≈ jMu;↓↑i; jMu;0;0iB≈ jMu;↑↓i: ðA25Þ

This is a physically reasonable observation since the
electron magnetic moment dominantly influences the states
in strong magnetic fields, making the hyperfine structure
coupling relatively negligible. For Mu, where the directions
of the muon and electron magnetic moments are opposite,
we have

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
s c

−c s

�� jMu;↓↑i
jMu;↑↓i

�
; ðA26Þ

and in the limit of a strong magnetic field, we obtain

jMu;1;0iB≈ jMu;↑↓i; jMu;0;0iB≈ jMu;↓↑i: ðA27Þ

It should be noted that the muon and electron spins must
flip in order for the Mu-to-Mu transition to occur in the
limit of a strong magnetic field.

APPENDIX B: POPULATION OF THE STATES
AND MUON POLARIZATION IN THE

MAGNETIC FIELD

In this Appendix, we outline how the determination of
the populations of produced Mu states ðF;mÞ, denoted as
fF;m, is undertaken. We assume that the electrons are
unpolarized. Under this assumption, the populations of the
states, j↑↑i; j↑↓i; j↓↑i; j↓↓i, where the up and down
direction arrows indicate the spins of Mu in the ordering
of the muon and electron, satisfy

f↑↑∶ f↑↓∶f↓↑∶f↓↓ ¼ a∶a∶b∶b: ðB1Þ

This relation results in the following connections:

f1;1 þ f1;−1 ¼ f1;0 þ f0;0 ¼
1

2
: ðB2Þ

We assume that the angular momentum transfer is negli-
gible in the potential 2p → 1s transition at the time of Mu
formation. The populations are parametrized as

ðf↑↑; f↑↓; f↓↑; f↓↓Þ ¼
�
1þ Pμ

4
;
1þ Pμ

4
;
1− Pμ

4
;
1− Pμ

4

�
;

ðB3Þ

where Pμ can be identified to the muon polarization in the
producedMu in the direction of the magnetic field. We then
obtain the expressions

f1;0 ¼ c2
1 − Pμ

4
þ s2

1þ Pμ

4
¼ 1

4

�
1 − Pμ

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
;

ðB4Þ

f0;0 ¼ s2
1þ Pμ

4
þ c2

1þ Pμ

4
¼ 1

4

�
1þ Pμ

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
;

ðB5Þ

where s and c are given in Eq. (A24).
We note that the transition probability does not depend

on Pμ for the regimes X ≪ 1 (where f1;0 ≃ f0;0 ≃ 1=4) and
X ≫ 1 (where jM1;0j ≃ jM0;0j). The transition probability
exhibits significant dependence on Pμ for Oð10Þ mT <
B < Oð1Þ T.
Because j↑↓i and j↓↑i are not energy eigenstates, they

can oscillate between each other with an oscillation time
determined by the hyperfine splitting, whose time scale is
approximately 0.2 ns. The muon polarization of these states
is effectively averaged out and eliminated over a time about
0.1 μs in a weak magnetic field [< Oð1Þ mT]. As a result,
the total muon polarization becomes halved. We remark
that the parameter Pμ, defined in Eq. (B3), represents the
muon polarization before the averaging-out process.
It is important to mention that in experiments using noble

gases as targets to produce Mu, the initial polarization of
muon beam can be maintained. However, the Mu-to-Mu
transitions are suppressed in the gases [7]. The transition
experiments will employ SiO2 targets to produce Mu in a
vacuum environment, and the initial muon polarization will
experience partial loss during the production of Mu.

APPENDIX C: TRANSITION AMPLITUDES
OF THE SPIN EIGENSTATES

We reexamine the Mu-to-Mu transition amplitudes from
the transition operators. For more detailed calculation of the
transition amplitudes, refer to the Appendix in Ref. [15].
In this Appendix, we provide the expressions of the
transition amplitudes in the spin eigenstates of Mu and
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Mu. These expressions are useful to understand the
magnetic field dependence on the amplitudes across differ-
ent operators.
The four-component spinors for a Dirac particle and

antiparticle under a nonrelativistic limit are expressed as

ulðsÞ ¼ ffiffiffiffiffiffi
ml

p �
ξs

ξs

�
; vlðsÞ ¼ ffiffiffiffiffiffi

ml
p �

ηs

−ηs

�
; ðC1Þ

where l ¼ e, μ. The two-component spinors ξs and ηs are
given in the spin eigenstates as follows: ξþ1=2 ¼ ð1; 0ÞT ,
ξ−1=2 ¼ ð0; 1ÞT , ηþ1=2 ¼ ð0; 1ÞT , and η−1=2 ¼ ð−1; 0ÞT .
The transition amplitudes in the spin eigenstates via the
S × S and P × P operators, which are given in Eqs. (2.6)
and (2.7), respectively, can be obtained as

hMu; sμ; s̄ejQSjMu; sμ; sei ¼ 2jφð0Þj2ðξs̄μ†ξseÞðηsμ†ηs̄eÞ;
ðC2Þ

hMu; s̄μ; s̄ejQPjMu; sμ; sei ¼ −2jφð0Þj2ðξs̄μ†ηs̄eÞðηsμ†ξseÞ:
ðC3Þ

Remember that any four-fermion operators for the Mu-to-
Mu transition can be written as a linear combination of the
operators Qi given in Eqs. (2.1)–(2.5) through the appli-
cation of Fierz transformation. It is worth mentioning that
the transition amplitudes in the spin eigenstates through any
operators under the nonrelativistic limit can be expressed as
a linear combination of the right-hand sides of Eqs. (C2)
and (C3). This is similar to the way any 2 × 2 matrix is
expanded using a complete orthogonal system (12×2; σi),
which is analogous to the Fierz transformation for four-
component spinors. Specifically, the amplitudes for Q4 and
Q5 sandwiched between hMuj and jMui are the same in the
nonrelativistic limit. At the operator level, the relationships
hold:

Q4 þQ5 ¼ 2ðQS þQPÞ; Q3 ¼ 2ðQP −QSÞ: ðC4Þ

Thus, the above statement is trivial for Q3, Q4 and Q5. Let
us examine the V × V and A × A operators:

QV ≡ ðμ̄γαeÞðμ̄γαeÞ; QA ≡ ðμ̄γαγ5eÞðμ̄γαγ5eÞ: ðC5Þ

The transition amplitude in the spin eigenstates via the
V × V operator is obtained as

hMu; s̄μ; s̄ejQV jMu; sμ; sei
¼ 2jφð0Þj2ð−ðξs̄μ†σiηs̄eÞðηsμ†σiξseÞ− ðξs̄μ†ξseÞðηsμ†ηs̄eÞÞ:

ðC6Þ

Utilizing the complete orthogonal system in the 2 × 2
matrices, one can derive the relation

ðξs̄μ†σiηs̄eÞðηsμ†σiξseÞ
¼ 2ðξs̄μ†ξseÞðηsμ†ηs̄eÞ − ðξs̄μ†ηs̄eÞðηsμ†ξseÞ; ðC7Þ

leading to the following expression for the transition
amplitude:

hMu; s̄μ; s̄ejQV jMu; sμ; sei
¼ 2jφð0Þj2ð−3ðξs̄μ†ξseÞðηsμ†ηs̄eÞ þ ðξs̄μ†ηs̄eÞðηsμ†ξseÞÞ:

ðC8Þ

One can also find the amplitude via the A × A operator:

hMu; s̄μ; s̄ejQAjMu; sμ; sei
¼ 2jφð0Þj2ð−ðξs̄μ†ξseÞðηsμ†ηs̄eÞ þ 3ðξs̄μ†ηs̄eÞðηsμ†ξseÞÞ:

ðC9Þ

Similarly to the case of Q4 and Q5, the amplitudes for Q1

andQ2 sandwiched between hMuj and jMui are the same in
the nonrelativistic limit, and Q1 þQ2 ¼ 2ðQV þQAÞ
holds. These allow us to derive the following relationship:

hMu; s̄μ; s̄ejQ1jMu; sμ; sei ¼ hMu; s̄μ; s̄ejQ2jMu; sμ; sei ¼ −4hMu; s̄μ; s̄ejQ4jMu; sμ; sei ¼ −4hMu; s̄μ; s̄ejQ5jMu; sμ; sei
¼ −8jφð0Þj2ððξs̄μ†ξseÞðηsμ†ηs̄eÞ − ðξs̄μ†ηs̄eÞðηsμ†ξseÞÞ: ðC10Þ

For Q3, we obtain from Q3 ¼ 2ðQP −QSÞ

hMu; s̄μ; s̄ejQ3jMu; sμ; sei ¼ −2jφð0Þj2ððξs̄μ†ξseÞðηsμ†ηs̄eÞ þ ðξs̄μ†ηs̄eÞðηsμ†ξseÞÞ: ðC11Þ

Thus, the above statement is presented. As a result, the
transition amplitude under the nonrelativistic limit
can be expressed as a function of two degrees of
freedom.

With these equations at hand, we can incidentally
reproduce Eqs. (2.9) and (2.10). To provide clarity, we
will use up- and down-direction arrows to symbolize
the spins of Mu and Mu in the ordering of muons and
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electrons, as described in Appendix A. In the case of QS,
one obtains

hMu;↑↑jQSjMu;↑↑i ¼ hMu;↓↓jQSjMu;↓↓i
¼ hMu;↓↑jQSjMu;↑↓i
¼ hMu;↑↓jQSjMu;↓↑i
¼ 2jφð0Þj2; ðC12Þ

and the amplitudes for the other spin combinations
vanish. Then, the amplitudes in the energy eigenstates
are calculated as

hMu; 1; mjQSjMu; 1; mi ¼ 2jφð0Þj2;
hMu; 0; 0jQSjMu; 0; 0i ¼ −2jφð0Þj2: ðC13Þ

In the case of QP, one obtains

hMu;↑↓jQPjMu;↑↓i ¼ hMu;↓↑jQPjMu;↓↑i
¼ 2jφð0Þj2; ðC14Þ

hMu;↓↑jQPjMu;↑↓i ¼ hMu;↑↓jQPjMu;↓↑i
¼ −2jφð0Þj2; ðC15Þ

and the amplitudes for the other spin combinations vanish.
This gives the following amplitudes in the energy eigenstates:

hMu; 1; mjQPjMu; 1; mi ¼ 0;

hMu; 0; 0jQPjMu; 0; 0i ¼ 4jφð0Þj2: ðC16Þ

Utilizing Eq. (C10), we find

hMu;F;mjQ1jMu;F;mi ¼ hMu;F;mjQ2jMu;F;mi ¼ −4hMu;F;mjQ4jMu;F;mi ¼ −4hMu;F;mjQ5jMu;F;mi
¼ −4ðhMu;F;mjQSjMu;F;mi þ hMu;F;mjQPjMu;F;miÞ; ðC17Þ

and with Q3 ¼ 2ðQP −QSÞ,

hMu;F;mjQ3jMu;F;mi ¼ 2ðhMu;F;mjQPjMu;F;mi
−hMu;F;mjQSjMu;F;miÞ:

ðC18Þ

Substituting Eqs. (C13) and (C16), one can reproduce
Eqs. (2.9) and (2.10).
We note that one can find

hMu; 1; mjQ1jMu; 1; mi ¼ hMu; 0; 0jQ1jMu; 0; 0i; ðC19Þ

and the same for Q2, Q4, and Q5. The equivalence of
the amplitudes for the triplet and singlet states can be readily
derived from the transition amplitudes in the spin eigenstates,

hMu;↑↑jQ1jMu;↑↑i ¼ hMu;↓↓jQ1jMu;↓↓i
¼ hMu;↓↑jQ1jMu;↓↑i
¼ hMu;↑↓jQ1jMu;↑↓i
¼ −8jφð0Þj2; ðC20Þ

and the amplitudes for the other spin combinations
vanish, which can be straightforwardly deduced using
Eq. (C10) and an identity equation for two-component
spinors,

ðξs̄μ†ξseÞðηsμ†ηs̄eÞ − ðξs̄μ†ηs̄eÞðηsμ†ξseÞ
¼ ðξs̄μTϵηsμÞ�ðξseTϵηs̄eÞ; ðC21Þ

where ϵ ¼ iσ2. In connection with this, we can derive an
identity equation,

ðξs̄μ†ξseÞðηsμ†ηs̄eÞ þ ðξs̄μ†ηs̄eÞðηsμ†ξseÞ
¼ ðξs̄μTσiϵηsμÞ�ðξseTσiϵηs̄eÞ; ðC22Þ

pertaining to the transition amplitude throughQ3 in the spin
eigenstate in Eq. (C11). The right-hand sides of these two
equations correspond explicitly to the t-channel exchanges
of the doubly charged particles, as depicted in Fig. 3 and
explained in Sec. III.
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Cè, G. Colangelo et al., The anomalous magnetic moment
of the muon in the standard model, Phys. Rep. 887, 1
(2020).

[29] D. P. Aguillard et al. (Muon g-2 Collaboration), Measure-
ment of the positive muon anomalous magnetic moment to
0.20 ppm, Phys. Rev. Lett. 131, 161802 (2023).

[30] S. Nie and M. Sher, The anomalous magnetic moment of the
muon and Higgs mediated flavor changing neutral currents,
Phys. Rev. D 58, 097701 (1998).

[31] I. Galon, A. Kwa, and P. Tanedo, Lepton-flavor violating
mediators, J. High Energy Phys. 03 (2017) 064.

[32] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller,
Measurement of the fine-structure constant as a test of the
Standard Model, Science 360, 191 (2018).
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