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We propose a supersymmetric extension of the minimal Uð1ÞX model, along with a new Z2 parity. One
of the salient features of this model relates to how both the Uð1ÞX gauge symmetry and R parity are broken
radiatively at the TeV scale by the vacuum expectation value of a Z2-even right-handed sneutrino. By
assigning one right-handed neutrino Z2-odd parity, it can remain a viable dark matter (DM) candidate,
despite R parity being broken. Furthermore, the DM relic abundance receives an enhanced annihilation
cross section due to the Uð1ÞX gauge boson (Z0) resonance and is in agreement with the current
observations. We have also found a complementarity that exists between the observed DM relic abundance
and search results for the Z0 boson resonance at the Large Hadron Collider, which further constrains the
parameter space of ourUð1ÞX model. Finally, we consider a SUð5Þ ×Uð1Þx grand unified theory extension
and investigate the complementarities mentioned previously.
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I. INTRODUCTION

The minimal supersymmetric (SUSY) extension of the
Standard Model (MSSM) is one of the prime candidates for
physics beyond the Standard Model, which naturally solves
several problems in the SM, in particular, the gauge
hierarchy problem. In addition, a candidate for the cold
dark matter, which is missing in the SM, is also naturally
incorporated in the MSSM. The search for SUSY is one of
the major directives of the Large Hadron Collider (LHC),
which is operating at unprecedented luminosities, and is
collecting data very rapidly.
Remarkably, the MSSM can solve the gauge hierarchy

problem and the dark matter problem. It is able to achieve
the feat by mere virtue of it being supersymmetric.
However, it is clear that the SUSY extension is not enough
to solve the aforementioned problems in addition to
explaining neutrino phenomena. Both the observed solar
and atmospheric neutrino oscillations, as well as long and
short baseline experiments have established nonzero neu-
trino masses and mixings between different neutrino
flavors [1]. Unlike the quark sector, the scale of neutrino
masses is very small and the different flavors are largely
mixed. To make the MSSM a more viable description of

nature, we have no choice but to extend it, so that it
incorporates neutrino masses and flavor mixings. The well-
known seesaw extension [2] has garnered much support
since it not only accounts for the neutrino mass but also
explains the smallness of the mass in a more “natural”
way. Depending on the seesaw scale (typically the scale of
right-handed neutrinos) being, for example, from 1 TeV to
1014 GeV, the scale of the neutrino Dirac mass varies from
1 MeV (the electron mass scale) to 100 GeV (the top quark
mass scale).
As the B − L (baryon number minus lepton number) is

an anomaly-free global symmetry in the SM, it can be
easily gauged. The minimal B − L model is the simplest
gauged B − L extension of the SM [3], where three
generations of right-handed neutrinos and a Higgs field
with two units of the B − L charge are introduced. The
presence of the three right-handed neutrinos is essential
for canceling the gauge and gravitational anomalies. The
general extension of the B − L to the Uð1ÞX model has
been carried out [4], where the particle contents are the
same except for the Uð1ÞX charge assignment [5]. The
Uð1ÞX charge for a field is defined as a linear combination
of B − L and the hypercharge, Qx ¼ YxH þQB−L, where
xH is a real parameter. In the limit of xH → 0, the MSSM
Uð1ÞB−L model is attained. As in the B − L case, it has
been shown that the Uð1ÞX model is free of anomalies [6].
While the energy scale of the Uð1ÞX gauge symmetry

breaking is subject to some phenomenological constraints,
the energy breaking scale is weakly constrained. Interes-
tingly, through considerations of dark matter and collider
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physics, we have found that only a small window in the
parameter region of a few TeV is allowed for the Uð1ÞX
model to remain viable. If this is the case, we can expect
that all new particles in the model, the Uð1ÞX gauge boson
Z0, the Uð1ÞX Higgs boson, and the right-handed neutrinos
appear at the TeV scale, which can be discovered at the
LHC [7].
In this paper, we investigate supersymmetric extension

of the minimal Uð1ÞX model. It has been previously
shown [8] that an analogous mechanism to radiative
electroweak symmetry breaking in the MSSM exists for
the case where the Uð1ÞB−L symmetry is radiatively broken
by the interplay between large Majorana Yukawa couplings
of right-handed neutrinos and the soft SUSY breaking
masses. Employing the same mechanism naturally places
the Uð1ÞX symmetry breaking scale at the TeV scale.
Despite this remarkable feature of the SUSY minimal

Uð1ÞB−L and our Uð1ÞX model, a more thorough analysis
[9] indicated that most of the Uð1ÞB−L symmetry breaking
parameter space is occupied by nonzero vacuum expect-
ation values (VEVs) from right-handed sneutrinos.
Therefore, the most likely scenario in the SUSY minimal
Uð1ÞX model with the radiative Uð1ÞX symmetry breaking
is that R parity is violated in the vacuum. This means that
the lightest superpartner (LSP) neutralino, which is the
conventional dark matter candidate in SUSY models,
becomes unstable and no longer remains a viable dark
matter candidate. As discussed in [10], even though R
parity is broken, an unstable gravitino if it is the LSP has a
lifetime longer than the age of the Universe and can still be
the dark matter candidate.
A cogent framework for dark matter has been discussed

previously in the context of the (non-SUSY) minimal
B − L model [11] and a B − L MSSM [12], where a new
Z2 parity was introduced and one right-handed neutrino was
assigned odd-Z2 parity while the other fields were assigned
even Z2. Calculation of the relic abundance of the Z2-odd
right-handed neutrino showed that it could account for the
observed relic abundance and therefore the dark matter in
our Universe. We mention this to emphasize that we are not
introducing any new particles in the current model.
In this paper, we apply the same idea to the SUSY

generalization of the minimal Uð1ÞX model with the
radiative Uð1ÞX symmetry breaking and investigate the
resulting phenomenology. What we discovered is that
the Uð1ÞX gauge symmetry and R parity are both broken
at the TeV scale by the nonzero VEV of a Z2-even right-
handed sneutrino, for suitable regions of parameter space.
Even in the presence of R-parity violation, the Z2 parity is
still exact and the stability of the Z2-odd right-handed
neutrino is guaranteed. Therefore, the Z2-odd right-handed
neutrino appears to be a natural, stable dark matter can-
didate. We calculated the relic abundance of the Z2-odd
right-handed neutrino and found that the resultant relic
abundance was in agreement with observations.

This paper is organized as follows. In the next section,
we define the SUSY minimal Uð1ÞX model with Z2 parity
and introduce superpotential and soft SUSY breaking terms
relevant for our discussion. In Sec. III, we perform a
numerical analysis of the renormalization group equation
(RGE) evolution of the soft SUSY breaking masses of the
right-handed sneutrinos and Uð1ÞX Higgs fields and show
that the Uð1ÞX gauge symmetry is radiatively broken at the
TeV scale. It will be shown that one Z2-even right-handed
sneutrino develops a VEV, and hence R parity is also
radiatively broken. In Sec. IV, we calculate the relic
abundance of the right-handed neutrino and identify the
parameter region consistent with the observed dark matter
relic abundance. We also discuss phenomenological con-
straints of the model in Sec. V. In Sec. VI, we extend the
model to the SUð5Þ ×Uð1ÞX gauge group and discuss SM
gauge unification. The last section is devoted to conclu-
sions and discussions.

II. SUPERSYMMETRIC MINIMAL Uð1ÞX
MODEL WITH Z2 PARITY

The minimal Uð1ÞX extended SM is based on the
gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY ×Uð1ÞX with
three right-handed neutrinos and one Higgs scalar field
with Uð1ÞX charge 2, which is a singlet under the SM
gauge group. The Uð1ÞX charges are defined as a linear
combination of B − L and the hypercharge, Qx ¼ YxH þ
QB−L, where xH is a real parameter. As far as the
motivation to introduce three generations of right-handed
neutrinos (Nc

i ) is concerned, the introduction of the three
generations of right-handed neutrinos is in no way ad hoc;
on the contrary, once we gauge Uð1ÞX, their introduction
is forced upon us by the requirement of the gauge and
gravitational anomaly cancellations. The SM singlet scalar
works to break the Uð1ÞX gauge symmetry by its VEV
and, at the same time, generates Majorana masses for
right-handed neutrinos, which then participate in the
seesaw mechanism.
It is easy to supersymmetrize this model and the particle

contents are listed in Table I.1 The gauge invariant super-
potential relevant for our discussion is given by

WBL¼
X3
i¼2

X3
j¼1

yijDN
c
i LjHuþ

X3
k¼1

ykΦNc
kN

c
k−μΦΦ̄Φ; ð1Þ

where the first term is the neutrino Dirac Yukawa coupling,
the second term is the Majorana Yukawa coupling for the
right-handed neutrinos, and a SUSY mass term for the SM
singlet Higgs fields is given in the third term. Without loss
of generality, we have worked in the basis where the
Majorana Yukawa coupling matrix is real and diagonal.

1It is possible to construct a phenomenologically viable SUSY
B − L model without Φ and Φ̄ [13].
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Note that Dirac Yukawa couplings between Nc
1 and Lj are

forbidden by the Z2 parity, so that the lightest component
field in Nc

1 is stable, as long as the Z2 parity is exact.
As we will discuss in the next section, the Uð1ÞX gauge

symmetry is radiatively broken at the TeV scale, and the
right-handed neutrinos obtain TeV-scale Majorana masses.
The seesaw mechanism2 sets the mass scale of light

neutrinos at mν ¼ mT
DM

−1
R mD ¼ v2u

2
yTDM

−1
R yD, where vu

is the VEV of the up-type Higgs doublet in the MSSM,
MR is the 2 × 2 mass matrix of the right-handed neutrinos,
and yD is the 2 × 3 Dirac Yukawa coupling matrix from
Eq. (1). It is natural to assume that the mass of the heaviest
light neutrino is mν ∼

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

23

p
∼ 0.05 eV with Δm2

23 ≃
2.43 × 10−3 eV2 being the atmospheric neutrino oscillation
data [1]. Thus, we estimate yD ∼ 10−6 and point out that
such a small neutrino Dirac Yukawa coupling is negligible
in the analysis of RGEs.
Next, we introduce soft SUSY breaking terms for the

fields in the Uð1ÞX sector,

Lsoft ¼ −
�
1

2
MXλXλX þ H:c:

�

−
�X3

k¼1

m2
Ñc

k
jÑc

kj2 þm2
ΦjΦj2 þm2

Φ
jΦ̄j2

�

þ
�
BΦΦ̄Φþ

X3
k¼1

AkΦÑc
k Ñ

c
k þH:c:

�
: ð2Þ

Here we have omitted terms relevant to the neutrino Dirac
Yukawa couplings since they are very small, i.e., Oð10−6Þ

or smaller. For simplicity, in this analysis we consider the
same setup as the constrained MSSM and assume the
universal soft SUSY breaking parameters m2

Ñc
k
¼ m2

Φ ¼
m2

Φ
¼ m2

0 and Ak ¼ A0 at the grand unification scale3

MU ¼ 2 × 1016 GeV.
Before closing this section, we comment on the

uniqueness of the Z2-parity assignment from the phe-
nomenological point of view. One may find the Z2-parity
assignment ad hoc, but we cannot assign an odd parity
for any MSSM particles because the parity forbids the
Dirac Yukawa couplings, which is necessary to reproduce
the observed fermion masses and quark flavor mixings.
As we will see in the next section, the scalars Φ and Φ̄
develop nonzero VEVs to break the Uð1ÞX gauge
symmetry, and these fields should be Z2 parity even
in order to generate the Majorana masses for the right-
handed neutrinos. Hence, we can assign Z2-odd parity
only for right-handed neutrinos. Considering the fact that
we need at least two right-handed neutrinos to reproduce
the observed neutrino oscillation data, two right-handed
neutrinos should be parity even and be involved in the
seesaw mechanism. As a result, we have assigned Z2

parity odd for only one right-handed neutrino, as in
Table I. This Z2 parity can be considered as an enhanced
global symmetry, which becomes manifest after taking
the Dirac Yukawa coupling of Nc

1 to zero.

III. RADIATIVE Uð1ÞX SYMMETRY BREAKING
AND R PARITY

In the non-SUSY minimal Uð1ÞX model, the Uð1ÞX
symmetry breaking scale is determined by parameters in

TABLE I. Particle contents: In addition to the MSSM particles, three right-handed neutrino superfields (Nc
1;2;3)

and two Higgs superfields (Φ̄ andΦ) are introduced. The Z2 parity forNc
1 is assigned to be odd, and i ¼ 1, 2, 3 is the

generation index.

Chiral superfield SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞX R parity Z2

Qi 3 2 þ1=6 ð1=6ÞxH þ 1=3 − þ
Uc

i 3� 1 −2=3 ð−2=3ÞxH − 1=3 − þ
Dc

i 3� 1 þ1=3 ð1=3ÞxH − 1=3 − þ
Li 1 2 −1=2 ð−1=2ÞxH − 1 − þ
Nc

1 1 1 0 þ1 − −
Nc

2;3 1 1 0 þ1 − þ
Ec
i 1 1 þ1 xH þ 1 − þ

Hu 1 2 þ1=2 ð1=2ÞxH þ þ
Hd 1 2 −1=2 ð−1=2ÞxH þ þ
Φ 1 1 0 −2 þ þ
Φ̄ 1 1 0 þ2 þ þ

2As we will see in the next section, R parity is also radiatively
broken. In this case, the right-handed neutrinos mix with the B −
L gaugino and fermionic components of Φ̄ andΦ, and the seesaw
formula is quite involved.

3However, we do not necessarily assume grand unification
behind our model. In fact, it is very nontrivial to unify the Z2-odd
right-handed neutrino with Z2-even fields.
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the Higgs potential which can, in general, be at any scale
as long as the experimental constraints are satisfied. The
large electron positron (LEP) experiment has set the
lower bound on the B − L symmetry breaking scale as
mZ0=gBL ≥ 6–7 TeV [14]. The most recent LHC results
for Z0 boson search with 139 fb−1 [15] excluded the
B − L Z0 gauge boson mass mZ0 ≲ 5.1 TeV. We see that
the LHC bound is more severe than the LEP bound. The
SUSY extension of the model, however, offers a very
interesting possibility for constraining the B − L [and
thereby Uð1ÞX] symmetry breaking scale, as pointed out
in [8].
It is well known that the electroweak symmetry

breaking in the MSSM is triggered by radiative correc-
tions to the up-type Higgs doublet mass squared via the
large top Yukawa coupling [16]. Directly analogous to
this situation, the Uð1ÞX symmetry breaking occurs
through radiative corrections with a large Majorana
Yukawa coupling.
We consider the following RGEs for soft SUSY breaking

terms in the Uð1ÞX sector [9,17]:

16π2μ
dMX

dμ
¼ 2ð24þ 16xH þ 11x2HÞg2XMX;

16π2μ
dm2

Ñc
i

dμ
¼ 8y2i m

2
Φ þ 16y2i m

2
Ñc

i
þ 8A2

i − 8g2XM
2
X;

16π2μ
dm2

Φ
dμ

¼ 4

�X3
i¼1

y2i

�
m2

Φ þ 8
X3
i¼1

y2i m
2
Ñc

i

þ 4
X3
i¼1

A2
i − 32g2XM

2
X;

16π2μ
dm2

Φ̄
dμ

¼ −32g2XM2
X;

16π2μ
dAi

dμ
¼

�
30y2i þ 2

X
j≠i

y2j − 12g2X

�
Ai

þ 4yi

�X
j≠i

yjAj − 6g2XMX

�
; ð3Þ

where RGEs for the gauge and Yukawa couplings are
given by

16π2μ
dgX
dμ

¼ ð24þ 16xH þ 11x2HÞg3X;

16π2μ
dyi
dμ

¼ yi

�
10y2i þ 2

X
j≠i

y2j − 12g2X

�
: ð4Þ

To illustrate the radiative Uð1ÞX symmetry breaking, we
solve these equations from MU ¼ 2 × 1016 GeV to low
energy, choosing xH ¼ −0.8 and the following boundary
conditions:

gX ¼ 0.532; y1 ¼ y2 ¼ 0.4; y3 ¼ 2.5;

MX ¼ 1 TeV; mÑc
i
¼mΦ ¼mΦ̄ ¼ 5 TeV; Ai ¼ 0: ð5Þ

The RGE running of soft SUSY breaking masses as a
function of the renormalization scale is shown in Fig. 1.
After the RGE running, m2

Ñc
3

becomes negative while the

other squared masses remain positive. The negative mass
squared of the right-handed sneutrino triggers not only
the Uð1ÞX symmetry breaking but also R-parity violation.
Detailed analysis with random values of parameters has
shown [9] that, in most of the parameter region realizing
the radiative B − L symmetry breaking, R parity is also
broken.
We now analyze the scalar potential with the soft SUSY

breaking parameters obtained from solving RGEs. Since
the Uð1ÞX symmetry breaking scale is set to be 26 TeV in
the following, we evaluate the RGE solutions at 26 TeV as
follows:

gX ¼ 0.192; y1 ¼ y2 ¼ 0.264; y3 ¼ 0.533;

MX ¼ 766 GeV; m2
Ñc

1

¼ m2
Ñc

2

¼ 1.83 × 107 GeV2;

m2
Ñc

3

¼ −2.18 × 106 GeV2;

m2
Φ ¼ 4.91 × 106 GeV2; m2

Φ̄ ¼ 2.52 × 107 GeV2;

A1 ¼ A2 ¼ 30.4 GeV; A3 ¼ 36.5 GeV: ð6Þ

The scalar potential for Ñc
3, Φ, and Φ̄ consists of super-

symmetric terms and soft SUSY breaking terms,

V ¼ VSUSY þ VSoft; ð7Þ

where

FIG. 1. The RGE running of the soft SUSY breaking masses,
m2

Φ̄ (top curve), m2
Ñc

1

¼ m2
Ñc

2

(second from the top), m2
Φ (third

from the top), and m2
Ñc

3

(bottom curve) shown in Eq. (3).
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VSUSY ¼ j2y3Ñc
3Φj2 þ jμΦΦj2 þ jy3ðÑc

3Þ2 − μΦΦ̄j2

þ g2X
2
ðjÑc

3j2 − 2jΦj2 þ 2jΦ̄j2Þ2;
VSoft ¼ m2

Ñc
3

jÑc
3j2 þm2

ΦjΦj2 þm2
Φ̄jΦ̄j2

− ðA3ΦÑc
3Ñ

c
3 þ BΦΦ̄Φþ H:c:Þ: ð8Þ

With appropriate values of μΦ and BΦ, stationary con-
ditions for the scalar potential can be found numerically.
For example, we find (in units of TeV)

hÑc
3i ¼

12.5ffiffiffi
2

p ; hΦi ¼ 6.56ffiffiffi
2

p ; hΦ̄i ¼ 9.29ffiffiffi
2

p ð9Þ

for μΦ ¼ 6.96 TeV, BΦ ¼ 66.0 TeV2, and the parameters
given in Eq. (6). In this case, we have the Z0 boson mass

mZ0 ¼ gXvX ¼ 5 TeV; ð10Þ

where

vX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hÑc

3i2 þ 8hΦi2 þ 8hΦ̄i2
q

¼ 26 TeV ð11Þ

and the experimental lower bound vBL ≥ 6–7 TeV [14] is
satisfied.
In order to prove that the stationary point is actually the

potential minimum, we calculate the mass spectrum of
the scalars, Ñc

3, Φ, and Φ̄. By straightforward numerical
calculations, we find the eigenvalues of the mass matrix of
the scalars ℜ½Ñc

3�, ℜ½Φ�, and ℜ½Φ̄� as (13.7,4.34,4.75) in
TeVand the mass eigenvalues for the pseudoscalars ℑ½Ñc

3�,
ℑ½Φ�, and ℑ½Φ̄� as (0,8.82,12.8) in TeV. As expected, there
is one massless eigenstate corresponding to the would-be
Nambu-Goldstone mode. The other right-handed sneutrino
mass eigenvalues are given by

m2
ÑRi

¼ m2
Ñc

i
þ 4y2i hΦi2 − 2yiy3hÑc

3i2 þ 2AihΦi
þ 2yiμΦhΦ̄i þDX;

m2
ÑIi

¼ m2
Ñc

i
þ 4y2i hΦi2 þ 2yiy3hÑc

3i2 − 2AihΦi
− 2yiμΦhΦ̄i þDX; ð12Þ

where mÑRi
and mÑIi

(i ¼ 1; 2) are the mass eigenvalues
for scalars and pseudoscalars, respectively, and DX ¼
g2XðhÑc

3i2 − 2hΦi2 þ 2hΦ̄i2Þ. We find mÑR1
¼ mÑR2

¼
5.58 and mÑI1

¼ mÑI2
¼ 5.16 TeV. Since the fermion

components in Nc
2;3, Φ, and Φ̄ and the Uð1ÞX gauginos

are all mixed, it is quite involved to find the Majorana
fermion mass eigenvalues. Accordingly, the seesaw mecha-
nism is realized in a very complicated way. Although we do
not discuss the fermion spectrum in detail here, our system

with two right-handed neutrinos coupling to the SM
neutrinos provides many free parameters; enough to repro-
duce the observed neutrino oscillation data. On the other
hand, the mass of the Z2-odd right-handed neutrino Nc

1 is
simply given by4

MNc
1
¼ 2y1hΦi ¼ 2.45 TeV ≃mZ0=2: ð13Þ

IV. RIGHT-HANDED NEUTRINO DARK MATTER

As we showed in the previous section, the Uð1ÞX gauge
symmetry is radiatively broken at the TeV scale. Associated
with this radiative breaking, the right-handed sneutrino Ñc

3

develops VEV and, as a result, R parity is also broken.
Therefore, the neutralino is no longer the dark matter
candidate. However, note that in our model the Z2 parity is
still exact, by which the lightest Z2-odd particle is stable
and can play the role of dark matter even in the presence of
R-parity violation. As is evident in the mass spectrum we
found in the previous section, the right-handed neutrino Nc

1

is the lightest Z2-odd particle. In this section, we evaluate
the relic abundance of this right-handed neutrino dark
matter candidate and identify the parameter region(s)
consistent with the observations.
In [11], the relic abundance of the right-handed neutrino

dark matter is analyzed in detail, where annihilation
processes through the SM Higgs boson in the s channel
play the crucial role to reproduce the observed dark matter
relic abundance. In the non-SUSY minimal B − L model,
the right-handed neutrino can have a sizable coupling with
the SM Higgs boson due to the mixing between the SM
Higgs doublet and the B − L Higgs in the scalar potential.
However, in supersymmetric extension of the Uð1ÞX
model, there is no mixing between the MSSM Higgs
doublets and the Uð1ÞX Higgs superfields in the starting
superpotential. Although such a mixing emerges through
the neutrino Dirac Yukawa coupling with the VEV of the
right-handed sneutrino Ñc

3, it is very small because of the
small neutrino Dirac Yukawa coupling yD ¼ Oð10−6Þ.
Among several annihilation channels of a pair of the Z2-
odd right-handed neutrinos, we find that the s-channel Z0
boson exchange process gives the dominant contribution.
Now we evaluate the relic abundance of the right-handed

neutrino by integrating the Boltzmann equation [18],

dYNc
1

dx
¼ −

xγZ0

sHðMÞ
��

YNc
1

Yeq
Nc

1

�
2

− 1

�
; ð14Þ

4It is generally possible to have a sneutrino dark matter (DM)
candidate, however, due to the LHC bound on the Z0 gauge
coupling, the corresponding VEV must be large. It would be
difficult to tune the sneutrino mass to be half the Z0 mass in order
to achieve the correct relic abundance constraint discussed in
Sec. IV.
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where YNc
1
is the yield (the ratio of the number density to

the entropy density s) of the Z2-odd right-handed neutrino,
Yeq
Nc

1
is the yield in thermal equilibrium, the temperature of

the Universe is normalized by the mass of the right-handed
neutrino x ¼ M=T, and HðMÞ is the Hubble parameter at
T ¼ M. The space-time densities of the scatterings medi-
ated by the s-channel Z0 boson exchange in thermal
equilibrium are given by

γZ0 ¼ T
64π4

Z
∞

4M2

dsσ̂ðsÞ ffiffiffi
s

p
K1

� ffiffiffi
s

p
T

�
; ð15Þ

where s is the squared center-of-mass energy, K1 is the
modified Bessel function of the first kind, and the total
reduced cross section for the process Nc

1N
c
1 → Z0 → ff̄ (f

denotes the SM fermions) is

σ̂Z0 ðsÞ ¼ 1

24π
g4X

ffiffiffi
s

p ðs − 4M2Þ32
ðs −m2

Z0 Þ2 þm2
Z0Γ2

Z0
FðxHÞ; ð16Þ

with the decay width of the Z0 boson,

ΓZ0 ¼ g2X
24π

�
FðxHÞþ2

�
1−

4M2

m2
Z0

�3
2

θðm2
Z0=M2−4Þ

�
; ð17Þ

where

FðxHÞ ¼ ð13þ 16xH þ 10x2HÞ: ð18Þ

For simplicity, we have assumed that y1 ¼ y2 as in the
previous section and that the other particles (except for
the SM particles) are all heavy with mass > mZ0=2. This
assumption is consistent with the parameter choice in our
analysis below.
Now we solve the Boltzmann equation numerically. To

solve the equation for the relevant domain, we inherit
parameter values from those presented in the previous
section which were already motivated as interesting values,

gX ¼ 0.192; mZ0 ¼ 5 TeV; ð19Þ

while MNc
1
¼ M is taken to be a free parameter. With the

asymptotic value of the yield YNc
1
ð∞Þ, the dark matter relic

density is written as

Ωh2 ¼ Ms0YNc
1
ð∞Þ

ρc=h2
; ð20Þ

where s0 ¼ 2890 cm−3 is the entropy density of the present
Universe, and ρc=h2 ¼ 1.05 × 10−5 GeV=cm3 is the criti-
cal density. The result should be compared with the
observations at 2σ level [19],

ΩDMh2 ¼ 0.1198� 0.0015: ð21Þ

Figure 2 shows the relic abundance of the right-handed
neutrino dark matter as a function of its mass. The dashed
lines correspond to the upper and the lower bounds on the
dark matter relic abundance in Eq. (21). We find two
solutions,

M ≃ 2359; 2492 GeV: ð22Þ
It turns out from Fig. 2 that, in order to reproduce the
observed relic abundance, the enhancement of the annihi-
lation cross section is necessary so that the mass of the dark
matter should be close to the Z0 boson resonance point.5

The dark matter mass M ¼ 2492 GeV coincides with the
value presented in the previous section. For a different
parameter choice, the Z2-odd right-handed sneutrino [the
lighter of its scalar (S) or pseudoscalar (P) components] can
be the lightest Z2-odd particle and a candidate for the dark
matter, instead of the right-handed neutrino. In this case,
the main dark matter annihilation process is the coannihi-
lation process, SP → Z0. Note that Eq. (12) indicates a
sizable mass splitting between S and P. This means that the
coannihilation process is not efficient even with the Z0
resonance effect, since the number density of the particle
that the dark matter particle coannihilates with is sup-
pressed much more than the dark matter number density.
The RHN DM can scatter off with nuclei via Z0 boson

exchange. Since the RHN DM is a Majorana particle, only
its interaction with nuclei is spin dependent in the non-
relativistic limit. We have estimated this spin-dependent
cross section to be σSD ∼ 10−9 pb, which is far below

FIG. 2. The relic abundance of the dark matter right-handed
neutrino as a function of its mass for the Uð1ÞX (xH ¼ −0.8)
scenario. The dashed lines represent the upper and the lower bounds
on the dark matter relic abundance, 0.1183 ≤ ΩDMh2 ≤ 0.1213.

5As the Z0 boson partial decay width to a DM pair is negligibly
small, the associated branching ratio is tiny [Oð0.1%Þ]. At this
stage, it is very challenging to understand the right-handed
neutrino (RHN) DM existence directly through the Z’ boson
measurement, but a future lepton collider such as the muon
collider might be able to test our scenario with its TeV-scale
collider energy and high precision measurements.

NOBUCHIKA OKADA and DESMOND VILLALBA PHYS. REV. D 108, 095021 (2023)

095021-6



the current upper bounds, σSD ∼ 10−5 pb for mDM ¼
Oð1 TeVÞ [20].

V. LHC CONSTRAINTS
AND COMPLEMENTARITY

WITH COSMOLOGICAL BOUNDS

The differential cross section for the process, pp → Z0þ
X → lþl− þ X;lþl− ¼ eþe−=μþμ−, with respect to the
dilepton invariant mass Mll is given by

dσ
dMll

¼
X
q;q̄

Z
1

M2
ll

E2
LHC

dx
2Mll

xE2
LHC

fqðx;Q2Þfq̄
�

M2
ll

xE2
LHC

; Q2

�

× σ̂ðqq̄ → Z0 → lþl−Þ; ð23Þ

where Q is the factorization scale (we fix Q ¼ mZ0 , for
simplicity), ELHC ¼ 13 TeV is the center-of-mass energy
of the LHC run 2, fq (fq̄) is the parton distribution function
for quark (antiquark), and the cross section for the colliding
partons is described as

σ̂ðqq̄ → Z0 → lþl−Þ ¼ π

1296
α2X

M2
ll

ðM2
ll −m2

Z0 Þ2 þm2
Z0Γ2

Z0

× FqlðxHÞ; ð24Þ

where the function FqlðxHÞ is given by

FulðxHÞ ¼ ð8þ 20xH þ 17x2HÞð8þ 12xH þ 5x2HÞ;
FdlðxHÞ ¼ ð8 − 4xH þ 5x2HÞð8þ 12xH þ 5x2HÞ; ð25Þ

with q being the up-type (u) and down-type (d) quarks,
respectively. In our analysis, we employ CTEQ6L [21] for
the parton distribution functions and numerically evaluate
the cross section of the dilepton production through the
s-channel Z0 boson exchange. Since the right-handed

neutrino DM mass must be close to half of the Z0 boson
mass, its contribution to the Z0 boson decay width is
negligibly small, and thus the resultant cross section is
controlled by only three free parameters, αX, mZ0 , and xH.
In interpreting the latest ATLAS results [22] for the upper
bound on the cross section of the process pp → Z0 þ X →
lþl− þ X, we follow the strategy in Refs. [23–25]: we first
calculate the cross section of the process by Eq. (23) and
then we scale our cross section result to find a k factor
(k ¼ 1.31) by which our cross section coincides with the
SM prediction of the cross section presented in the ATLAS
paper [22]. This k factor is employed for all of our analysis.
In this way, we find an upper bound on αX as a function of
mZ0 (xH) for a fixed value of xH (mZ0 ).
The LEP experiments have searched for effective four

Fermi interactions mediated by a Z0 boson [26] and no
significant deviation from the SM predictions have been
observed. The LEP results are interpreted into a lower
bound on mZ0=

ffiffiffiffiffiffi
αX

p
for a fixed xH value, which means an

upper bound on αX as a function ofmZ0 for a fixed xH value
similar to the constraints obtained from the LHC run 2
results. For the minimal Uð1ÞX model, the LEP bound on
mZ0=

ffiffiffiffiffiffi
αX

p
has been obtained in Refs. [24,27]. Since the

Uð1ÞX charge assignment for the SM fermions in our model
is the same as in the minimal model, the LEP bound
presented in Refs. [24,27] can be applied also to our model.
Thus, we simply refer to the bound. We will see that the
LHC constraints are much more severe than the LEP one
for mZ0 ≲ 5 TeV.
To constrain the model parameter space further, we may

also consider a theoretical upper bound on αX, namely, the
perturbativity bound on the gauge coupling. Recall that the
β function coefficient of the RGE for the Uð1ÞX gauge
coupling from Eq. (4) and the particle contents from Table I
is given by

bX ¼ 24þ 16xH þ 11x2H; ð26Þ

FIG. 3. Combining the perturbativity constraints from solving the RGEs given by the dashed horizontal line (in black) and the DM
relic abundance constraints, previously discussed and shown by the lower solid curve (in black), yields a narrow allowed parameter
region (shaded green) for the Uð1ÞX model in the B − L [SUð5Þ] scenario, xH ¼ 0 (xH ¼ −0.8) on the left (right). The diagonal solid
line (in red) shows the updated LHC results. The LEP results are much less confining and well outside the confining region.
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which is large compared to the SM Uð1ÞY RGE coeffi-
cient. To keep the running Uð1ÞX gauge coupling αXðμÞ
in the perturbative regime up to the Planck scale
(MPl ¼ 1.22 × 1019 GeV), an upper bound on αX at low
energies can be derived. Solving the RG equation for the
Uð1ÞX gauge coupling at the one-loop level, we find the
relation between the gauge coupling at mZ0 (denoted as αX
in our DM and LHC analysis) and the one at the Planck
scale αXðMPlÞ,

αX ¼ αXðMPlÞ
1þ αXðMPlÞ bX2π ln

h
MPl
mZ0

i : ð27Þ

For simplicity, we have set a common mass for all new
particles to be mZ0 . Effects of mass splittings are negligibly
small unless the new particle mass spectrum is hierarchical.
Imposing the perturbativity bound of αXðMPlÞ ≤ 4π, we find
an upper bound on αX for the fixed values of mZ0 and xH.
Let us now combine all constraints. We have obtained

the lower bound on αX from the observed DM relic
abundance. On the other hand, the upper bound on αX
has been obtained from the LHC results from the search for
a narrow resonance, the LEP results, and the coupling
perturbativity up to the Planck scale. Note that these
constraints are complementary to narrow down the model
parameter space.6 In Fig. 3, we show the combined results
for xH ¼ 0 (xH ¼ −0.8) in the left (right) panel. The
(black) solid lines are the cosmological lower bounds on
αX as a function of mZ0 . The red solid line is the upper
bound on αX from the LHC run 2 results. The perturbativity
bounds on αX are depicted by the black dashed lines. The
regions satisfying all the constraints are green shaded.
Another interesting set of constraints on αX to consider is

found from combining a scan over xH values for the DM
relic abundance bound, the perturbativity bound, and the
latest LHC bounds. We show our combined results in Fig. 4
for mZ0 ¼ 5 TeV, where the red dashed and black solid
curves represent the LHC and DM relic abundance bounds,
respectively, and the black dashed curve illustrates the
perturbativity bound on αX. The green-shaded region is
allowed after combining all the bounds. The LHC bound
shows the peak at xH ∼ −1. This is because the functions
Ful and Fdl in Eq. (25) have the minimum at xH ∼ −1.
Similarly, the perturbative bound shows the peak at xH ∼
−0.7 since the β function coefficient of Eq. (26) has the
minimum at xH ∼ −0.7. As expected, the LHC bound
becomes weaker as we increase mZ0 , leading to a wider
green-shaded region. One can see from Fig. 4 that well
within the allowed region (shaded green) sits the value of
xH ¼ −0.8, which corresponds to the SUð5Þ scenario
discussed below. The fact that the xH ¼ −0.8 value lies
in this region suggests that the SUð5Þ scenario remains a

viable description of nature, and as the LHC results are
continually updated it will be interesting to see if the data
continue to support the elegant SUð5Þ case.

VI. SUð5Þ × Uð1ÞX GRAND UNIFIED THEORY
(GUT) SCENARIO

Our setup can be readily extended to the SUð5Þ ×Uð1ÞX
gauge group. As has been previously shown in the non-
SUSYSUð5Þ ×Uð1ÞX setup inRef. [28], this corresponds to
the scenario where xH ¼ −0.8. Only with this choice for xH
can the quarks and leptons be unified into the same super-
multiplet, where the MSSM chiral superfields are arranged
into the three generations of 10 and 5� representations under
SUð5Þ. The Hu and Hd superfields are in the 5 and 5�

representations, respectively. The Nc
k, Φ, and Φ̄ superfields

are all singlets under SUð5Þ. An additional superfield that is
neutral under Uð1ÞX and in the 24 representation of SUð5Þ
is required in order to break SUð5Þ ×Uð1ÞX down to
SUð3ÞC × SUð2ÞL ×Uð1ÞY ×Uð1ÞX.We consider the same
SUð5Þ breaking paradigm for the 24 considered in [29], and
we find that the unification scale for the SMgauge couplings
occurs at MGUT ≃ 2 × 1016 GeV. After SUð5Þ has been
broken down to the SM gauge groups at MGUT, a kinetic
mixing between the Uð1ÞY and Uð1ÞX gauge fields occurs
due to the evolution of the RGEs.
Following the procedure outlined in Ref. [28], the basis

is chosen such that the gauge boson kinetic terms are all
diagonalized. The covariant derivative of a field is given by

Dμ ¼ ∂μ − ðY QX Þ
�
g1 gmix

0 gX

��
Bμ

Z0
μ

�
; ð28Þ

FIG. 4. A scan over xH values for mZ0 ¼ 5 TeV combines the
DM relic abundance constraints shown by the solid lower curve
(in black), the perturbativity constraints shown by the second
dashed curve from the top (in black), and the LHC data with
139 fb−1 luminosity by the dashed upper curve (in red) [15]. This
narrow region between the constraints (green shaded) show the
allowed values for αX. The value of xH ¼ −0.8 corresponds to the
SUð5Þ scenario and is seen to be well within this allowed
parameter region.

6We see that the LEP bound is always much weaker than the
LHC bounds (formZ0 ≤ 5 TeV) and the perturbativity bound. We
have considered the LEP bound for completeness.
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where the Y andQX are theUð1ÞY andUð1ÞX field charges,
respectively, Bμ and Z0

μ are the SM Uð1ÞY and Uð1ÞX
gauge fields, and g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
gY and gX are the Uð1ÞY and

Uð1ÞX gauge couplings. As a result of the original gauge
kinetic mixing, a new parameter dubbed the “mixed gauge
coupling” is introduced. In this chosen basis, the RGE
evolution of the SM g1 gauge coupling remains unaffected,
whereas the gX and gmix evolution evolve according to
their coupled RGEs. At one-loop level, the RGEs for
μ > OðTeVÞ are given by

16π2μ
dgX
dμ

¼ gXðð24þ 16xH þ 11x2HÞg2X
þ 2ð8þ 11xHÞgXgmix þ 11g2mixÞ;

16π2μ
dgmix

dμ
¼ gmixðð24þ 16xH þ 11x2HÞg2X
þ 2ð8þ 11xHÞgXgmix þ 11g2mixÞ

þ 6

5
g21ðð8þ 11xHÞgX þ 11gmixÞ: ð29Þ

These RGEs encompass the effects of all particles in the
theory present at the TeV scale. The RGEs in Eq. (29) have
been solved numerically with gmix ¼ 0 and various values
of gX at μ ¼ MGUT. Regardless of the boundary value of gX
at MGUT, we have found that the ratio is always gmix=gX ≃
0.042 at the TeV scale. The fact that this ratio is so small
means that we can safely make the approximation to
neglect the mixed gauge coupling in our analysis and set
gmix ¼ 0. This approximation is consistent with all of our
previous results attained for the xH ¼ −0.8 scenario.

VII. CONCLUSIONS AND DISCUSSIONS

The minimal gauged Uð1ÞX model based on the gauge
group SUð3Þc × SUð2ÞL ×Uð1ÞY ×Uð1ÞX is an elegant
and simple extension of the Standard Model, in which the
right-handed neutrinos of three generations are necessarily
introduced for the gauge and gravitational anomaly can-
cellations. The mass of right-handed neutrinos arises
associated with the Uð1ÞX gauge symmetry breaking,
and the seesaw mechanism is naturally implemented.
The supersymmetric extension of the minimal Uð1ÞX
model offers not only a solution to the gauge hierarchy
problem but also a natural mechanism of breaking the
Uð1ÞX symmetry at the TeV scale through the radiative
Uð1ÞX symmetry breaking. Although the radiative sym-
metry breaking at the TeV scale is a remarkable feature of
the model, R parity is also broken by nonzero VEV of a

right-handed sneutrino. Therefore, the neutralino, which is
the conventional dark matter candidate in SUSY models,
becomes unstable and cannot play the role of the dark
matter any more.
We have proposed the use of a Z2 parity and assigned an

odd parity to one right-handed neutrino. This parity ensures
the stability of the right-handed neutrino and hence the
right-handed neutrino can remain a viable dark matter
candidate even in the presence of R-parity violation. In this
way, no new particles need to be introduced as a candidate
for dark matter. We have shown that, for a parameter set, the
mass squared of a right-handed sneutrino is driven to be
negative by the RGE running. Analyzing the scalar
potential with RGE solutions of soft SUSY breaking
parameters, we have identified the vacuum where the
Uð1ÞX symmetry as well as R parity is broken at the
TeV scale.
We have numerically integrated the Boltzmann equation

for the Z2-odd right-handed neutrino and found that its relic
abundance is consistent with the observations. In repro-
ducing the observed dark matter relic density, an enhance-
ment of the annihilation cross section via the Z0 boson s-
channel resonance is necessary, so that the dark matter mass
should be close to half of the Z0 boson mass.
Associated with the Uð1ÞX symmetry breaking, all new

particles have TeV-scale masses, which is being tested at
the LHC in operation. Discovery of the Z0 boson resonance
at the LHC [30] is the first step to confirm our model. Once
the Z0 boson mass is measured, the dark matter mass is also
determined in our model. If kinematically allowed, the Z0
boson decays to the dark matter particles with the branch-
ing ratio ∼0.3% [see Eq. (17)]. Precise measurement of the
invisible decay width of the Z0 boson can reveal the
existence of the dark matter particle.
We have also shown that the SUð5Þ ×Uð1ÞX GUT

scenario remains a possible description of nature by
combining the constraints on the αX coupling from the
perturbativity bound LHC results on the process pp →
Z0 þ X → lþl− þ X;lþl− ¼ eþe−=μþμ− and DM relic
abundance bound seen in Fig. 3. As seen in this figure, the
lower mass bound for the Z0 boson is around 5 TeV for this
scenario. By scanning over xH values, one can see in Fig. 4
that the xH ¼ −0.8 value corresponding to SUð5Þ remains
in the narrow region of viability.
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