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We consider the flavor structure of the S1 leptoquark model and derive conservative constraints on the
elements of the left- and right-handed coupling matrices in a number of representative scenarios. We focus
on the cases where the muon g − 2 deviation is explained by real muon couplings to either the top-quark or
to the charm-quark or to all up-type quarks. The most significant constraints arise from charged lepton
flavor-violating decays of the muon and the τ lepton and from the μ–e conversion process. Kaon decays
and perturbativity provide further constraints. We find strong constraints on almost all coupling matrix
elements, implying a very hierarchical matrix structure, where individual entries must differ by at least four
orders of magnitude. The FlexibleSUSY program was used with appropriate model files incorporating the
parametrization of the couplings in the up-type mass diagonal basis. The expressions for the leptonic
observables were generated and cross-checked with the help of the NPointFunctions extension of the
FlexibleSUSY program.
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I. INTRODUCTION

Low-energy lepton precision physics provides an excel-
lent probe of fundamental interactions with the potential of
discovering new physics beyond the Standard Model (SM)
and shedding light on the origin of mass and flavor. The
anomalous magnetic moment of the muon aμ is a flavor-
and CP-conserving observable which corresponds to a
chirality-flipping dipole operator. There is a longstanding
discrepancy between the experimental determination at the
BNL and Fermilab measurements and the SM theory
prediction,1

Δa2021μ ¼ aExp;2021μ − aSMμ ¼ ð25.1� 5.9Þ × 10−10: ð1Þ

This value is based on the Fermilab Run-1 result [2], the
Brookhaven result [3], and the Standard Model White
Paper [4], which itself uses results from original

references [5–30]. After the White Paper [4], several lattice
gauge theory results [31–34] and the CMD-3 measurement
[35] of eþe− → hadrons are in tension with earlier results
and tend to prefer higher values of the hadronic vacuum
polarization contributions to aμ. Taking those results at face
value would reduce Δa2021μ to about half its quoted value,
but scrutiny of these results is ongoing, and further progress
on the hadronic vacuum polarization contributions is
expected in the coming years [36]. Furthermore, more
precise experimental determinations of Δaμ based on
Run-2=3 data and later on Run-4=5=6 data from the
Fermilab experiment are in preparation. In view of this
progress it remains relevant to ask which scenarios for
physics beyond the SM could explain a deviation as large
as Eq. (1) without violating other existing constraints.
Avery promising way to explain the deviation Δaμ is via

scenarios beyond the SM (BSM) with enhanced chirality
flips. Such scenarios are also interesting from the point of
view of electroweak symmetry breaking as they necessarily
contribute to the fermion mass generation mechanism and
to effective Higgs-boson couplings [37–40]. At the same
time, there is currently no sign of new physics in searches
for charged lepton-flavor violation (CLFV), despite the
potential of correlations of BSM effects on Δaμ and CLFV
observables in many concrete models. Typically, therefore,
such models can only explain the deviation (1) in non-
generic parameter regions with large hierarchies between
flavor-conserving and flavor-violating parameters. Here
we study this conflict betweenΔaμ and CLFV in a concrete
model, using the value of (1) as an illustration. The
conclusions of the present paper would essentially remain
intact even if the deviation would reduce to a smaller value.
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1Since the release of this paper there has been an update on the
experimental average of the anomalous magnetic moment of the
muon from Run-2 of the FNAL experiment Δa2023μ , see Ref. [1].
This paper represents the measurement from before this latest
update.
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Leptoquark (LQ) models are among the best-motivated
extensions of the SM. Using the notation of Ref. [41], there
are two possible types of spin-0 LQ quantum numbers, S1
and R2, which allow gauge invariant couplings to both
left-handed and right-handed leptons. These, therefore,
allow enhanced chirality flips and promising explanations
of Δaμ [42–55]. More generally, the S1 and R2 models are
two of very few viable single-field explanations of Δaμ
[37,45,56–58]. In the past years, LQ models have also
frequently been proposed as combined explanations of
B-physics anomalies and Δaμ [46–48,59–65], and models
with several leptoquarks are also able to simultaneously
explain neutrino masses [47,61,65]. Refs. [49,52,55] con-
firm that the single LQ explanations of Δaμ remain viable
also given constraints on LQs from Z-boson and Higgs-
boson decays.
The S1 and R2 LQmodels exemplify how large, chirality-

flip enhanced contributions to Δaμ can naturally be accom-
panied by CLFVeffects. Focusing on the S1 model, its flavor
structure is governed by two 3 × 3 couplingmatrices, i.e., by
18 free parameters λqlL;R coupling left- or right-handed quarks
q to leptons l.Δaμ depends on couplings of the muon to the
top- or charm-quark, while nonzero couplings of the electron
and τ lepton can lead to CLFV contributions.
Here we focus on the impact of CLFV versus Δaμ

constraints on the flavor structure of the S1 LQ model. We
aim for deriving general constraints on the 18 flavor
parameters, under the assumption that the model explains
Δaμ. To keep the analysis concrete, we consider several
representative scenarios for the flavor structure which we
call top-only, charm-only, and up-type quark universal, as
specified further in Sec. IV. Our study is complementary to
Ref. [65], whereΔaμ, neutrino masses, and complementary
observables were fitted to a minimal LQ model (containing
S1 and further particles and general flavor-coupling struc-
ture), leading to specific best-fit values for the flavor
parameters of the model. It is also complementary to
Refs. [66,67], where upper limits on flavor parameters
were derived without requiring an explanation of the
nonzero result for Δaμ. In our case, the S1 model alone
cannot explain neutrino masses; we aim for conservative
and general limits on the flavor parameters under the
assumption that leptoquarks are responsible for Δaμ. The
limits will be derived from correlations between Δaμ and
various lepton flavor violation processes, such as two-body
decays li → ljγ, three-body decays li → ljlklc

k, and
μ − e conversion in nuclei processes, as μAu → eAu and
μAl → eAl. To manage a large number of free parameters,
we restrict ourselves to several specific cases, where the
anomalous magnetic moment of muon is explained either
only by the top-quark or by charm-quark contributions or
by a combination thereof.
The paper is structured as follows. In Sec. II we

introduce our notations for the S1 leptoquark model, and

Sec. III with the appendix present the relevant analytical
expressions of the considered observables. Later, in Sec. IV
the latest constraints on the leptoquark mass from the LHC
studies are shown and our analysis strategy is explained. In
Secs. V–VIII we show analytical results for observables
under interest and derive the constraints on coupling
constants that induce them. Finally, the most important
results are combined as conclusions in Sec. IX.

II. MODEL DEFINITION

We consider the leptoquark S1 model, which extends the
SM particle content by a single spin-0 leptoquark field with
the gauge representation ð3̄; 1; 1=3Þ under the SUð3Þ ×
SUð2Þ × Uð1Þ group. The leptoquark is an SUð2Þ singlet,
thus carrying an electric charge of QS1 ¼ 1=3. The
Lagrangian terms involving the S1 leptoquark which are
relevant for this study are expressed in the following way in
the interaction eigenstate basis (indicated by a tilde),

L∋−m2
S1
jS1j2− ðλ̃qlL Q̃c

qiσ2L̃lS1þ λ̃qlR ũ
Rc
q ẽRl S1þH:c:Þ; ð2Þ

containing the SUð2Þ-invariant product of the left-chiral
quark and charged lepton doublet fields,

Q̃c
qiσ2L̃l ¼ ũLcq ẽLl − d̃Lcq νLl : ð3Þ

This fermion-leptoquark interaction Lagrangian is the most
general one for the S1 leptoquark type which prevents
fast proton decay by excluding couplings to quark-
antiquark pairs.
For studying flavor physics, it is useful to rotate the fermion

fields into mass eigenstates. To perform this, the unitary
matrices Uu;d;e, Vu;d;e for left- and right-handed fermion
fields are applied (schematically as ψ̃k ¼ U�

ikψ
mass
i ≡U�

ikψ i).
In this way, the Standard Model Yukawa couplings and

fermion mass terms are diagonalized. The mixing matrices
can be fully absorbed in two out of the three leptoquark
interaction terms with left-/right-handed leptons and
neutrinos. We choose the so-called up-type mass diagonal
basis [68,69], where the new leptoquark coupling matrices
are defined as

λqlL ¼ V†iq
u λ̃ijLV

†jl
e ; λqlR ¼ U†iq

d λ̃ijLU
†jl
e : ð4Þ

Using these couplings the interaction Lagrangian contains
interactions with charged leptons and up-type quarks
governed directly by the λL;R, while the interaction with
neutrinos and down-type quarks involves the Cabibbo-
Kobayashi-Maskawa (CKM) matrix VCKM,

L ∋ −ucqðλqlL PL þ λqlR PRÞelS1 þ dcqðλjlLVjq
CKMPLÞνlS1

þ H:c: ð5Þ
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As numerical values for the CKMmatrix entries, we use the
ones by the Particle Data Group [70].

III. ANALYTICAL RESULTS

In the present paper, we consider low-energy lepton
observables as constraints on the S1 leptoquark model.
The observables are the muon magnetic moment aμ ¼
ðg − 2Þμ=2, two-body decays li → ljγ, three-body decays
of the form li → ljlklc

k, and μ → e conversion in the
presence of a nucleus. Table I summarizes these observ-
ables, current experimental limits, and expected sensitiv-
ities of the next planned experiments. The present section
collects analytical results for the leptoquark contributions
to all these observables. Additional observables involving
meson decays are discussed in the appendix.
All one-loop results were obtained in two ways. First,

by direct Feynman diagrammatic calculation. Second,
by automatic generation using FlexibleSUSY [82–84] and

its extension package NPointFunctions [85].
FlexibleSUSY is a MATHEMATICA and C++ framework which
compiles a spectrum generator out of a given model
definition input. It uses SARAH [86,87], for which we
created a suitable model file incorporating the parametri-
zation of the couplings developed in Sec. II. This setup
resulted in an independent cross-check of the consistency
of the results presented in the following.

A. Δaμ
The two relevant one-loop Feynman diagrams contrib-

uting to Δaμ, i.e., the additional leptoquark contribution to
aμ, are depicted in Fig. 1. Both diagrams have a very similar
structure and involve an up-type quark next to the lep-
toquark; they are often referred to as SSF [see Fig. 1(a)] and
FFS [see Fig. 1(b)], respectively.
Their sum can be written as

Δaone−loopμ ¼ m2
μ

48π2m2
S1

�
mq

mμ
λq2L λq2R L1ðxqÞ þ

ðλq2L Þ2 þ ðλq2R Þ2
4

L2ðxqÞ
�
;

Δaμ ¼ δQEDΔa
one−loop
μ ; δQED ¼ 1þ e2

π2
ln

mμ

mS1

; ð6Þ

with the shorthand notation of the one-loop mass ratio
argument xq ¼ m2

q=m2
S1

used here and in the following.
This result coincides with the formulas presented e.g., in
Ref. [37] (see also references therein) and includes
universal leading logarithmic two-loop QED corrections

δQED [88,89], which are also implemented in FlexibleSUSY,
see Ref. [84]. The loop functions themselves are defined as
[with following limits for x → 0: FFðxÞ ≈ −9=2 − 3 ln x,
FCð0Þ ¼ 0, FEð0Þ ¼ 4, FBð0Þ ¼ 2; see also Refs. [37,90]]

TABLE I. Experimental bounds, that are considered in the present paper. The column “Current phase” refers to
current, existing bounds, and the column “Next phase” refers to the next available expected future bound. We use
90% confidence level (but 1σ-bound in case of Δaμ). Note, the anomalous magnetic moment of muon and kaon
branching ratio are the only quantities corresponding to observations and not upper limits.

Observable Current phase Next phase

Δa2021μ FNAL [2]: ð25.1� 5.9Þ × 10−10 � � �
μ → eγ MEG [71]: 4.2 × 10−13 MEG-II [72]: 6 × 10−14

τ → eγ BABAR [73]: 3.3 × 10−8 Belle-II [74]: 9.0 × 10−9

τ → μγ BABAR [73]: 4.4 × 10−8 Belle-II [74]: 6.9 × 10−9

μ → 3e SINDRUM [75]: 1 × 10−12 Mu3e-I [76]: 2 × 10−15

τ → 3e Belle-I [77]: 2.7 × 10−8 Belle-II [74]: 4.7 × 10−10

τ → μee Belle-I [77]: 1.8 × 10−8 Belle-II [74]: 2.9 × 10−10

τ → eμμ Belle-I [77]: 2.7 × 10−8 Belle-II [74]: 4.5 × 10−10

τ → 3μ Belle-I [77]: 2.1 × 10−8 Belle-II [74]: 3.6 × 10−10

μAu → eAu SINDRUM-II [78]: 7 × 10−13 � � �
μAl → eAl � � � COMET-I [79]: 7 × 10−15

Kþ → πþνν E949 [80]: 1.73 × 10−10 � � �
D0 → μþμ− LHCb [81]: 7.6 × 10−9 � � �
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L1ðxÞ ¼ 4FFðxÞ − FCðxÞ > 0;

L2ðxÞ ¼ 2FEðxÞ − FBðxÞ > 0;

FFðxÞ ¼
3ð−3þ 4x − x2 − 2 ln xÞ

2ð1 − xÞ3 ;

FEðxÞ ¼
2ð2þ 3x − 6x2 þ x3 þ 6x ln xÞ

ð1 − xÞ4 ;

FCðxÞ ¼
3ð1 − x2 þ 2x ln xÞ

ð1 − xÞ3 ;

FBðxÞ ¼
2ð1 − 6xþ 3x2 þ 2x3 − 6x2 ln xÞ

ð1 − xÞ4 : ð7Þ

Note that the first two functions are positive, which allows
only constructive interference of contributions from differ-
ent quark generations (as long as all couplings are positive).
The first term in Eq. (6) contains the chirally enhanced ratio
mq=mμ whereas the second one does not. The chirally
enhanced term appears together with a product of two
couplings to different fermion chiralities λq2L λq2R . It is well-
known that this enhancement is crucial for the possibility to
explain a significant leptoquark contribution to Δaμ.
The theory prediction in Eq. (6) can be compared to the

difference between the experimental measurement and the
corresponding Standard Model prediction, see Eq. (1).

B. li → ljγ

The Feynman diagrams contributing to two-body decays
li → ljγ are similar to the ones contributing toΔaμ. Figure 2
displays the four contributing types of one-loop diagrams;
the main difference is the replacement of the external
fermions and associated leptoquark coupling constants.
The contributions of Fig. 2 can be expressed as ampli-

tudes with off shell photon with outgoing momentum q ¼
pi − pj (using the conventions of Refs. [91,92] with the
covariant derivative Dμ ¼ ∂μ þ ieQfAμ),

iΓljliγ
¼ iūj½ðq2γμ − qμqÞðAL

1PL þ AR
1PRÞ

þ imiσ
μνqνðAL

2PL þ AR
2PRÞ�ui: ð8Þ

The two-body decays of interest only depend on the
squares of the dipole form factors AL;R

2 ; the branching
ratio has the form (see, e.g., [90,91]),

BRðli → ljγÞ ¼
m5

li

16πΓi
ðjAL

2 j2 þ jAR
2 j2Þ; ð9Þ

with the decay width of muon and tau, Γμ ¼ 2.996 ×
10−19 GeV and Γτ ¼ 2.267 × 10−12 GeV [93]. The struc-
ture of the dipole form factors is analogous to the situation
for Δaμ,

AL
2 ¼ −

1

16π2
e

6m2
S1

�
mq

mi
λqjR λqiL L1ðxqÞ

þ 1

4
λqjR λqiR L2ðxqÞ

�
< 0: ð10Þ

The expressions for A1 terms will be listed below in the
context of three-body decays, where they will be relevant.
The prediction for the two-body decays will be com-

pared to the corresponding experimental upper limits listed
in Table I. The existing upper limits on μ → eγ, τ → eγ and
τ → μγ were obtained at MEG [71] and BABAR [73]; the
next foreseeable improvements are planned at MEG-II [72]
and Belle-II [74].

C. li → ljlklc
k

Like for Δaμ and for the two-body decays li → ljγ,
leptoquarks contribute to the three-body decays li →
ljlklc

k starting from the one-loop level. The five types
of one-loop diagrams are shown in Fig. 3. Type I to IV
contain a li → ljγ subdiagram but the outgoing on-shell
photon is replaced by a virtual photon which finally decays
into a lepton-antilepton pair. Type V is a box diagram that is
distinguished from all other diagrams in that it involves
four powers of leptoquark couplings instead of two.
The leptoquark contributions to the three-body decays

arise via the dipole form factor and 4-fermion (scalar,
vector, and tensor) form factors SXY , VXY , TXY (with X, Y
being L or R). The vector form factor receives a contri-
bution not only from actual 4-fermion box diagrams of

FIG. 2. One-loop diagrams contributing to li → ljγ induced
by the S1 leptoquark.

FIG. 1. One-loop diagrams contributing to Δaμ induced by S1
leptoquark.
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Type V in Fig. 3, denoted as V□

XY , but also from the
photonic form factor A1 defined above in Eq. (8).
The full form of the decay width for li → ljlklc

k in case
of j ¼ k and j ≠ k reads (see also Refs. [94–97]),

Γli→3lj ¼
m5

i

192π3

�
e2jAL

2 j2
�
ln
m2

i

m2
j
−
11

4

�

þ e

�
3

2
eAL

1 −
1

2
ðV□

LL þ V□

LRÞ
�
jAR

2 j

þ 1

4
V2
LL þ 1

8
V2
LR þ 1

16
S2LL þ ½L ↔ R�

�
; ð11Þ

Γli→ljlklc
k
¼ m5

i

192π3

�
e2jAL

2 j2
�
ln
m2

i

m2
k

− 3

�

þ e

�
eAL

1 −
1

2
ðV□

LL þ V□

LRÞ
�
jAR

2 j

þ 1

8
ðV2

LL þ V2
LRÞ þ

1

32
ðS2LL þ S2LRÞ

þ 3

2
T2
LL þ ½L ↔ R�

�
: ð12Þ

The vectorial-photon form factor A1 and its contribution to
the 4-fermion form factors are given by

AL
1 ¼ 1

16π2
e

36m2
S1

L3ðxqÞλqjL λqiL ;

VXY ¼ −eAX
1 þ nV□

XY; ð13Þ

where the minus sign is related to the form factor
embedding into the 4-fermion amplitude, and where a
similar equation holds for AR

1 ; n ¼ 1
2
for VXX in li → 3lj,

and n ¼ 1 otherwise. The loop function takes the
form (with the following limit for x → 0: FAð0Þ ¼ 0,
FDðxÞ ≈ 4ð4þ 3 ln xÞ):

L3ðxÞ ¼ FAðxÞ − 2FDðxÞ > 0;

FAðxÞ ¼
2 − 9xþ 18x2 − 11x3 þ 6x3 ln x

ð1 − xÞ4 ;

FDðxÞ ¼
16 − 45xþ 36x2 − 7x3 þ 6ð2 − 3xÞ ln x

ð1 − xÞ4 : ð14Þ

The pure box diagram contributions can be written as

SLL ¼
1

16π2

�
1

2
λq2iL λq1kL −λq1iL λq2kL

�
λq1jR λq2kR mq1mq2D0;

SLR¼−
1

16π2
ð2λq2iL λq1kR jD00jþλq1iL λq2kR mq1mq2D0Þλq1jR λq2kL ;

V□

LL ¼
1

16π2
ðλq1iL λq2kL þλq2iL λq1kL Þλq1jL λq2kL jD00j;

V□

LR¼
1

16π2

�
λq1iL λq2kR jD00jþλq2iL λq1kR

1

2
mq1mq2D0

�
λq1jL λq2kR ;

TLL ¼
1

16π2
λq1jR λq2kR λq2iL λq1kL

1

8
mq1mq2D0; ð15Þ

with expressions for SRL; SRR; V□

RL; V
□

RR; TRR obtained by
replacing L ↔ R; the zero-momenta Passarino-Veltman
coefficient functions D0 and D00 [98] can be simplified
to for q ¼ c or t,

m4
S1
D0jq1¼q2 ¼

−2þ 2xq − ð1þ xqÞ ln xq
ð1 − xqÞ3

> 0;

m2
S1
D00jq1¼q2 ¼ −

1 − x2q þ 2xq ln xq
4ð1 − xqÞ3

< 0;

m4
S1
D0jmc→0 ¼

−1þ xt − ln xt
ð1 − xtÞ2

> 0;

m2
S1
D00jmc→0 ¼

−1þ xt − xt ln xt
4ð1 − xtÞ2

< 0: ð16Þ

The prediction for the three-body decays will be com-
pared to the corresponding experimental upper limits listed
in Table I. Most important are the limits on μ → 3e. The
existing limits were obtained at SINDRUM [75], and the
next foreseen improvement is planned at Mu3e-I [76].
We note that the main contribution from the box factors

comes from the D00-terms and that the box form factors
in (15) are positive, for positive values of the λL;R.

FIG. 3. One-loop diagrams contributing to BRðli → ljlklc
kÞ

induced by S1 leptoquark. Diagrams of Type I–IV also have
u-channel counterparts. In addition to the box diagram of Type V
there is an analogous one where leptoquarks propagate as quarks
and vice versa. Higgs-boson penguins are negligible for the
derivation of the LQ coupling limits due to SM-Yukawa magni-
tude. Z-boson penguins lead to the contribution similar to the A1

one of the photon but are relatively suppressed due to the mass of
the former.
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D. μ → e conversion

Out of all considered observables μ → e conversion in
presence of a nucleus is special since it is mediated already
by a tree-level diagram with leptoquark exchange. Figure 4
shows the diagram. The resulting predicted conversion rate
can be expressed as

BRðμ − eÞ ¼ ðαsλ12R − αvλ
12
L Þ2ðλ11L Þ2 þ ½L ↔ R�
4m4

S1
ωcapt

ð17Þ

with the capture rate and the form-factors (muon mass and
ωcapt are expressed in GeV units),

αs ¼
X
i¼p;n

fiu
mi

mu
SðiÞ ¼ 1.537ð0.430 inAlÞ ·m5=2

μ ;

αv ¼ 2VðpÞ þ VðnÞ ¼ 0.280ð0.049 inAlÞ ·m5=2
μ ;

ωcapt ¼ 8.849ð0.464 inAlÞ × 10−18: ð18Þ

The overlap integrals are taken from the second method in
Ref. [99]. The proton and neutron scalar couplings fp;nu are
determined from pion-nucleon σπN term for u quark (see
the Ref. [100] for the numerical values). Vector form-
factors 2 and 1 (in αv) do not suffer from theoretical
uncertainty and are derived from the conservation of vector
current consideration, i.e., counting of valence quarks.

The past SINDRUM-II and the planned COMET-I
(as well as COMET-II and Mu2e [101]) experiments listed
in Table I use either Au or Al nuclei for μ → e conversion.
The prediction can be applied to both cases, see the first/
second numbers in Eq. (18) accordingly.

IV. ANALYSIS STRATEGY

Our main interest is the impact of Δaμ and CLFV
observables on the full 3 × 3 coupling matrices λL;R, using
the experimental bounds listed in Table I. To simplify the
analysis, we assume all 18 considered couplings to be
positive and apply the customary perturbative upper
bound [102,103],

0 < λijL <
ffiffiffiffiffiffi
4π

p
; 0 < λijR <

ffiffiffiffiffiffi
4π

p
; ð19Þ

on each matrix element.
Possible masses of leptoquarks are constrained by a

variety of LHC analyses accumulated in Table II. In this
paper, we fix the leptoquark mass in all numerical results
below as

mS1 ¼ 1.8 TeV: ð20Þ

This value is conservative as it respects all current LHC
restrictions in the third column of Table II.
In our analysis, we focus particularly on three distinct

scenarios. This helps manage the 18-dimensional parameter
space and draw illuminating and fairly general conclusions.
The leptonic observables mainly correlate the coupling
matrices λqlL;R horizontally—i.e., couplings of the same
quark to different leptons. This is different from the case of
e.g., B-physics and the constraints from accommodating
B-anomalies related to RðDð�ÞÞ as done e.g., in Ref. [60].

FIG. 4. Tree-level diagram contributing to μAu → eAu and
μAl → eAl.

TABLE II. LHC constraints on scalar leptoquarks masses at 95% confidence level. The first column shows the
decay mode assumed in the analysis, or—for analyses considering single leptoquark production—specifies the
assumed value of the relevant coupling. In the second column the quantity β is the leptoquark branching decay ratio
into the quark/lepton mentioned in the first column. The numbers without brackets correspond to the strongest
achievable bounds, the numbers in brackets correspond to alternative assumptions and corresponding weaker
bounds.

Decay=coupling β Lowest allowed mass (GeV) Reference

ue 1.0 (0.5) 1435 (1270)
ffiffiffi
s

p ¼ 13 TeV CMS [104]
ue 1.0 (0.5) 1400 (1290)

ffiffiffi
s

p ¼ 13 TeV ATLAS [105]
λue ¼ 1.0ð0.8Þ 1.0 1755 (1355)

ffiffiffi
s

p ¼ 8 TeV CMS [106]

cμ 1.0 (0.5) 1530 (1285)
ffiffiffi
s

p ¼ 13 TeV CMS [107]
cμ 1.0 (0.5) 1560 (1230)

ffiffiffi
s

p ¼ 13 TeV ATLAS [105]
λcμ ¼ 1.0 1.0 660

ffiffiffi
s

p ¼ 8 TeV CMS [106]

tμ 1.0 1420
ffiffiffi
s

p ¼ 13 TeV CMS [108]

tτ 1.0 950
ffiffiffi
s

p ¼ 13 TeV CMS [109]
tτ 1.0 (0.5) 920 (810)

ffiffiffi
s

p ¼ 13 TeV ATLAS [110]
λtτ ¼ 2.5 1.0 1020

ffiffiffi
s

p ¼ 13 TeV CMS [109]
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For this reason, our scenarios leave this horizontal direction
unconstrained but impose various vertical relationships on
the coupling matrices.
Scenario 1, top-only case: Here only couplings to the

top-quark are nonzero. We are left with the six parameters
λ3lL;R, l ¼ 1, 2, 3.
Scenario 2, charm-only case: Here only couplings to the

charm-quark are nonzero. We are left with the six param-
eters λ2lL;R, l ¼ 1, 2, 3.
Scenario 3, columns case: Here we assume quark-

universality of couplings, i.e., assume equal couplings in
each column of the coupling matrices, λ1lL ¼ λ2lL ¼ λ3lL ≡
λlL (and the same for λR). We are left with the six parameters
λlL;R, l ¼ 1, 2, 3.
In addition, we will use the μ–e conversion process to

constrain the up-quark couplings λ1lL;R (l ¼ 1, 2) in a way
independent of assumptions on vertical relationships. In all
analyses, we will only consider real couplings. We note that
similar but more restrictive scenarios were discussed in
Refs. [42,44,45,50–52,68] to study muon g − 2, and similar
scenarios allowing for CLFV processes were discussed in
Refs. [43,46–49,53–55,69].

V. PHENOMENOLOGICAL
CONSEQUENCES OF Δaμ

We begin our phenomenological investigations with
an analysis of Δaμ. In addition to known results in the
literature (see in particular Refs. [37,50,68]) we focus on
the contributions of all generations and derive bounds on
several (combinations of) λL;R parameters which will be
instructive and useful later.
The analytical result was presented in Eq. (6). It contains

chirality-flipping terms proportional tomqλ
q2
L λq2R where q is

one of the up-type quarks. It is well known that leptoquark
models can explain large Δaμ only via such chirality-
flipping terms which are enhanced by the large top- or
charm-quark masses.
To provide an overview we first record a criterion under

which chirality-flip enhancement is at all possible. In Eq. (6)
the relative factors between the chirality-flipping and non-
flipping terms are schematically mqλ

q2
L λq2R L1∶ mμjλq2L;Rj2L2

with loop functions L1;2. Inserting typical masses of the
order few TeV we obtain restrictions on the ratios between
the left- and right-handed couplings corresponding to chiral
enhancement,

charm∶
1

700
≲ λ22L
λ22R

≲ 700;

top∶
1

4 × 104
≲ λ32L
λ32R

≲ 4 × 104: ð21Þ

In Eq. (21) we have not included the up-quark, since
its contributions to Δaμ are generally small. Indeed, the

Kþ → πþνν̄ decay (see Fig. 10) implies the restriction
λ12L ≲ 1 regardless of all other relevant couplings due to
cancellation in ŶL

12 factor (see Appendix A 1). With the
upper perturbative limit applied for the other coupling
λ12R ≲ ffiffiffiffiffiffi

4π
p

, the maximum contribution of the first quark-
generation couplings contributes at most 9% of the Δaμ
mean value (for mS1 ¼ 1.8 TeV). This number falls
drastically for heavier leptoquark mass and/or smaller
couplings. Hence, one can to a very good extent neglect
the up-quark contributions and focus on the ones from
heavier quarks.
Now we focus on the first of our scenarios and consider

the top-couplings λ32L;R and their values required to explain
Δaμ, while the charm-/up-quark couplings are set to zero.
Due to mt=mμ ∼Oð103Þ the full prediction for Δaμ of

Eq. (6) can be well approximated (if the coupling ratio is in
the range (21) by the chirality-flipping term, which in turn
can be approximated as (top-only scenario)

Δaμ ≈ 3.3 × 10−7
1þ 0.64 lnðmS1=2 TeVÞ

ðmS1=2 TeVÞ2 λ32L λ32R ; ð22Þ

which highlights the dependence on the couplings and
allows to read off easily the values for masses in the
few-TeV range.
From comparing with the experimental result we get

bounds on products of the two couplings that are approx-
imately located within hyperbolic curves in the λ32L -λ32R
plane. This is shown in the double logarithmic scale in
Fig. 5(a), where the hyperbolic shape becomes a straight
band. The plot shows the coupling values for which the
experimental Δaμ result is explained at the 1σ (2σ) level in
green (yellow). The plot is obtained from the exact Eq. (6),
hence there is an Oð10%Þ distortion from the hyperbolic
shape due to the nonchirally enhanced terms.
Despite the small distortion, the band in Fig. 5(a)

essentially restricts the product of the left- and right-handed
top-couplings to the muon. As a simple formula, the entire
2σ band is confined in the interval (top-only scenario)

Δaμ band∶ 3.1 × 10−3 < λ32L λ32R < 9.3 × 10−3: ð23Þ

If we apply the perturbativity upper limit
ffiffiffiffiffiffi
4π

p
on each

individual coupling, the product (23) implies also lower
limits on each coupling (top-only scenario),

2σ individual limit∶ 8.7 × 10−4 < λ32L;R: ð24Þ

Note that the 2σ label here does not have a direct statistical
meaning but refers to the 2σ bound of Fig. 5(a) from which
the limit is derived.
As a by-product, this equation also implies a possible

range of the ratio of couplings λ32L ∶ λ32R between around
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1=4000;…; 4000, which is a sharpened version of Eq. (21)
derived only from chirality-flip dominance.
Now we repeat the analysis for the second scenario and

consider explaining Δaμ purely with the charm-couplings
λ22L;R, setting the top-/up-quark couplings to zero. The ratio
mc=mμ ∼Oð10Þ is smaller than the one for the top-quark.
Nevertheless, it makes the chirally enhanced term still
dominate such that the nonchirally enhanced term can be
neglected to estimate how strongly the relevant couplings
are restricted.
Applying similar simplifications as in the top case one

obtains the following approximation which highlights the
dependence on the couplings and is valid in the few-TeV
range (charm-only scenario),

Δaμ ≈ 5.4 × 10−9
1þ 0.14 lnðmS1=2 TeVÞ

ðmS1=2 TeVÞ2 λ22L λ22R : ð25Þ

Figure 5(b) shows the corresponding bands in the λ22L -λ22R
plane explaining the measured Δaμ at the 1σ and 2σ level.
The distortion of the hyperbolic shape is stronger compared
to the top-quark case because the dominance of the
chirality-flipping contributions is less pronounced. Still,
it is essentially the product of the two couplings which
matters for Δaμ, and it is again meaningful to provide the
interval of the coupling product for the entire 2σ band
(charm-only scenario),

FIG. 5. Bands in parameter space allowed by Δaμ, for mS1 ¼ 1.8 TeV. The three plots correspond to the three different scenarios,
defined in Sec. IV. The red-shaded regions correspond to the maximal additional limits from the Kþ → πþνν̄ decay.
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Δaμ band∶ 0.18 < λ22L λ22R < 0.56: ð26Þ

As shown in Ref. [50], there is a bound from the
measurement of BRðKþ → πþνν̄Þ which imposes an addi-
tional restriction on the coupling λ22L .2 However, the bound
significantly depends on λ12L : for lower values we obtain the
result from [50], for larger ones λ22L becomes unrestricted.
This behavior is illustrated by the upper boundary of the
green area in the Fig. 10 of Appendix A 1. If one sets the
coupling λ12L to zero, which implies the maximally restric-
tive bound from the Kþ → πþνν̄ decay, then the excluded
region is shown in Fig. 5(b) as the pink area.
Similarly to the top case, applying the perturbativity

upper limit on each coupling together with Eq. (26) leads
to lower limits on each coupling. These lower limits, and
the additional limits from the Kþ → πþνν̄ decay (which
applies for the specific case where λ12L vanishes) can be
summarized as (charm-only scenario)

2σ individual limit∶ 5.1 × 10−2 < λ22L;R;

Kþ → πþνν̄ limits∶ λ22L < 0.13; 1.5 < λ22R : ð27Þ

Finally, we focus on the third scenario, the columns case
where the leptoquark couplings are universal over the quark
generations. In this case, Δaμ is dominated by top-quark
contributions and the bounds on the universal couplings are
similar to the ones in the top-only case, however the
additional limits from the Kþ → πþνν̄ decay are driven
by a combination of up- and charm-quark couplings. The
corresponding plot is shown in Fig. 5(c), and the limits are
(columns scenario)

Δaμ band∶2.4×10−3<λ2Lλ
2
R<9.2×10−3;

2σ individual limit∶6.8×10−4<λ2L;R;

Kþ→πþνν̄ limits∶λ2L<4.7×10−2; 7.0×10−2<λ2R: ð28Þ

VI. PHENOMENOLOGICAL CONSEQUENCES
OF TWO-BODY DECAYS μ → eγ, τ → eγ,

AND τ → μγ

A. Consequences of decays involving muons

Now we consider the impact of CLFVon the leptoquark
couplings, with special focus on the condition that the
current Δaμ is explained. The first set of CLFVobservables
are the decays μ → eγ and τ → μγ. These have the common
feature that, like Δaμ, they involve the muon and are

governed by a dipole interaction which can be dominated
by chirality-flipping terms.
We begin with the analysis of the top-related couplings

λ3iL and λ3iR in scenario 1 (see Sec. IV), where the up- and
charm-related couplings are assumed to vanish. Like for
Δaμ, see Eq. (22), an instructive approximation is obtained
by taking only the chirally enhanced terms in the for-
mula (9) for the decays li → ljγ. In this approximation,
the limits on branching ratios from Table I translate into the
following inequality (all masses are to be given in units of
GeV; top-only scenario):

jλ3iR λ3jL j2 þ jλ3iL λ3jR j2 <
ΓiBRðli → ljγÞ

m3
i

0.73m4
S1

ð1 − 0.17 lnmS1Þ2
:

ð29Þ

For fixed i, j, this is a limit on a combination of four
couplings. There are several ways to extract more detailed
information on bounds.
First we may fix the couplings λ32L;R relevant for Δaμ such

that the experimental Δaμ is explained, i.e., fix a point in
the band of Fig. 5(a). In this way, two out of the four
couplings are fixed, and e.g., for μ → eγ, Eq. (29) takes the
structure ajλ31L j2 þ bjλ31R j2 < c, i.e., it restricts the remain-
ing two couplings onto an ellipse.
It turns out that the unification of all such ellipses is

essentially a hyperbolic region. This observation allows us
to decouple the influence of theΔaμ-related couplings from
consideration. Figure 6(a) shows the corresponding
allowed parameter regions in the plane of the two couplings
λ31L and λ31R . It is obtained from a scan over parameters (for
mS1 ¼ 1.8 TeV), requiring that λ32L and λ32R are chosen such
that the Δaμ prediction is within a 2σ band around the
measured value quoted in Table I. The yellow (blue)
regions are allowed by the bounds of the “current phase”
(“next phase”) experiments in Table I. Figure 7(a) is
analogous but for the decay τ → μγ and for the couplings
λ33L and λ33R .
To explain the shape of the allowed regions, we at first

introduce auxiliary variables that are the ratio of left and
right couplings,

kij ¼
λijL
λijR

; ð30Þ

and rewrite the limit in Eq. (29) for mS1 ¼ 1.8 TeV
equivalently as (top-only scenario)

λ31L λ31R λ32L λ32R < 3.0 × 10−2 BRðμ → eγÞ k31k32
k231 þ k232

;

λ33L λ33R λ32L λ32R < 4.8 × 10BRðτ → μγÞ k33k32
k233 þ k232

: ð31Þ

2In addition, Drell-Yan dilepton processes pp → μþμ− and
pp → μþμ−j provide an upper allowed value for λ22R as function
of λ22L and mS1 , see Ref. [50,111–113]. This upper bound
excludes part of the 2σ bound for the charm-only scenario in
Eq. (26). We do not use this upper bound here, because for us, it is
the lower bound on the couplings in Eq. (26), which impacts the
analyses in the remainder of the paper.
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The kij-dependent factor is maximal for equal kij ratios
and together with the minimal Δaμ-allowed product of
32-couplings, see Eq. (23), provides the most conservative
(in the case of purely top-related couplings) bounds on the
product of couplings. These bounds take the announced
hyperbolic shape, i.e., they depend only on the products of
two couplings (top-only scenario),

μ → eγjΔaμ∶ λ31L λ31R < 2.1 × 10−12 → 2.9 × 10−13;

τ → μγjΔaμ∶ λ33L λ33R < 3.5 × 10−4 → 5.4 × 10−5: ð32Þ

Here and in the following the first (second) number on the
right-hand sides correspond to the “current phase” (“next

phase”) experiments and the yellow (blue) regions in
Figs. 6(a) and 7(a). In the figures (with logarithmic scale)
these hyperbolic limits are visible as the inclined lines.
Figures 6(a) and 7(a) also show that the hyperbolic shape

is cut off by individual upper limits on each coupling
(top-only scenario),

μ → eγjΔaμ∶ λ31L;R < 1.3 × 10−4 → 4.9 × 10−5;

τ → μγjΔaμ∶ λ33L;R < 1.7 → 0.66: ð33Þ

They can be understood in two ways. On the one hand,
the perturbativity upper limit together with Δaμ implies
individual lower limits on the Δaμ-related couplings. Via

FIG. 6. Allowed parameter regions for the μ → eγ decay. assuming that Δaμ is explained, with mS1 ¼ 1.8 TeV, and for the three
different scenarios defined in Sec. IV. The meaning of the additional limits from the Kþ → πþνν̄ decay is as in Fig. 5.
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Eq. (29) this translates into the individual upper limits (33).
On the other hand, Eq. (24) implies that k32 is bounded.
Hence for very large/very small k31 the k-dependent factor in
Eq. (31) decreases, again explaining the upper bounds on
individual couplings in Figs. 6(a) and 7(a).
We repeat the previous discussion for the second

scenario where only charm-quark couplings are nonzero.
The analysis and conclusions proceeds analogously
to the previous case where top-quark couplings were
nonvanishing.
The four relevant charm-quark couplings for the decay

li → ljγ are λ2iL;R and λ2jL;R. The seminumerical approxi-
mation for the general bound on the combination of these
four couplings reads (all quantities with unit of mass are to
be given in units of GeV; charm-only scenario),

jλ2iR λ2jL j2 þ jλ2iL λ2jR j2 <
ΓiBRðli → ljγÞ

m3
i

1.2 × 107m4
S1

ð1 − 2.4 lnmS1Þ2
:

ð34Þ

This limit in Eq. (34) can be rewritten by using the ratios kij
between left- and right-handed couplings, see Eq. (30). For
the mass mS1 ¼ 1.8 TeV we obtain (charm-only scenario)

λ21L λ21R λ22L λ22R < 1.1 × 102 BRðμ → eγÞ k21k22
k221 þ k222

;

λ23L λ23R λ22L λ22R < 1.7 × 105 BRðτ → μγÞ k23k22
k223 þ k222

: ð35Þ

FIG. 7. As Fig. 6 but for the τ → μγ decay.
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Combining these upper limits with lower limits on cou-
plings derived from assuming an explanation of Δaμ in
Eq. (26) yields upper limits on products of only two
couplings relevant for each decay (charm-only scenario),

μ → eγjΔaμ∶ λ21L λ21R < 1.2 × 10−10 → 1.8 × 10−11;

τ → μγjΔaμ∶ λ23L λ23R < 2.1 × 10−2 → 3.2 × 10−3: ð36Þ

The corresponding bounds are visualized in the plots
of Figs. 6(b) and 7(b). As in the case of the top-quark
couplings, the allowed regions correspond to essentially
hyperbolic shapes as can be understood from Eq. (36).
Like in the top-coupling case, the figures also show that

there are cutoffs for individual couplings. They arise from
the lower limits on Δaμ-related couplings of Eq. (27).
There are general cutoffs related to the perturbativity limit
combined with requiring a Δaμ explanation. And there are
even stronger cutoffs on the left-handed couplings related
to the Kþ → πþνν̄ decay which, via Δaμ, implies a lower
limit on λ22R . Numerically, the upper limits on individual
couplings related to the μ → eγ and τ → μγ decays read
(charm-only scenario, individual limits),

μ → eγjΔaμ∶ λ21L;R < 1.3 × 10−4 → 5.0 × 10−5;

λ21L < 4.6 × 10−6 → 1.7 × 10−6;

τ → μγjΔaμ∶ λ23L;R < 1.7 → 0.67;

λ23L < 6.0 × 10−2 → 2.3 × 10−2; ð37Þ

where the second/fourth lines correspond to the constraints
from the Kþ → πþνν̄ decay.
Turning to the third scenario with quark-universal

couplings, the analysis proceeds similar to the previous
cases. We just provide the results, which can also be read
off from Figs. 6(c) and 7(c). The limits on the coupling
products are similar to the top-only case since the top-quark
provides the dominant contribution (columns scenario),

μ → eγjΔaμ∶ λ1Lλ
1
R < 2.5 × 10−12 → 3.6 × 10−13;

τ → μγjΔaμ∶ λ3Lλ
3
R < 4.3 × 10−4 → 6.7 × 10−5: ð38Þ

Similarly, the individual limits from Δaμ together with
perturbativity are similar to the case of the top-quark,
however the additional limits from Kþ → πþνν̄ decay are
different due to the combined contributions from up-
and charm-quarks (columns scenario, individual limits),3

μ → eγjΔaμ∶ λ1L;R < 1.6 × 10−4 → 6.1 × 10−5;

λ1L < 1.8 × 10−6 → 7.0 × 10−7;

τ → μγjΔaμ∶ λ3L;R < 2.1 → 0.83;

λ3L < 2.4 × 10−2 → 9.5 × 10−3: ð39Þ

B. Consequences for τ → eγ

Here we consider the decay τ → eγ. It is also dipole-
induced and chirality-flip enhanced, but it is not connected
to Δaμ-related couplings. The decay can be analyzed
analogously to μ → eγ and τ → μγ, and we present only
results for the two generation-specific scenarios. For the
top-only case this leads to the constraint (top-only scenario)

τ → eγ∶ λ31L λ31R λ33L λ33R < 8.0 × 10−7 → 2.2 × 10−7: ð40Þ

Here, a k-dependent factor similar to the ones in Eq. (31)
has been maximized to obtain the most conservative bound.
We see that the bound involves the same four couplings as
the ones of Eq. (32) restricted by μ → eγ and τ → μγ, but it
is considerably weaker; if the limits in Eq. (32) are met, the
additional bound of Eq. (40) is automatically satisfied by
many orders of magnitude.
The analogous result for the case of purely charm-quark

couplings reads (charm-only scenario)

τ → eγ∶ λ21L λ21R λ23L λ23R < 2.8 × 10−3 → 7.7 × 10−4: ð41Þ

Again, this limit is many orders of magnitude weaker than
the combination of limits derived from μ → eγ and τ → μγ
under the assumption of an explanation of Δaμ in Eq. (36).

VII. PHENOMENOLOGICAL CONSEQUENCES
OF THREE-BODY DECAYS μ → 3e AND OTHERS

The phenomenological discussion of three-body decays
li → ljlklc

k, particularly of μ → 3e, can be kept brief. Even
though these processes are influenced by a variety of vertex
and box form factors, they are strongly dominated by the
dipole form factors AL;R

2 in those parts of parameter space
which gives rise to conservative bounds aimed for in the
present study. For this purpose the three-body decays are
strongly correlated to the simpler two-body decaysli → ljγ.
The dipole dominance is illustrated in Fig. 8, which

shows the ratio of the two predicted branching ratios for the
two most interesting processes μ → 3e and μ → eγ, for a
range of λL;R. The color code of the points corresponds to
the spread between the four relevant couplings λ31L;R and λ

32
L;R

in case of scenario 1. If the spread is moderate (green/blue
points), we have an essentially fixed ratio between
the branching ratios for μ → 3e and μ → eγ, which is
approximately

3The limits on couplings obtained in this section supersede the
ones coming from Δae [64,114] and Δaτ [115,116] under the
assumption of Δaμ, thus the former are not mentioned in this
paper.
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BRðμ → 3eÞ
BRðμ → eγÞ ¼ 6.6 × 10−3: ð42Þ

The dipole dominance in this parameter region has two
reasons.
First, the photonic form factor AL;R

1 behaves similarly to
the nonchirally enhanced terms in the dipole form factor
AL;R
2 . Since we are working in a coupling regime with

strong chirality-flip enhancements, see Eq. (21), AL;R
1

provides only a negligible correction.
Second, the box diagrams (giving rise to contributions to

vector, scalar and tensor form factors) are in principle of
general interest since they depend on four powers of λL;R.
However, if the spread between the couplings is moderate
this cannot lead to enhancements, resulting in the corre-
lation (42).
However, if a large spread is allowed (red points in

Fig. 8), the behavior is more complicated and either
enhancement or destructive interference is possible.
On the one hand, the derivation of conservative bounds

in the style of the figures of Sec. VI depends on the
parameter points without box enhancements. Hence, given
the available experimental limits of Table I, the three-body
decays do not provide additional constraints on top of the
ones obtained from two-body decays analyzed in the
previous section. This remains true even for the next phases
of the experiments listed in Table I.

On the other hand, the enhanced red points show that
future μ → 3emeasurements are promising since enhanced
rates are possible in this leptoquark model. Finally, the
planned Mu3e-II [76] experiment for μ → 3e, which we
otherwise do not consider in the present paper has signifi-
cant potential for discovery and for improvements of
bounds even on the dipole form factors beyond the limits
presented in Sec. VI.

VIII. PHENOMENOLOGICAL CONSEQUENCES
OF μ → e CONVERSION

To discuss the phenomenological impact of μ − e con-
version process we rewrite the leptoquark contribution in a
way similar to the previous observables, as a product of the
four relevant couplings and a kij-dependent factor, as

BRðμ − eÞ ¼ α2s
4m4

S1
ωcapt

λ11L λ11R λ12L λ12R kα: ð43Þ

This highlights that the four relevant couplings are λ11L;R and
λ12L;R. The dimensionless kij-dependent factor is denoted as
kα; it is more involved than for previous cases and this time
also depends on the form factors αs;v,

kα ¼
ðk12 − αv

αs
Þ2

k11k12
þ k11k12

�
1

k12
−
αv
αs

�
2

: ð44Þ

Similarly to the previous observables we can obtain a
limit on the product of the four relevant couplings, now
depending on the factor kα. Given the present experimental
bound from the SINDRUM-II experiment (or the expected
bounds from COMET-I), this limit reads [Note, that form
factors αs;v in kα should be taken appropriately to the
nucleus from Eq. (18)],

λ11L λ11R λ12L λ12R <
8.4 × 10−12

kAuα
→

5.6 × 10−14

kAlα
: ð45Þ

Figure 9(a) displays this limit for the case of the present
bound from the SINDRUM-II experiment. In the figure, the
color code corresponds to the upper limit on the coupling
product, on the axes the two ratio variables k11 and k12 are
varied. The shape of the figure can be explained as follows.
Within the k-dependent factor there can be cancellations:

if either k12 ¼ αv=αs or k12 ¼ αs=αv, the prefactor of the
first (or second) term in Eq. (44) vanishes. If simulta-
neously k11 becomes very small (or large), the entire factor
kα is very small, and conversely very large coupling
products are allowed. This explains the two horizontal
strips in the figure where the limit becomes significantly
weaker.
Given this complicated behavior, it is instructive to

record the limit in some special cases with different degree
of possible cancellations. First, in the special point where

FIG. 8. Predicted ratios of the branching ratios for μ → 3e and
μ → eγ, for a range of λ31L;R, resulting from a scan over the relevant
couplings, for mS1 ¼ 1.8 TeV. The gray band shows the value of
Eq. (42) for dipole dominance (with a �10% corridor), and the
color code of points corresponds to the spread between the four
relevant couplings λ31L;R and λ32L;R in case of scenario 1. This
“distance” is computed by taking the four relevant couplings,
calculating their geometric mean, and then determining the
maximum difference to the mean, divided by the mean.
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k11 ¼ k12 ¼ 1, i.e., where the left- and right-handed cou-
plings happen to be equal, the limits become

μAu → eAujλL¼λR
∶ λ11L;Rλ

12
L;R < 2.5 × 10−6;

μAl → eAljλL¼λR
∶ λ11L;Rλ

12
L;R < 1.9 × 10−7: ð46Þ

Second, we consider the region where the left- and right-
handed couplings may differ by up to a factor 10,
k11; k12 ∈ ½0.1; 10�. In this region one of the terms within
kα can vanish, and overall kα turns out to vary in the interval
kα ¼ 0.48;…; 96 (0.73;…; 98 for COMET-I). A limit on
the coupling product which is valid in all of the region for
mS1 ¼ 1.8 TeV reads

λ11L λ11R λ12L λ12R < 6.5 × 10−12 → 3.7 × 10−14: ð47Þ

The previous observables have allowed (in conjunction
with Δaμ) to obtain bounds on individual couplings which
are complementary to the bounds on coupling products.
This is more difficult in the case of μAl → eAl or
μAu → eAu. A major reason is the possibility of cancella-
tions due to the two terms involving αs and αv. It is,
however, possible to obtain rather strict limits on the
correlation of a subset of two couplings. This is illustrated
in Fig. 9(b), which shows the allowed regions in the plane
of the two couplings λ12L -λ11R . The remaining two parameters
have been scanned over. (A similar plot could be shown in
the λ12R -λ11L plane.)
To explain the shape of the plot it is useful to discuss

Eq. (17) [or Eq. (44)] distinguishing two cases for the
couplings; either we have λ12L > αv

αs

ffiffiffiffiffiffi
4π

p
or we have

λ12L ≤ αv
αs

ffiffiffiffiffiffi
4π

p
. In the first case, no matter what the value

of λ12R is, the prefactor of λ11R in the branching ratio is not

zero; hence we get an upper limit on λ11R . In the second case,
there is a certain value of λ12R (within the perturbative
regime) which nullifies the prefactor of λ11R ; hence that latter
coupling can be arbitrarily large. This behaviour explains
the shape of the allowed regions in the plot. The upper limit
on λ11R can also be described by the formula

λ11R <
2m2

S1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcaptBRðμ − eÞp

αsλ
12
L −

ffiffiffiffiffiffi
4π

p
αv

if λ12L >
αv
αs

ffiffiffiffiffiffi
4π

p
; ð48Þ

which is valid with L ↔ R replacement and again explains
the shape of the plot.

IX. CONCLUSIONS

In the present paper, we have analyzed the impact of
combining Δaμ with CLFV limits on the parameter space
of the S1 leptoquark model. This well-motivated model
involves two 3 × 3 coupling matrices λqlL;R whose entries are
strongly constrained by the combination of low-energy
lepton observables. Here we briefly summarize and com-
ment on the most important results.
The summary is also displayed in Table III in a matrix

form, such that the ql-entry of Table III collects constraints
on the entries λqlL;R.
Generally Δaμ from Eq. (1) implies upper and lower

limits on the left-right products of couplings to muons, and
CLFV constraints then lead to upper limits on left-right
products of couplings to the electron and τ lepton. In
addition, perturbativity and the Kþ → πþνν̄ decay imply
upper limits on individual couplings; these (together with
limits on products) produce also lower limits on other
individual couplings.

FIG. 9. Limits for μAu → eAu (SINDRUM-II) and μAl → eAl (COMET-I) for mS1 ¼ 1.8 TeV and different coupling patterns. For
Fig. 9(a) see Eq. (45), and for Fig. 9(b) see Eq. (48). The red-shaded area is fully excluded by the Kþ → πþνν̄ decay.
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Specifically the third row of Table III assumes the
“top-only” scenario (see Sec. IV) where Δaμ is explained
via top-quark couplings only. In this case the (geometric
average of left- and right-handed) couplings to electrons
must be more than four orders of magnitude smaller than
the corresponding couplings to muons. Also, the couplings
to τ leptons must be smaller than the couplings to muons. In
the absence of cancellations within the theory predictions,
this conclusion remains unchanged even in the more
general case where couplings to the charm- and up-quarks
are also allowed to be nonzero (but small so as to not
significantly modify the contributions to Δaμ).
Similarly, the second row of Table III assumes the

“charm-only” scenario and presents bounds on couplings
of leptons to the charm-quark. In order to accommodate the
currentΔaμ value, the couplings to the muon must beOð1Þ.
In addition, the Kþ → πþνν̄ decay implies limits on the
ratio of left- and right-handed couplings, valid in a wide
range of parameter space (see Sec. V for details). These
are also reflected in the asymmetries visible in Figs. 6(b)
and 7(b) for the μ → eγ and τ → μγ decays. Again, there
must be a strong hierarchy between charm-couplings to the
muon and to the electron.
Finally, the first row of Table III is valid irrespective of

the scenario. It is derived from μ → e conversion con-
straints and from theKþ → πþνν̄ decay. As a result of these
constraints, the (geometric average of the) couplings of
electrons and muons to the up-quark must be significantly
smaller than the couplings to the charm- or top-quarks if
the Δaμ deviation is accommodated. In addition, more
detailed limits on λ12L and on products of two couplings can
be given as shown in the Table III and as explained in
Sec. VIII.
The table also collects the possible improvements of

limits from the next phases of CLFVexperiments collected
in Table I. If no signal is found, they will significantly

sharpen the upper limits on couplings to electrons and
τ leptons and will increase the need for highly hierarchical
and nonuniversal entries in the coupling matrices λqlL;R. In
general, the results exemplify the implications of Δaμ and
CLFV constraints on the flavor structure of new physics
models with enhanced chirality flips. Concrete models of
flavor need to be compatible with such results. This is of
particular interest in the considered case of leptoquarks,
where an obvious and unambiguous notion of minimal
flavor violation is not available [117,118].
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APPENDIX: CONSTRAINTS FROM FLAVOR-
CONSERVING MESON DECAYS

In this appendix, we discuss the impact of two lepton
flavor-conserving decays on the leptoquark parameter
space. Both decays have been used in Ref. [50] to constrain
the case of charmphilic explanations of Δaμ. For earlier,
original calculations and analyses of further meson decays
within leptoquark models see Refs. [59,66,119]. Here we
generalize the results of Ref. [50] to the case of general
coupling structures.

1. Decay K + → π + νν̄

From Ref. [50] one obtains the following leptoquark
contribution to the branching ratio

BRðKþ → πþνν̄ÞLQ ¼ k1CK1l
VLLðCK1l

VLL þ k2Þ; ðA1Þ

TABLE III. Summary of restrictions on all entries of the S1 leptoquark coupling matrices λL;R for mS1 ¼ 1.8 TeV. The restrictions in
the second and third rows are valid under the condition that Δaμ of Eq. (1) is explained, and they apply to various scenarios of Sec. IVas
indicated in the rightmost columns. For the derivation and the range of validity of the constraints on individual couplings we refer to the
appropriate sections and text. “sc.” here refers to scenario.

qnl e μ τ Valid

u λ11L λ11R λ12L λ12R < 6.5 × 10−12 → 3.7 × 10−14 � � � Any sc.

λ11L ðλ12R − 0.65Þ < 2.9 × 10−6 →
λ11L ðλ12R − 0.40Þ < 2.4 × 10−7

λ12L < 0.82

c λ21L λ21R < 1.2 × 10−10 → 1.8 × 10−11 0.18 < λ22L λ22R < 0.56 λ23L λ23R < 2.1 × 10−2 → 3.2 × 10−3 sc. 2
λ21L;R < 1.3 × 10−4 → 5.0 × 10−5 5.1 × 10−2 < λ22L;R <

ffiffiffiffiffi
4π

p
λ23L;R < 1.7 → 0.67

λ21L < 4.6 × 10−6 → 1.7 × 10−6 λ22L < 0.13; 1.5 < λ22R λ23L < 6.0 × 10−2 → 2.3 × 10−2

t λ31L λ31R < 2.1 × 10−12 → 2.9 × 10−13 3.1 × 10−3 < λ32L λ32R < 9.3 × 10−3 λ33L λ33R < 3.5 × 10−4 → 5.4 × 10−5 sc. 1
λ31L;R < 1.3 × 10−4 → 4.9 × 10−5 8.7 × 10−4 < λ22L;R <

ffiffiffiffiffi
4π

p
λ33L;R < 1.7 → 0.66
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where the following abbreviations are used:

CK1l
VLL ¼ 1

2m2
S1

ŶL
12Ŷ

L�
22 ; ŶL

ql ¼ Viq
CKMλ

il
L;

k1 ¼
κþ

3C2
Fλ

10
≈ 1.83595 × 109 GeV4;

k2 ¼ 2CFjRe½λt�Xðm2
t =m2

WÞ þ λcXe
NLj

≈ 2.65751 × 10−10 GeV−2; ðA2Þ

with the numerical values of intermediate parameters as
in Ref. [50]. After subtracting the SM branching ratio
(BRðKþ → πþνν̄ÞSM ≈ 9 × 10−11) from the experimental
limit obtained by the E949 Collaboration [80] one obtains
the following 2σ bounds:

−1.27×10−10<BRðKþ→πþνν̄ÞLQ<3.13×10−10: ðA3Þ

The Kþ → πþνν̄ decay thus constrains a combination of
the three left-handed parameters λi2L (i ¼ 1, 2, 3). The
numerical result is shown in Fig. 10 in the plane of λ12L -λ22L
(λ32L is less important since it appears only multiplied with
small CKM matrix elements).
The green area corresponds to the allowed region for the

special case λ32L ¼ 0. There is a thin allowed strip which is
always allowed as ŶL

12 vanishes due to different signs of
CKM matrix entries. This strip is cut off only by the
perturbativity limit.
If λ32L is allowed to be nonzero, the allowed region in the

λ12L -λ22L plane can increase. The yellow area corresponds to
the choice λ32L ¼ 1.3. Here the allowed region has a similar
shape as the green region but extends to larger coupling
values. If λ32L is increased further, the shape of the allowed
region changes. The reason is that specific values of the up-
and charm-quark couplings are required to cancel the large
top-coupling contributions. The red region illustrates this
for the value of λ32L at the perturbativity limit. This region
also illustrates the absolute achievable upper limit

λ12L < 0.82; ðA4Þ

which is used in Fig. 9(b).

2. Decay D0 → μ+ μ−
The current experimental bound is the following [81]:

BRðD0 → μþμ−Þ < 7.6 × 10−9ð95% C:L:Þ: ðA5Þ

The expression for the branching ratio has the form,

BRðD0 → μþμ−Þ ¼ d1
m4

S1

½ðλ12L λ22R − λ12R λ22L Þ2

þ ðλ12L λ22R þ λ12R λ22L

þ d2ðλ12L λ22L þ λ12R λ22R ÞÞ2�; ðA6Þ

with the following abbreviations and numerical values
from [50]:

d1 ¼ τD
f2D
256π

m5
D

m2
c
≈ ð17.3 GeVÞ4;

d2 ¼
mμmc

mD
≈ 0.0391: ðA7Þ

This decay leads to relevant constraints for the down-type
coupling basis considered in Ref. [50]. For our purposes,
we employ the up-type basis and several scenarios as
described in Sec. IV. We have checked that for all our
scenarios this decay does not lead to additional bounds on
parameter space beyond the bounds presented in the main
text of the paper.

FIG. 10. Constraints from the Kþ → πþνν̄ decay in the λ12L -λ22L
plane, for different values of λ32L . The colored regions are allowed
for the indicated values of λ32L .
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