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We use parity (P) to set θQCD to zero in the minimal left-right symmetric model with a bidoublet
Higgs, add a heavy vectorlike quark family, and obtain in a novel manner the Nelson-Barr (NB)
form associated so far only with spontaneous CP solution to the strong CP puzzle. Our solution
does not have the “coincidence of scales problem”, that typically plagues NB models. P protects θ̄, if it
breaks at a scale vR below the mass M of the heavy quarks, and θ̄ ∼ 10−9ðvR=MÞ2 is radiatively
generated, which can be acceptably small. On the other hand, if M < vR, the θ̄ ∼ 10−9 generated by the
NB mechanism is too large, but if δCKM is obtained without the NB form, surprisingly a lower irreducible
θ̄ ∼ ð10−13 to 10−10Þ lnðvR=MÞ, testable by neutron electric dipole moment experiments is generated. No
leptonic CP violation is generated (Dirac phase δCP ¼ 0 or π in Pontecorvo-Maki-Nakagawa-Sakata
matrix) which makes the minimal model testable by neutrino experiments. We also discuss some
challenges in a nonminimal model that generates leptonic CP violation. Lastly but importantly, we find
with doublet rather than bidoublet Higgses, that there is an automatic NB solution on imposing CP [the
NB form is accidental due to SUð2ÞR], which does not require generalized parity and needs just one
mirror generation.
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I. INTRODUCTION

Before the discovery of parity violation by weak inter-
actions, it was thought that discrete spacetime symmetries
of spatial reflection or parity (P) and time reversal (T or
equivalently CP due to CPT theorem) are respected by all
the forces of nature.
After parity violation and the Standard Model (SM) were

established, an idea emerged [1] that symmetries like P (or
left-right symmetry), C or other global symmetries are
accidental symmetries of the strong and electromagnetic
interactions, and there is no deep reason why they should
be exactly conserved in nature in its higher-energy theory.
A problemwith this idea is that then the strongCP phase θ̄

should have been ∼1 like δCKM, as there is no accidental
symmetry of the SM that makes it vanish. However, neutron
electric dipole moment (EDM) experiments [2] have estab-
lished θ̄ ≤ 10−10 radians (in its magnitude, or mod π).
It is therefore possible that either P or CP or both are

symmetries of nature in a high-energy theory above the
SM. Since θ̄ is odd under P as well as CP, it would vanish
and be radiatively generated by small quantum loop effects

when they are broken at lower energies. This is the
approach we take to address the puzzling smallness of θ̄,
or the strong CP problem as it is called.
The other approach is the well-known anomalous

Uð1ÞPQ symmetry [3] whose spontaneous breaking gives
rise to the axion [4,5]. Quoting from Ref. [6]: “The axion
is a missing link to confirm the idea that “symmetries are
only there to the extent that they are required by gauge
symmetry.””
Since axions have not so far been discovered, and the

idea is not confirmed, we take seriously the possibility that
the strong CP problem points towards P and CP symmetric
laws of nature [7–10].

A. Parity (P)

The Pati-Salam model [11,12] based on SUð4ÞC ×
SUð2ÞL × SUð2ÞR not only unified quarks and leptons
into the same SUð4ÞC multiplet, but also it showed the
way to achieve parity between the left- and right-handed
weak interactions, without duplication of fermion families
by mirror generations, and with the usual fermions acquir-
ing masses from an SUð2ÞL × SUð2ÞR bidoublet Higgs.
However the path to SOð10Þ unification is through its
subgroup SUð4ÞC×SUð2ÞL×SUð2ÞR×C which involves
charge conjugation rather than SUð4ÞC × SUð2ÞL ×
SUð2ÞR × P that has parity.
The popular left-right symmetric model [11–13] based

on SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞB−L × P undoes
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the quark-lepton unification aspect of the Pati-Salam group
while promoting the idea of parity, and can be viewed as
being in the different direction of restoring discrete space-
time symmetries, and therefore in this work we do not
expect that the CP phases in the lepton and quark sectors
will necessarily be similar.
An early attempt was made to solve the strong CP

problem in the left-right symmetric model [14] by imposing
more symmetries, and more scalars to break them, but did
not work as θ̄ ∼ δCKM are either both or neither generated.
The strong CP problem was later solved in the left-right

symmetric model with the bidoublet Higgs and P, by
adding one vectorlike heavy quark family [10] (rather than
more scalars), whose dimension-3 mass terms with the
usual light quarks break CP softly. We will recall this
solution in Sec. II A before adding an extra symmetry to
bring it to the Nelson-Barr form that has so far only been
associated with spontaneous CP violation, introduced later
in this section.

B. Mirror parity

There are solutions using P as a mirror symmetry
[9,15,16], which as envisaged by Lee and Yang [17]
requires duplication of the existing three fermion families
by their mirror counterparts which form three heavy
families of quarks and leptons. While the fermions are
duplicated, the SUð3ÞC group may [18] or may not
[9,15,16] be.
Surprisingly, we find in Sec. VI that there is an automatic

Nelson-Barr solution on imposing CP, in models with
SUð2ÞL × SUð2ÞR group containing respective Higgs dou-
blets (and no bidoublet), where mirror parity is generally
imposed. This opens a new approach with this group,
where CP by itself solves the strong CP problem without
needing any other symmetries, and also without requiring
all three mirror generations.
Mirror parity (which uses doublet Higgses rather than the

bidoublet Higgs), like the SM, does not necessarily
anticipate that neutrinos have masses, while ν masses
can be radiatively generated from bare mass terms involv-
ing exotic charged leptons [19]; these terms can be set to
zero using symmetries.
That neutrinos have masses however is a prediction of

the minimal left-right symmetric model with bidoublet
Higgs (introduced in Sec. I A), that is now borne out by
experiments. The Dirac mass term for the ντ generated on
one-loop renormalization group equation (RGE) running
from the τ−, top and bottom Yukawa couplings is many
orders of magnitude too large [20] in this model, and
therefore the neutrinos must have Majorana masses via the
seesaw mechanism. These predictions provide the motiva-
tion for our work with bidoublet Higgs and parity.
Note that in literature the same words parity and left-

right symmetry are often used even for mirror parity. Also
the words generalized parity are sometimes used.

C. CP (or equivalently T)

We now turn to the solutions of the strong CP problem
using CP. Arguably next only to axions in popularity, is the
Nelson-Barr solution [7,8,21–23], that requires a heavy
vectorlike quark(s) which has (have) Yukawa couplings
with the usual quarks via scalars whose vacuum expect-
ation values (VEVs) break CP spontaneously. To prevent θ̄
from being generated at the tree level, an additional global
symmetry is also imposed (which we find in Sec. VI can be
accidental or automatic).
Obtained in the aboveway,NBmechanism splits themass

terms involving the heavy quark into dimension-3 terms that
conserve CP and terms that are generated by Yukawa
couplings and CP breaking VEVs, and requires these two
types of terms to be at more or less the same scale. This
requirement of coincidence of unrelated scales is considered
the most unsatisfying feature of NB models [24,25].
Moreover NB mechanism that involves SUð2ÞL doublet

vectorlike heavy quarks obtained in the usual manner is
almost ruled out [26] as the radiatively generated two-loop
strong CP phase is larger than the bounds from neutron
edm experiments. Therefore, most NB models only involve
SUð2ÞL singlet up- and down-type heavy vectorlike quarks.

D. This work

In this work we arrive at the Nelson-Barr mechanism in a
completely novel way. We begin with the left-right sym-
metric model containing the bidoublet Higgs, and use P to
set θ̄ ¼ 0 (instead of CP that is used in NB models). The
strong CP problem is solved by breaking CP softly by
dimension-3 mass terms following Ref. [10]. An additional
symmetry brings the quarkmassmatrices to theNelson-Barr
form. The Cabibbo-Kobayashi-Maskawa (CKM) phase is
generated through the Nelson-Barr mechanism. Since CP
conserving and violating terms can be of the same type
(whether CP is broken softly, or as discussed in Sec. V
spontaneously), the problem of coincidence of scales does
not in occur the NB solution we obtain in Sec. II.
The critical nondecoupling type radiative corrections to θ̄

vanish in one loop, as is expected due to theNB form, and are
generated in two loops. Further if P breaks at the scale vR
below the softCP breaking scaleM, it protects θ̄ between vR
and M and the two-loop corrections are suppressed by the
factor ðvR=MÞ2. Therefore, a heavy vectorlike SUð2ÞL
doublet, that is ruled out through the traditional CP based
NB solution, can be present in our P based NB mechanism,
if its mass M > vR due to the suppression of radiative
corrections. The two-loop corrections to θ̄ ∼ 10−9ðvR=MÞ2
are discussed in Sec. III A.
Interestingly if M < vR while the NB mechanism gen-

erates an irreducible ¯θ ∼ 10−9 that is now not suppressed,
we do not need to impose the NB form, while still retaining
the strong CP solution due to P. In this case we can
generate δCKM without the NBmechanism, and surprisingly
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we find that a much lower irreducible contribution θ̄ ∼
10−10 to −13 lnðvR=MÞ is generated in one-loop (and the
two-loop corrections are equally small). This region of
parameter space is entirely testable by current and future
neutron EDM experiments. The irreducible contribution is
discussed in Sec. III B.
Leptonic CP violation is not generated in the minimal

model of this work (nor in [10]), providing a way to test the
restoration of discrete spacetime symmetries, even if vR and
M are at very high scales from multi-Tev to 1015 GeV, or
more. The global fit to data from neutrino oscillation
experiments is currently consistent with this prediction,
discussed in Sec. IVA.
While the absence of leptonic δCP has been discussed

before [27,28] in the context of Ref. [10], and in [29], in
this work we also discuss the challenges in a nonminimal
model that can generate leptonic CP phases, in Sec. IV B.
The rest of the paper is organized as follows. Section V

shows how to introduce real or complex scalar singlets
without spoiling the strong CP solution, so as to have
spontaneous CP violation. Section VI is a new approach to
the strong CP problem with SUð2ÞL × SUð2ÞR group and
respective Higgs doublets (rather than bidoublet), where we
find that there is an automatic Nelson-Barr solution without
requiring mirror parity. Section VII is the minimal way to
achieve the Nelson-Barr mechanism with softly broken CP
symmetry and a real scalar singlet. Section VIII is a brief
discussion on nonrenormalizable terms and in Sec. IX we
present the conclusions.

II. STRONG CP SOLUTION AND NELSON-BARR
MECHANISM WITH P

We first recall in Sec. II A, the solution to the strong CP
problem in the left-right symmetric model with parity [10].
We then impose in Sec. II B a softly broken symmetry to
bring the quark mass matrices to the Nelson-Barr form.

A. Strong CP solving left-right symmetric
model with bidoublet Higgs

We begin with the left-right symmetric model [11,12,13]
based on SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L × Pwith
theHiggs sector consisting of scalar tripletsΔR and its parity
partnerΔL and a bidoublet ϕ (for the Higgs potential please
see for example [30,31]).
Following Ref. [10], in addition to the usual three quark

families QiL and QiR, which are doublets of SUð2ÞL and
SUð2ÞR respectively, we add a fourth vector like quark
doublet family, whose left- and right-handed components
Q4L and Q0

R are both SUð2ÞL doublets. Due to parity there
is also the corresponding SUð2ÞR doublet vectorlike family
with components; Q4R, Q0

L. In the minimal version there
are the usual three generations of leptons LiL, LiR and there
is no vectorlike lepton family.

Note that the usual SM right handed SUð2ÞL singlet
quarks and leptons, are all in the corresponding SUð2ÞR
doublets QiR and LiR, and we automatically have the right-
handed neutrinos in LiR.
The scalar and fermion content is displayed in Table I

and here after we assume i runs from 1 to 4 for the quarks to
include the usual three light-chiral and the fourth normal-
chiral component of the vectorlike quark family. While for
the leptons, i runs from 1 to 3.
Parity reflects ðx; tÞ → ð−x; tÞ, sets θQCD ¼ 0, exchanges

the SUð2ÞL and SUð2ÞR gauge bosons, and

QiL ↔ QiR; Q0
L ↔ Q0

R; LiL ↔ LiR;

ΔL ↔ ΔR; ϕ → ϕ†: ð1Þ

SUð2ÞR ×Uð1ÞB−L × P → Uð1ÞY , when the neutral com-
ponent of ΔR picks up a VEV ∼ vR > vwk. We do not make
any assumptions on the scale of vR and it can be frommulti-
TeV scale [20,32] to the canonical value of seesaw scale
∼1013 GeV to 1014 GeV set by neutrino’s Dirac-Yukawa
couplings being like that of the top quark, or even above.
The SM group is broken by the VEVs hϕ0

1i≡ κ1 and
hϕ0

2i≡ κ2 of the bidoublet ϕ (with the weak scale
v2wk ¼ jκ1j2 þ jκ2j2). ϕ has two SM Higgs doublets labeled
below by subscripts 1 and 2, and can be represented by the
matrix

ϕ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
: ð2Þ

When ϕ picks up VEVs κ1;2, the Yukawa couplings in
Eq. (3) with ϕ̃ ¼ τ2ϕ

⋆τ2, generate the up- and down-sector
quark mass matricesMu andMd. Since under P, ϕ → ϕ†, a
complex phase for hϕ0

2i≡ κ2 (κ1 can always be chosen to
be real) breaks P as well as CP, and will generate θ̄ ¼
ArgDetðMuMdÞ at the tree level. Therefore, we impose CP
on all dimensionless quartic couplings of the Higgs
potential and Yukawa couplings.

TABLE I. Scalar and fermion content of the minimal strong CP
solving LR model. Note that i ¼ 1 to 4 for quarks and i ¼ 1 to 3
for leptons.

SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞB−L
ΔL (1,3,1,2)
ΔR (1,1,3,2)
ϕ (1,2,2,0)
QiL;Q0

R ð3; 2; 1; 1=3Þ
QiR;Q0

L ð3; 1; 2; 1=3Þ
LiL ð1; 2; 1;−1Þ
LiR ð1; 1; 2;−1Þ

P AND CP SOLUTION OF THE STRONG CP PUZZLE PHYS. REV. D 108, 095023 (2023)

095023-3



CP ensures that the sole parameter α2 of the Higgs
potential that could have been complex, stays real (note that
this P symmetric term α2Trðϕ̃†ϕΔ†

RΔR þ R;ϕ → L;ϕ†Þ þ
H:c: is automatically absent if there is supersymmetry
[33,34], but in this work we are considering nonsupersym-
metric models and therefore impose CP). There is a soft
mass term in the Higgs potential between the two SM
doublets of the bidoublet, μ2ϕ̃†ϕþ H:c: and we note that P
ensures that μ2 is real, without needing CP. This parameter
stays real due to P even after we include dimension-3 mass
terms in Eq. (5) that break CP softly. There are therefore no
complex parameters in the scalar potential and conse-
quently the bidoublet VEVs, obtained by minimizing the
Higgs potential, are real (conserve P and CP) at the tree
level although P is broken by the VEV of ΔR.
We note that the Yukawa terms can be written as

hijQ̄iLϕQjR þ h̃ijQ̄iLϕ̃QjR þ H:c.; ð3Þ

where hij; h̃ij are matrix elements of matrices h; h̃ which
are Hermitian due to P and real due to CP, and i; j run from
1 to 4. Note that one of the SM doublets in the bidoublet ϕ
picks up a mass ∼vR and decouples from low-energy
physics. And there is only one SM Higgs doublet below vR
whose Yukawa couplings

huijvwk ¼ hijκ1 þ h̃ijκ2;

hdijvwk ¼ hijκ2 þ h̃ijκ1; ð4Þ
for the up and down sector are obtained from the above real
and Hermitian Yukawas and real Higgs VEVs κ1, κ2.
We use the convention of Ref. [10] of underlining the

real Yukawa couplings in the symmetry basis above the CP
breaking scale.
SoftCP breaking is introduced by the direct dimension-3

mass terms between the light and heavy quarks and
generates CP violation, while respecting parity.

MiQ̄iLQ0
R þM⋆

i Q̄
0
LQiR þ H:c: ð5Þ

where the sum over repeated index i goes from 1 to 4 and
we have imposed P.
Note that the up- and down-quark mass matricesMu,Md

obtained from Eqs. (4) and (5) while CP violating, are
Hermitian (respect P) and therefore θ̄ ¼ ArgDetðMuMdÞ ¼
0 at the tree level, thereby solving the strong CP problem.
Below the mass of the heavy vectorlike quarks, we
integrate them out by going to the heavy quark mass basis,
and theCP violation shows up as the CKM phase ðδCKMÞ in
the effective SM Yukawa couplings hu and hd, which are
complex and Hermitian at the tree level. More details of this
solution can be found in Ref. [10].
Note that the Yukawa couplings in Eq. (3) do not have

the Nelson-Barr form. Moreover there are no scalar singlets
whose VEVs contribute to Mi of Eq. (5). All the mass

parameters Mi (with i ¼ 1 to 4) are complex and are on an
equal footing, since they all break softly the accidental
discrete symmetry (Q0

L;Q
0
R → −Q0

L;−Q0
R) of the rest of the

terms of the Lagrangian. Note that this symmetry argument
applies even with the Nelson-Barr form obtained in the next
subsection. Therefore the problem of needing the coinci-
dence of unrelated scales between CP-conserving dimen-
sion-3 mass terms and CP-violating terms generated by
scalar VEVs, that is generally present [24,25] in Nelson-
Barr solutions, is not there in our approach.
We now impose an additional softly broken symmetry to

obtain the Nelson-Barr form of the mass matrices.

B. Obtaining Nelson-Barr form

We impose a chiral symmetry under which Q4L→
eiαQ4L. This sets h4j; h̃4j ¼ 0 in Eq. (3), and

hu;d4j ¼ hu;dj4 ¼ 0 ð6Þ

for all j in Eq. (4), since the Yukawa matrices are
Hermitian. M4 in Eq. (5) breaks this symmetry softly.
We can now make equal left- and right-chiral rotations

Q4L;4R → eiβQ4L;4R and choose β so that M4 is made real.
Using the up and down components of the doublets

QiR ≡ ðuiRdiR
Þ and Q0

R ≡ ðu0Rd0RÞ (and likewise for R → L), the

Hermitian up (and similarly down) sector quark mass terms
can be written as ðūL; ū0LÞ Mu (uRu0R

), where uR is shorthand

for uiR, and is a 4 × 1 column vector in family space and
contains the usual 3 light chiral generations as well as the
corresponding fourth chiral component of a heavy vector-
like generation (and likewise uL). Up- and down-quark
mass matrices Mu and Md obtained from Eqs. (3)–(6) now
have the Nelson-Barr form and can be written as

Mu;d ¼

0
BBBBBBBB@

0 M1

hu;dvwk 0 M2

0 M3

0 0 0 0 M4

M⋆
1 M⋆

2 M⋆
3 M⋆

4 0

1
CCCCCCCCA

ð7Þ

with M4 real and hu;d now being the respective 3 × 3

Yukawa matrices of Eq. (4) with elements huij and hdij
with i; j ¼ 1 to 3. Without loss of generality, to ease the
calculations, the real Yukawa couplings of terms Q̄0

Lϕ
†Q0

R

and Q̄0
Lϕ̃

†Q0
R that contribute to the 5th row’s 5th column

have been set to zero by imposing a chiral symmetryQ0
R →

eiαQ0
R broken softly by dimension-3 mass terms Mi.

Note that the reason Mu matrix is 5 × 5 is because there
are two heavy vectorlike up quarks; one which is a heavy
SUð2ÞL singlet [from the SUð2ÞR doublet], and the other is
from the heavy SUð2ÞL vectorlike doublet. If we remove
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the 4th row and 5th column from the above matrix, we will
recognize what remains as being the familiar Nelson-Barr
form with just the heavy-singlet up quark. On the other
hand if we remove the 4th column and 5th row what
remains is the form with the heavy-doublet up quark.
Likewise for the down sector.
There are two reasons now why the determinants of Mu

and Md are real at the tree level. One reason is because
these matrices are Hermitian due to P. The other because
they are of the Nelson-Barr form and complex parameters
are multiplied by zeros while evaluating the determinant.
We have obtained the Nelson-Barr form by using P

rather than CP to set θ̄ to zero at the tree level. The net
result is that there is no need to introduce isosinglet scalars
of the NB type that have Yukawa couplings with the heavy
quarks, and the model is free from the coincidence of scale
problem [24,25] between CP-violating terms (from scalar
singlet VEVs that break CP) and CP conserving mass
terms (that do not couple to the singlets).
Below the mass

M2 ¼
X4
i¼1

jMij2 ð8Þ

of the heavy quarks (which set the soft-CP breaking scale
M), we can go to theirmass basis by a unitary transformation
so that the mass matrices Mu and Md become [10]

Mu;d ¼

0
BBBBBBBB@

0

hu;dvwk 0

0

M

0 0 0 M 0

1
CCCCCCCCA
; ð9Þ

where hu and hd are complex 4 × 4 Hermitian-Yukawa
matrices, whose light (upper left) 3 × 3 sector are the SM
Yukawa couplings, and M is real.
δCKM is thus generated through the Nelson-Barr mecha-

nism. Note the important difference from the way it was
generated in the example given in the Appendix of
Ref. [10], where the Yukawa couplings (or quark mass
matrices) were not of the NB form. Specifically note the
critical role played by the Yukawa coupling h4c (that is,
hu42) to generate δCKM in that example, which is now zero in
the NB form of Eq. (7). Therefore the radiative corrections
to θ̄ worked out in that example are also different, and we
now discuss the loop corrections within the NB framework.

III. RADIATIVE CORRECTIONS TO θ̄

A. Corrections with the Nelson-Barr mechanism

Radiative corrections in Nelson-Barr models have com-
prehensively been estimated in Ref. [26], building on the
work of Nelson [21].

There are generally two types of corrections, ones
that are suppressed by the mass scale of the heavy quarks
are of the decoupling type. However there are also
the more dangerous nondecoupling corrections that are
not suppressed.
We will first consider the case with M < vR with the

heavy quarks just below the parity breaking scale. Below
the scaleM, we would like to integrate out the heavy quarks
and consider just the effective SM theory.
As noted by Nelson [21] in the mass basis of the heavy

quarks, the Yukawa couplings between the heavy and light
quarks can generate radiative corrections to the light quark
mass matrices on electroweak symmetry breaking. These
corrections can come from two-loop diagrams involving
the SM Higgs and at least one of the heavy quarks in the
internal lines. These two-loop diagrams are similar to the
diagrams that would renormalize the Yukawa couplings
(and involve the term huhu†hdhd†), while the one-loop
contributions to θ̄ vanish due to the Nelson-Barr form.
Naively, we may think that the corrections to θ̄ from

the heavy quarks would be suppressed by hH†Hi=M2∼
ðvwk=MÞ2, where H is the SM Higgs doublet field.
However, since the loop diagrams that renormalize
the Yukawa couplings, are logarithmically divergent in the
ultraviolet, when we pull out the factor 1=M2 from the
internal fermion line that has the heavy quark (since we are
interested in loop momenta p2 less than M2 while evalu-
ating the Feynman integral), the remaining part of the
integrand (now with one p2 factor less in the denominator)
is quadratically divergent. When we integrate up to a mass
scale say M0 ≤ M this provides a contribution proportional
to ðM0=MÞ2, so that

θ̄ ∼ ð1=16π2Þ2ðM0=MÞ2ImTr½huhu†hdhd†�3×3; ð10Þ

where we have used square brackets and the subscript to
convey that the trace is over the light (upper left) 3 × 3

submatrix, while hu and hd are the 4 × 4 Hermitian,
complex Yukawa matrices in the mass basis [Eq. (9)] of
the heavy quarks. Note that the reason the Trace is over the
light 3 × 3 submatrix is because the Yukawa couplings
involving the fourth (heavy) quark, hu;di4 and hu;d4i , multiply 0
when the determinant of Mu (and Md) is evaluated in the
heavy quark mass basis of Eq. (9), and therefore radiative
corrections to hu;di4 do not contribute to θ̄ in the leading
order.
If M < vR then we have to integrate until the heavy-

quark mass scale and soM0 ¼ M in Eq. (10). We substitute
the values of hu and hd we obtain from hu;d in Eq. (7) by
using typical values of jMi=M4j ∼ 0.5 (for i ¼ 2, 3) and
making a unitary transformation into the heavy quark mass
basis of Eq. (9). We find on substitution of typical values
that to obtain δCKM ∼ 1 with the known light quarks’
masses and mixing angles,
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θ̄M<vR ∼ ð1=16π2Þ2ImTr½huhu†hdhd†�3×3∼3×10−10: ð11Þ

This is in agreement with θ̄ ∼ ð1=4π2Þ2λ2CY2
t Y2

b ∼ 5 ×
10−9 (where Yt;b are the top and bottom quarks’ Yukawa
couplings and λC is the Cabibo angle), estimated in
Ref. [26] for NB mechanism via a vectorlike SUð2ÞL
doublet quark, that our model contains.
As noted in Ref. [26] the contributions to θ̄ from the up

and down mass matrices do not cancel each other. Since the
placement of the internal heavy quark lines is in general
different for different combinations of Yukawa couplings in
the up and down sectors, we also do not expect cancellation
between their contributions.
On the other hand if vR < M, then parity protects θ̄ from

radiative corrections above vR. The second Higgs doublet
in the bidoublet provides canceling contributions above its
mass ∼α3v2R. Therefore, M02 ¼ α3v2R in Eq. (10) and

θ̄vR<M ∼ ð1=16π2Þ2ImTr½huhu†hdhd†�3×3α3ðvR=MÞ2
∼ 10−9α3ðvR=MÞ2; ð12Þ

where, as before, the trace is over the upper left 3 × 3
submatrix part of the product of the 4 × 4Yukawa matrices.
Note that α3 ∼ 0.1 to 1 is the real quartic coupling of the
Higgs potential term Trðϕ†ϕΔ†

RΔR þ R → L;ϕ ↔ ϕ†Þ.
The factor ðvR=MÞ2 is consistent with treating M

as a cutoff scale for new physics in the ultraviolet
of the minimal LR model with P (without the heavy
quarks), and including the effect of the scale of the
heavy quarks by nonrenormalizable terms. θ̄ can be
generated when ΔR acquires the VEV vR by non-
Hermitian parameters of nonrenormalizable terms such
as Q̄iLϕQjRðΔ†

RΔR=M2Þ þ L ↔ R, ϕ → ϕ†, which decou-
ple as ðvR=MÞ2. In our case, the prefactor to ðvR=MÞ2 that
depends on the Yukawa couplings, as we calculated
is ∼10−9α3.
Note that such decoupling does not happen with just the

SM because there is no symmetry in the SM that sets θQCD
to zero. SM parameters (including θ̄) can get contributions
that are not suppressed by the scale of new physics.
Therefore, in just the SM without P, the radiative correc-
tions of the NB mechanism generate an unsuppressed θ̄,
which is also the case in Eq. (11), for M < vR.
Since θ̄ in Eq. (12) can be acceptably small ifM is just a

factor of 10 or 100 larger than vR, the CP breaking scale
does not have to be much larger than the SUð2ÞR ×
Uð1ÞB−L → Uð1ÞY breaking scale.
We have thus found an interesting resolution of the

strong CP problem which provides an ultraviolet comple-
tion of the minimal left-right symmetric model, with the
Nelson-Barr mechanism.

B. Corrections without Nelson-Barr

The radiative corrections from the NB mechanism are
too large if the heavy quarks are below the P breaking scale
(that is, ifM < vR). θ̄ ∼ 10−9 that is generated in Eq. (11) is
irreducible [26] since the very couplings that are respon-
sible for generating δCKM also generate the strong
CP phase.
Therefore we now remove the chiral symmetry that led to

the NB form and consider the more general case [10] of the
mass matrix for the case M < vR. Now the δCKM can be
generated without the NB mechanism, from the phases in
Mi and using Yukawa couplings hu;d4j ¼ hu;dj4 between the
heavy and usual quarks as they no longer vanish.
What we find is that even in this case there is

an irreducible contribution, but surprisingly it is
smaller and has an experimentally interesting value
θ̄M<vR ∼ ð10−10 to 10−13Þ lnðvR=MÞ. Corrections of this
order were found in Ref. [10] in one-loop, but they were
not shown to be irreducible in the sense that depending on
the choice of the parameters they could also vanish.
We will now find an irreducible correction θ̄ ∼

10−13 lnðvR=MÞ that does not vanish in one and two loops
(and more likely contributions that are 10–1000 times
higher), and therefore the entire parameter space ofM < vR
can be tested in the future (earlier than later) by neutron
EDM experiments.
To obtain the above we work in a basis where the upper

left 4 × 4 submatrix of the Hermitian matrix Mu given by
Eqs. (4) and (5) is diagonal, and we set some of the
parameters to zero to obtain the smallest θ̄, for which we
choose Mu and Md of the form

Mu ¼

0
BBBBBBBB@

0 M1

hu22vwk 0

hu33vwk 0

hu44vwk M4

M⋆
1 0 0 M4 0

1
CCCCCCCCA
;

Md ¼

0
BBBBBBBB@

hd11vwk 0 hd13vwk 0 M1

0 hd22vwk hd23vwk hd24vwk 0

hd13vwk hd23vwk hd33vwk 0 0

0 hd24vwk 0 0 M4

M⋆
1 0 0 M4 0

1
CCCCCCCCA
:

ð13Þ

Note that since the above matrices are Hermitian and
only M1 is complex (M4 can always be chosen to be real),
there are just as many nonzero Yukawa couplings as the
light quarks masses and mixing angles. The phase in
M1=M4 generates δCKM (and the ratio with hd24 the
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Cabibo angle) when we go to the mass basis of the heavy
quarks with a unitary transformation in the 1–4 plane.
Nonzero contributions we find for θ̄ with the above
minimal choice of nonzero parameters is irreducible.
We choose jM1=M4j ∼ 0.7 (much smaller values tend to

give a higher θ̄ as hd24 would have to be higher to get the
Cabibo angle). All the remaining nonzero terms in the
above two matrices are determined from the light quark
masses, mixing angles, and δCKM. We find below an
irreducible θ̄ ∼ 10−13 with this choice of parameters.
Before that, to understand the plausible physics that could

generate roughly the above formof thematrices,wenote that
M2 ¼ M3 ¼ 0 can be obtained by imposing the symmetry
underQ1L;4L → −Q1L;4L,Q0

R → −Q0
R onYukawa couplings

and mass terms in (3), (4), and (5). The Yukawa couplings
involving the first and fourth generation break this symmetry
approximately due to the smallness of hu;d1i ; h

u;d
i4 ∼ 10−5�1 in

Mu;d of Eq. (13). Therefore, jM2j; jM3j that also break this
symmetry approximately, can be smaller than M4 by a
similarly small factor, which justifies our setting them to
zero in the leading order.
We now go into the mass basis of the heavy quarks by

bringing the mass matrices to the form in Eq. (9) and obtain
the complex Hermitian-Yukawa matrices hu and hd (now
written without the underline).
Since M < vR, below the P breaking scale, hu;d obtain

non-Hermitian corrections Δhu;d on RGE running and as
found in Ref. [10] generate,

θ̄ ∼ ImTrð½hd�−13×3½Δhd�3×3Þ ð14Þ

with

½Δhd�3×3 ∼ ½huhu†hd�3×3 lnðvR=MÞ=ð16π2Þ; ð15Þ

where hu and hd inside the square brackets are the 4 × 4
complex Hermitian-Yukawa matrices, and having evalu-
ated the resultant matrix within any square brackets, we
drop its 4th row and 4th column to obtain the corresponding
3 × 3 matrices outside the square brackets. The inverse is
taken after obtaining the 3 × 3 submatrix, and therefore has
been indicated outside the square brackets.
Note that in the above equation, huhu† is from the beta

function of the one loop RGE for hd. Therefore huhu†hd is
the Yukawa factor contributing to Δhd.
There is also a contribution from RGE running of hu that

is obtained with u ↔ d in Eqs. (14) and (15).
Using the form of hd and hu in Eq. (13), with their values

determined by masses and mixing of the usual light quarks
(with jM1=M4j ∼ 0.7), we find from Eqs. (14) and (15) an
irreducible

θ̄M<vR irred ∼ 10−13 lnðvR=MÞ: ð16Þ

While the contribution from Δhu vanishes.

Note that using Eqs. (13)–(15) the above contribution
can be understood as ð1=16π2ÞY2

uλ
2
C ∼ 10−13 where Yu ∼

2 × 10−5 is the Yukawa coupling of the SM up quark and
λC is the Cabibo mixing angle.
This irreducible contribution was missed in the example

in the Appendix of Ref. [10] as only a single one-loop
contribution (which could have vanished) was evaluated,
by providing nonzero values for some of the Yukawa
couplings that could have been set to zero. Note that in that
example a hd diagonal basis was used, and so the
corresponding contribution worked out was from Δhd that
could have vanished.
We also find that contributions from the two-loop beta

function term huhu†hdhd†, in place of huhu† in Eq. (15),
with an additional loop factor of 1=16π2, are of a similar
order of magnitude as (16), while all other two-loop
corrections are several orders of magnitude smaller.
Interestingly, the one- and two-loop corrections under

RGE running evaluated using Eqs. (14) and (15) vanish if
hu and hd are obtained from the Nelson-Barr form [Eqs. (6)
and (7)]. This makes sense as it is easy to see from the
Yukawa and mass terms that the Nelson-Barr form is
invariant under RGE running at scales above the mass
M of the heavy quarks. Therefore, θ̄ is not generated under
RGE running between vR and M. The radiative corrections
in the NB case arise at the scale M, since terms that would
cancel for RGE running above the scale M, no longer
cancel at and below the scale M, as the heavy mass cannot
now be taken to be zero.
The two-loop term in Eq. (11) is one such term

(occurring in ImTrð½huhu†hdhd†hd�3×3½hd�−13×3Þ when the
upper left 3 × 3 part of hd and ½hd�−13×3 multiply each other)
that does not get canceled for the Nelson-Barr form at the
scaleM (but is canceled by the remaining terms in the trace,
above the scale M, for RGE running).
We therefore need to also check that huhu†hdhd† taken

by itself, generates from Eq. (11) only a negligibly small θ̄
for the Yukawa matrices obtained from the form in Eq. (13),
that we considered in this subsection, and this turns out to
be the case.
One-loop contributions that are 10–1000 times larger

than in Eq. (16) are generated (interestingly those fromΔhu
are more dominant), when we turn on the Yukawa
couplings and Mi that we set to zero to obtain the form
in Eq. (13). Moreover the logarithmic factor could be order
1–10. Therefore we expect θ̄ ∼ 10−13 to 10−10 lnðvR=MÞ is
generated and will be found sooner than later by the
neutron EDM experiments.
Since the problem of coincidence of scales is not there in

our model, and since there are no scalars that are usually
associated with NB mechanism, the heavy quarks can be
naturally light and well separated from the Planck scale,
and potentially also be at the current collider scales. The
form in Eq. (13) suggests that the heavy quarks couple very
weakly to the usual quarks. Therefore if a neutron EDM
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corresponding to θ̄ ≥ 10−12 is found, it may be worthwhile
to look for such weakly coupled heavy quarks in the current
and future colliders.
For the case where vR < M, P protects θ̄ and the

radiative contributions are suppressed by the factor
ðvR=MÞ2 as in the previous subsection. The prefactor will
depend on the couplings in Eq. (13), where we no longer
need to restrict some Yukawa couplings and Mi to be zero
or very small.

IV. LEPTONIC CP VIOLATION OR ABSENCE
THEREOF

A. Absence in minimal model

In the Nelson-Barr mechanism with the SM gauge group
and three right-handed neutrinos, the NB scalar singlets
whose VEVs generate δCKM in the quark sector, would also
have Majorana type Yukawa couplings with νR (which is a
SM singlet) and generate the CP phase in the leptonic
sector. In that way, it has been argued that there is a
common origin of CP phases in both sectors [23].
However in the left-right model, since the right handed

neutrinos are SUð2ÞR doublets, they get their Majorana
masses through Yukawa couplings with ΔR whose VEVs
do not violate CP. Also we imposed CP to ensure that the
VEVs of the bidoublet ϕ are real, which was needed to
solve the strong CP problem. Therefore the VEV of ΔL
which is generated from real Higgs potential terms and real
VEVs of ΔR and ϕ is also real. The left- or right-handed
neutrinos cannot pick up any CP-violating Dirac or
Majorana masses with the minimal particle content of
Table I.
This is great for testing the model since, all leptonic CP

phases including the Dirac phase δCP of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix must be zero or π.
Global fits to data from current neutrino experiments are
consistent with δCP ¼ π to within one sigma [35,36] for
normal ordering of neutrino masses. SinδCP ¼ 0 is a
prediction that the next-generation neutrino experiments
such as DUNE and Hyper-Kamiokande will be testing with
much greater sensitivity.
Before we proceed to the nonminimal model, it was

noted in [28] while discussing the above absence, that even
in the case of Nelson-Barr solution in the SM and three
right-handed neutrinos, we can also assign the symmetry
required to obtain the NB form such that the NB scalars do
not couple to νR, and then no leptonic CP violation is
generated. In Ref. [23], it was assumed that leptonic CP is
violated, and its possible absence was not considered.

B. Challenges for nonminimal model

In order to generate CP phases in the leptonic sector, we
add to the particle content of Table I a heavy vectorlike
SUð2ÞL doublet lepton family L4L and L0

R and its parity

counterpart L4R and L0
L which is an SUð2ÞR doublet family

[and SUð2ÞL singlets].
Unlike for the heavy quarks, note that there are two

physically distinct choices for the heavy leptons to trans-
form under P [28], L4L;4R; L0

L;R → ηL4R;4L; ηL0
R;L with η ¼

1 or i with all other particles having intrinsic parity 1 as
shown in Eq. (1). If we choose η ¼ i then P2 ¼ Z2 is an
automatic symmetry (as P ⇒ P2) that is unbroken by the
scalar VEVs. Therefore the lightest P2 odd heavy lepton is
stable and can potentially make up the dark matter. With
this choice, the leptonic CP phases will not be gener-
ated [28].
We will now proceed with the choice, η ¼ 1. The

leptons have the usual Majorana and Dirac-Yukawa
couplings given by ifijðLT

iLτ2ΔLLjL þ LT
iRτ2ΔRLjRÞ and

hlijL̄iLϕLjR; h̃
l
ijL̄iLϕ̃LjR where hl, h̃l are Hermitian due to

P. The i, j now run from 1 to 4. While f; hl; h̃l are
originally real due to CP, they acquire complex phases
when we integrate out the heavy leptons (with mass Ml),
just like in the quark sector. Therefore, leptonic CP
violation can be generated.
If vR < Ml the leptonic CP phases generated at the scale

Ml can help with leptogenesis at the SUð2ÞR ×Uð1ÞB−L
breaking scale.
However the challenge is that, if vR < Ml, then the

resulting complex Yukawa couplings can radiatively gen-
erate a strong CP phase in just one loop. As shown in
Ref. [29] the complexphases in the leptonicYukawamatrices
can provide an imaginary contribution [∼ImTrðff†hlh̃lÞ] to
the dimensionless quartic Higgs coupling α2 of the term
α2Trðϕ̃†ϕΔ†

RΔR þ R → L;ϕ → ϕ†Þ in one loop. When ΔR
picks up a VEV, so that both P and CP are now broken,
θ̄ ∼ ðmt=mbÞImðα2Þ is generated.
Therefore the leptonic Yukawa couplings must satisfy

the severe constraint [29]

jImTrðf†fhlh̃lÞj ≤ 10−11: ð17Þ

This implies that CP violation is immeasurably small (or
absent) in the leptonic sector, or if it is present some of the
Yukawa couplings such as the matrix elements of f must be
small, so that most of the parameter space where they are
larger is ruled out. Also note that Eq. (17) is almost as
constraining as θ̄ ≤ 10−10, which we are trying to explain.
Therefore generating leptonic CP violation above the scale
vR comes with the above roadblock.
The case vR > Ml has not been discussed before. Note

that in this case the neutrinos in SUð2ÞR doublets LiR and
L0
L pick up Majorana masses above the soft CP breaking

scale Ml. Therefore there is no CP violation generated in
the right handed Majorana neutrino masses. This is not
ideal for leptogenesis at this scale.
Below the scale vR we only have the usual SM particles

(without the three right-handed neutrinos) and a heavy
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SUð2ÞL doublet family composed of L4L with L0
R and a

charged isosinglet-vectorlike heavy electron. There is now
an effective Weinberg type term of the LiHHLj with i, j
going from 1 to 4 with real CP-conserving coefficients.
Below the scale Ml we integrate the heavy leptons by

going into their mass basis. This basis rotation leads to
CP-violating phases appear in the light 3 × 3 sector of the
Weinberg term (and hence in the light 3 × 3 neutrino mass
matrix) as well as in the usual charged leptonmass matrices.
Though CP violation observable in ongoing neutrino

experiments is generated in the PMNS matrix, this scenario
is not entirely satisfactory either as it is not generated in the
Majorana masses of the right handed neutrinos. Moreover
if for the quarks vR < M so that the radiatively generated θ̄
is suppressed by the factor ðvR=MÞ2 [as in Eq. (12)], then
we’d have a skewed situation with CP violation generated
above the P breaking scale for quarks, and below for
leptons, which is also not very desirable.

V. SOFT TO SPONTANEOUS CP BREAKING

So far we have discussed soft CP breaking. As noted in
Ref. [10], the introduction of a CP-odd, P-even real scalar
singlet σ does not spoil the strong CP solution. Therefore
we can impose both P and CP as exact symmetries and
break both of them spontaneously. Crucially the term
μσσTrðϕ̃†ϕÞ þ H:c: that can generate the strong CP phase
on the breaking of CP, is absent as μσ must be real due to P
and purely imaginary due to CP.
Since CP is imposed, Mi (i ¼ 1 to 4) in Eq. (5) are now

all real. The Yukawa couplings ihσi σðQ̄iLQ0
R þ L ↔ RÞ

with hσi real due to CP, generate CP violation on mixing
with Mi, when σ picks up a real VEV.
When we imposed the chiral symmetry to obtain the

Nelson-Barr form the symmetry also sets hσ4 to zero. While
if NB form is not strictly required, then hσ4 can also be
present.
Regardless of the NB form, it appears as if introducing a

real scalar and breaking CP spontaneously generates a
coincidence of scale problem since the scale of the real Mi
must be close to the scale of ihσi hσi. However, there is no
such coincidence of scale issue if we introduce a complex
scalar as below.
We now replace the real scalar singlet σ with the complex

scalar singlet S, such that under P, S → S and under CP
S → S⋆. When S picks up a complex VEV spontaneously
this breaks CP (while respecting P), and therefore does not
generate the strong CP phase.
This is because terms in the Higgs potential such as

ðSn þ S⋆nÞTrϕ̃†ϕþ H:c: with real coefficients (due to CP)
have the plus sign in the round brackets due to P, where n is
a positive integer. Due to the plus sign no complex phase is
generated in terms that involve the bidoublet ϕ, even after S
picks a complex VEV, and therefore we continue to have
the strong CP solution.

The P invariant Yukawa couplings ðhiSþ h0iS
⋆Þ×

ðQ̄iLQ0
R þ Q̄iRQ0

LÞ þ H:c: (with hi; h0i real due to CP)
generate complex mass terms hihSi þ h0ihSi⋆ [that add
to the Mi of Eq. (5)]. In fact we can setMi ¼ 0 [in Eq. (5)]
using a Z2 symmetry under which Q0

R;Q
0
L and S are odd

while all other fields are even. This enables the heavy quark
mass terms to be generated entirely from the VEV of S,
thereby showing that there is no coincidence of scales
problem.
Note that the Z2 symmetry is anyway automatically

present on the dimensionless parameters and would have
been softly broken by Mi, and in absence of Mi is now
spontaneously broken. Nonrenormalizable terms with soft
and/or spontaneously broken chiral symmetries are dis-
cussed in Sec. VIII.
It is also interesting that instead of Z2 we can impose a

Z4 symmetry under which S → iS; QiL;QiR → iQiL; iQiR
for subscript i ¼ 1, 2, 3 andQ4L;Q4R → −iQ4L;−iQ4R, so
that S only has Yukawa terms such as SQ̄iLQ0

R and
S⋆Q̄4LQ0

R þ L ↔ R; S → S (where i ¼ 1, 2, 3). Terms
such as S⋆Q̄iLQ0

R (with i ¼ 1, 2, 3) and SQ̄4LQ0
R are

absent due to Z4. MoreoverMiQ̄iLQ0
R in Eq. (5) are absent

due to Z4 for i ¼ 1 to 4.
The only term in the scalar potential that depends on the

phase of S is the P;CP, and Z4 invariant term λsðS4 þ S⋆4Þ
with λs real due to CP. For λs > 0 this term is minimized
when ArghSi ¼ �π=4 and therefore the relative phase
between hSi and hSi⋆ which is the relevant phase for
CP violation is determined to be �π=2.
Imposing Z4 also helps reduce the contribution from a

nonrenormalizable term to θ̄ as we see in Sec. VIII.

VI. AUTOMATIC NB SOLUTION WITH SUð2ÞR
We now consider the gauge group SUð3Þc × SUð2ÞL ×

SUð2ÞR ×Uð1ÞX with doublet Higgses HL and HR, that
usually occur with mirror (or generalized) parity [9,16,19].1

The VEV of HR breaks SUð2ÞR × Uð1ÞX → Uð1ÞY with
hypercharge Y ¼ I3R þ X=2, and Qem ¼ I3L þ Y. The
scalar and fermion content is shown in Table II, where
we have allowed for any number m of mirror generations,
including just one. There is no bidoublet ϕ in this model.
Surprisingly we find that there is a strong CP solution

without requiring mirror parity, any additional scalars, or
needing all three mirror generations. As we will now see,
once CP is imposed to make Yukawa couplings real and set
θQCD ¼ 0, the quark mass matrices have an automatic
Nelson-Barr form in this model, and therefore the most
general soft-CP breaking dimension-3 mass parameters do

1The Uð1ÞX group has sometimes been given the label of
Uð1ÞB−L [37]. As noted in [19] since in mirror parity models the
subscript B − L is not actually the difference between the usual
baryon and lepton numbers for all the quarks and leptons, it
maybe more appropriate to use the subscript X or Ŷ instead.
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not generate θ̄ at the tree-level. Thus, as we shall see, CP by
itself solves the strong CP problem without requiring any
other symmetries in this model.
This is interesting as CP itself can be a discrete gauge

symmetry [38], and since the Nelson-Barr form is auto-
matic due to the gauged SUð2ÞR, the smallness of θ̄ can be
entirely accidental.
We begin by noting that the Yukawa terms are given by

yuijq̄iLHLujR þ ydijq̄iLH̃LdjR

þ yUαβŪαLH
†
RQβR þ yDαβD̄αLH̃

†
RQαR þ H:c: ð18Þ

with matrix elements of yu;d; yU;D real due to CP
and i, j having values 1 to 3, and α, β having values 1
to m where m can be 1, 2, or 3, depending on the
number of mirror families in the model we consider.
Note that H̃L;R ¼ iτ2H⋆

L;R.
CP is softly broken by

MU
αjŪαLujR þMD

αjD̄αLdjR þ H:c: ð19Þ

Crucially using an SUð2ÞR rotation, the VEVhH0
Ri ∼ vR

of neutral component ofHR can always be chosen to be real
and positive, and so when SUð2ÞR × Uð1ÞX breaks to the
SM, the following real CP-conserving mass terms are
generated from Eq. (18)

vRyUαβŪαLUβR þ vRyDαβD̄αLDβR; ð20Þ

whereUβR andDβR are the up and down components of the
SUð2ÞR doublet QβR (shown as QαR in Table II).
The neutral component of the SM Higgs HL obtains a

VEV ∼ vwk that can always be chosen to be real, and we
can see using Eqs. (18)–(20) that the up- and down-quark
mass matrices automatically have the Nelson-Barr form,

Md ¼
�
ydvwk 0

MD yDvR

�
; ð21Þ

where all parameters except those inMD (andMU) are real.
By the usual NB mechanism [22] via u-mediation and d-
mediation (we have an equal number of heavy SUð2ÞL
singlet up and down quarks) we can obtain δCKM in the light
3 × 3 sector, on going to the heavy quark mass basis.
Radiative corrections for u-mediation and d-mediation

using several SUð2ÞL singlet heavy quarks have been
studied in Ref. [25] and θ̄ is well within experimental
bounds for two or fewer heavy ups and several heavy downs.
Though either several heavy ups, or several heavy downs,
have been considered in these studies, we have a mixed case
ofmheavy ups andmheavy downs formmirror generations.
For m ¼ 1, we expect the radiative corrections to θ̄

will be well within experimental bounds for the
region of parameter space involving either u-mediation
or d-mediation, through just one heavy quark, that
generates δCKM, while the other heavy quark participates
trivially. Even in the overall parameter space, for m ¼ 1,
the correction is expected to be generated in three loops
and would be small.2

m ¼ 3 is a special case where we can also impose mirror
parity and obtain the Babu-Mohapatra model [9]. We
can replace the subscripts α by i in Table II and under
mirror parity, qiL↔QiR;uiR↔UiL;diR↔DiL, HL ↔ HR,
and likewise for the leptons. This then makes MU;D

Hermitian and relates the Yukawa couplings yu;d ¼ yU;D†
.

P is softly broken by dimension-2 mass parameters of
terms μ2LH

†
LHL þ μ2RH

†
RHLR so that VEVs of HL and HR

can both be nonzero, while being unequal.
Since the Yukawa couplings in Eq. (18) are real, δCKM is

generated by the Nelson-Barr mechanism. Note that we can
obtain the usual seesaw form of the Babu-Mohapatra model
by interchanging the first and second columns of the NB
form of the matrix in Eq. (21).
With three heavy up quarks and three heavy down

quarks, the radiative corrections to θ̄ stemming from the
NBmechanism, can be interesting (even large) based on the
general analysis in Ref. [25].

TABLE II. Fermion content of NB solution featuring SUð2ÞR
with scalars HL and HR that are usually associated with mirror
parity (or Babu-Mohapatra) solution. Note that i ¼ 1 to 3 for the
three usual generations, while the number of mirror generations
m need not be the same as the usual generations, as we don’t
necessarily impose mirror parity. Therefore α runs from 1 to m
where m is either 1,2, or 3. Note that the gauge singlet neutrinos
are not required by gauge symmetry, and therefore could be in
different numbers though we have taken them to be the same as
their corresponding charged fermions.

SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞX
HR (1, 1, 2, 1)
HL (1, 2, 1, 1)
qiL ð3; 2; 1; 1=3Þ
uiR ð3; 1; 1; 4=3Þ
diR ð3; 1; 1;−2=3Þ
liL ð1; 2; 1;−1Þ
νiR (1, 1, 1, 0)
eiR ð1; 1; 1;−2Þ
QαR ð3; 1; 2; 1=3Þ
UαL ð3; 1; 1; 4=3Þ
DαL ð3; 1; 1;−2=3Þ
LαR ð1; 1; 2;−1Þ
NαL (1, 1, 1, 0)
EαL ð1; 1; 1;−2Þ

2Private communication from Luca Vecchi. The mixed case
would be a three-loop effect similar to the case with either u- or d-
mediation, and can be better than u-mediation alone owing to the
alternate route of d-mediation.
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Radiative corrections have also been calculated in the
Babu-Mohapatra model recently (without the NB mecha-
nism/form) and they are also in general found to be in an
interesting [39] or large [40] range.
Since we now have mirror parity we can allow CP to be

broken by all the parameters of the model, as has been
usually considered with Babu-Mohapatra model. Also we
can go to the other extreme and set MU;D ¼ 0 (or small) in
Eq. (19) by imposing a Z2 symmetry (or approximate
symmetry). In this case we can obtain δCKM from the
complex Yukawa couplings, exactly as in the usual SM.
There would be a canceling contribution to the strong CP
phase at the tree level from the mirror sector, and the
radiative corrections will likely be negligible, like in
the SM.
For any m with CP imposed, note that we continue to

have an automatic Nelson-Barr solution even if we break
CP spontaneously (instead of softly) by including a scalar
singlet S so that the mass terms in (19) are now real.
Complex phases are generated by the Yukawa couplings of
terms such as SD̄αLdjR and S⋆D̄αLdjR when S picks a VEV,
thereby breaking CP spontaneously instead of softly. Note
that S can also be a CP-odd real scalar singlet.
Since the solution is automatic, there is no “required”

symmetry that needs to be imposed to obtain the NB form.
Therefore, unlike in the last paragraph of Sec. IVA where
the required symmetry could be imposed to either allow or
prevent leptonicCP violation, SνTRνR (and with S

⋆) are now
allowed and produce leptonic CP violation. Unless they are
specifically forbidden by imposing an additional symmetry
that is not required for the NB form.
Of course if CP is broken softly without the scalar S,

then whether to also impose soft CP breaking in the
leptonic sector is a matter of choice.

VII. SM WITH SOFT CP BREAKING

For completeness, motivated by mirror parity inspired
NB solution, we also consider just the SMwith the addition
of a vectorlike singlet heavy quark with components DL,
DR (both with the same SM gauge quantum numbers as the
usual right handed down quarks diR), and a real CP even
scalar singlet σ with Yukawa term σD̄LDR. In this case note
that imposing CP on dimensionless parameters (real
Yukawa couplings, and θQCD ¼ 0), and having a symmetry
under DR → −DR, σ → −σ (broken spontaneously by real
VEV of σ) generates the NB form, with CP broken softly
by dimension-3 mass terms MD

i D̄LdiR, with complex MD
i .

This turns out to be a slightly more minimal way of
achieving NB solution than the minimal model of
Refs. [22,41].

VIII. NONRENORMALIZABLE TERMS

Wewill consider nonrenormalizable terms suppressed by
high-energy scaleΛ (or the Plank scale). Wewill begin with

the particle content of Table I, that has the triplet and
bidoublet Higgses, and includes a heavy quark family.
Regardless of the strong CP phase, note that the term

Q̄iLQ0
RTrðΔ†

RΔRÞ=Λþ Q̄iRQ0
LTrðΔ†

LΔLÞ=Λ
∼ ðv2R=ΛÞQ̄iLQ0

R ð22Þ

contributes a mass ∼v2R=Λ ∼ 108 GeV to the heavy quark
mass, where we have taken for example, vR ∼ 1013 GeV
andΛ ∼ 1018 GeV. Therefore if the coefficient of the above
term is O(1), then it would appear as if heavy fermions,
whose masses∼M are protected by chiral symmetries (such
as under Q0

R → eiαQ0
R) and therefore can be naturally light,

would require fine-tuning if they are lighter than 108 GeV.
Therefore we suppress the above term by a factor M=Λ,

so that it is protected by the same chiral symmetry, and
vanishes as M → 0 and the symmetry is restored. In other
words we consider nonrenormalizable terms that, like
renormalizable terms, are protected by approximate (or
softly broken) symmetries.
With this ansatz the above term can be rewritten as

ciðM=ΛÞQ̄iLQ0
RTrðΔ†

RΔRÞ=Λ∼ciMðvR=ΛÞ2Q̄iLQ0
R; ð23Þ

where ci are complex. Since the above term is not
Hermitian [as hΔLi ≪ vR in Eq. (22)], it generates

θ̄Non−Renorm ∼ ciðM=ΛÞðv2R=ΛÞ=M ∼ ciðvR=ΛÞ2 ð24Þ

when it is considered along with the Hermitian terms
of Eq. (5). This is acceptably small for vR ≤ 1013 Gev,
which just about includes the canonical seesaw scale and
Λ ∼ 1018 GeV.
It is interesting that this contribution to θ̄ does not

depend on M, or even whether M is larger or smaller than
vR. Nor does it vanish for the Nelson-Barr form in Eq. (5)
since c4 can be complex.
Instead of dealing with the soft-breaking of chiral

symmetry in the above manner, we can introduce the
complex scalar singlet S of Sec. V and consider non-
renormalizable terms that respect P;CP, and spontane-
ously broken Z2 under which Q0

L;Q
0
R and S are odd and

other fields are even.
Due to Z2 the above term in Eqs. (22) and (23) is absent,

and instead we have Z2 invariant terms such as

riSQ̄iLQ0
RTrðΔ†

RΔRÞ=Λ2 þ L ↔ R ð25Þ

with real couplings ri, and jhSij sets the mass scale of the
heavy quarks. Since hSi is complex and violates CP, θ̄ ∼
ðrihSi=jhSijÞðvR=ΛÞ2 ∼ ðvR=ΛÞ2 is induced when P is
broken at the scale vR, which is consistent with the previous
result [Eq. (24)] from soft breaking of chiral symmetry.

P AND CP SOLUTION OF THE STRONG CP PUZZLE PHYS. REV. D 108, 095023 (2023)

095023-11



Contribution of θ̄ ∼ ðhSi=ΛÞ2 can be found by con-
sidering the Z2 invariant nonrenormalizable term
S2Trðϕ̃†ϕΔ†

RΔRÞ=Λ2, with the heavy-quark mass scale set
by jhSij. This is because the VEV κ2of the bidoubletϕ picks
up a complex phase ∼ðhSi=ΛÞ2. However, this Z2 invariant
term is absent and the contribution is further suppressed so
that θ̄ ∼ ðhSi=ΛÞ4 if theZ4 symmetry discussed at the end of
Sec. V is introduced. In this case the Z4 symmetric non-
renormalizable term is S4Trðϕ̃†ϕΔ†

RΔRÞ=Λ4. Such a non-
renormalizable term is absent in the minimal model of
Table I without the singlet S.
While we have discussed generic nonrenormalizable

terms, we also note that without specific knowledge of
these terms and a consistent way of evaluating their loop
corrections, it may be better just to focus on the renorma-
lizable terms and the testable predictions, notably the
absence of leptonic CP violation for the minimal model
of Table I.
Now for the mirror-parity inspired particle content of

Table II, with doublet Higgses (rather than the bidoublet),
and having the automatic Nelson Barr solution discussed in
Sec. VI, the zero in the matrix (21) will get a correction due
to the nonrenormalizable term q̄iLHLH

†
RQαR=Λ which

generates (on evaluation of the determinant) θ̄ ∼MD=Λ ∼
vR=Λ for the casem ¼ 1, that is with one mirror family and
no mirror parity. Thus, we would expect the heavy mirror
quarks to be at a scale vR ≤ 108 GeV for θ̄ ≤ 10−10, for the
particle content of Table II.

IX. CONCLUSIONS

While P and CP have historically been treated as two
different approaches to the strong CP problem, in this work
we find that in the popular left-right symmetric model
based on SUð2ÞL × SUð2ÞR ×Uð1ÞB−L with bidoublet
Higgs, where P sets θQCD to zero, the heavy quark family
needed to generate the CKM phase can have couplings of
the Nelson-Barr form which has so far only been seen in
solutions with spontaneous CP violation. The NB solution
we obtain does not have the problem of requiring a close
coincidence of scales between CP breaking VEVs and CP
conserving mass terms, which is the vexing issue that all
other NB solutions have. Moreover P protects θ̄ if it breaks
at a scale vR below the mass M of the heavy quarks. Thus,

in our model θ̄ ∼ 10−9ðvR=MÞ2 is generated which can be
sufficiently small even if M is only an order of magnitude
larger than vR.
If the heavy masses are below the P breaking scale, so

thatM < vR, to our surprise we find irreducible corrections
under RGE running to θ̄ ∼ ð10−13 to 10−10Þ lnðvR=MÞ that
are in the reach of ongoing neutron EDM experiments. If
experiments discover a neutron EDM consistent with θ̄ ≥
10−12 then it may be worth looking for these heavy quarks
that have very small Yukawa couplings with the usual
quarks in future colliders. δCKM in this case is not generated
through the NB mechanism, as the latter gives a much
higher irreducible θ̄ ∼ 10−9.
An exciting testable prediction is the absence of leptonic

CP violation in the minimal model we consider in Table I.
We predict sinðδCPÞ ¼ 0 for the Dirac CP phase (δCP) of
the PMNS matrix. Global fits to current neutrino experi-
ments’ data are consistent with this prediction and we look
forward to future experiments with greater sensitivity. The
absence of leptonic δCP has been discussed before [27,28]
in the context of Refs. [10,29]. We also discuss some
challenges in a nonminimal model that can generate
leptonic CP violation.
Last but not the least, we find that in models with mirror

(or generalized) parity, and containing doublet rather than
the bidoublet Higgses, there is an automatic Nelson-Barr
solution on imposing CP. This is a new and more
economical approach to addressing the strong CP problem
with SUð2ÞL × SUð2ÞR group and respective doublet
Higgses (rather than the bidoublet), since we do not have
to impose mirror parity and can also have just one mirror
generation.
It is interesting that mirror parity inspired us to find a

solution to the strong CP puzzle where CP by itself solves
the strong CP problem, and P is not imposed, while the NB
form is accidental due to the gauged SUð2ÞR. If CP is a
discrete gauge symmetry and the Nelson-Barr form is
accidental due to a gauged SUð2ÞR, then the smallness
of θ̄ can be entirely accidental.
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