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(Received 26 June 2023; accepted 16 October 2023; published 14 November 2023)

This work investigates the implications of very special relativity (VSR) on the calculation of vacuum
polarization for fermions in the presence of Maxwell and Kalb-Ramond gauge fields in four-dimensional
spacetime. We derive the SIM(2)-covariant gauge theory associated with an Abelian antisymmetric two-
tensor and its corresponding field strength. We demonstrate that the free VSR-Kalb-Ramond electro-
dynamics is equivalent to a massive scalar field with a single polarization. Furthermore, we determine an
explicit expression for the effective action involving Maxwell and Kalb-Ramond fields due to fermionic
vacuum polarization at one-loop order. The quantum corrections generate divergences free of nonlocal
terms only in the VSR-Maxwell sector. At the same time, we observe UV/IR mixing divergences due to
the entanglement of VSR-nonlocal effects with quantum higher-derivative terms for the Kalb-Ramond
field. However, in the lower energy limit, the effective action can be renormalized like in the Lorentz
invariant case.
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I. INTRODUCTION

In 2006, Cohen and Glashow proposed a modification to
the theory of special relativity that preserves the familiar
energy-momentum dispersion relation while breaking the
invariance under the complete Lorentz group, SOð1; 3Þ [1].
They recognized that specific subgroups of the Lorentz
group can still produce conservation laws and reproduce
the well-known effects of special relativity (SR). Among
these subgroups, the HOM(2) and SIM(2) groups meet
these requirements. The former subgroup, known as the
Homothety group, consists of the boost generator Kz and
the generators T1 ¼ Kx þ Jy, T2 ¼ Ky − Jx. These gen-
erators together form a group that is isomorphic to the
group of translations in the plane. The second subgroup,
known as the similitude group SIM(2), is an enhanced
version of the HOM(2) group obtained by including the
generator Jz. These subgroups do not admit invariant
tensors that can act as constant background tensor fields,
as seen in other theories of Lorentz violations [2]. Hence,

the breakdown of SOð3; 1Þ into either HOM(2) or SIM(2)
cannot be explained through local symmetry-breaking
operators. This intriguing theory of relativity came to be
known as “very special relativity” (VSR) [3].
A key attribute of VSR is that the SIM(2) generators

preserve both the speed of light and the null four-vector
nμ ¼ ð1; 0; 0; 1Þ, thereby establishing a preferred direction
in space. However, VSR algebras do not support discrete
symmetry operators such as P, T, CP, and CT. Including
any of these operators would result in the full Lorentz
algebra [4]. In this way, the lack of discrete symmetries
may result in violations of unitarity and causality in
quantum field theories. To circumvent this issue, Cohen
and Glashow proposed the inclus`ion of nonlocal operators
containing ratios of contractions of nμ in order to construct
a unitary SIM(2)-invariant field theory. The nonlocal
nature of VSR gives rise to a remarkable phenomenon
of mass generation. Indeed, when a nonlocal operator like
nμ=ðn ·∂Þ is added in the momentum operator for a
massless fermion, it results in a corresponding Klein-
Gordon equation with a mass term proportional to the
nonlocal coupling constant. This impressive property has
led to proposals suggesting a VSR explanation for
neutrino mass [5] and dark matter [6].
Since its formulation, a large number of investigations in

VSR theories have been developed in recent years,
addressing distinct physical scenarios: fermion systems
[7–9], Maxwell [10,11], Maxwell-Chern-Simons [12] and
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axion [13] electrodynamics, Lorentz violation [14], curved
spacetime [15], noncommutativity [16,17], linearized grav-
ity [18], Finsler geometry [19,20], supersymmetry [21],
radiative corrections [22–25]. These several studies have
served both to elucidate the effects engendered by VSR
nonlocal terms and to set up upper bounds on the VSRmass
coefficients.
In particular, the VSR contributions to the induced

effective action in the context of Maxwell-Chern-Simons
electrodynamics have been studied in previous works
[24,25]. In these studies, the authors employed the
Mandelstam-Leibbrandt prescription [26–28], adapted to
the VSR case by Alfaro [29,30], to handle the UV/IR
mixing divergences that arise in the loop integrals. Another
notable gauge field theory in four-dimensional Minkowski
spacetime is built from an antisymmetric two-tensor known
as the Kalb-Ramond field [31]. The Kalb-Ramond field is
relevant in several contexts and has been extensively
explored in the literature, including string theories [32],
quantum field theory [33–35], supersymmetry [36,37],
Lorentz symmetry violation [38–40], dualities [41,42],
black hole and wormhole solutions [43,44], cosmology
[45], and brane world scenarios [46–48].
The study of the classical action for antisymmetric tensor

fields in the context of VSR was initially addressed in
Ref. [49]. However, a comprehensive analysis of the role of
VSR in the quantum corrections of this field is still lacking
in the literature. In this work, we propose a systematic
procedure to construct an antisymmetric two-tensor gauge
field that incorporates VSR nonlocal operators and use it to
derive the associated SIM(2)-invariant classical action.
Subsequently, we obtain the free equation of motion in
the VSR-Kalb-Ramond electrodynamics and explicitly
determine the resulting degrees of freedom. Furthermore,
we explore, for the first time, the induced corrections to the
effective action of the Maxwell and Kalb-Ramond gauge
fields in the context of VSR. We obtain the effective
Lagrangian density at the one-loop order by integrating the
fermionic fields and calculating the vacuum polarization
Feynman diagrams. We demonstrate that the divergent
terms can be renormalized in the low-energy limit by
appropriately rescaling the fields, masses, and coupling
parameters in the model. Moreover, our results recover those
obtained in the literature for the Lorentz invariant limit [50].
The present work is organized as follows. In Sec. II, we

review the main aspects of VSR applied to the vector gauge
field. In Sec. III, we propose a procedure to derive the SIM
(2)-invariant Lagrangian density for the Kalb-Ramond field
and analyze its free physical modes. In Sec. IV, we calculate
the induced effective actions of the Maxwell and Kalb-
Ramond fields, evaluate the Feynman diagrams for the two-
point gauge functions, and examine the general tensorial
form of the finite and divergent induced terms as well as the
renormalization issues. Our final comments are presented
in Sec. V.

II. SIM(2)-INVARIANT MAXWELL GAUGE
THEORY

To establish a consistent framework for our upcoming
calculations, we will review the SIM(2)-invariant gauge
vector theory described in Refs. [10,11,23]. The VSR-
modified Maxwell electrodynamics is a Uð1Þ gauge theory
that involves a one-form gauge potential AμðxÞ and a matter
field ψðxÞ that acts as the source of AμðxÞ. This theory
obeys the following gauge transformations:

AμðxÞ → AμðxÞ þ ∂̃μΛðxÞ; ð1Þ

ψðxÞ → exp fieΛðxÞgψðxÞ; ð2Þ

where ΛðxÞ is an arbitrary 0-form field. The wiggle
derivative operator is defined by

∂̃μ ¼ ∂μ þ
1

2

m2
A

n · ∂
nμ; ð3Þ

wheremA is a constant parameter with mass dimension, and
nμ ¼ ð1; 0; 0; 1Þ is a fixed null vector present in VSR
theories that selects a preferred direction.
The covariant derivative for VSR-Maxwell electrody-

namics is given by

Dμ ¼ ∂μ − ie

�
Aμ −

1

2
m2

Anμ

�
1

ðn · ∂Þ2 n · A

��
; ð4Þ

and it is constructed by demanding the fundamental
property of transforming as ψ does under infinitesimal
gauge transformations [11]:

δðDμψÞ ¼ ieΛDμψ : ð5Þ

We can compute the field strength related to Dμ as follows:

½Dμ;Dν�ψ ¼ −ieF μνψ : ð6Þ

This gives us the expression for the field strength tensor:

F μν¼ ∂μAν−∂νAμþ
1

2
m2

ANμ∂νðN ·AÞ−1

2
m2

ANν∂μðN ·AÞ;
ð7Þ

where we introduce the notation Nμ ≡ nμ=n · ∂ for the
nonlocal vector operator.
It is noteworthy that F μν is invariant under the gauge

transformation

Ãμ → Ãμ þ ∂μΛ; ð8Þ

where we define the wiggle gauge vector Ãμ by
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Ãμ ¼ Aμ −
1

2
m2

ANμðN · AÞ; ð9Þ

such that F μν ¼ ∂μÃν − ∂νÃμ.
We observe that by applying a field redefinition

Aμ → Aμ þ 1
2
m2

ANμðN · AÞ, one can eliminate the modifi-
cation by the VSR-nonlocal terms. After this redefinition,
we obtain the same field strength tensor F μν → Fμν ¼
∂μAν − ∂νAμ and the same covariant derivative gauge
transformation as in standard electrodynamics, given by

Dμψ → Dμψ ¼ ∂μψ − ieAμψ : ð10Þ

On the other hand, we can define a new SIM(2)-gauge
invariant field strength F̃μν, which is constructed using the
wiggle derivative, namely,

F̃μν ¼ ∂̃μAν − ∂̃νAμ; ð11Þ

and it can be expressed explicitly as

F̃μν ¼F μνþ
1

2
m2

A

�
nμ

1

ðn ·∂Þ2 ðn
αF ανÞ−nν

1

ðn ·∂Þ2 ðn
αF αμÞ

�
;

ð12Þ

which shows that F̃μν is also invariant under the gauge
transformation (8).
The present analysis allows us to construct a SIM(2)-

invariant Lagrangian density for the field Aμ that is also
invariant under standard gauge transformations. As pointed
out in Ref. [23], this is an important result because this
Lagrangian generates a mass term for the field Aμ without
breaking the original gauge symmetry of the theory.
According to the definition (11), F̃μν is not Lorentz

invariant but instead SIM(2) invariant. Moreover, as shown
in result (12), it is also invariant under transformation (8).
So, we can construct a VSR gauge-invariant Lagrangian
density as follows:

Lgauge ¼ −
1

4
F̃μνF̃μν: ð13Þ

Therefore, from Eq. (12), this Lagrangian takes the form

Lgauge¼−
1

4
F μνF μνþ1

2
m2

Anμ

�
1

n ·∂
F μν

�
nα
�

1

n ·∂
F αν

�
:

ð14Þ

Finally, by applying a field redefinition from Aμ → Aμ þ
1
2
m2

Anμððn · ∂Þ−2ðn · AÞÞ, so that F μν → Fμν ¼ ∂μAν−
∂νAμ, we obtain the desired result

Lgauge ¼ −
1

4
FμνFμν þ 1

2
m2

Anμ

�
1

n · ∂
Fμν

�
nα
�

1

n · ∂
Fαν

�
:

ð15Þ

It is interesting to notice that if we start from −1=4F μνF μν

to define our Lagrangian, the above field redefinition will
withdraw the VSR effects. Furthermore, as shown in
Ref. [23], we can apply the Lorentz gauge ∂μAμ ¼ 0 plus
the subsidiary gauge condition N · A ¼ 0 into the equation
of motion obtained from (15) and we find

ð∂2 þm2
AÞAν ¼ 0: ð16Þ

Hence, in the VSR scenario, we obtain a massive gauge
field with two physical degrees of freedom, which is in
contrast to the Proca case where the mass term m2

AA
μAμ is

not gauge invariant and has three degrees of freedom.

III. KALB-RAMONDELECTRODYNAMICS IN VSR

In this section, we investigate the issue of constructing a
SIM(2)-invariant action for the Kalb-Ramond field. As we
will see, this is possible even when the Kalb-Ramond field
does not carry matter charge, i.e., when it is not minimally
coupled to matter fields and does not possess any asso-
ciated covariant derivatives.

A. Setup

Let us start by defining the Lagrangian density that
describes the dynamics for an antisymmetric two-tensor
Bμν in 4D Minkowski spacetime,

L ¼ −
1

12
HμναHμνα −

1

2
BμνJμν; ð17Þ

where

Hμνα ¼ ∂μBνα þ ∂αBμν þ ∂νBαμ ð18Þ

is the field strength tensor associated with Bμν, and Jμν is an
antisymmetric conserved current due to the coupling to the
matter [38]. The field strength Hμνα corresponds to the
components of an exact three-form field H, which is
constructed using the exterior derivative from the two-form
B associated with Bμν. This field strength satisfies the
identity

∂κHλμν − ∂λHμνκ þ ∂μHνκλ − ∂νHκλμ ¼ 0; ð19Þ

which follows from the fact that an exact three-form is
closed [51].
The Lagrangian (17) is the simplest, which can be

constructed by demanding parity-even and invariance
under the Uð1Þ gauge transformation:
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BμνðxÞ → BμνðxÞ þ ∂μΣνðxÞ − ∂νΣμðxÞ; ð20Þ

where Σμ is an arbitrary vector field. The field Σμ also
exhibits an extra gauge invariance given by

ΣμðxÞ → ΣμðxÞ þ ∂μϕðxÞ; ð21Þ

with ϕ being an arbitrary scalar field. This latter trans-
formation leaves Eq. (20) unchanged.
In general, the current Jμν is constructed from other

dynamical fields that involve extended objects of the type
found in the string theory [31]. For the sake of simplicity,
we will not consider a string matter field for the source of
BμνðxÞ in this work. In what follows, our attention will be
focused only on the kinetic part of the Lagrangian density
(17), such that the matter coupling, represented by Jμν, will
be turned off.

B. SIM(2)-covariant Kalb-Ramond gauge theory

For the SIM(2)-invariant generalization of the Kalb-
Ramond Lagrangian (17), we expect that the gauge
symmetry (20) modified by the nonlocal vector operator
Nμ ≡ nμ=n · ∂ will play a crucial role. As we saw in the
Maxwell case, both F μν and F̃μν are invariant under the
standard gauge transformation, and the connection between
the two kinds of field strengths is made through the vector
potential Ãμ.
Hence, motivated by our earlier analysis, we will

construct a B̃μν field that satisfies the following require-
ments: (i) B̃μν is a linear function that is first order in Bμν

and second order in Nμ; (ii) B̃μν has mass dimension one in
4D spacetime; (iii) B̃μν transforms by B̃μν → B̃μν þ ∂μΣ̃ν −
∂νΣ̃μ when Bμν changes by Bμν → Bμν þ ∂̃μΣν − ∂̃νΣμ.
After imposing these requirements, we arrive at the

B̃-ansatz given by

B̃μν ¼ Bμν −
m2

2
ðNμNαBαν − NνNαBαμÞ; ð22Þ

and it changes under the gauge transformation Bμν →
Bμν þ ∂̃μΣν − ∂̃νΣμ as follows:

B̃μν → B̃μν þ ∂μ

�
Σν −

m2

2
NνðN · ΣÞ

�

− ∂ν

�
Σμ −

m2

2
NμðN · ΣÞ

�
: ð23Þ

It is worth noting that the gauge parameter Σ̃μ ¼ Σμ −
m2

2
NμðN · ΣÞ has the same form as Ãμ in Eq. (9), which was

obtained in the Maxwell case. This is expected since Σμ has
the additional gauge symmetry (21), similar to the Aμ field.
Additionally, it is interesting to note that for a 0-form field,

our prescription implies that ϕ̃ ¼ ϕ − m2

2
NμNμϕ ¼ ϕ,

because N2 ¼ 0.
Once we have found B̃μν, we can define the tensor

Hμνα ¼ ∂μB̃να þ ∂αB̃μν þ ∂νB̃αμ; ð24Þ

whose explicit form is given by:

Hμνα ¼Hμνα þ
1

2
m2½NμNσð∂νBσα − ∂αBσνÞ

þ NνNσð∂αBσμ − ∂μBσαÞ
þ NαNσð∂μBσν − ∂νBσμÞ�: ð25Þ

Also, the SIM(2)-covariant field strength tensor H̃μνα can
be defined as

H̃μνα ≡ ∂̃μBνα þ ∂̃αBμν þ ∂̃νBαμ: ð26Þ

Taking the difference between the two kinds of field
strengths H̃μνα −Hμνα, we obtain

H̃μνα −Hμνα ¼
1

2
m2½NμNσHσνα þ NνNσHσαμ

þ NαNσHσμν�: ð27Þ

Furthermore, we can rewrite H̃μνα solely in terms of
Hμνα, thereby guaranteeing the invariance of H̃μνα under
both SIM(2) and the wiggle gauge transformations, as
required in condition (iii). To this end, it is easy to check the
following identity:

NμNσHσνα þ NνNσHσαμ þ NαNσHσμν

¼ NμNσHσνα þ NνNσHσαμ þ NαNσHσμν; ð28Þ

where using the properties of the operator Nμ, we have
that [10]

N · N ¼ 0; N · ∂ ¼ 1; ½Nμ; Nν� ¼ ½Nμ; ∂ν� ¼ 0;

ð29Þ

and the integration by parts rule holds:

Z
d4xfðxÞðNμgðxÞÞ ¼ −

Z
d4xðNμfðxÞÞgðxÞ: ð30Þ

Besides, it would also be consistent to set NμϕðxÞ≡ 0 if ϕ
is a constant. With all the above results, the SIM(2)-
covariant tensor H̃μνα can be cast as
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H̃μνα ¼ Hμνα þ
1

2
m2½NμNσHσνα þ NνNσHσαμ

þ NαNσHσμν�; ð31Þ

which is a natural generalization of the relation (12).
Finally, the SIM(2)-invariant action of the Kalb-Ramond

field Bμν is represented by

S ¼
Z

d4x

�
−

1

12
H̃μναH̃μνα

�
; ð32Þ

and with help the of Eq. (31), we can write it as

S ¼
Z

d4x

�
−

1

12
HμναHμνα þ 1

4
m2nα

�
1

n · ∂
Hαμν

�

× nσ

�
1

n · ∂
Hσμν

��
; ð33Þ

where we performed an additional change of field variables
Bμν → Bμν þ m2

2
ðNμNαBαν − NνNαBαμÞ. Therefore, simi-

lar to the Maxwell case, the SIM(2)-modified Kalb-
Ramond action (32) is invariant under the standard gauge
transformation (20).
The equation of motion follows from the action (33) by

varying with respect to Bνα. Explicitly, we find

∂μHμναþm2ðNσHσναþNνNσ∂μHσαμþNαNσ∂μHσμνÞ¼ 0:

ð34Þ

By contracting Eq. (34) with Nν, we obtain the following
constraint:

Nν∂μHμνα ¼ 0: ð35Þ

Inserting this constraint back into the equation of motion,
we find

∂μHμνα þm2NσHσνα ¼ 0: ð36Þ

To find the physical modes, we must fix the gauge freedom.
We can chose, analogous to the Maxwell case, the Lorentz
gauge

∂μBμν ¼ 0: ð37Þ

Then the equation of motion (36) and the constraint (35)
become, respectively:

ð□þm2ÞBνα þm2ðNσ∂
αBσν þ Nσ∂

νBασÞ ¼ 0; ð38Þ

and

□NνBνα ¼ 0: ð39Þ

The form of Eq. (38) still contains redundant degrees of
freedom. Indeed, the gauge condition (37) is insufficient to
fix the gauge freedom completely since we can construct a
solution B0να ¼ Bνα þ ∂

νΣα − ∂
αΣν, which preserves the

Lorentz gauge (37) and satisfies the equation of motion
(38). So, we can impose an additional condition on the field
B0να, namely,

NνB0να ¼ 0; ð40Þ

by choosing the gauge parameter Σα as

Σα − ∂
αNνΣν ¼ −NνBνα: ð41Þ

However, the last relation is invariant under the residual
gauge symmetry (21), and we can use this fact to impose
the condition

NνΣν ¼ 0; ð42Þ

by fixing the scalar gauge parameter as ϕ ¼ NνΣ0ν. Thus,
the gauge parameter is given by

Σα ¼ −NνBνα: ð43Þ

Now, we can show that the Lorentz gauge condition is valid
to B0να. From (37), we find

∂νB0να ¼ □Σα − ∂
α
∂νΣν: ð44Þ

On the other hand, the constraint condition (39) implies that

□NνB0να ¼ □Σα ¼ 0; ð45Þ

where we used the relations NνB0να ¼ 0 and NνΣν ¼ 0.
Immediately, from (44), it follows that

∂νB0να ¼ −∂α∂νΣν; ð46Þ

and by Eq. (43), we obtain the claimed result

∂νB0να ¼ ∂
α
∂νNμBμν ¼ 0; ð47Þ

where in the last step, we use again the Lorentz gauge
∂μBμν ¼ 0.
Finally, by applying the subsidiary condition NνBνα ¼ 0

to the equation of motion (38), it takes the simple form

ð□þm2ÞBνα ¼ 0; ð48Þ

which represents a wave equation for a particle of mass m.
At the end, the Kalb-Ramond field in VSR satisfies
the standard Klein-Gordon equation under two gauge
conditions
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∂νBνα ¼ 0; NνBνα ¼ 0: ð49Þ

The general solution to Eq. (48) takes the form:

BμνðxÞ ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωp

q ½BμνðpÞeip·x þ Bμν�ðpÞe−ip·x�;

ð50Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and the associated four-momenta

pμ are on shell such that pμ ¼ ðωp;pÞ. The Fourier
coefficients BμνðpÞ can be expanded over a basis of
polarization antisymmetric two-tensors, labeled by
λ ¼ 1;…; 6:

BμνðpÞ ¼ ap;λϵμνðp; λÞ: ð51Þ

To find the physical polarization states, it is convenient to
analyze the solution (50) in the rest frame where
kμ ¼ ðm; 0Þ. The solution for a general pμ can then be
obtained by applying a VSR boost, i.e., pμ ¼ LðpÞμνkν,
with

LðpÞ ¼ T1ðβ1ÞT2ðβ2ÞL3ðξÞ ¼ eiβ1T
1

eiβ2T
2

eiξK
3

; ð52Þ

where T 1, T 2, and K3 are the generators of the SIM(2)
group in the vector representation [4].
In the rest frame, the gauge conditions (49) become

kμϵμνðk; λÞ ¼ 0; nμϵμνðk; λÞ ¼ 0: ð53Þ

The first condition implies that ϵ0iðk; λÞ ¼ 0 with i ¼ 1,
2, 3, which eliminates three polarizations. The second
condition gives ϵ3jðk; λÞ ¼ 0 with j ¼ 1, 2, which
eliminates two more polarizations. Therefore, there is
only one nonzero polarization ϵ12ðk; λÞ, which means
that the free Kalb-Ramond field in VSR has only one
degree of freedom, equivalent to a single massive
scalar field.

IV. MAXWELL-KALB-RAMOND VACUUM
POLARIZATION IN VSR

In this section, we calculate the effective action for the
case of a fermion field interacting with Maxwell and Kalb-
Ramond fields within the context of VSR, which has been
developed in the preceding sections. As we proceed, we
will obtain exact solutions to the one-loop vacuum
polarization amplitudes involving the external gauge
fields.
Let us start by recalling that Kalb-Ramond quantum

electrodynamics is a Uð1Þ gauge theory that involves a
two-form gauge potential BμνðxÞ and a string matter field
ψðxðσÞÞ serving as the source for BμνðxÞ [31].
Considering the complexities inherent in string theory-

based systems, let us focus on exploring a simplified
scenario within the framework of VSR. Specifically, we
investigate an interaction model involving a pointlike
fermion field and the Maxwell and Kalb-Ramond fields
in four-dimensional Minkowski spacetime. As we will
see below, this type of interaction is only viable if ψ does
not carry any Kalb-Ramond charge and couples non-
minimally with it [50].
We consider SIM(2)-covariant gauge theories under the

Uð1Þ gauge transformations

Bμν → Bμν þ ∂

≁
μΣν − ∂

≁
νΣμ; ð54Þ

Aμ → Aμ þ ∂̃μΛ; ð55Þ

ψ → exp fieΛgψ ; ð56Þ

where we have defined the wiggle operators as

∂̃μ ¼ ∂μ þ
1

2

m2
A

n · ∂
nμ; and ∂

≁
μ ¼ ∂μ þ

1

2

m2
B

n · ∂
nμ; ð57Þ

where mA and mB represent the VSR-mass associated with
the Maxwell and Kalb-Ramond fields, respectively.
The simplest Lagrangian density that can be constructed,

invariant under the aforementioned gauge transformations,
is given by [50]:

L¼−
1

4
F̃μνF̃μν−

1

12
H
≁
μναH

≁ μνα

þ ψ̄

�
iDþ i

m2
ψ

2

=n
n ·D

þ 1

12

g
m
σμνλH

≁ μνλ
−m

�
ψ ; ð58Þ

where m represents the usual fermion mass, mψ the VSR-
mass associated to the ψ field, and g is a coupling constant
with mass dimension ½g� ¼ M−2 (in natural units). Also, the
operator Dμ denotes the standard covariant derivative,
given by

Dμ ¼ ∂μ − ieAμ; ð59Þ

and σμνλ represents the fully antisymmetrized product of
two gamma matrices normalized to unit strength, defined as

σμνλ ¼ iϵμνλαγ5γα; ð60Þ

where ϵμνλα is the Levi-Civita symbol. It satisfies the
commutation relation

½σμνλ; γσ� ¼ 2iϵμνλσγ5: ð61Þ

It is important to note that the Lagrangian density (58)
involves a nonminimal coupling of the Kalb-Ramond
field to pointlike fermions. We could interpret this kind
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of coupling as similar to that involving neutral particles,
such as the neutron, interacting with the electromagnetic
field through their anomalous magnetic moments.

In order to determine the effective Lagrangian resulting
from fermionic vacuum polarization at the one-loop level,
we consider the generating functional defined as

eiSeff ½A;B� ¼N
Z

Dψ̄Dψe
i
R
d4x

h
−1
4
F̃μνF̃μν− 1

12
H
≁
μναH

≁ μναþψ̄

�
iDþi

m2
ψ
2

=n
n·Dþ 1

12
g
mσμνλH

≁ μνλ
−m

�
ψ

i
; ð62Þ

whereN is a normalization constant, which will be used to
absorb field-independent factors.
By performing the fermionic integration, we obtain (up

to a field-independent factor that can be absorbed in the
normalization):

Seff ½A;B� ¼
Z

d4x

�
−
1

4
F̃μνF̃μν−

1

12
H
≁
μναH

≁ μνα
�

− iTr ln

�
iDþ i

m2
ψ

2

=n
n ·D

þ 1

12

g
m
σμνλH

≁ μνλ
−m

�
;

ð63Þ
where Tr stands for the trace over Dirac matrices as well as
the trace over the integration in coordinate space. At this
point, it is worth mentioning that the Lorentz covariant
calculation of vacuum polarization for the model under
study was carried out in Ref. [50] for the simplified case of
constant fields using Schwinger’s approach. In this work,
we extend this calculation to the SIM(2)-covariant case
using Feynman techniques without the restriction to con-
stant external gauge fields. Furthermore, we can verify
whether our results can reproduce those obtained in the
literature by taking the limit mA;B;ψ → 0 and assuming
constant F and H fields.
To evaluate the trace in Eq. (63), we notice that the term

1=ðn ·DÞ is a nonlocal operator that depends on the vector
gauge field Aμ. Since our focus is on perturbative compu-
tations, we treat the nonlocal term as a perturbative
expansion in the fermionic Lagrangian density. This is
accomplished by using the following matrix identity:

1

AþB
¼ 1

A
−
1

A
B

1

AþB
¼ 1

A
−
1

A
B
1

A
þ 1

A
B
1

A
B

1

AþB
¼ ���

ð64Þ
Therefore, we can obtain the corresponding new types of

vertices involving more than one external gauge vector field
from the perturbative Lagrangian density:

Lfermion ¼ ψ̄

��
i∂þ i

m2
ψ

2

=n
n · ∂

−m

�

þ e

�
=A−

m2
ψ

2

=n
n · ∂

ðn ·AÞ 1

n · ∂

�
þ 1

12

g
m
σμνλH

≁ μνλ

− ie2
�
m2

ψ

2

=n
n · ∂

ðn ·AÞ 1

n · ∂
ðn ·AÞ 1

n · ∂

�

þ e3
�
m2

ψ

2

=n
n · ∂

ðn ·AÞ 1

n · ∂
ðn ·AÞ 1

n · ∂
ðn ·AÞ 1

n · ∂

�

þ �� �
�
ψ : ð65Þ

Thus, we can write the nontrivial part of the effective
action as

SðnÞeff ½A;B� ¼ iTr
X∞
n¼1

1

n

�
i

i=∂þ i m
2
ψ

2

=n
n·∂ −m

iÔ
�
n
; ð66Þ

where the operator Ô can be determined from Eq. (65).
The formal contributions of this formula will give rise to

the n-point vertex functions of the fields Aμ and Bμν. At this
point, a graphical representation may be helpful. Following
the conventions depicted in Fig. 1, the contributions to the
tadpole and the self-energy are illustrated in Figs. 2 and 3
up to one-loop order.
For n ¼ 1 the expression (66) gives rise to three

contributions (67) up to second order in the coupling
constant e, as graphically indicated in Fig. 2,

Sð1Þeff ¼ Sð1;aÞeff þ Sð1;bÞeff þ Sð1;cÞeff : ð67Þ

We found that the tadpole diagrams 1(a) and 1(b) vanish,
as expected by Furry’s theorem [24]. The remaining
contribution, i.e., the self-energy 1(c), gives

FIG. 1. Feynman rules. Continuous, wave, and double wave lines represent the fermion propagator, the gauge vector Aμ, and the field

strength H
≁ μνλ

, respectively.
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Sð1;cÞeff ¼ iTr

�
i

i=∂þ i m
2
ψ

2

=n
n·∂ −m

e2
�
m2

ψ

2

=n
n · ∂

ðn · AÞ

×
1

n · ∂
ðn · AÞ 1

n · ∂

��
; ð68Þ

and we can write it in momentum space. The result is

Sð1;cÞeff ¼ i
2

Z
d4q
ð2πÞ4Π

ð1;cÞ
μν AμðqÞAνð−qÞ; ð69Þ

where

Πð1;cÞ
μν ¼ −ie2m2

ψTr
Z

d4p
ð2πÞ4

iðp̃þmÞ
p2 − μ2

=nnμnν
ðn · pÞ2n · u

; ð70Þ

with u ¼ pþ q, and μ2 ¼ m2
ψ þm2 representing the

modified fermion mass. Besides, we define the wiggle
momentum by

p̃μ ¼ pμ −
m2

ψ

2

nμ
n · p

: ð71Þ

After calculating the traces of the Dirac matrices in four
dimensions, the expression (70) yields

Πð1;cÞ
μν ¼

Z
d4p
ð2πÞ4

4e2m2
ψnμnν

ðp2 − μ2Þðn:pÞðn:uÞ : ð72Þ

This integral is ultraviolet divergent and also exhibits an
infrared divergence when ðn · pÞ ¼ 0.
To deal with these types of divergences in VSR, we use

the Mandelstan-Leibbrant prescription [26–28]

1

n · p
¼ lim

ϵ→0

ðn̄ · pÞ
ðn · pÞðn̄ · pÞ þ iϵ

; ð73Þ

where n̄μ is a extra null vector which obeys ðn · n̄Þ ¼ 1.
Moreover, we employ a useful decomposition formula

1

n · ðpþ qiÞn · ðpþ qjÞ
¼ 1

n · ðqi − qjÞ

×

�
1

n · ðpþ qjÞ
−

1

n · ðpþ qiÞ
�
;

ð74Þ

to isolate factors as 1=ðn · pÞ in each momentum integra-
tion. The resulting loop integrals can be evaluated using the
formulas introduced by Alfaro in Ref. [29]. Here, we will
quote the most basic of them:

FIG. 3. The contributions corresponding to n ¼ 2 include: (a) Vacuum polarization AA, (b) Vacuum polarization HA, (c) Vacuum
polarization AH, and (d) Vacuum polarization HH.

FIG. 2. The contributions corresponding to n ¼ 1 include: (a) Tadpole-A, (b) Tadpole-H, and (c) Vacuum polarization AA.
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Z
dp

1

½p2 þ 2p · q −m2�a
1

ðn · pÞb

¼ ð−1Þaþbiπωð−2Þb Γðaþ b − ωÞ
ΓðaÞΓðbÞ ðn̄ · qÞb

×
Z

1

0

dttb−1
1

ðm2 þ q2 − 2ðn · qÞðn̄ · qÞtÞaþb−ω ; ð75Þ

where dp is the integration measure in d-dimensional space
with ω ¼ d=2.
Following the calculation procedure mentioned above to

evaluate the integral in Eq. (72), we obtain:

Πð1;cÞ
μν ¼−i

e2m2
ψ

n ·q

Z
1

0

dt
�

Γð2−ωÞðn̄ ·qÞnμnν
22ω−3πωðμ2−2tðn ·qÞðn̄ ·qÞÞ2−ω

�
:

ð76Þ

As we can note, the Mandelstam-Leibbrandt prescription
(73) adopted in the formula for the loop integral (75)
introduces a new null vector n̄μ, which a priori could break
the SIM(2) symmetry. To preserve the SIM(2) covariance in
this calculation, Alfaro proposes in Ref. [30] to fix the
vector n̄μ as a linear combination of the original null vector
nμ and the external momentum of the diagram. By impos-
ing certain conditions, such as reality, appropriate scaling
ðn; n̄Þ → ðλn; λ−1n̄Þ, and being dimensionless [24,25], the
vector n̄μ can be expressed in the following form:

n̄μ ¼
qμ
n · q

−
q2nμ

2ðn · qÞ2 ; ð77Þ

which leads to n̄ · q ¼ q2

2ðn·qÞ. Hence, we can substitute this

result into Eq. (76), and after integrating over the variable t,
we find

Πð1;cÞ
μν ¼−

ie2m2
ψ

4π2

	
q2nμnν

ð2−ωÞðn ·qÞ2þ
nμnν
ðn ·qÞ2

×
�
μ2 ln

�
1−

q2

μ2

�
þq2

�
1− γE− ln

�
μ2−q2

4π

���

;

ð78Þ

where we have performed an expansion around ω ¼ 2 and
retained only the 1=ð2 − ωÞ pole and the finite terms when
ω → 2þ. We note that this result is exclusively an effect of
the VSR and goes to zero when we take the limit m2

ψ → 0.
For n ¼ 2 the expression (66) yields four two-point

amplitudes up to one-loop order

Sð2Þeff ¼ Sð2;aÞeff þ Sð2;bÞeff þ Sð2;cÞeff þ Sð2;dÞeff ; ð79Þ

as depicted in Fig. 3. We have explicitly verified that graphs
2(b) and 2(c) vanish after momentum integration. The only

nontrivial contributions come from graphs 2(a) and 2(d).
The Feynman diagram 2(a) corresponds to the usual
vacuum polarization of the photon observed in QED, with
the additional VSR nonlocal corrections incorporated into
the fermion propagator and vertex. Its analytical expression
is given by

Sð2;aÞeff ¼ i
2
Tr

�
i

i=∂þ im
2
ψ

2

=n
n·∂−m

ie

�
=A−

m2
ψ

2

=n
n ·∂

ðn ·AÞ 1

n ·∂

�

ð80Þ

×
i

i=∂þ i m
2
ψ

2

=n
n·∂ −m

ie

�
=A −

m2
ψ

2

=n
n · ∂

ðn · AÞ 1

n · ∂

��
;

ð81Þ

which written in momentum space result in

Sð2;aÞeff ¼ i
2

Z
d4q
ð2πÞ4Π

ð2;aÞ
μν AμðqÞAνð−qÞ; ð82Þ

where

Πμν
ð2;aÞ ¼ −e2Tr

Z
d4p
ð2πÞ4

iðp̃þmÞ
p2 − μ2

�
γμ þm2

ψ

2

=n
n ·p

nμ
1

n · u

�

×
iðũþmÞ
u2 − μ2

�
γν þm2

ψ

2

=n
n · u

nν
1

n ·p

�
: ð83Þ

Following the procedure outlined earlier, we find

Πð2;aÞ
μν ¼ −ie2

12π2ð2 − ωÞ
�
qμqν − q2

�
ημν þ 3m2

ψ
nμnν

ðn · qÞ2
��

þ ie2

4π2

	
1

3
ðqμqν − q2ημνÞ½γE − ln 4π þ 6I1�

−
m2

ψq2

n · q
½nμqν þ nνqμ − ðn · qÞημν�I2

−
m2

ψq2nμnν
ðn:qÞ2 ½γE − ln 4π þ 2q2I3 − I4�



; ð84Þ

where we have defined the integrals:

I1 ≡
Z

1

0

dxxð1 − xÞ ln ðμ2 − q2xð1 − xÞÞ; ð85Þ

I2 ≡
Z

1

0

dx
Z

1

0

dt
x

μ2 − q2xð1 − xþ txÞ ; ð86Þ

I3 ≡
Z

1

0

dx
Z

1

0

dt
x2ðt − 2Þð1 − xþ txÞ
μ2 − q2xð1 − xþ txÞ ; ð87Þ
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I4≡
Z

1

0

dx
Z

1

0

dtð1−6xþ4txÞ lnðμ2−q2xð1−xþ txÞÞ:

ð88Þ

Expression (84), by itself, does not have a transverse
structure as required by Uð1Þ gauge invariance of the
photon field. To bring the photon self-energy into its
desired form, we must include the full diagram contribu-

tionsΠðTotalÞ
μν ¼ Πð1;cÞ

μν þ Πð2;aÞ
μν . Let us separate this sum into

two parts. The one with the simplest structure is the
divergent contribution, namely,

ΠðTotalÞ
μν jdiv ¼ Πð1;cÞ

μν jdiv þ Πð2;aÞ
μν jdiv ð89Þ

¼ −ie2

12π2ð2 − ωÞ ðqμqν − q2ημνÞ; ð90Þ

which has the same form present in the usual QED. The
second part is UV finite and exhibits a more intricate
structure. To simplify the integrals I i, we expand the
corresponding contributions as a power series in the
external momenta before integrating over the parameters
x and t. The resulting expression can be written in the
following form:

ΠðTotalÞ
μν jfinite ¼ Πð1;cÞ

μν jfinite þ Πð2;aÞ
μν jfinite

¼ ie2

12π2

	�
γE þ ln

�
μ2

4π

�
−
1

5

q2

μ2

−
3

140

q4

μ4
−

1

315

q6

μ6
− � � �

�
ðqμqν − q2ημνÞ

−m2
ψ

�
3

2

q2

μ2
þ 5

8

q4

μ4
þ 19

60

q6

μ6
þ � � �

�

×

�
nμqν þ nνqμ

n · q
−
q2nμnν
ðn · qÞ2 − ημν

�

; ð91Þ

where � � � indicates terms of higher order in the power of
q2=μ2. In the end, the full one-loop vacuum polarization of
the photon in the VSR-QED is manifestly transverse, as
required by the Ward identity qμΠμνðqÞ ¼ 0, but only the
UV finite part receives corrections due to the VSR-nonlocal
terms. Note that a similar result was obtained recently in
Ref. [25] for the low-energy limit, q2 ≪ μ2, in the context
of Maxwell-Chern-Simons electrodynamics within the
VSR framework.
The results obtained so far allow us to write the VSR

effective Lagrangian for the gauge field Aμ as follows:

Leff ½A� ¼
1

ZA

�
−
1

4
FμνFμν

�
þ 1

2
m2

Anμ

�
1

n · ∂
Fμν

�
nα
�

1

n · ∂
Fαν

�
−

e2

12π2

	
−
1

4
Fμν

�
1

5

□

μ2
−

3

140

□
2

μ4
þ 1

315

□
3

μ6
− � � �

�
Fμν

−
m2

ψ

2
nμ

�
1

n · ∂
Fμν

��
3

2

□

μ2
−
5

8

□
2

μ4
þ 19

60

□
3

μ6
þ � � �

�
nα
�

1

n · ∂
Fαν

�

; ð92Þ

where

1

ZA
¼ 1þ e2

12π2
Cdiv; ð93Þ

with

Cdiv ¼
1

2 − ω
− γE − ln

μ2

4π
: ð94Þ

In order to yield a divergence-free effective Lagrangian,
we perform a suitable change of scale, by defining the
renormalized quantities:

Aμ
R ¼ Z

−1
2

A Aμ; ð95Þ

eR ¼ Z
1
2

Ae; ð96Þ

mAR ¼ Z
1
2

AmA; ð97Þ

Using the above scale transformations, we get

Leff ½A� ¼ −
1

4
FRμνF

μν
R þ 1

2
m2

ARnμ

�
1

n · ∂
Fμν
R

�
nα
�

1

n · ∂
FRαν

�
−

e2R
12π2

	
−
1

4
FRμν

�
1

5

□

μ2
−

3

140

□
2

μ4
þ 1

315

□
3

μ6
− � � �

�
Fμν
R

−
m2

ψ

2
nμ

�
1

n · ∂
Fμν
R

��
3

2

□

μ2
−
5

8

□
2

μ4
þ 19

60

□
3

μ6
þ � � �

�
nα
�

1

n · ∂
FRαν

�

: ð98Þ
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This effective Lagrangian retains the exact form of its
classical counterpart, incorporating finite terms encompass-
ing higher-derivative and VSR-nonlocal corrections. In
particular, no additional counterterms were required to
cancel the divergences, and the tensorial structure of these
finite terms preserves both VSR and gauge symmetry.
Now we calculate the Kalb-Ramond self-energy from

diagram 2(d) in Fig. 3. Once again, expression (66)
furnishes the analytical form of the corresponding effective
action:

Sð2;dÞeff ¼ i
2
Tr

�
i

i=∂þ i m
2
ψ

2

=n
n·∂ −m

i
g

12m
σμνλH

≁ μνλ ð99Þ

×
i

i=∂þ i m
2
ψ

2

=n
n·∂ −m

i
g

12m
σαβδH

≁ αβδ
�
: ð100Þ

Thus, we can write it in the momentum space as

Sð2;dÞeff ¼ i
2

Z
d4q
ð2πÞ4Π

ð2;dÞ
μνλ;αβδH

≁ μνλðqÞH≁ αβδð−qÞ; ð101Þ

where

Πð2;dÞ
μνλ;αβδ ¼

�
ig
12m

�
2

Tr
Z

d4p
ð2πÞ4

iðp̃þmÞ
p2−μ2

σμνα
iðũþmÞ
u2−μ2

σαβδ:

ð102Þ

After making the Dirac traces and the momentum integra-
tion, we obtain

Πμνλ;αβδ
ð2;dÞ ¼ ig2ϵμνλσϵαβδρ

9m222þ2ωπω
Γð2 − ωÞ

	
2qσqρ

Z
1

0

dx
xð1 − xÞ

ðμ2 − q2xð1 − xÞÞ2−ω

−
m2

ψq2nσnρ
ðn · qÞ2

Z
1

0

dx
Z

1

0

dt
m2

ψxð2 − ωÞ þ μ2 − q2xð1 − xþ txÞ
ðμ2 − q2xð1 − xþ txÞÞ3−ω

þm2
ψðnσqρ þ nρqσÞ

n · q

Z
1

0

dx
Z

1

0

dt
μ2 þ q2xð1 − xþ txÞð1 − ωÞ
ðμ2 − q2xð1 − xþ txÞÞ3−ω

− ησρ

Z
1

0

dx
Z

1

0

dt

�
m2

ψq2xð2 − ωÞ
ðμ2 − q2xð1 − xþ txÞÞ3−ω −

2ðμ2 −m2
ψ − q2xð1 − xÞÞ

ðμ2 − q2xð1 − xÞÞ2−ω
�


: ð103Þ

As in the previous case, we can split the above result into divergent and finite parts as follows:

Πμνλ;αβδ
ð2;dÞ j

div
¼ ig2ϵμνλσϵαβδρ

576π2m2ð2 − ωÞ
�
1

3
ðqσqρ þ ð6μ2 − q2ÞησρÞ þm2

ψ

�
nσqρ þ nρqσ

n · q
−
q2nσnρ
ðn · qÞ2 − 2ησρ

��
; ð104Þ

and

Πμνλ;αβδ
ð2;dÞ j

finite
¼ ig2ϵμνλσϵαβδρ

576π2m2

	
1

3
q2ησρ−

1

3

�
γEþ ln

μ2

4π

�
ðqσqρþð6μ2−q2ÞησρÞ−m2

ψ

��
γEþ ln

μ2

4π

��
nσqρþnρqσ

n ·q

−
q2nσnρ
ðn ·qÞ2 −2ησρ

�
þq2

μ2

�
q2nρnσ
3ðn ·qÞ2−

2ðnσqρþnρqσÞ
3n ·q

þ5ησρ
6

�
þq4

μ4

�
3q2nρnσ
40ðn ·qÞ2−

9ðnσqρþnρqσÞ
40n ·q

þ29ησρ
120

�
þ���

�

−m4
ψ

�
1

2

q2

μ2
þ 5

24

q4

μ4
þ���

�
nρnσ
ðn ·qÞ2þ

q2

μ2

�
qρqσ
15

−
q2ησρ
30

�
þq4

μ4

�
qρqσ
140

−
q2ησρ
420

�
þ���



: ð105Þ

It should be noted that both the divergent and finite parts
receive radiative corrections due to VSR-nonlocal terms, in
contrast to the pure Maxwell case.
To determine the tensor structure of the quantum

effective action and the necessary counterterms to renorm-
alize it, we can utilize the identity

H⋆
μH⋆

ν ¼ 1

2
HμαβHν

αβ −
1

6
ημνHαβλHαβλ; ð106Þ

where H⋆
μ is the dual tensor corresponding to Hμνλ and is

given by

H⋆
μ ≡ 1

3!
ϵμαβλHαβλ: ð107Þ
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So we can write the effective Lagrangian density associated
with the Kalb-Ramond field as

Leff ½B� ¼
1

ZB

�
−

1

12
H
≁
μναH

≁ μνα
�
þ g2

16π2m2
Cdiv

×

	
1

12
H
≁
μ

αβð∂μ∂νÞH≁ ναβ þ
3

12
m2

ψ

×

�
H
≁
μ

αβ
�
nμnν□
ðn · ∂Þ2

�
H
≁
ναβ −H

≁
μ

αβ
�
nμ∂ν þ nν∂μ

n · ∂

�

×H
≁
ναβ

�

þ finite terms; ð108Þ

where

1

ZB
¼ 1 −

g2μ2

8π2m2
Cdiv; ð109Þ

with Cdiv defined in Eq. (94).
We note that from the second and third terms in

Eq. (108), it is necessary to introduce new counterterms
into the classical action in order to renormalize it within the
minimal subtraction scheme. This is an expected result
since it is well-known that nonminimal couplings can lead
to higher-derivative divergences in the quantum effective
action. Hence, at this point, we may interpret our model as
an effective theory that is valid in the low-momentum limit,
where q2 ≪ m2. In this regime, we can make the approx-
imations μ2 ≈m2 with m2

ψ ≪ 1. Thus, we have

1

ZB
≈ 1 −

g2

8π2
Cdiv; ð110Þ

and by defining a renormalized field Bμν
R ¼ Z

−1
2

B Bμν and a

renormalized coupling constant gR ¼ Z
1
2

Bg, we get

Leff ½B� ≈ −
1

12
H
≁
RμναH

≁ μνα

R þ finite terms; ð111Þ

which has same form as the classical free Kalb-Ramond
Lagrangian in the VSR context. Moreover, in the limit of
mB → 0, we recover the Lorentz covariant result obtained
in Ref. [50] at leading order inH2, with the same values for
the renormalized quantities.

V. CONCLUSIONS

In this work, we propose an extension of Maxwell and
Kalb-Ramond electrodynamics in the presence of fer-
mionic matter fields in a SIM(2)-gauge invariant manner,
incorporating both minimal and nonminimal couplings. In
the free case, the VSR-Kalb-Ramond field is equivalent to
a single massive real scalar field with one polarization.
Moreover, we have calculated the VSR-effective action
for the Maxwell and Kalb-Ramond field strengths using
the Alfaro-Mandelstam-Leibbrandt prescription [29],
which accounts for UV/IR mixing divergences in the
one-loop Feynman integrals. The induced quantum cor-
rections include higher-derivative terms that preserve the
VSR-nonlocal tensor structure. Specifically, the finite
terms in the Maxwell sector exhibit the VSR-nonlocal
tensor structure, while the divergent part retains Lorentz
covariance. On the other hand, in the Kalb-Ramond
sector, both finite and divergent terms incorporate
VSR-nonlocal corrections. In the latter case, the counter-
terms necessary to cancel the divergences are absent in the
bare Lagrangian, and additional counterterms must be
introduced into the classical Lagrangian to absorb these
divergences and render the theory well-defined. However,
a renormalized effective action can be achieved in the
weak-energy limit, similar to what has been obtained in
the literature for the Lorentz-covariant case of constant F
and H field strengths [50].
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