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This work investigates the implications of very special relativity (VSR) on the calculation of vacuum
polarization for fermions in the presence of Maxwell and Kalb-Ramond gauge fields in four-dimensional
spacetime. We derive the SIM(2)-covariant gauge theory associated with an Abelian antisymmetric two-
tensor and its corresponding field strength. We demonstrate that the free VSR-Kalb-Ramond electro-
dynamics is equivalent to a massive scalar field with a single polarization. Furthermore, we determine an
explicit expression for the effective action involving Maxwell and Kalb-Ramond fields due to fermionic
vacuum polarization at one-loop order. The quantum corrections generate divergences free of nonlocal
terms only in the VSR-Maxwell sector. At the same time, we observe UV/IR mixing divergences due to
the entanglement of VSR-nonlocal effects with quantum higher-derivative terms for the Kalb-Ramond
field. However, in the lower energy limit, the effective action can be renormalized like in the Lorentz

invariant case.
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I. INTRODUCTION

In 2006, Cohen and Glashow proposed a modification to
the theory of special relativity that preserves the familiar
energy-momentum dispersion relation while breaking the
invariance under the complete Lorentz group, SO(1, 3) [1].
They recognized that specific subgroups of the Lorentz
group can still produce conservation laws and reproduce
the well-known effects of special relativity (SR). Among
these subgroups, the HOM(2) and SIM(2) groups meet
these requirements. The former subgroup, known as the
Homothety group, consists of the boost generator K, and
the generators T} = K, +J,, T, = K, — J,. These gen-
erators together form a group that is isomorphic to the
group of translations in the plane. The second subgroup,
known as the similitude group SIM(2), is an enhanced
version of the HOM(2) group obtained by including the
generator J,. These subgroups do not admit invariant
tensors that can act as constant background tensor fields,
as seen in other theories of Lorentz violations [2]. Hence,
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the breakdown of SO(3, 1) into either HOM(2) or SIM(2)
cannot be explained through local symmetry-breaking
operators. This intriguing theory of relativity came to be
known as “very special relativity” (VSR) [3].

A key attribute of VSR is that the SIM(2) generators
preserve both the speed of light and the null four-vector
n, = (1,0,0,1), thereby establishing a preferred direction
in space. However, VSR algebras do not support discrete
symmetry operators such as P, T, CP, and CT. Including
any of these operators would result in the full Lorentz
algebra [4]. In this way, the lack of discrete symmetries
may result in violations of unitarity and causality in
quantum field theories. To circumvent this issue, Cohen
and Glashow proposed the inclus’ion of nonlocal operators
containing ratios of contractions of n, in order to construct
a unitary SIM(2)-invariant field theory. The nonlocal
nature of VSR gives rise to a remarkable phenomenon
of mass generation. Indeed, when a nonlocal operator like
n,/(n-0) is added in the momentum operator for a
massless fermion, it results in a corresponding Klein-
Gordon equation with a mass term proportional to the
nonlocal coupling constant. This impressive property has
led to proposals suggesting a VSR explanation for
neutrino mass [5] and dark matter [6].

Since its formulation, a large number of investigations in
VSR theories have been developed in recent years,
addressing distinct physical scenarios: fermion systems
[7-9], Maxwell [10,11], Maxwell-Chern-Simons [12] and
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axion [13] electrodynamics, Lorentz violation [14], curved
spacetime [15], noncommutativity [16,17], linearized grav-
ity [18], Finsler geometry [19,20], supersymmetry [21],
radiative corrections [22-25]. These several studies have
served both to elucidate the effects engendered by VSR
nonlocal terms and to set up upper bounds on the VSR mass
coefficients.

In particular, the VSR contributions to the induced
effective action in the context of Maxwell-Chern-Simons
electrodynamics have been studied in previous works
[24,25]. In these studies, the authors employed the
Mandelstam-Leibbrandt prescription [26-28], adapted to
the VSR case by Alfaro [29,30], to handle the UV/IR
mixing divergences that arise in the loop integrals. Another
notable gauge field theory in four-dimensional Minkowski
spacetime is built from an antisymmetric two-tensor known
as the Kalb-Ramond field [31]. The Kalb-Ramond field is
relevant in several contexts and has been extensively
explored in the literature, including string theories [32],
quantum field theory [33-35], supersymmetry [36,37],
Lorentz symmetry violation [38-40], dualities [41,42],
black hole and wormhole solutions [43,44], cosmology
[45], and brane world scenarios [46—48].

The study of the classical action for antisymmetric tensor
fields in the context of VSR was initially addressed in
Ref. [49]. However, a comprehensive analysis of the role of
VSR in the quantum corrections of this field is still lacking
in the literature. In this work, we propose a systematic
procedure to construct an antisymmetric two-tensor gauge
field that incorporates VSR nonlocal operators and use it to
derive the associated SIM(2)-invariant classical action.
Subsequently, we obtain the free equation of motion in
the VSR-Kalb-Ramond electrodynamics and explicitly
determine the resulting degrees of freedom. Furthermore,
we explore, for the first time, the induced corrections to the
effective action of the Maxwell and Kalb-Ramond gauge
fields in the context of VSR. We obtain the effective
Lagrangian density at the one-loop order by integrating the
fermionic fields and calculating the vacuum polarization
Feynman diagrams. We demonstrate that the divergent
terms can be renormalized in the low-energy limit by
appropriately rescaling the fields, masses, and coupling
parameters in the model. Moreover, our results recover those
obtained in the literature for the Lorentz invariant limit [50].

The present work is organized as follows. In Sec. II, we
review the main aspects of VSR applied to the vector gauge
field. In Sec. III, we propose a procedure to derive the SIM
(2)-invariant Lagrangian density for the Kalb-Ramond field
and analyze its free physical modes. In Sec. IV, we calculate
the induced effective actions of the Maxwell and Kalb-
Ramond fields, evaluate the Feynman diagrams for the two-
point gauge functions, and examine the general tensorial
form of the finite and divergent induced terms as well as the
renormalization issues. Our final comments are presented
in Sec. V.

I1. SIM(2)-INVARIANT MAXWELL GAUGE
THEORY

To establish a consistent framework for our upcoming
calculations, we will review the SIM(2)-invariant gauge
vector theory described in Refs. [10,11,23]. The VSR-
modified Maxwell electrodynamics is a U(1) gauge theory
that involves a one-form gauge potential A, (x) and a matter
field y(x) that acts as the source of A,(x). This theory
obeys the following gauge transformations:

A, (x) = A, (x) + 0,A(x), (1)

w(x) = exp {ieA(x)}y(x), (2)

where A(x) is an arbitrary O-form field. The wiggle
derivative operator is defined by

~ 1 m}
0” :aﬂ+§n—.anﬂ, (3)

where m 4 is a constant parameter with mass dimension, and
n* =(1,0,0,1) is a fixed null vector present in VSR
theories that selects a preferred direction.

The covariant derivative for VSR-Maxwell electrody-
namics is given by

D, =0, - ie<A,, —%mﬁn,, (ﬁ" -A>>, (4)

and it is constructed by demanding the fundamental
property of transforming as w does under infinitesimal
gauge transformations [11]:

6(D,w) = ieAD,y. (5)

We can compute the field strength related to D, as follows:
[Dw Du]w = _ief;wl//' (6)

This gives us the expression for the field strength tensor:

1 1
Fruo =048y = 0,4, +5m N0, (N -A) =5 miN,0, (N - A).
(7)

where we introduce the notation N, =n,/n-0 for the
nonlocal vector operator.
It is noteworthy that F

v 18 invariant under the gauge
transformation

A, > A, +9,A, (8)

where we define the wiggle gauge vector A# by
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1
A, =A, —EmiNﬂ(N-A), 9)

such that F,, = aﬂAy —0,A -

We observe that by applying a field redefinition
A, = A, +1miN,(N-A), one can eliminate the modifi-
cation by the VSR-nonlocal terms. After this redefinition,
we obtain the same field strength tensor F,, — F,, =
d,A, —d,A, and the same covariant derivative gauge
transformation as in standard electrodynamics, given by

Dy — D,y = 0,y — ieA,y. (10)

On the other hand, we can define a new SIM(2)-gauge

invariant field strength F > Which is constructed using the

wiggle derivative, namely,

F;u/ = 5/4Av - ébA;t’ (11)

and it can be expressed explicitly as

- 1 1
F”D:fw—l—imf‘ nﬂw(l’l .Fm/)—l’l,/

which shows that F L 18 also invariant under the gauge
transformation (8).

The present analysis allows us to construct a SIM(2)-
invariant Lagrangian density for the field A, that is also
invariant under standard gauge transformations. As pointed
out in Ref. [23], this is an important result because this
Lagrangian generates a mass term for the field A, without
breaking the original gauge symmetry of the theory.

According to the definition (11), F w 1s not Lorentz
invariant but instead SIM(2) invariant. Moreover, as shown
in result (12), it is also invariant under transformation (8).
So, we can construct a VSR gauge-invariant Lagrangian
density as follows:

Lopuge = _ZF””FW' (13)
Therefore, from Eq. (12), this Lagrangian takes the form
1 w1 U of ]
‘Cgﬂuge:_zflll/f —|—5mAnﬂ n—()f n n—.afay .
(14)

Finally, by applying a field redefinition from A, — A, +

tmin,((n-0)(n-A)), so that F, —F, =0dA,

6,,A”, we obtain the desired result

1 uv 1 2 1 v a 1
,Cgauge:—zFle —I—imAnM nF n nFUw .
(15)

It is interesting to notice that if we start from —1/4.F , F*
to define our Lagrangian, the above field redefinition will
withdraw the VSR effects. Furthermore, as shown in
Ref. [23], we can apply the Lorentz gauge d,A* = 0 plus
the subsidiary gauge condition N - A = 0 into the equation
of motion obtained from (15) and we find
(0> + m%)A¥ = 0. (16)
Hence, in the VSR scenario, we obtain a massive gauge
field with two physical degrees of freedom, which is in
contrast to the Proca case where the mass term miA”A# is
not gauge invariant and has three degrees of freedom.

III. KALB-RAMOND ELECTRODYNAMICS IN VSR

In this section, we investigate the issue of constructing a
SIM(2)-invariant action for the Kalb-Ramond field. As we
will see, this is possible even when the Kalb-Ramond field
does not carry matter charge, i.e., when it is not minimally
coupled to matter fields and does not possess any asso-
ciated covariant derivatives.

A. Setup

Let us start by defining the Lagrangian density that
describes the dynamics for an antisymmetric two-tensor
B, in 4D Minkowski spacetime,

1
—H

‘C:_lz pva

(17)

Hve — %BWJ””,

where
H;wa = a;pra + aaB;w + az/Bau (18)

is the field strength tensor associated with B,,,, and J** is an
antisymmetric conserved current due to the coupling to the
matter [38]. The field strength H,,, corresponds to the
components of an exact three-form field H, which is
constructed using the exterior derivative from the two-form
B associated with B,,. This field strength satisfies the
identity
aKHll;w - a/IH;twc + aund - aqudﬂ = 07 (19)

which follows from the fact that an exact three-form is
closed [51].

The Lagrangian (17) is the simplest, which can be
constructed by demanding parity-even and invariance
under the U(1) gauge transformation:
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B;w(x) - B;n/(x) + aﬂzb(x) - avzﬂ(x)7 (20)

where ¥, is an arbitrary vector field. The field X, also
exhibits an extra gauge invariance given by

Z,(x) = Z,(x) + 0,0 (x), (21)

with ¢ being an arbitrary scalar field. This latter trans-
formation leaves Eq. (20) unchanged.

In general, the current J,, is constructed from other
dynamical fields that involve extended objects of the type
found in the string theory [31]. For the sake of simplicity,
we will not consider a string matter field for the source of
B,,(x) in this work. In what follows, our attention will be
focused only on the kinetic part of the Lagrangian density
(17), such that the matter coupling, represented by J,,,, will
be turned off.

B. SIM(2)-covariant Kalb-Ramond gauge theory

For the SIM(2)-invariant generalization of the Kalb-
Ramond Lagrangian (17), we expect that the gauge
symmetry (20) modified by the nonlocal vector operator
N, =n,/n-0 will play a crucial role. As we saw in the
Maxwell case, both F,, and F ,w are invariant under the
standard gauge transformation, and the connection between
the two kinds of field strengths is made through the vector
potential Aﬂ.

Hence, motivated by our earlier analysis, we will
construct a B,,,, field that satisfies the following require-
ments: (i) Bﬂl, is a linear function that is first order in B,
and second order in N ;; (ii) B 4w has mass dimension one in
4D spacetime; (iii) B;w transforms by B;w - Buv + Gﬂiy -
dbiﬂ when B, changes by B,, — B, + éﬂzy - 5:,2/4-

After imposing these requirements, we arrive at the
B-ansatz given by

2
~ m
B/w = B/w - T(NﬂN Bav - NUN Baﬂ>’ (22)

and it changes under the gauge transformation B, —
B,, + 5ﬂ2,, - éyﬁﬂ as follows:

2

~ ~ m
B, — B, +9, (Z,, - TNU(N . Z))

—0, <z,, —m;N,,(N-Z)) (23)

It is worth noting that the gauge parameter iﬂ =%, -
"’TZN” (N - £) has the same form as A, in Eq. (9), which was
obtained in the Maxwell case. This is expected since X, has
the additional gauge symmetry (21), similar to the A, field.
Additionally, it is interesting to note that for a O-form field,

our prescription implies that ¢ = ¢ — %ZN”N Wb =9,
because N> = 0.

Once we have found B,,, we can define the tensor

o>
H;wa = aqua + aaB + auBa;n (24)

whose explicit form is given by:

1
Huya = H/wa + Emz [NﬂN (al/BO'(l - aaBo’v)
+ NuNg(aaBaﬂ - a;lera)
+NaN6(aﬂBav _avBa/t)]' (25)

Also, the SIM(2)-covariant field strength tensor A e Can
be defined as

H/wa = qua + aaB/w + auBa/r (26)

Taking the difference between the two kinds of field
strengths H,,, — H,,4, We obtain

1
H;wa - Huya = 5 m2 [NuNﬂHrwa + NuN{;Hmw

+N,N°H,,). (27)

Furthermore, we can rewrite H we SOlely in terms of
H,vq> thereby guaranteeing the invariance of H,,, under
both SIM(2) and the wiggle gauge transformations, as
required in condition (iii). To this end, it is easy to check the
following identity:

N,N°H o+ N,N°H o, + NoN°H
= NﬂNgHaya + NyNGHzm/l + NaNGHzmw (28)

where using the properties of the operator N,, we have
that [10]

N-N =0, N-o=1, [N#,N*] = [N*,0"] =0,
(29

)

and the integration by parts rule holds:

/ e (x) (N#g(x)) = — / de(NF(x)g(x). (30)

Besides, it would also be consistent to set N¥¢p(x) = 0 if ¢
is a constant. With all the above results, the SIM(2)-

covariant tensor H,,, can be cast as
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. 1
H;wa = H;wa + 5 mZ [NyNGHava + NuNﬂHmm

=+ NaNgHrmv} ’ (31)
which is a natural generalization of the relation (12).

Finally, the SIM(2)-invariant action of the Kalb-Ramond
field B, is represented by

1.
S = / d'x {—EH,MHW’}, (32)

and with help the of Eq. (31), we can write it as

1 1 1
S—/d4X|:—EH;waH; —l—ZmZn <nH0‘lﬂ/>

<, (La H)] , (33)

where we performed an additional change of field variables
B,, — B, + "‘77 (N,N°B,, — N,N°B,,). Therefore, simi-
lar to the Maxwell case, the SIM(2)-modified Kalb-
Ramond action (32) is invariant under the standard gauge
transformation (20).

The equation of motion follows from the action (33) by
varying with respect to B,,. Explicitly, we find

0, H"* +m*(N,H™* + NN ,0,H°* + N°N ,0,H*) = 0.
(34)

By contracting Eq. (34) with N,, we obtain the following
constraint:

N, 9, H™* = 0. (35)

Inserting this constraint back into the equation of motion,
we find

0,H"* + m>N, H = 0. (36)

To find the physical modes, we must fix the gauge freedom.

We can chose, analogous to the Maxwell case, the Lorentz
gauge

0,B" = 0. (37)

Then the equation of motion (36) and the constraint (35)
become, respectively:

(O + m?)B* + m®(N,0°B® + N,0"B%) =0, (38)

and

N, B* = 0. (39)

The form of Eq. (38) still contains redundant degrees of
freedom. Indeed, the gauge condition (37) is insufficient to
fix the gauge freedom completely since we can construct a
solution B** = B** 4+ ¢?3% — 9*Y¥, which preserves the
Lorentz gauge (37) and satisfies the equation of motion
(38). So, we can impose an additional condition on the field
B'**, namely,

N, B =0, (40)

by choosing the gauge parameter X% as
X% — 0*N, 2 = —N,B"“. (41)
However, the last relation is invariant under the residual

gauge symmetry (21), and we can use this fact to impose
the condition

N,= =0, (42)

by fixing the scalar gauge parameter as ¢p = N, X'*. Thus,
the gauge parameter is given by

s = —N, B, (43)

Now, we can show that the Lorentz gauge condition is valid
to B**. From (37), we find

0,B™* = X% — 0%9,%". (44)
On the other hand, the constraint condition (39) implies that
ON, B = [z* = 0, (45)

where we used the relations N,B’** =0 and N,X¥ = 0.
Immediately, from (44), it follows that

0,B"* = —0"9,%", (46)
and by Eq. (43), we obtain the claimed result
0,B""* = 0“9,N,B" = 0, (47)
where in the last step, we use again the Lorentz gauge
0,B" = 0.

Finally, by applying the subsidiary condition N,B** = 0
to the equation of motion (38), it takes the simple form

(O + m?)B* =0, (48)

which represents a wave equation for a particle of mass m.
At the end, the Kalb-Ramond field in VSR satisfies
the standard Klein-Gordon equation under two gauge
conditions
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0,B* =0,  N,B*=0. (49)

The general solution to Eq. (48) takes the form:

B;w / B/uz tp~x 4 BHVE (p)e—ipvc]’
\/(27) 3260
(50)
where w, = \/p* + m?, and the associated four-momenta

p are on shell such that p* = (wp,p). The Fourier
coefficients B*/(p) can be expanded over a basis of
polarization antisymmetric two-tensors, labeled by
A=1,..,6:

B*(p) = ap ;€ (p, 1) (51)

To find the physical polarization states, it is convenient to
analyze the solution (50) in the rest frame where
k* = (m,0). The solution for a general p* can then be
obtained by applying a VSR boost, i.e., p* = L(p)¥ K,
with

L(p) = T\()T2(P2)L3(§) = ehT! oihT itk (52)

where 7!, 72, and K3 are the generators of the SIM(2)
group in the vector representation [4].
In the rest frame, the gauge conditions (49) become
ke (k, ) = n,et (k, 1) = 0. (53)
The first condition implies that €% (k, 1) = 0 with i = 1,
2, 3, which eliminates three polarizations. The second
condition gives €*(k,1) =0 with j=1, 2, which
eliminates two more polarizations. Therefore, there is
only one nonzero polarization ¢'?(k, 1), which means
that the free Kalb-Ramond field in VSR has only one

degree of freedom, equivalent to a single massive
scalar field.

IV. MAXWELL-KALB-RAMOND VACUUM
POLARIZATION IN VSR

In this section, we calculate the effective action for the
case of a fermion field interacting with Maxwell and Kalb-
Ramond fields within the context of VSR, which has been
developed in the preceding sections. As we proceed, we
will obtain exact solutions to the one-loop vacuum
polarization amplitudes involving the external gauge
fields.

Let us start by recalling that Kalb-Ramond quantum
electrodynamics is a U(1) gauge theory that involves a
two-form gauge potential B, (x) and a string matter field
w(x(c)) serving as the source for B, (x) [31].
Considering the complexities inherent in string theory-

based systems, let us focus on exploring a simplified
scenario within the framework of VSR. Specifically, we
investigate an interaction model involving a pointlike
fermion field and the Maxwell and Kalb-Ramond fields
in four-dimensional Minkowski spacetime. As we will
see below, this type of interaction is only viable if y does
not carry any Kalb-Ramond charge and couples non-
minimally with it [50].

We consider SIM(2)-covariant gauge theories under the
U(1) gauge transformations

B,, — B, +9,%, —0,%,, (54)
A, = A, +0,A, (55)
w — exp {ieA}y, (56)

where we have defined the wiggle operators as

- 2
5,4 :0,4—1-; mAanM, and 0, :()ﬂ—l—%%nﬂ, (57)
where m, and mp represent the VSR-mass associated with
the Maxwell and Kalb-Ramond fields, respectively.
The simplest Lagrangian density that can be constructed,
invariant under the aforementioned gauge transformations,
is given by [50]:

1. 1~ ol 71 %03
L=—F, F*——H, H
I DR
2
1 * VA
-H;/(ZD—H%L—FEE H —m)q/, (58)

where m represents the usual fermion mass, m,, the VSR-
mass associated to the y field, and g is a coupling constant
with mass dimension [g] = M~ (in natural units). Also, the
operator D, denotes the standard covariant derivative,
given by

D, =0, —icA,, (59)

and o, represents the fully antisymmetrized product of
two gamma matrices normalized to unit strength, defined as

0/41//1 =1 €;¢May5 yav (60)

where €,,;, is the Levi-Civita symbol. It satisfies the
commutation relation

[Uuwl ’ YU] = zie,uwlﬁyS . (6 1)

It is important to note that the Lagrangian density (58)
involves a nonminimal coupling of the Kalb-Ramond
field to pointlike fermions. We could interpret this kind
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of coupling as similar to that involving neutral particles,
such as the neutron, interacting with the electromagnetic
field through their anomalous magnetic moments.

oiStlAB] — A7 / Dl/_/Dl//eif i

where N is a normalization constant, which will be used to
absorb field-independent factors.

By performing the fermionic integration, we obtain (up
to a field-independent factor that can be absorbed in the
normalization):

1. - 1 »  *wa
Seff[AvB]_/d4x |:_ZFMD M/__HﬂvaHﬂ :|

m2 1 ~ i
_iTrln [iD+i v 19 o H —m],

(63)

where Tr stands for the trace over Dirac matrices as well as
the trace over the integration in coordinate space. At this
point, it is worth mentioning that the Lorentz covariant
calculation of vacuum polarization for the model under
study was carried out in Ref. [50] for the simplified case of
constant fields using Schwinger’s approach. In this work,
we extend this calculation to the SIM(2)-covariant case
using Feynman techniques without the restriction to con-
stant external gauge fields. Furthermore, we can verify
whether our results can reproduce those obtained in the
literature by taking the limit m, g, — 0 and assuming
constant F' and H fields.

To evaluate the trace in Eq. (63), we notice that the term
1/(n - D) is a nonlocal operator that depends on the vector
gauge field A,. Since our focus is on perturbative compu-
tations, we treat the nonlocal term as a perturbative
expansion in the fermionic Lagrangian density. This is
accomplished by using the following matrix identity:

1 1 1 1

1 737_111 1.1 1
A+B A A A+B A A

4+ - B-B—
A+A A A+B

(64)

Therefore, we can obtain the corresponding new types of
vertices involving more than one external gauge vector field
from the perturbative Lagrangian density:

m2
i(p— T +m)

e = 2 — 12

FIG. 1.
* Ui
strength H , respectively.

2 )
I » v _ m g p * vl
|:_41FWFW_|_12H;MH# -+ (zﬁJrl > néJrﬁ(ilMHﬂ —m) 1//}

In order to determine the effective Lagrangian resulting
from fermionic vacuum polarization at the one-loop level,
we consider the generating functional defined as

’ (62)
l
Efemon—v‘/[(iaﬂ%*z”%_ )
+e< _’%inﬂa(n %a)ﬂg . i
—w{"f’%a(n‘m—(nﬁ)n%)
w3 g gt A a1 )
- .

Thus, we can write the nontrivial part of the effective
action as

n

) ! iO| . (66)

n . i
SWIA, B = lTrZ; {m—/
n=1 l¢+17"’ﬁ—m

where the operator ® can be determined from Eq. (65).

The formal contributions of this formula will give rise to
the n-point vertex functions of the fields A, and B,,. At this
point, a graphical representation may be helpful. Following
the conventions depicted in Fig. 1, the contributions to the
tadpole and the self-energy are illustrated in Figs. 2 and 3
up to one-loop order.

For n =1 the expression (66) gives rise to three
contributions (67) up to second order in the coupling
constant e, as graphically indicated in Fig. 2,

1 1,a 1.b 1,c
Se(:ff) = Se(:ff ) + Se(:ff ) + Siff )‘ (67)

We found that the tadpole diagrams 1(a) and 1(b) vanish,
as expected by Furry’s theorem [24]. The remaining
contribution, i.e., the self-energy 1(c), gives

o VA

= A+ _ 5

Feynman rules. Continuous, wave, and double wave lines represent the fermion propagator, the gauge vector A#, and the field
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-0 =0 L)

(a)

(b) ()

FIG. 2. The contributions corresponding to n = 1 include: (a) Tadpole-A, (b) Tadpole-H, and (c) Vacuum polarization AA.

:
WC}WW

(c)

FIG. 3.
polarization AH, and (d) Vacuum polarization HH.

1

. 2
ngf):iTr[—j 2<ﬂ—(n-A)
iﬂ‘i‘i%n_./a_m 2 n-0
1 1
A — ], 68
x| (68)

and we can write it in momentum space. The result is

ge _ 1 d*q
eff 2 (271')4

MyA (q)AY (—q),  (69)
where

d'p i(p+m) fhn,n,
@n)* pP—u* (n-p)Pn-u

My = —iem2Tr

, (70)

with u=p+gq, and pu> =mj + m* representing the
modified fermion mass. Besides, we define the wiggle
momentum by

= mlf, y

p":p"_Tn' (71)

After calculating the traces of the Dirac matrices in four
dimensions, the expression (70) yields

b
M@W@

(d)

The contributions corresponding to n = 2 include: (a) Vacuum polarization AA, (b) Vacuum polarization HA, (c) Vacuum

d4p 4e2m3,nﬂn,,
@2n)* (p* =) (n.p)(n.u)”

) = (72)

This integral is ultraviolet divergent and also exhibits an
infrared divergence when (n - p) = 0.

To deal with these types of divergences in VSR, we use
the Mandelstan-Leibbrant prescription [26-28]

_lfg(n~p)(ﬁ-p)+ie’

o (73)

where 71, is a extra null vector which obeys (n-7) = 1.
Moreover, we employ a useful decomposition formula

1 1

n-(p+aqg)n-(p+q;) n-(q:—q;)

- (n : (p1+ q;) n- (p1+ qi)>’
(74)

to isolate factors as 1/(n - p) in each momentum integra-
tion. The resulting loop integrals can be evaluated using the
formulas introduced by Alfaro in Ref. [29]. Here, we will
quote the most basic of them:
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1 1
d
/ Pl ¥ 2p q=me(n-py

— (_1)a+biﬂw(_2)bw

rare

1
x b1
/0 i (m> +q*>=2(n-q)(ii- q)t)etb=" (75)

where dp is the integration measure in d-dimensional space
with w = d/2.

Following the calculation procedure mentioned above to
evaluate the integral in Eq. (72), we obtain:

e — ezma’/ I'2-w)(i-q)n,n,
T 22730 (= 21(n - q) (7~ q) )~

(76)

As we can note, the Mandelstam-Leibbrandt prescription
(73) adopted in the formula for the loop integral (75)
introduces a new null vector 7, which a priori could break
the SIM(2) symmetry. To preserve the SIM(2) covariance in
this calculation, Alfaro proposes in Ref. [30] to fix the
vector 71, as a linear combination of the original null vector
n, and the external momentum of the diagram. By impos-
ing certain conditions, such as reality, appropriate scaling
(n,i1) = (An,A7'i1), and being dimensionless [24,25], the
vector 71, can be expressed in the following form:

2
n
e 4

" oneg 2n-q)

(77)

which leads to 2 - g = B Hence, we can substitute this

(n q
result into Eq. (76), and after integrating over the variable ¢,

we find

qznﬂnl, n,n,

lesz, "
Ar? {(Z—w)(n-q)2 (n-q)?

on(o-2) om0 ).

where we have performed an expansion around @ = 2 and
retained only the 1/(2 — w) pole and the finite terms when
@ — 27. We note that this result is exclusively an effect of
the VSR and goes to zero when we take the limit mg, - 0.

For n =2 the expression (66) yields four two-point
amplitudes up to one-loop order

) =

2 2.a 2.b 2.c 2.d
ngf) = Sfeff ) + ngf ) + Siff ) + Sc(sz )» (79)

as depicted in Fig. 3. We have explicitly verified that graphs
2(b) and 2(c) vanish after momentum integration. The only

nontrivial contributions come from graphs 2(a) and 2(d).
The Feynman diagram 2(a) corresponds to the usual
vacuum polarization of the photon observed in QED, with
the additional VSR nonlocal corrections incorporated into
the fermion propagator and vertex. Its analytical expression
is given by

i

xzie@ "o H (g )}
g+ it 2n-0 n-o
(81)

which written in momentum space result in

(24) _ d'q 129 Ak (g)A¥ (=
Seff _E/(zﬂ') A ( )A( q)’ (82)

where
d*p i(p ; 1
m —— Tr/ p i(p+m) }/M_A'_@Lnﬂ_
(2.4) (2r)* p? —p? 2np n-u
i(ir+m) my, 1
v v— . 83
u? —u? <y+2n-unnp (83)

Following the procedure outlined earlier, we find

—ie? L3 n,n,
127%(2 — w) U M m Y(n-q)?

ie* (1 5
+-— g(qﬂqy—q Nuw)lye —Indz + 6Z,]

n; =

47

m2 q2
- n’li q [nﬂ‘b + n,q, — (fl : q)’/l,uv]IZ

ma.q*n,n, 5
—W[}/E—ln4ﬂ+2q I3—I4} . (84)

where we have defined the integrals:

7 = /O1 dex(1 = x)In (4 — @x(1—x)),  (85)

1 1 X
T, = d dt , 86
2 /0 XA W= q@*x(1 — x + tx) (86)

! box(t=2)(1 = x + tx)
135/ dx/ di™ . (87)
0 0o M —qg*x(1 —x+1x)
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I I
145/ dx/ dt(1—6x+4tx)In (4> — ¢*x(1 — x + 1x)).
0 0
(88)

Expression (84), by itself, does not have a transverse
structure as required by U(1) gauge invariance of the
photon field. To bring the photon self-energy into its
desired form, we must include the full diagram contribu-
tions Hf,{"‘a” H,(,L’c) + H,(i’”). Let us separate this sum into
two parts. The one with the simplest structure is the

divergent contribution, namely,

TOtdl

(1
|d1v - H/WC |d1v + H (89)

| div

—ie?

= 2202 —a) (9,90 — 4* 1) (90)
which has the same form present in the usual QED. The
second part is UV finite and exhibits a more intricate
structure. To simplify the integrals Z;, we expand the
corresponding contributions as a power series in the
external momenta before integrating over the parameters
x and t. The resulting expression can be written in the
following form:

(Total) _ (Lo
l_I/W |ﬁnite Hﬂl/ |f1n1te + Hﬂl/ |f1n1te

ie? 12 14
=— n(E) =L
1272 { (yE i <47z> 5u?

345 1 ¢° 5
—m/?—mﬁ—"' (Clﬂqu—q 77;41/)
3q 5¢g* 194°
m,,,( +8/4 +60 + -
n;tqu + nvq;t q nﬂnl/ 91
g g )y Y

where - - - indicates terms of higher order in the power of
g*/u?. In the end, the full one-loop vacuum polarization of
the photon in the VSR-QED is manifestly transverse, as
required by the Ward identity ¢,I1"*(q) = 0, but only the
UV finite part receives corrections due to the VSR-nonlocal
terms. Note that a similar result was obtained recently in
Ref. [25] for the low-energy limit, g> < 42, in the context
of Maxwell-Chern-Simons electrodynamics within the
VSR framework.

The results obtained so far allow us to write the VSR
effective Lagrangian for the gauge field A, as follows:

L [A}_L lF FHr _|_l 2 LFFV a LF e_2 lF 19 im_z_kLD_S FH
2= 7 \ T 2\ e )M\t ) T122 T4 \5 2 T 140 ¢ 315 46
m? 1 30 50 190 1
-, —F" ) 5= - n*( ——=F , 92
2n”<n'0 ><2M 8ut 60 )n <"'0 ‘”')} )
|
where K _ 77 A
Ap =Z,A¥, (95)
1 e?
—=1 Ciiv, 93
ZA +—== 127 2 “div ( )
with er = Zie, (96)
1 U
Cgiy==——yg—In—. 94
div 2T~ w TE 1’14” ( ) ,
— 2
In order to yield a divergence-free effective Lagrangian, Mar = ZaMa: 07)
we perform a suitable change of scale, by defining the
renormalized quantities: Using the above scale transformations, we get
|
ConlA] lF F"”—l—l 5 1 ) 1 P e’ lF 1o 3 D2+ 1 o
= —— —ms5 N _ n _ _ = { —— _—_ _— — ...
off 4" RwmR T AR (9" R n-0 f) 2224 P\5uE 140 4t T 315 4 R
m? 1 30 507 1908 1
-, —FY | [>=-3 ——+ - |n* | —F . 98
2n”<n'0 R><2ﬂ2 it 6040 )n (n-a R“”>} %)
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This effective Lagrangian retains the exact form of its
classical counterpart, incorporating finite terms encompass-
ing higher-derivative and VSR-nonlocal corrections. In
particular, no additional counterterms were required to
cancel the divergences, and the tensorial structure of these
finite terms preserves both VSR and gauge symmetry.

Now we calculate the Kalb-Ramond self-energy from
diagram 2(d) in Fig. 3. Once again, expression (66)
furnishes the analytical form of the corresponding effective
action:

* ywA
Sg?fd> = ;T ; / i12g O'/MHW (99)
ig+i%t—m m
i . g ~ affs
X ., i OopsH } (100)
ig+iss—m
wAafs i 92 €/4Ma eaﬂép
H(z,d) :9m222+2w o

Thus, we can write it in the momentum space as

2a) 0 [ dq _pay Fmr, | Fabs
Siff : :2/ (271.)4 H/(w/l;Zx/i&Hﬂ (@)H  (=q), (101)

where

g2 (19 ZTr/ d'p i(p+m) iitm)
pvdafd 12m (27[)4 pz_ﬂz Hva Mz—//lz aps.

(102)

After making the Dirac traces and the momentum integra-
tion, we obtain

x(1—x)

re-ol{2as, [ acgr e

m 2x(2—w) +p* — ¢*x(1 — x + 1x)

et o
1// ﬂq,o_’_n/)qg / /

(W = ¢*x(1 = x + 1x))>~
/4 +q 2x(1 —x+ tx)(1 — @)

(1? = ¢*x(1 —x +tx))>®

m;q°x(2 — o 2> —m2 — ¢*x(1 — x
- ’7”/’/ dX/ dt|: 2 2Wq ( ) 3—w (Iu lg q ( 2—(1))):| } (103)
o Jo LW —¢x(l—x+1x)) (#? = ¢*x(1 = x))
As in the previous case, we can split the above result into divergent and finite parts as follows:
) ﬂz/laea/iﬁp 1 nsq, +n,q q21’l n
1—[//”/}L aps — lg-e _ 6 2 _ 2 2 oip pio op 2 , 104
(2,d) |d1v 5767[21712(2 _ a)) 3 (qr;qp + ( U q )776/)) + ml[l n-q (I’l K q)z ’70,0 ( )
and
;2 uvie Lapop 1 1 2 2 n +n
visafs _lgerre H o4y 4o
Hl(z D e BT {ngno'p 3 <7E +ln4 > (4549, + (64* = q*)n,,) —my, [(715 +IHE> (T

2(n,q,+n,q,)

_qznanp_zn >+q_2(q2”p”a_
(n-q)* ") u*\3(n-q)* 3n-q

1> 54* n.n 7% (4,9
4 e 4 (9995
m‘”<2 > oat >(”'Q)2+ﬂ2( 15

It should be noted that both the divergent and finite parts
receive radiative corrections due to VSR-nonlocal terms, in
contrast to the pure Maxwell case.

To determine the tensor structure of the quantum
effective action and the necessary counterterms to renorm-
alize it, we can utilize the identity

51, 4 1 3¢*n,n, 9(n,q,+n,q,) 291,
o) 4" (34 p2_( U t1e) e\
6 u*\40(n-q) 40n-¢q 120

2 2
q op q" (995 49 Msp
30>+4<140 420>+ } (105)
HfH = 1H H,% ! H 5, H* 106
putty — 5 napttv _677;41/ api ’ ( )

where H}; is the dual tensor corresponding to H,,, and is
given by

1
H; :yeyaﬂiHaﬂl' (107)
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So we can write the effective Lagrangian density associated
with the Kalb-Ramond field as

l 1 ot Vo 92
‘Ceff[B] = Z_< 12H/waHﬂ ) + 161 P} 2Cd1v
1 aﬂ 3
X{l u 6"0”)HW/5+12
[ aff (n”n”D) > af <n”a” + n”@”)
x -H," ([
n-o
X Wﬂ} } + finite terms, (108)
where
1 92ﬂ2
—=1-—5—5Cgy, 109
ZB 871'21112 div ( )

with Cy;, defined in Eq. (94).

We note that from the second and third terms in
Eq. (108), it is necessary to introduce new counterterms
into the classical action in order to renormalize it within the
minimal subtraction scheme. This is an expected result
since it is well-known that nonminimal couplings can lead
to higher-derivative divergences in the quantum effective
action. Hence, at this point, we may interpret our model as
an effective theory that is valid in the low-momentum limit,
where ¢> < m?. In this regime, we can make the approx-
imations y? ~ m* with m;, < 1. Thus, we have

92

ZB 8 o2 Cdlw

(110)

and by defining a renormalized field B = Z?B’“’ and a

1
renormalized coupling constant gz = Z3g, we get

Lei|B] ~ — %HRWIHI;W + finite terms,  (111)
which has same form as the classical free Kalb-Ramond
Lagrangian in the VSR context. Moreover, in the limit of
mp — 0, we recover the Lorentz covariant result obtained
in Ref. [50] at leading order in H?, with the same values for
the renormalized quantities.

V. CONCLUSIONS

In this work, we propose an extension of Maxwell and
Kalb-Ramond electrodynamics in the presence of fer-
mionic matter fields in a SIM(2)-gauge invariant manner,
incorporating both minimal and nonminimal couplings. In
the free case, the VSR-Kalb-Ramond field is equivalent to
a single massive real scalar field with one polarization.
Moreover, we have calculated the VSR-effective action
for the Maxwell and Kalb-Ramond field strengths using
the Alfaro-Mandelstam-Leibbrandt prescription [29],
which accounts for UV/IR mixing divergences in the
one-loop Feynman integrals. The induced quantum cor-
rections include higher-derivative terms that preserve the
VSR-nonlocal tensor structure. Specifically, the finite
terms in the Maxwell sector exhibit the VSR-nonlocal
tensor structure, while the divergent part retains Lorentz
covariance. On the other hand, in the Kalb-Ramond
sector, both finite and divergent terms incorporate
VSR-nonlocal corrections. In the latter case, the counter-
terms necessary to cancel the divergences are absent in the
bare Lagrangian, and additional counterterms must be
introduced into the classical Lagrangian to absorb these
divergences and render the theory well-defined. However,
a renormalized effective action can be achieved in the
weak-energy limit, similar to what has been obtained in
the literature for the Lorentz-covariant case of constant F
and H field strengths [50].
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