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Composite Higgs extensions of the Standard Model provide an explanation for the large hierarchies
between the Yukawa couplings. We study their realization in the context of fundamental partial
compositeness where the Standard Model fermions mix linearly with bound states of the new sector,
consisting of a fermion and a scalar. The properties of this composite are unraveled with the functional
renormalization group approach using dynamically emergent composites. Specifically, we extract the
scaling of correlation functions along a walking regime and provide indicative estimates for the minimal
incarnation of the theory.
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I. INTRODUCTION

Understanding the hierarchical structure of fermion
masses and mixings is one of the major open questions
in fundamental physics. The concept of partial composite-
ness (PC) for fermions, first proposed in [1] and put
forward in [2–5] in extradimensional duals of composite
Higgs (CH) [6–8] models, offers a promising means to
address this question. In this approach, the fermion mass
terms of the Standard Model (SM) are generated from
linear mixings of SM-like fermions of each flavor with
composite fermionic operatorsOB, containing fundamental
fields of a new sector that are bound together by a novel
confining interaction. Below the condensation scale Λc,
these terms lead to the light fermion mass eigenstates being
a superposition of elementary SM-like fermions and
composite resonances excited by the operators OB in the
infrared (which explains the denotation “partial compos-
iteness”). The latter resonances provide the connection to
the composite Higgs and thus to electroweak symmetry
breaking (EWSB).
Small differences in the scaling dimensions of the

composite operators translate to exponentially large
differences in the strengths of the linear mixings at low
energies due to the renormalization-group evolution from a
large UV flavor scale ΛUV, where the couplings of the SM

fermions with the strongly coupled sector are generated,
down to the condensation scale Λc. Assuming a walking
regime with an almost conformal behavior between
those scales, the linear-mixing coefficient will scale as
∼ðΛc=ΛUVÞd−5=2, with the dimension d ¼ ½OB� of the
composite operator, see, e.g., [9,10] for similar realizations.
After integrating out the heavy states, these hierarchically
different couplings to the bound states of the new strong
sector lead to hierarchical mass eigenvalues of quarks and
leptons.
While the initial focus in the literature was on effective

low-energy descriptions of PC (see [9,11,12] for reviews),
more recently UV-complete realizations have been
explored [13–23]. These consider the fundamental degrees
of freedom and the dynamics that lead to the bound states
that mix linearly with the elementary SM-like fermions.
Here, an obvious approach is to assume the composite
fermions being composites of three fundamental fermionic
degrees of freedom [13–15,17]. Such constructions how-
ever face severe challenges since the scaling dimension of
the composite operators needs to deviate very significantly
from the canonical value of ½OB�0;c ¼ 3½F �c ¼ 9=2. The
latter would lead to fermion masses that are too small. The
linear mixings are suppressed by ½OB�0;c þ 3=2 − 4 ¼ 2

powers of the flavor scale ΛUV where they emerge as higher
dimensional operators involving fundamental fermions
(flavor bounds indicate ΛUV ≫ Λc). This issue is particu-
larly severe in the case of the large top-quark mass.
In fact, lattice results suggest that large deviations from

the canonical scaling dimension (i.e., large anomalous
dimensions) are not possible for the straightforward reali-
zation with three-fermion bound states [24–27]. Thus, it is
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not obvious whether this completion improves the situation
compared to the technicolor (TC) way of generating
fermion masses via bilinear couplings to the EWSB
condensate—where in general the masses are also sup-
pressed too much (unless the scaling dimension of the
Higgs-like bound state becomes as small as to reintroduce
UV instabilities), see, e.g., [9]. In consequence, finding
alternative mechanisms of realizing PC becomes a priority.
One of these alternatives is based on the assumption that

the fermionic composites are not formed by three elemen-
tary fermions but by an elementary fermion F and a
scalar S [18–20], see also [28–31]. These scenarios have
been dubbed “fundamental partial compositeness” (FPC),
and rely on renormalizable Yukawa-like couplings of the
SM-like fermions to S and F . The latter two form a bound
state B ∼ SF that mixes with the SM fermions in the
infrared (IR). Here, B refers to the lightest resonance in a
tower of states excited by OB [21].
The inclusion of scalars and hence the resulting canoni-

cal dimension of ½OB�0;c ¼ ½F �c þ ½S�c ¼ 5=2 carry the
crucial advantage that the linear mixings are not necessarily
suppressed. Thus, the hope is to obtain the heavy top quark
mass, while the light fermion masses are still set via natural
input parameters. The presence of elementary scalars may
reintroduce a hierarchy problem, but the approach could
be seen as an intermediate step to a full UV theory. In fact,
an interesting construction circumventing naturalness
problems could be two-step models of condensation where
the scalars S would emerge from fundamental fermions
in the UV.
In the original works on FPC, the question of a

dynamical generation of the (hierarchically) light fermion
masses was left open [18–20,32]. In principle, one can just
generate such hierarchical fundamental Yukawa couplings
around the condensation scale or from hierarchies in the
fundamental scalar masses [21]; however, this would not
address the flavor puzzle. Given the promising starting
point discussed above, it is worthwhile to investigate
whether a natural dynamical emergence of all fermion
masses could be realized using FPC. To this end, in this
work we explore the possible range of anomalous dimen-
sions of the OB operators, containing a scalar and a
fermion, to see if an envisaged evolution over a sizeable
almost-conformal regime could generate the sought flavor
hierarchies.
Studying the dynamics of strongly coupled theories

and the emergent formation of composites is a nontrivial
task requiring nonperturbative methods. Usually, this is
addressed with Monte Carlo simulations on the lattice. In
the present work we use the functional renormalization
group (fRG) [33–35] to study the anomalous scaling of the
linear mixing coupling between SM fermions and compo-
sites. Functional methods based on the effective action
allow for a systematic treatment of nonperturbative effects
while being versatile enough to scan over the parameter and

model sets. This flexibility suits the needs for investigations
of strong and nonperturbative new physics. Specifically,
the fRG allows for the systematic inclusion of emergent
composites, see [36–39]. By now this technique is widely
used for very different phenomena with emergent compo-
sites, ranging from condensed matter systems to quantum
chromodynamics (QCD), for recent reviews and develop-
ments see [39–41]. In contrast to effective field theories, the
flows with emergent composites allow us to continuously
interpolate between the physics described by different
degrees of freedom. A prominent example is QCD, where
flows with emergent composites take care of the dynamical
formation of hadrons (dynamical hadronization) at low
momentum scales or temperatures.
This work is organized as follows. In Sec. II, we

introduce the details of PC and in particular, the model
of FPC sought to generate the SM fermion masses. In
Sec. II A, we discuss the relevant terms of the effective
action of the fundamental theory, and in Sec. II B we
present in detail the emergent composite approach for
the composites of interest. In Sec. II C, we discuss the
dimensionality of the composite and in Sec. II D derive the
momentum scaling of the linear coupling of interest from
the effective action. In Sec. II E, we discuss the role of the
walking regime and estimate the properties of the bound
states from the fundamental effective action. Subsequently,
in Sec. III we provide a brief introduction to the fRG. The
latter is used to compute the anomalous scaling of the
relevant two-point functions, which allows us to derive an
estimate for a particular minimal realization of FPC.
Finally, in Sec. IV we conclude. Many of the technical
derivations and discussions are deferred to the Appendix.

II. FPC AND THE EFFECTIVE ACTION

Fundamental CH models are usually constructed as
extensions of the SM by introducing a new confining
gauge group GTC and TC-charged chiral fermions F α;a. As
the TC-gauge coupling becomes strong towards the IR, it
will give rise to the formation of composites. Given the TC
fermions transform nontrivially under a global “flavor”
symmetry G, the fermionic condensate

hF α;aϵTCF α;bi ¼ Λcf2Σab
θ ; ð1Þ

spontaneously breaks the global symmetry G → H, realiz-
ing the Higgs as a pseudo-Nambu-Goldstone boson
(pNGB) of the coset G=H. In (1), α corresponds to the
TC-gauge group index while a and b are flavor indices
of the group G. The latter contains the SM group GSM to
ensure a viable phenomenology. Moreover, Λc ∼ 4πf
denotes the TC condensation scale with f being the
pNGB decay constant, ϵTC is the antisymmetric tensor
of GTC. Finally, Σθ is a matrix that parametrizes the
alignment of the unbroken symmetry in the physical
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vacuum, in particular with respect to the gauged subgroup
of G (usually GSM). A misalignment then leads to EWSB.
After the global symmetry G is explicitly broken, the

pNGBs obtain a vacuum expectation value that shifts the
unbroken symmetry H by a finite amount such that it does
no longer include GSM. The pNGBs Πâ of G=H (including
the Higgs boson) are parametrized as fluctuations around
the vacuum via the Goldstone matrix

ΣðxÞ ¼ exp

�
i
2

ffiffiffi
2

p

f
ΠâðxÞTâ

θ

�
Σθ; ð2Þ

where Tâ
θ are the broken generators of G=H. A common

minimal choice in CH model building is GTC ¼ SpðNTCÞ
with four Weyl fermions F α;a; a ¼ 1;…; 4, per techni-
color [19,42], resulting in the global symmetry-breaking
pattern SUð4ÞF → Spð4ÞF after fermion condensation.
This leads to dim½SUð4ÞF=Spð4ÞF � ¼ 5 pNGBs, with three
of them, Π1;2;3 being the electroweak Goldstone modes, Π4

the Higgs boson, and Π5 an additional electroweak singlet.
In this case, the vacuum matrix reads

Σθ ¼ cos θ

�
iσ2 0

0 −iσ2

�
þ sin θ

�
0 12

−12 0

�
; ð3Þ

with the electroweak vacuum expectation value v ¼ sin θf,
such that sin θ ¼ 0 ðsin θ ¼ 1Þ corresponds to unbroken
(fully broken) electroweak symmetry. We note that for
the more minimal coset of G=H ¼ SOð5Þ=SOð4Þ, also
preserving custodial symmetry, no fundamental four
dimensional UV completion with elementary fermions
exists [21].
The idea of PC provides a mechanism to reproduce the

large hierarchies in the SM Yukawa couplings by intro-
ducing a linear mixing term between SM fermions and
bound states of the composite sector. Focusing on the third-
generation up-type quarks, the PC Lagrangian reads

Lmix ¼
λ̄q

Λ½OB
q�−5=2

UV

q̄LO
q
B þ λ̄t

Λ½OB
t�−5=2

UV

t̄ROt
B þ H:c: ð4Þ

Here, qL and tR are the embeddings of the SM-like fields
into irreducible representations of the global symmetry G of
the composite sector. The couplings λ̄q;t are dimensionless
Oð1Þ parameters at the ΛUV scale and ½OB

q;t� are the
dimensions of the composite-sector operators. As the TC-
gauge coupling becomes strong, the composite operators
can excite fermionic resonances

h0jOq;t
B jBq;ti ≠ 0; ð5Þ

which lead to the light fermion mass eigenstates becoming
superpositions of the elementary fermions q, t and the
resonances.

At an IR scale Λc, the linear mixing couplings will read
as dictated by their renormalization group (RG) scaling

λ̄qðΛcÞ ≃ λ̄qðΛUVÞðΛc=ΛUVÞ½OB
q� − 5=2: ð6Þ

The large hierarchies between the SM Yukawa couplings
are translated to the parameters λ̄q and are naturally
explained by their RG evolution over many orders of
magnitude. While the linear mixing couplings are expected
to beOð1Þ at ΛUV, at the IR scale Λc they will split up such
as to correctly reproduce the SM fermion masses. In PC,
both scales are largely separated to avoid an unachievable
large scaling of the coupling. This is accomplished when
the gauge coupling enters a quasi-fixed-point regime and
freezes the TC-gluon dynamics. This is commonly referred
to as a walking regime.
In summary, these two key ingredients together, an

adequate scaling of the linear mixing coupling, and the
presence of the walking regime determine whether the SM
Yukawa couplings can be reproduced. In the following, we
will detail this mechanism for the case of FPC and derive in
detail the scaling of the linear mixing operators from the
effective action.

A. Effective action

To realize FPC, fundamental scalars Sα;i charged under
the TC-gauge group are introduced in the fundamental CH
action [18–21,43]. In the present renormalization-group
approach based on the full effective action Γ, the strongly
coupled TC part of Γ is parametrized as

ΓCH ¼
Z
x

�
ZA

4
GμνGμν þ Lgfþghosts

þ ZS

2

�ðDμSiÞ†ðDμSiÞ þ Si†m2
SS

i
	

þ ZF F̄ aðσμDμ þmF ÞF a

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZψZFZS

p
yi;aTCψ

i;aϵijΦjϵTCF a þ H:c:þ � � �


;

ð7Þ

where the dots � � � in the last line stand for higher-order
interaction terms in the fields. The TC-gauge field strength
tensor reads

Gμν ¼ ∂μAν − ∂νAμ − igTC½Aμ; Aν�; ð8Þ

with the covariant derivative

Dμ ¼ ∂μ − igTCAμ: ð9Þ

In (7) and from here on, we keep the color indices and
generators of the TC-gauge group implicit.
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In the following, we concentrate on the most minimal
incarnation of SUð4ÞF=Spð4ÞF FPC. The TC fermions are
accordingly assumed to form a weak (chiral) doublet F 1;2

with vanishing hypercharge as well as two SUð2ÞL singlets
F 3;4 with hypercharges Y ¼∓ 1=2 (per technicolor).
Beyond that, the addition of 12 complex scalar degrees
of freedom, residing in three generations of color triplets
Sq with hypercharge Y ¼ −1=6, and corresponding color
singlets Sl with Y ¼ 1=2, allows for appropriate composite
operators for all families of quarks and leptons. Both, TC-
fermion and -scalar fields, transform under the fundamental
representation of the TC-gauge group SUð2ÞTC ∼ Spð2ÞTC.
This economic realization of the FPC idea is accordingly
called “minimal fundamental partial compositeness”
(MFPC) [18,19,42]. Further possible emerging coset struc-
tures in CH models have been widely investigated, both
from an IR [11] and a UV [18,44,45] perspective. In the
absence of fundamental fermion and scalar masses,
mF ¼ mS ¼ 0, the TC-fermions (scalars) exhibit a global
SUð4ÞF (Spð24ÞS) flavor symmetry, corresponding to
transformations along the index a (i) in (7). We note that,
in the following, we will neglect the mass term for the
TC-fermion fields and assume a flavor-trivial scalar mass
term for simplicity.
The last line of (7) comprises the Yukawa interaction

between the SM fermions (shown here as a spurion field
ψ i;a of the full global symmetry) and the fundamental TC
fields. Here, yi;aTC are the Yukawa couplings associated to
each component of the spurion field, ϵij is the antisym-
metric tensor in Spð24ÞS and the TC-scalar fields have been
arranged as Φ ¼ ðS;−ϵTCS�ÞT, see [18,21,42,43,46].
We emphasize that the complete effective action Γ and

also its TC part (7) should not be confused with their
classical counterparts. The effective action Γ takes into
account the full quantum dynamics of the theory. We would
like to elucidate this important aspect with the example of
physical running couplings of given scattering processes.
The respective scattering vertices or rather their one-
particle irreducible (1PI) part are given by the nth derivative
of the effective action with respect to the fields involved in
the scattering,

ΓðnÞ
ϕi1

���ϕin
½ϕ�ðp1;…; pnÞ ¼

δ

δϕi1ðp1Þ
� � � δ

δϕinðpnÞ
Γ½ϕ�; ð10Þ

where ϕ is a superfield that comprises all fields in the
theory. In the present case it reads

ϕ ¼ ðAμ; c; c̄;S;F ; F̄ ;…Þ; ð11Þ

with the ghost and antighost c; c̄. In the following we shall
also use the abbreviations ΓðnÞ and Γϕi1

���ϕin
for the sake of

readability.

The vertices (10) are not renormalization group invariant
and carry the inverse RG scaling of the fields. Their
RG-invariant core is defined by

Γ̄ðnÞ
ϕi1

���ϕin
½ϕ�ðp1;…; pnÞ ¼

ΓðnÞ
ϕi1

���ϕin
½ϕ�ðp1;…; pnÞQ

n
j¼1 Z

1=2
ϕij

ðpjÞ
; ð12Þ

which is the nonperturbative version of the standard
definition of running couplings in perturbation theory.
The amputation of the external wave function reflects the
amputation of external propagators in the LSZ formalism
and (12) is simply the 1PI core of the respective scattering
amplitude, for a recent discussion in QCD see [47].
Equation (12) carries the full momentum dependence of
the given process, and hence directly provides the infor-
mation about unitarity and momentum scaling. Finally,
we note that Γ̄ðnÞ is simply obtained by derivatives with
respect to

Z1=2
ϕ ðpÞϕðpÞ; ð13Þ

which is the RG invariant field.
The effective action (7) also includes higher-order

interaction terms of fundamental TC fields. These are
encoded in the � � � and are generated from loop diagrams.
A relevant example is the two-scalar-two-fermion scatter-
ing, which is generated from the gauge-mediated box
diagrams depicted in Fig. 1. This leads to terms in the
full effective action Γ, or rather its technicolor part ΓCH,

ΓS2F 2 ¼
Z
x
ZSZFgSFS†SF̄F þ � � � ; ð14Þ

where � � � indicate all further two-scalar–two-fermion terms
in the effective action. Further, in (14) we have dropped the
momentum dependence of the wave functions ZS and ZF
as well as that of the coupling gSF . From (14) we are lead
to the momentum-dependent and RG-invariant scattering
coupling as defined in (12),

PS†SF̄F Γ̄
ð4Þ
SS†FF̄

ðp1; p2; p3; p4Þ ≃ gSF ðp1; p2; p3Þ; ð15Þ

where PS†SF̄F indicates the projection on the two-scalar-
two-fermion term in (14). In (15) we have omitted the
momentum conservation ð2πÞ4δðp1 þ � � � þ p4Þ as well as
the Dirac, flavor, and technicolor tensor structures as
indicated by ≃. While the discussion of a complete tensor
basis for these terms goes beyond the scope of the present
work, we provide a specific example with a vector tensor
structure in the fermionic part: S†SF̄∂F . The respective

RG-invariant scattering coupling gðvÞSF is given by

PS†SF̄∂F Γ̄
ð4Þ
SS†FF̄

ðp1;p2;p3;p4Þ≃gðvÞSF ðp1;p2;p3Þ=p3; ð16Þ
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where PS†SF̄∂F indicates the projection on the term
S†SF̄∂F in (14).
As can be inferred from Fig. 1, the scattering coupling

strength is proportional to a combination of g4TC and y4TC,
multiplied with inverse powers of the momenta pi, flowing
through the diagram. For illustration, we restrict ourselves
to a symmetric point with p2

i ¼ p2. Then, the momentum
scaling reads

gSF ðpÞ ∝
rgg4TCðpÞ þ ryy4TCðpÞffiffiffiffiffi

p2
p ; ð17Þ

where rg=y encode the combinatorial factors of each box
diagram. Accordingly, (14) is suppressed in the ultraviolet
due to the asymptotic freedom of the TC-gauge group and
the Yukawa interaction. In turn, in the infrared, the TC-
gauge coupling grows strong, and (14), as well as further
gauge-mediated interactions between the scalar and fer-
mionic fields, become more relevant.
We also note that the right-hand side of Fig. 1 contains

further diagrams, for example, a fish diagram with two two-
scalar-two-fermion vertices and a mixed diagram with one
TC-gluon exchange and a two-scalar-two-fermion vertex.
Moreover, further one-loop diagrams such as box diagrams
mixing TC-gauge fields and SM-fermions are also present.
For small gTC ≪ 1 these diagrams are suppressed as they
are proportional to g8TC (fish diagram) and g6TC (mixed
diagram).

B. Emergent composites

Analogously to the formation of mesons in QCD from
resonant four-quark scatterings, resonant two-scalar-two-
fermion scatterings may give rise to the formation of the
fermionic composites B ∼ SF. These resonant channels are
then well described by the propagation of a new degree of
freedom, a composite operator consisting of both funda-
mental TC fields. The respective composite operator is
given by

Oa;i
B ∼ ϵijSα;jF α;aT ð18Þ

and may also include higher-order terms. Here, Oa;i
B carries

the chirality of the TC fermion and transforms as a singlet
under the confining gauge group. Moreover, all symmetries
of the TC fields (containing the SM gauge symmetries)
are encoded in the indices a and i. The undetermined
operator T projects on the spin indices of the TC fields. Its
consideration makes explicit the generality in the symmetry
structure of OB as well as a potential choice of elaborated
spin configurations for excited states.
The nonperturbative phenomenon of the formation of

composites will be treated by functional renormalization
group (fRG) techniques, introduced in Sec. III A. With the
adequate choice of external momentum, the effective four-
field interaction can be exactly rewritten as the exchange of
a composite of both fundamental external fields and a
residual contribution. This is known in the fRG approach
to QCD as dynamical hadronization and more generally it
is taking into account emergent compositeness [36–39].
Here we follow [37,39,48], where the composite fields are
simply introduced on the level of the path integral via the
respective current term,

exp

�Z
x
JBBðφfÞ



; ð19Þ

where B is related to (18). In (19), the field φf is the
fundamental super field that is integrated over in the path
integral. Accordingly, the introduction of the composite
fields in terms of a current does not signal a reduction
from the fundamental to an effective theory but rather the
convenient reparametrization of the fundamental theory in
terms of emergent composite degrees of freedom. A well-
known and well-studied example of such a reparametrization
is the two-particle irreducible effective action, which is
obtained by introducing a current for the two-point function.
Such a transformation allows us to rewrite a given

scattering vertex in terms of an exchange of an emergent
(resonant) composite field in a specific momentum channel
and the remnant scattering, see Fig. 2 for the composite B
discussed above. At a given momentum scale and for
bilinear composites this is reminiscent of a Hubbard-
Stratonovich transformation. However, the fRG approach

FIG. 1. Generation of the interaction between two TC fermions
(plain black arrow line) and two TC scalars (dashed) from the TC
gluons (curly) and SM fermions (plain blue arrow line) mediated
box diagrams. All vertices [ΓðnÞðp1;…; pnÞ, black and blue dots]
and propagators (1=Γð2Þðp1; p2Þ) are full (inverse) correlation
functions. The dots � � � represent additional loop diagrams
simultaneously containing TC-gluon and SM fermion propaga-
tors and/or four-field interactions. See text for details.

FIG. 2. Rewriting the full ðfermion-scalarÞ2 interaction in the s
channel as the exchange of the composite B plus a remnant
interaction accounting for the momentum dependence of the
resonant tensor structure as well as the scattering in the other
tensor structures. Double dashed lines with an arrow indicate the
spin-1=2 composite propagators, plain lines with an arrow
correspond to fundamental TC-fermion propagators and dashed
lines to fundamental TC-scalar propagators.
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with flowing dynamical composites [36–39,48] also incor-
porates general composites [37,39] not only bilinear ones.
Further, it allows us to (re)do this transformation at each
scale in a mathematically well-defined way without poten-
tial overcounting problems.
In the presence of the current term (19) in the path

integral, the respective effective action is obtained via a
Legendre transformation and contains additional terms that
carry the dynamics of the emergent composite field,

ΓB ¼
Z
x

�
ZBB̄ðσμ∂μ þmBÞB

þ hB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZBZSZF

p �
SðB̄F Þ þ S†ðF̄BÞ	þ � � ��; ð20Þ

where we have omitted flavor indices, chiral labels and the
explicit consideration of T and the antisymmetric tensor
ϵij. We emphasize that, as in (14), all wave functions and
the coupling hB are momentum dependent, and the latter is
simply the RG-invariant scattering coupling

Γ̄ð3Þ
SFB̄

ðp1; p2; p3Þ ≃ hBðp1; p2Þ; ð21Þ

where we omitted the momentum conservation
ð2πÞ4δðp1 þ p2 þ p3Þ as well as the Dirac, flavor and
TC tensor structure. Importantly, (20) encodes the dia-
grammatic relation in Fig. 2 in terms of the equation of
motion of the composite field B. For s-channel momenta
s ¼ ðp1 þ p2Þ2 this relates (20) to (14) with

ΓBjBEoM
¼ ΓS2F 2 ð22Þ

with the relation

h2BðsÞmBðsÞ
sþm2

BðsÞ
∝ gSF ðsÞ ð23Þ

and mBðsÞ ∝
ffiffiffi
s

p
. It follows with (17) that h2BðsÞmBðsÞ=

ðsþm2
BðsÞÞ ∝ g4TCðsÞ=

ffiffiffi
s

p
, and hence decays rapidly in

the UV. In turn, if the two-scalar-two-fermion s-channel
scattering becomes resonant in the IR, this is well described
in terms of the B exchange. Note, however, that the
introduction of the emergent dynamical composite B only
captures the respective momentum channel as well as
further parts of the full scattering with gSF ðp1; p2; p3Þ.
We have mentioned below (18) that the field B or

the operator OB may also include higher order terms.
Indeed, (20) only comprises the lowest order terms in the
composite field: a dispersion term for the composite state
and two interaction terms which link fundamental fields’
interactions to the propagation of a composite state. Higher
order terms are generated as well and are indicated with � � �.
They contribute to the equations of motion of B, leading
to higher order terms in the fundamental fields and in
particular S, F .

The full effective action in the presence of the compo-
sites is given by Γ½ϕ� and includes (7) and (20), where the
superfield ϕ now also contains the composite field B and
potentially further composites,

ϕ ¼ ðϕf;ϕcÞ: ð24Þ

The superfield ϕf is that of the fundamental fields, defined
in (11). The superfield of all composites is denoted by ϕc,
to wit,

ϕf ¼ ðAμ; c; c̄;S;F ; F̄ ;…Þ; ϕc ¼ ðB; B̄;…Þ: ð25Þ

The dots in (25) indicate that we may also introduce
additional composite fields for further resonant interaction
channels. This also entails the dynamics of such a system
are well captured by the present approach as long as all
channels are considered: the emergence of a dynamical
composite field is signaled by a divergent or resonant
interaction channel. This resonant channel can be treated
with the emergent compositeness approach discussed very
generically in [39].
We have already emphasized that the present approach

describes the full theory. Its conceptual and technical
advantage is the explicit appearance of the emergent
dynamical degrees of freedom, that otherwise have to be
described in terms of resonant interaction channels of
higher-order correlation functions. The latter is technically
more challenging and also has the disadvantage that higher-
order scatterings of the emergent fields are far more
difficult to describe in terms of the fundamental fields.
An illuminating example is low energy QCD, which is
dominated by (multi)pion exchange processes. While these
processes are complicated multiquark scatterings, they are
far simpler taken into account by multipion diagrams. This
structure is at the root of chiral perturbation theory.
Still, we can describe the theory in terms of the effective

action of the fundamental degrees of freedom. The relation
between the two effective actions Γ½ϕf� and Γ½ϕ� is
given by

Γ½ϕf� ¼ Γ
�
ϕf;ϕEOM

c ðϕfÞ
	
; ð26Þ

where ϕEOM
c is the solution to the equations of motion

(EOM) of the composites in the presence of a background
ϕf of the fundamental fields,

δΓ½ϕ�
δϕc


ϕc¼ϕEOM

c

¼ 0: ð27Þ

A solution of the EOM (27) for B is tantamount to JB ¼ 0,
and hence (26). Its lowest order version is given by (22).
Equation (26) highlights the fact that the introduction of

the composites does not entail the reduction of the full
theory to an effective one. To make this even more explicit,
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we close this discussion with the remark that the correlation
functions of ϕf are given by

ΓðnÞ
ϕf;i1

���ϕf;in
½ϕf�

¼ δΓ½ϕf;ϕEOM
c ðϕfÞ�

δϕf;i1 � � �ϕf;in

¼
Yn
j¼1

�
δ

δϕf;ij

þ δϕEOM
c;r ðϕfÞ
δϕf;ij

δ

δϕc;r

�
Γ½ϕf;ϕc�


ϕc¼ϕEOM

c

:

ð28Þ

Equation (28) entails, that a given correlation function of
the fundamental fields is split into the part described by the
exchange of the composites and the remaining part. For a
detailed discussion of these parametrizations of correlation
functions see [39,48].
We close this section with a short summary of the

relevant properties and advantages of the present approach.
It allows us to investigate the theory in a global and
complete manner, taking into account fundamental and
composite degrees of freedom simultaneously as well as
their interplay. The effective action evolves from UV
regimes dominated by the interplay of TC gauge and TC
matter to a transition or interface regime where the rising
gauge couplings lead to emergent dynamical composites. In
the infrared below this transition regime, the dynamics are
dominated by that of the emergent composites. The latter
regime is typically described by means of low-energy
effective field theories. Then, the respective low-energy
couplings or parameters are tuned such that they accom-
modate the experimental low-energy measurements. In
the present effective action approach, these couplings are
determined consistently from those in the fundamental
high energy theory, thus restricting the latter. The accuracy
or rather predictive power of these constraints hinges
on a quantitative understanding of the strongly correlated
dynamics in the interface regime in which the composites
emerge and become dynamical. These dynamics are well
captured by the present approach whose technical imple-
mentation within the fRG is discussed in Sec. III A.

C. Dimension of the composite

In this section, we elaborate on the dimensionality of the
composite and the convention used. To begin with, the
effective action only depends on the dressed combination
Z1=2
B ðpÞBðpÞ. This is also reflected by the fact that the RG-

invariant scattering vertices (12), are the RG-invariant
building blocks of S-matrix elements as are obtained by
derivatives with respect to Z1=2

ϕ ðpÞϕ, see (13). The RG-

invariant field Z1=2
B ðpÞBðpÞ has the canonical dimension

3=2, which follows from the dispersion relation for fer-
mionic fields (such as the hadronlike composite of interest),

�
Z1=2
B B

	
c ¼ 3=2: ð29Þ

Evidently, observables are independent of the choice of
the canonical dimension ½B�c of the field. Specifically, all
choices for the canonical dimension of the composite
field, and in particular the common choices ½B�c ¼ 3=2
or ½B�c ¼ 5=2, lead to the same RG-invariant (physical)
vertices Γ̄ðnÞ defined in (12). Moreover, S-matrix elements
are constructed directly from tree-level diagrams with the
Γ̄ðnÞ, and hence unitarity or its failure is derived from their
momentum dependence.
From the above discussion it also follows that a

convenient choice is provided by a dimensionless wave-
function renormalization ZB: if we would consider the
canonical dimension of the composite to be the sum
of the fermion and scalar canonical dimensions, ½B�c ¼
½F �c þ ½S�c ¼ 5=2, the canonical dimension of ZBðpÞ
in (29) would be minus two, in summary leading to (29).
In fact, the former is the choice used for QCD with
dynamical hadronization as well as in low-energy effective
theories of QCD. There, composite baryons are described
by fermionic operators with the canonical dimension 3=2,
while composite mesons are described by bosonic oper-
ators with the canonical dimension 1. The respective
dimension of the constituents is 9=2 for three quarks q3

or 3 for a qq̄ pair following from the dimension of the
quarks ½q�c ¼ 3=2.

D. Linear mixing operator and anomalous scaling

With the introduction of the dynamical composites in
the previous sections, the respective effective action also
comprises all terms whose generation is not prohibited by
symmetries. One example is the linear mixing term

Γmix ¼
Z
x

�
λLt Z

1=2
q Z1=2

B q̄LB
q
R þ λRt Z

1=2
t Z1=2

B t̄RBt
L þ H:c:

�
;

ð30Þ

key for the realization of the SM fermion masses in FPC.
In (30), we have restricted ourselves to the linear mixing
term with the third generation of quarks. Moreover, all
wave functions in (30) and the RG-invariant couplings or
mixing masses λL=Rt ðpÞ are momentum dependent.
Terms like (30) carry part of the quantum fluctuations of

the scatterings of the fundamental fields. The latter corre-
lations (or rather their 1PI part) are obtained by taking
the nth field derivative of the effective action of the
fundamental fields Γ½ϕf� in (26), see (28). Evidently, this
correlation function can also be obtained by taking ϕf

derivatives of Γ½ϕf;ϕEOM
c ðϕfÞ� on the right-hand side

of (26). In our case we only consider one composite
structure, ϕc ¼ B. The solution of its EOM in the present
simple approximation with the kinetic term in (20) and the
linear mixing term (30) is given by
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BEOM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZSZF

ZB

s
h2B

σμ∂μ þmB
SF þ

ffiffiffiffiffiffi
Zf

ZB

s
λff; ð31Þ

where f is the respective SM fermion with adequate
chirality. For constant B the composite is simply propor-
tional to SF and a linear term f in the SM fermion. When
inserted on the composite effective action (30) we recover
the fundamental Yukawa interaction in (7) and a mass
term for the SM fermion field f. The latter term reflects
already the masslike character of the linear mixing cou-
plings in (30).
We now elucidate the important relation between the

couplings in the fundamental and composite actions within
a relevant example: the fundamental Yukawa interaction in
the last line of (7). In the present approximation, its strength
is given by the Yukawa couplings yi;aTC in the effective action
Γ½ϕf�. Hence it is obtained from the ψ , S, F -derivative
of Γ½ϕf�. In turn, we can also obtain it from the ψ , S, F
derivative of Γ½ϕf;BEOMðϕfÞ�. However, the effective
action in the presence of composites also contains a
Yukawa term with a coupling yi;ac;TC ≠ yi;aTC. The relation

between yfTC, y
f
c;TC, and λf is obtained from the ψ , S, F

derivative of (26), using (31) and (30),

yfTC ¼ yfc;TC − λf
h2BmB

p2 þm2
B

: ð32Þ

Equation (32) entails that the introduction of a composite
redistributes contributions of the quantum fluctuations
to a given correlation function. Moreover, only part of
the quantum fluctuations is still carried by the quantum
fluctuations of the fundamental fields and the rest is carried
by the mixed correlations of composites and fundamental
fields.
We emphasize that while it seems to be suggestive to

identify yfTC with yfc;TC, it clearly amounts to a double-
counting of fluctuations as is evident from (32). Importantly,
in the present emergent composite approach, this double
counting problem is absent as the correct relations between
the different couplings such as (32) are implemented by
definition. We further elaborate on (32) and the distribution
of fluctuations in Sec. III B.
The canonical momentum dimension of any arbitrary

fermion f linear mixing coupling λf is one, as follows
from (32). It is also easily inferred from the canonical
dimension of the dressed fields,

� ffiffiffiffiffiffiffiffiffiffiffi
ZfZB

p
f̄B

	
c ¼ 3; ð33Þ

which follows readily from the dimensional analysis of
the kinetic terms of quarks f and composite B. Hence, the
canonical dimension of λf is given by ½λf�c ¼ 1.

We have already discussed that all parameters in the
effective action are momentum dependent, which com-
prises the information about unitarity as well as the
evolution of masses and couplings in the theory. If all
parameters evolve according to their canonical momentum
dimension, then the theory is in the scaling regime of a
fixed point. For the mass mixing parameter, this entails
λfðkÞ ∝ k, where k is an average momentum scale.
The anomalous momentum scaling of couplings and

masses is best accessed from the scaling of their dimen-
sionless counterparts. In the case of λf, the dimensionless
coupling λ̄f reads

λ̄f ¼ λfk−1: ð34Þ
The average momentum scale k is also used as a cutoff
scale in the fRG approach, employed for explicit compu-
tations in the present work. This is detailed in Sec. III A.
Here we note that in the absence of an anomalous

scaling, the dimensionless couplings and parameters do
not scale with k. Conversely, the anomalous dimension is
given by

∂tλ̄f ¼ γλf λ̄f; ð35Þ

where ∂t ≡ k∂k. We also note that the anomalous scaling of
the wave functions Zϕ is given by

∂tZϕ ¼ γϕZϕ: ð36Þ

Equation (36) entails that the anomalous scaling of the fields
is given by −γϕ. For that reason, the common definition in
fRG applications contains a minus sign in (36).
We define the full momentum dimension ½O� of an

operatorO with its k scaling. For the mixed mass term (30)
it follows that

½λ̄fkZ1=2
f Z1=2

B � ¼ γfB: ð37Þ

Then, the full dimension of the mixing coefficient λ̄f is
obtained by subtracting the scaling of the external fields
and the canonical dimension carried in the explicit momen-
tum dependence in k,

½λ̄f�≡ γλf ¼ γfB − 1 −
γf
2
−
γB
2
: ð38Þ

Moreover, given λ̄f at a UV scale k ¼ ΛUV, its value at a
measurable IR scale k ¼ Λc is given by the momentum
scaling

λ̄fðΛcÞ ¼ λ̄fðΛUVÞ
�

Λc

ΛUV

�
γλf
: ð39Þ

The function γλf encloses all nonperturbative information
on the composite and its dynamics. Equation (38) is
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agnostic to the particular composition of the fermionic
bound-state B and hence holds for any type of fermionic
composites (e.g., B ∼ FFF ). Different natures of B will
give rise to different quantum corrections in each of the
scaling functions in (38).
Considering γf to be negligible, the magnitude and sign

of γB and γfB will lead to a more or less enhanced scaling
of the coupling λ̄f. In the case where γfB − γB=2≲ 0 the
coupling λ̄f scales as that of a relevant operator (e.g., as
a fermionic mass term) and grows towards the IR. If
γfB − γB=2 ≈ 1, then the scaling is like for a marginal
operator and will show a conformal scaling at the fixed
point if γλf ¼ 0. Last, if γλf > 0, the coupling scales as an
irrelevant operator growing towards the UVand decreasing
towards the IR. This is explicitly necessary in the FPC
framework in order to generate the masses of the lightest
SM fermion generations.
We close this section by introducing some useful

notations for the upcoming sections. It is instructive to
define the degree of compositeness at a scale Λc (following
the notation of [46,49]), which parametrizes the strength of
the mixing of the SM-like fermions with the composite
resonances below the condensation scale

ϵLf ≡ λ̄Lf ðΛcÞ
gBðΛcÞ

¼ λ̄Lf ðΛUVÞ
gBðΛcÞ

�
Λc

ΛUV

�
γλL

f : ð40Þ

Here, gB is the coupling strength of the resonances and Λc
is the IR condensation scale, reasonably expected around
∼10 TeV. For naturalness reasons, the dimensionless
coupling λ̄Lf ðΛUVÞ is expected to be of Oð1Þ.
Generalizing to three generations of quarks and leptons,

the hierarchical pattern of SM fermion masses (and mix-
ings) can now be argued to arise from small differences in
the anomalous dimensions γλ via RG flow between the
largely separated scales Λc and ΛUV. In fact, the resulting
hierarchical degrees of compositeness enter the fermion
masses, after integrating out the heavy resonances (see,
e.g., [12,46,49]), which read

mf ∼ gBðΛcÞ
vffiffiffi
2

p ϵLf ϵ
R
f ¼ Yfvffiffiffi

2
p

�
Λc

ΛUV

�ðγλL
f
þγλR

f
Þ
; ð41Þ

with

Yf ¼ λ̄Lf ðΛUVÞλ̄Rf ðΛUVÞ=gBðΛcÞ; ð42Þ

which gathers all Oð1Þ quantities.

E. Emergent composites in the walking regime

In FPC, a walking regime is expected to emerge around
a scale ΛUV at which the beta function of the TC gauge
coupling vanishes. As discussed in the previous sections,
this is required to generate the SM fermion masses through

the momentum scaling of λq along many orders of
magnitude, see (39).
Walking regimes are generated from IR quasi-fixed-

point solutions in the TC-gauge coupling. These are purely
determined by the structure of the gauge group and the
charged matter content. Depending on the number of fields
and the representation under which they transform, this
conformal scaling regime arises at different gauge coupling
values and is related to Banks-Zaks (BZ) fixed points. The
properties of the conformal window, such as the magnitude
of the fixed point coupling and its boundaries, have been
studied with perturbative methods [50–53], and nonpertur-
bative functional methods [54,55] as well as lattice sim-
ulations [56,57].
In FPC, dynamical chiral symmetry breaking is required

to take place in order to form pNGBs which realize the
Higgs boson. Through this mechanism, the TC fermions
become massive and decouple from the contributions to the
TC-gauge beta function leading to an IR Landau pole
and terminating the walking regime [58–60]. Therefore, it
is argued [18,21] that the different fundamental incarna-
tions should be found outside (below) the conformal BZ
window [52].
In this work, we do not investigate further the existence

of viable walking regimes within different FPC models but
assume the scenario in which dynamical chiral symmetry
breaking triggers at the end of the walking regime. While
we delegate the analysis of the viable models with the fRG
to an independent work, here we focus on the qualitative
properties of the bound states of interest along the walking
regime.
In order to address whether the scaling γλ reproduces

the correct SM fermion masses, the parameters of the
composite sector along the quasiconformal regime need to
be analysed. By rewriting the four-TC-field interaction
term in (22) as the exchange of a composite, the Yukawa
coupling hB and the mass of the composite mB in (20) can
be estimated from the quantum corrections giving rise to
the four TC-field interaction. In the case at hand, the
leading quantum corrections are provided by the diagrams
shown in Fig. 1.
The first box diagram is mediated by TC gluons and will

dominate as the gauge coupling enters a strong walking
regime, allowing the formation of bound states and later
on, triggering chiral symmetry breaking. Following, the
Yukawa coupling between TC fields and SM fermions may
become strong due to the effect of TC-gauge quantum
corrections. In this case, the second SM fermion-mediated
box diagram may contribute substantially to the formation
of the bound state. The TC-gauge corrections on yTC are
subject to the group structure and the matter content in
the theory and may lead to different qualitative results
depending on the model [18,21]. One particularly interest-
ing scenario is where the formation of bound states is
dominated by the exchange of SM fermions. In this case,
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yTC ≫ gTC via the TC-gluon enhancement in the quantum
corrections to the Yukawa coupling between SM and TC
fields. This scenario would help to relax the magnitude of
the fixed point value g�TC, reaching perturbative values,
while still providing the formation of composites, purely
dominated by Yukawa interactions.
In the walking regime, the momentum scaling of the

different couplings is given by their canonical momentum
dimension. Marginal couplings and dimensionless param-
eters (as the composite mass m̄B) are hence fixed to a
constant value, leading to the relation

ðh�BÞ2m̄�
B

1þ ðm̄�
BÞ2

∝ rgðg�TCÞ4 þ ryðy�TCÞ4: ð43Þ

Here, rg=y encodes the diagrammatic combinatorial factors
as well as the TC-color and spin structures of the respective
box diagrams. This simplified relation allows us to estimate
the composite sector parameters from the couplings of the
fundamental theory.
It is important to stress that in principle m̄B and hB

could be precisely determined from the flow of two- and
three-point functions of composites and fundamentals.
However, this is beyond the scope of the current analysis
and here we just estimate them via the relation (43), whose
validity is backed up by knowledge from 2þ 1 flavors
QCD [48,61–63]. The equivalent hB for pions is known to
be approximately constant even though the gauge coupling
runs strongly. The respective coupling to QCD composites
shows an IR attractive quasifixed point behavior in which
the only variation is sourced by chiral symmetry breaking.
This is caused by all the momentum scaling of gTC being
translated to the momentum scaling of the composite mass.
In fact, this is the dynamical explanation for the emergence
of chiral symmetry breaking. The strong interactions
drive the meson masses to zero triggering spontaneous
symmetry breaking of the chiral potential, see [48,61–63]
for more details. In the current scenario, the gauge coupling
reaches a fixed point and hence no variation is propa-
gated to the composite parameters further supporting the
estimate in (43).

III. ANOMALOUS SCALING AND FLAVOR
HIERARCHIES

In the present section, we compute the anomalous
scaling of different two-point functions necessary to
determine whether a successful reproduction of the fermion
mass hierarchies of the Standard Model particles is achiev-
able within MFPC.
The fluctuation analysis of dynamics of the composite (as

well as that of the other fields) is done within the functional
renormalization group approach, and in Sec. III Awe briefly
summarize the fRG approach to theories with emergent
composites. This approach is used in Sec. III B to compute
the anomalous dimensions of the composite sector, and as an

example, we provide an estimate for a particular scenario.
This is done on a conceptual level and a more quantitative
study will be presented elsewhere.

A. Functional renormalization group

For the computation of the momentum scaling of the
linear mixing coupling λf and future analysis of the
dynamics of CH sectors, we will employ the functional
renormalization group [34,35,64], which already has
proven its applicability in very similar strongly coupled
regimes. For a general review see [40], for IR QCD studies
see, e.g., [48,62,63,65] and for SM applications [66–70]. In
this approach, an IR regulator quadratic in the fields is
introduced at the level of the classical action,

ΔSk½ϕ� ¼
1

2

Z
x
ϕð−qÞRkðqÞϕðqÞ: ð44Þ

Equation (44) implements the Wilsonian idea of progressive
integration of momentum shells by suppressing quantum
fluctuations of momenta p below a given IR cutoff scale k.
RkðqÞ is a matrix in field space and introduces masslike
terms for the different fields ϕi in the infrared. In turn, for
large momenta RkðqÞ decays rapidly.
The regulator insertion leads to the definition of an RG-

cutoff dependent effective action Γk½ϕ�. The full effective
action is obtained after all quantum fluctuations have been
integrated out at k ¼ 0 with Γ½ϕ� ¼ Γk→0½ϕ�. The cutoff
scale dependence of Γk½ϕ� is described by the Wetterich
equation [33],

∂tΓk½ϕ� ¼
1

2
Tr
��

1

Γð2Þ
k þ Rk

�
ij

∂tR
ij
k

�
; ð45Þ

where Γð2Þ
k is the second functional derivative of the scale-

dependent effective action Γk with respect to the fields ϕ,
see (10). The subscript ij indicates the different species ϕi.

Note that the regulator matrix Rij
k is diagonal in its bosonic

components and symplectic in its fermionic components.
The derivative ∂t ¼ k∂k is the logarithmic scale derivative
with respect to the infrared cutoff scale, which may be
interpreted as an average momentum scale.
The nonperturbative flow equation (45) is a one-loop

exact equation that gives us access to the nontrivial strongly
coupled sector in CH scenarios, while remaining versatile
to investigate large theory and parameter space. Moreover,
the dynamical emergence of bound states or more generally
dynamical composites can be incorporated within a modi-
fied version of (45), [36–39,48]. This allows us to consider
the effective action in the presence of emergent composites
in a mathematically sound way. This approach is known as
dynamical condensation or the fRG approach with emer-
gent composites [39], the latter literally describing its core.
It has been widely employed in the areas of condensed
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matter and QCD. In the latter, it is commonly called
dynamical hadronization.
Its general version has been derived in [37], see also [71]

for a formulation for the Wilsonian effective action. In [39]
its application to a successive tower of composites is
explained in the example of QCD (scalar-pseudoscalar
mesons, vector mesons, diquarks, and baryons), and this
application is similar to the present use. Here we briefly
discuss the generalization in [37] at the example of one
emergent scale-dependent composite at lower momentum
scales. While ϕc is an independent emergent field in the
effective action, its flow is described by a functional

ϕ̇c½ϕ�; ð46Þ

with ϕ ¼ ðϕf;ϕcÞ in (24). Equation (46) takes care of the
rotation of the field basis due to the scale dependence of
the composite. Typically it is chosen such that the entire
dynamics of the respective resonant channel is stored in the
propagation of the composite. This choice optimizes the field
basis and hence stabilizes expansion schemes of the effective
action. In short, it leads to the most rapid convergence of the
diagrammatic expansion of the full theory.
In the presence of the composite, the flow (45) is

modified by additional terms that take care of the scale-
dependence of the emergent dynamical degree of freedom
ϕc. It reads�

∂t þ
Z

ϕ̇c
δ

δϕc

�
Γk½ϕ�

¼ 1

2
Tr

��
1

Γð2Þ
k þ Rk

�
ij

�
∂tδ

jn þ 2
δϕ̇n

δϕj

�
Rni
k

�
; ð47Þ

where ϕ̇i ¼ δicϕ̇c in a slight abuse of notation. The addi-
tional term on the left-hand side of (47) simply accounts for
the (field-dependent) anomalous dimension of the emer-
gent composite, while the additional term on the right-hand
side accounts for the rotation of the composite field axis in
the field basis of the fundamental fields.

B. Anomalous dimensions

We have discussed in Sec. II that the presence of a
walking regime and an adequate scaling of the coupling
between composites and SM fermions is necessary for
reproducing the SM masses via FPC. In this section, we
compute the momentum scaling of an arbitrary linear
mixing coupling λ̄f between a SM fermion and a composite
field B. Following from the derivation in (38), the momen-
tum scaling of the coupling reads

γλ ¼ −1þ γfB − γf=2 − γB=2: ð48Þ

As discussed in Sec. II E, the magnitude of the fundamental
Yukawa couplings y�TC is considered to be subdominant

with respect to the gauge dynamics. This restricts ourselves
to the QCD-like scenario in which the composite dynamics
is driven by the TC-gauge dynamics. In this scenario, no
sizeable contributions aside from the SM ones are present
in γf. As these are known to be small and negligible [66],
the SM fermions anomalous dimension can be approxi-
mated as

γf ≈ 0: ð49Þ

Nonetheless, it is important to note that scenarios where the
Yukawa coupling becomes strong along with the TC-gauge
coupling may lead to further important corrections to the
SM fermion phenomenology, which would be interesting to
investigate further.
The momentum scaling of the vertex (37) and the

anomalous dimension of the composite γB remain to be
computed. We obtain the first from the linear-mixing two-
point function

Γð2Þ
Bf̄;k

¼ δ2Γk

δBðpÞδf̄ð−pÞ ¼ λf
ffiffiffiffiffiffiffiffiffiffiffi
ZfZB

p
; ð50Þ

by performing two functional derivatives of the full
effective action [see (10)] with respect to f̄ and B.
By applying a scale derivative on both sides of (50),
we obtain

γfB ¼ ∂tΓ
ð2Þ
Bf̄;k

=Γð2Þ
Bf̄;k

: ð51Þ

In the first line of Fig. 3, the diagrammatic flow ∂tΓ
ð2Þ
Bf̄;k

is

depicted. As the linear mixing couplings carry a scalar-
tensor structure (like a fermionic mass term) and there is no
vector structure in any of the Yukawa couplings, the only
nonvanishing contribution in the loop diagrams will be
proportional to the scalar mode of the TC-fermion propa-
gators. However, in Sec. II D we argued vanishing mF and
mS in order to preserve the global flavor symmetries.
Additionally, TC masses will trigger the decoupling of the
TC fields from the quantum corrections to the TC gauge
coupling and hence invalidate the possibility of a walking
regime. For this reason, the fundamental masses are taken
to be mF ; mS ≤ Λc. With mF ¼ 0, each diagram vanishes,
and we are led to

γfB ¼ 0: ð52Þ

It follows from this result that the linear mixing operators
in (51) are not generated by quantum fluctuations from the
fundamental theory in the absence of a fundamental TC-
fermion mass. However, we have discussed around (32)
that the fundamental Yukawa coupling yfTC in the absence
of the composites are only related but not equal to yfc;TC in
the presence of composites. The former is known to show
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nonvanishing quantum contributions ∂ty
f
TC ≠ 0 in the

fundamental theory, see, e.g., [18,21]. These contributions
are not reproduced by γfB in the current approximation but

accounted in ∂ty
f
c;TC. On the other hand, contributions of

∂ty
f
TC in the chirally broken phase are reproduced in γfB as

reflected by its proportionality to mF .
Finally, the leading contribution in (48) remains to be

determined. The momentum scale variation of the wave-
function renormalization can be obtained from the compo-
site’s two-point function

Γð2Þ
BB̄;k

¼ δΓk

δBðpÞδB̄ð−pÞ ¼ iZBσμpμ: ð53Þ

Choosing the adequate projection onto the kinetic part of
the two-point function and evaluating at vanishing external
momenta, the anomalous dimension reads

γB ¼ ∂tZB

ZB
¼

−i∂p2

�
σμpμ∂tΓ

ð2Þ
BB̄;k

�
ZBtr½σμσν�


p¼0

: ð54Þ

The diagrammatic form of ∂tΓ
ð2Þ
BB̄;k

is depicted in the second

row of Fig. 3. The explicit expressions for the flow are
provided in the Appendix. The diagram with the fermionic
flow, Fig. 3(a), vanishes in the p ¼ 0 limit. To scrutinize
this further we reevaluated the diagram employing numeri-
cal regulators which implement a richer momentum shell
integration. In fact, regulators featuring a more elaborated
momentum shell structure always show Fig. 3(a) to have a
negligible contribution. Moreover, the analytic result for
the flat or Litim regulator is properly reproduced from our
numerical regulators, which supports the neglect of the
contribution of Fig. 3(a).

Consequently, the anomalous dimension at vanishing
external momentum is given by Fig. 3(b) and reads (see the
Appendix for details)

γB ¼ −
h2B
16π2

NTC

2
tr½T 2�

�
1þ γS

5

�
; ð55Þ

where NTC is the dimension of the fundamental represen-
tation of the SUðNTCÞ-gauge group and γS is the anoma-
lous dimension of the fundamental scalar TC field coming
from the cutoff derivative ∂tRk. The presence of the scalar
anomalous dimension reflects the higher loop character of
the fRG.
Moreover, all parameters and couplings in (55) are

positive constants, leading to

γB < 0 ð56Þ

as a natural limit. Equation (56) reproduces the unitarity
bound on fermionic fields [2] purely derived from the
effective action. As discussed in the Appendix, the choice
of the regulator does not alter the sign of the anomalous
dimension as this can be written as a total scale derivative
of the one-loop diagram. See (A10) for more details.
However, γB could turn positive if the scalar anomalous
dimension is largely negative, γS < −5. This would require
an extremely strong coupling leading to contributions from
higher n-point functions becoming relevant. As this sce-
nario is outside the scope of this computation, we consider
the one-loop expression and neglect the suppressed scalar
anomalous dimension.
Collecting (49), (52), and (55), we find that the scaling of

the linear mixing couplings is mainly determined by the
anomalous dimension of the composite field

γλ ≈ −1 − γB=2; ð57Þ

leading to the relation

mf ¼ Yfvffiffiffi
2

p
�

Λc

ΛUV

�
2γλ

∼
Yfvffiffiffi
2

p
�

Λc

ΛUV

�
−2−γB

; ð58Þ

for the SM fermion masses. In Fig. 4 we have used (58)
to illustrate the SM fermion masses as a function of the
anomalous dimension γλ. Note that the parameter scan
presented here is independent of the derivation of γλ, but
subject to the phenomenological characteristics of the
theory such as the size of the walking regime ΔΛ ¼
log ðΛc=ΛUVÞ and the value of fundamental couplings at
the onset scale ðΛUVÞ. We will provide the connection to
our results for the anomalous dimension further below.
Nine different walking regimes of sizes ΔΛ ⊂ ½−2;−10�
are shown as clouds of points of different colors whose
steepness increases with the regime’s size. We consider the
couplings λ̄f and gB to have a natural value at the UV scale.

FIG. 3. Diagrammatic flow of the composite-SM-fermion two-
point function (first line) and the composite’s two-point function
(second line), necessary for the computation of the vertex flow
(51) and the composite’s anomalous dimension (54). All vertices
(black circles) and regulated propagators are full correlation
functions. Double dashed lines with an arrow correspond to
the composite regulated propagator, plain lines with an arrow
correspond to fundamental TC-fermion regulated propagators,
dashed lines to fundamental TC-scalar regulated propagators and
blue lines with an arrow to the SM fermion regulated propagators.

Crossed circles depict the insertion of ∂tR
ðϕÞ
k .
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Therefore, varying Yf ⊂ ½0.1; 4π�, as defined in (42),
covers the expected region. We note that the wider the
range of Yf, the broader the spread of points and that

Yf → 0 for yfTC → 0, see (32).
For reproducing the SM flavor hierarchies within PC,

different composites and scalings are necessary, as already
reviewed in Sec. I. As the top Yukawa coupling is
approximately unity, γλ ∼ 0 is required, independently of
the walking-regime size. This coupling could be predicted
from the existence of the BZ fixed point, namely γλ ¼ 0. On
the other hand, the lightest fermions require γλ ∼ 0.5–2.0,
which is subject to the size of the walking regime. As is
apparent in (55), considering different excited radial,
angular and spin states (encoded in T ) could facilitate
generating the nondegeneracy. In this work, we do not
discuss further the impact of these parameters and consider
the particular case tr½T 2� ¼ 1.
In order to estimate the properties of the composite

sector along the walking regime, the magnitude of the TC
coupling, given by the fixed point solution of the beta
function, is key. The MFPC matter content consists of four
chiral fermions and 12 complex scalars transforming in
the fundamental representation of SUð2ÞTC [18,19,21].
Altogether, the TC-matter content affects the gauge beta
function equivalently to the presence of five Dirac fer-
mions. For such field content and representation, the
SUð2ÞTC gauge coupling is known to not show a BZ-like
IR fixed point [51,52]. four-loop MS results show the BZ
window to be present from 8 to 11 Dirac fermions. For
fewer number of fermions (six to eight), the IR FP exists but
is not reached due to chiral symmetry breaking triggering
before reaching the conformal regime [54,55,65,72]. As

both properties, conformal scaling and chiral symmetry
breaking, are necessary for the current setup, we expect the
desired dynamics in the boundary of the BZ window.
Therefore we assume additional matter content charged
under the TC-gauge group which decouples by the exit of
the walking regime. Then, we consider the beta functions
with six, seven, and eight Dirac fermions and employ the
four-loop MS [51–53,73,74] results to estimate hB. For it,
we recall the discussion in Sec. II E and the estimate in (43).
Altogether, the estimated anomalous scaling with one, two,
and three additional Dirac fermions reads

γλ ∼ −1 −
1

2

�
−
NTC

32π2

�ð1þ m̄2
BÞrgðg�TCÞ4
m̄B

��
;

∼ f4.74; 0.47;−0.42g; ð59Þ

where we have assumed the scenario in which the gauge
corrections are dominant over the Yukawa corrections,
g�TC ≫ y�TC and considered m̄B ¼ 1. Furthermore, we made
the simplification rg ≈ 1. This rough estimate lacks a full
determination of the flows of the couplings and combina-
torial factors hence, must not be taken as conclusive for the
validity of the models. Nevertheless, it serves at a con-
ceptual level.
In Fig. 4, we depict the estimate for MFPC with two

additional Dirac fermions with a green vertical dashed line.
The green shaded region indicates a 20% variation in the
estimate of hB which serves only as a visual guide of the
dependence of γλ on hB.

FIG. 4. SM fermion masses as a function of the anomalous scaling γλ defined in (48). The colorful clouds of points show a parameter
investigation in which Yf ∈ ½0.1; 4π� and γλ ∈ ½−1; 3�. From blue to yellow, the size of the walking regimes is discretely increased by
varying ΔΛ ¼ log ðΛc=ΛUVÞ from ΔΛ ¼ −2 to ΔΛ ¼ −10. The red-shaded region depicts the prohibited area inaccessible due to the
found negativity of the composite’s anomalous dimension and coincidentally to the unitarity bound of the coupling λf . The green dashed
line indicates the estimated ballpark of γλ in the MFPC scenario with two additional Dirac fermions in (59). The green-shaded region
shows a 20% variation in the estimate of hB in (43) and serves only as an indicative measure of the dependence of γλ on hB.
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IV. SUMMARY AND CONCLUSIONS

In this work, we have explored the generation of the SM
fermion mass hierarchies in the framework of FPC. Aside
from a viable model building, two key features need to be
satisfied for a realization of the SM Yukawa couplings: the
existence of a walking regime and an adequate scaling
of the linear mixing couplings λf between SM fermions
and composites of the new sector. While we assume the
underlying FPC model to provide a walking regime, we
have employed the nonperturbative fRG to address the
latter point and determine whether the adequate scaling is
realizable in different scenarios.
In contrast to the original idea of PC, the bound states

considered here are built out of a TC-fermion and a TC-
scalar field, B ∼ SF . In Secs. II A and II B, we introduced
the effective action formalism particularized to FPC and
derived in detail the hadronization procedure for the
composites of interest. This latter transformation consists
in rewriting the two-TC-fermion two-TC-scalar four-point
function in a specific momentum channel as the exchange
of the composite. To tackle the nonperturbative phenome-
non of composite emergence and perform this field
redefinition in a mathematically well-defined manner, we
employ the fRG. This dynamical treatment of the emer-
gence of resonances allows us to investigate the theory in a
global and complete manner, taking into account funda-
mental and composite degrees of freedom simultaneously
as well as their interplay. Accordingly, this formalism
allows us to access the properties of the composites
(e.g., couplings, masses, …) from the parameters of the
fundamental effective action as shown in Sec. II E.
In Sec. II D we derived the anomalous scaling of the

linear mixing couplings from the momentum scaling of the
two-point functions in the effective action and resolved it in
Sec. III B with the fRG. While the scaling of the vertex is
found to vanish in the chiral limit, the composite anomalous
dimension naturally reproduces the conformal bound.
In the walking regime, we are able to reformulate the
couplings of the composite action in terms of couplings of
the fundamental FPC effective action. With this, we present
an estimate for the MFPC scenario with two additional
Dirac fermions coupled to the TC-gauge group. Lacking a
full computation, this estimate does not allow us to
conclusively judge the viability of the different models
but furnishes a conceptual understanding of the underlying
dynamics.
In general, we provide a novel application of functional

methods to new physics scenarios involving strong dynam-
ics and the emergence of composites. Using the fRG allows
us to account for all quantum fluctuations and to investigate
theories in a complete manner, taking into account funda-
mental and composite degrees of freedom simultaneously
as well as their interplay. Importantly, the framework
presented here provides the versatility needed for large
theory space investigations required in model building.
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APPENDIX: ANOMALOUS DIMENSIONS

In this appendix, we provide the explicit computation of
the composite two-point function flow equation, necessary
for the determination of the anomalous dimension. In this
computation we consider the TC fields to be massive to
exemplify the mass-dependent nature of the fRG.
The necessary ingredients for the resolution of the

diagrammatic flows in the second line of Fig. 3 are the
Hessians or two-point point functions, and the full three-
point functions. The former allows us access to the
propagators of the fields in the theory. The regularized
propagators for the dispersive modes of the different fields
read

Gψψ̄ ;kðpÞ ¼
h
Γð2Þ
ψψ̄ ;kðpÞ þ Rψ

k ðpÞ
i
−1
;

¼
−iσμpμ

�
1þ rðψÞ

�p2

k2
��

Zψ

�
p2

�
1þ rðϕÞ

�p2

k2
��þm2

ψ

� ; ðA1Þ

and

Gφφ†;kðpÞ ¼
h
Γð2Þ
φφ†;k þ RφÞ

k

i
−1
;

¼
�
Zφ

�
p2

�
1þ rðϕÞ

�
p2

k2

��
þm2

φ

��−1
: ðA2Þ

where φ stands for bosonic fields and ψ for fermionic fields
in the super field ϕ. For the regulator functions Rk we
employ the flat or Litim regulator [75]

Rφ
k ðp2Þ ¼ Zφp2rðφÞðp2=k2Þ;

Rψ
k ðp2Þ ¼ iZψσμpμrðψÞðp2=k2Þ; ðA3Þ

with

rðφÞðxÞ ¼ ð−1þ 1=xÞθð1 − xÞ;
rðψÞðxÞ ¼ ð−1þ 1=

ffiffiffi
x

p Þθð1 − xÞ: ðA4Þ

This regulator choice allows for analytical access to the
flow of n-point functions at vanishing momentum. For
fully quantitative studies smooth regulators (in momentum
space) are better suited.

GOERTZ, PASTOR-GUTIÉRREZ, and PAWLOWSKI PHYS. REV. D 108, 095019 (2023)

095019-14



The full effective vertex can be read off from the effective
action (20) by performing three functional derivatives,

Γð3Þ
SFB̄;k

¼ Γð3Þ
S†BF̄ ;k

¼ hB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZBZSZF

p
: ðA5Þ

The anomalous dimension can be obtained from the
composite two-point function

∂tΓ
ð2Þ
BB̄;k

ðpÞ ¼ ∂t½ZBðiσμpμ þmBÞ�; ðA6Þ

leading to

γB ¼ ∂tZB

ZB
¼

−i∂p2

�
tr
h
σμpμ∂tΓ

ð2Þ
BB̄;k

ðpÞ
i�

ZBtr½σμσν�


p¼0

: ðA7Þ

Collecting all pieces and integrating the loop momenta

γB ¼ −
NTC

2
h2Btr½T 2�

�
þ∂p2

�Z
d4q
ð2πÞ4

q2ðγF ðk=qþ 1Þ − k=qÞθð1 − q2=k2Þ
ððpþ qÞ2ð1þ rðϕÞððpþ qÞ2=k2ÞÞ þm2

SÞ
ðp · qÞð1þ rðψÞðq2=k2ÞÞ2

ðq2ð1þ rðψÞðq2=k2ÞÞ þm2
F Þ2

�
p¼0

þ ∂p2

�Z
d4q
ð2πÞ4

q2ðγSðk2=q2 − 1Þ þ 2k2=q2Þθð1 − q2=k2Þ
ðq2ð1þ rðϕÞðq2=k2ÞÞ þm2

SÞ
ðp · ðpþ qÞð1þ rðψÞððpþ qÞ2=k2ÞÞ2

ððpþ qÞ2ð1þ rðψÞððpþ qÞ2=k2ÞÞ þm2
F Þ2

�
p¼0



;

¼ −
NTC

2
h2Btr½T 2�

�
þ
Z

d4q
ð2πÞ4

k2q2x21ðγF ðk=qþ 1Þ − k=qÞθð1 − q2=k2Þ
ðq2 þ ðk − qÞðkþ qÞ þm2

F Þ2ðq2 þ ðk − qÞðkþ qÞ þm2
SÞ2

× ½ð1 − q2=k2Þδð−1þ q2=k2Þ þ ð−1þ θð1 − q2=k2ÞÞ�

þ
Z

d4q
ð2πÞ4

kqð−1þ x21Þðk2 þm2
F ÞðγSðk2=q2 − 1Þ þ 2k2=q2Þθð1 − q2=k2Þ

ðq2 þ ðk − qÞðkþ qÞ þm2
F Þ2ðq2 þ ðk − qÞðkþ qÞ þm2

SÞ2


;

¼ −
h2B
16π2

NTC

2
tr½T 2� ð1þ γS=5Þ

ð1þ m̄2
F Þð1þ m̄2

SÞ2
; ðA8Þ

where the first term of each derivation step corresponds to
Fig. 3(a) and the second to Fig. 3(b). γS and γF are the
anomalous dimensions of the TC-scalar and TC-fermion
fields, respectively. In contrast with (55), the explicit
contribution of the TC-field masses is here shown to
illustrate the mass-dependent nature of the fRG. The
integral d4q has been performed in spherical coordinates

d4q ¼ dqdx1dx2dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x1

p
q3; ðA9Þ

with xi ¼ cos θi integrated from xi ⊂ ½−1; 1�. θ1 is the angle
between the external p and internal q momenta in spherical
coordinates and in the two-point function, there is no
dependence on a second external momenta x2. Last ϕ is the
azimuthal angle ϕ ⊂ ½0; 2π�.
Figure 3(a), in the first line of (A8), is always vanishing

due to the momentum structure of the diagram. This can
be read off from the first term in the second step of the
derivation. This result is in agreement with previous
computations of fermion-scalar systems [66,76].

One may employ other types of regulators that better
implement the momentum shell integration. This compu-
tation was repeated for smooth- and exponential-type
regulators. For all types of numerical regulators, we found
the analytical result with (A3) in the respective limit. In the
cases in which Fig. 3(a) did not vanish, its contribution was
negligible in comparison to Fig. 3(b).
Aside from the regulator discussion, the result (56) can

be shown to remain unaffected by regulator choices. The
two-point function flow (second line in Fig. 3) can be
rewritten as a total scale derivative of the uncut one-loop
diagram. Consequently, the sign of the anomalous dimen-
sion is given by this diagram’s contribution

ðA10Þ

and is unchanged by a cutoff insertion.
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