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It is possible to formulate theories with many Lee-Wick particles such that a limit exists where the low-
energy theory approaches the form of a ghost-free nonlocal theory. Such asymptotically nonlocal quantum
field theories have a derived regulator scale that is hierarchically smaller than the lightest Lee-Wick
resonance; this has been studied previously in the case of asymptotically nonlocal scalar theories, Abelian
and non-Abelian gauge theories, and linearized gravity. Here we consider the dependence on center-of-
mass energy of scattering cross sections in these theories. While Lee-Wick resonances can be decoupled
from the low-energy theory, scattering amplitudes nonetheless reflect the emergent nonlocality at the scale
where the quadratic divergences are regulated. This implies observable consequences in theories designed
to address the hierarchy problem, even when the Lee-Wick resonances are not directly accessible.
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I. INTRODUCTION

Quantum field theories with higher-derivative quadratic
terms are of interest since these additional terms can lead to
more convergent loop amplitudes. This has an impact on
the renormalizability of such theories and whether renorm-
alization involves fine-tuning. If the highest power of
derivatives ∂μ∂μ appearing in the quadratic terms is finite,
then propagators will have additional poles. Lee-Wick
theories [1,2], including the Lee-Wick Standard Model
[3] (see also [4]), have this feature and have been argued to
be consistent with unitarity [5–9] and macroscopic cau-
sality [6]. On the other hand, ∂μ∂

μ may appear as the
argument of an entire, transcendental function, so that the
modified quadratic terms imply no additional propagator
poles. These are the ghost-free nonlocal theories that have
met considerable attention in the recent literature [10–15].
It is possible to formulate another class of theories that

interpolates between Lee-Wick theories and ghost-free
nonlocal theories: these are the asymptotically nonlocal
theories described in Refs. [16–19]. An asymptotically
nonlocal theory is one of a sequence of finite-derivative
theories that approaches a ghost-free nonlocal theory as a
limit point. We review the construction of asymptotically
nonlocal theories in Sec. II. In an ordinary Lee-Wick

theory, the scale at which quadratic divergences are
canceled is set by the mass of the lightest Lee-Wick
resonance. For example, if one were to decouple the
Lee-Wick partners in the Lee-Wick Standard Model,
fine-tuning in the Higgs boson squared mass would be
reintroduced. In asymptotically nonlocal theories, the Lee-
Wick partners may be heavy, while the light scalar mass is
regulated by an emergent nonlocal scale Mnl, that is
hierarchically smaller than the lightest Lee-Wick resonance
mass, m1,

M2
nl ∼O

�
m2

1

N

�
: ð1:1Þ

Here,N is the number of propagator poles in a given theory,
which provides a source of parametric suppression [16–19].
Note that approaches to achieving a parametric suppression
of the regulator scale have appeared in other contexts in the
literature [20,21].
Asymptotically nonlocal theories have been explored

previously in scalar theories [16], Abelian [17] and non-
Abelian gauge theories [18], and in linearized gravity [19].
These papers discussed the higher-derivative and auxiliary
field formulation of these theories (that is, equivalent
theories in which higher-derivative terms are eliminated
in favor of additional fields). These papers also demon-
strated the emergence of the nonlocal regulator scale in a
variety of loop amplitudes, and in resolving gravitational
singularities. However, what was not considered was the
implications for scattering cross sections. For example, if
asymptotically nonlocal theories interpolate between Lee-
Wick and ghost-free nonlocal theories, how is this tran-
sition reflected in the dependence of scattering cross
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sections on center-of-mass energy? If propagators fall off
exponentially with Euclidean momentum in asymptotically
nonlocal theories, does one expect scattering amplitudes to
grow without bound above the emergent nonlocal scale,
given that the momentum transfers are not Euclidean? (We
will see later that the answer is no.) In general, one expects
that the physics associated with the emergent nonlocal
regulator scale should also be apparent in scattering
amplitudes as the Lee-Wick resonances are decoupled.
We explore this expectation in the present note by con-
sidering the momentum dependence of an s-channel
scattering cross section in an asymptotically nonlocal toy
model that captures the qualitative features one expects to
find in more realistic theories. This fills a gap in the
discussion that appeared in the previous literature [16–19].
Our paper is organized as follows. In Sec. II, we review

the construction of asymptotically nonlocal theories,
including our assumptions about how the limiting nonlocal
theory is reached. We define the model that we study later
and discuss the form of the self-energy corrections to the
propagator in the higher-derivative formulation of the
theory. Loop corrections encode the resonance widths,
which truncate the growth in the scattering amplitudes
that is associated with the emergent nonlocality. In Sec. III,
we show in a simple example that the same results are
obtained whether one works in the higher derivative or
(with more effort) in the auxiliary-field formulation of the
theory. In Sec. IV, we describe how we implement mass and
wave function renormalization in the higher-derivative
theory and we present numerical results for the momentum
dependence of the amplitudes that are of interest to us. In
Sec. V, we summarize our conclusions.

II. FRAMEWORK AND A TOY MODEL

Our framework can be illustrated in a theory of a real
scalar field ϕ: We seek a sequence of theories that
approaches the nonlocal form

L∞ ¼ −
1

2
ϕð□þm2

ϕÞel
2
□ϕ − VðϕÞ ð2:1Þ

as a limit point. The exponential of the box operator shown
in Eq. (2.1) is familiar from the literature on ghost-free
nonlocal theories [10–15], and regulates loop integrals at
the scale 1=l. A theory that approaches Eq. (2.1) when
N → ∞ is given by

L ¼ −
1

2
ϕð□þm2

ϕÞ
�
1þ l2□

N − 1

�
N−1

ϕ − VðϕÞ: ð2:2Þ

However, the propagator in this theory contains an ðN − 1Þth
order pole, which has no immediate particle interpretation.
We can remedy this by taking the lj to be nondegenerate,

LN ¼−
1

2
ϕð□þm2

ϕÞ
�YN−1

j¼1

�
1þ l2

j□

N−1

��
ϕ−VðϕÞ; ð2:3Þ

which approaches the same limiting theory, Eq. (2.1),
provided that lj approach a common value l as N becomes
large. For finite N, the propagator is given by

DFðp2Þ ¼ i
p2 −m2

ϕ

YN−1

j¼1

�
1 −

l2
jp

2

N − 1

�−1
: ð2:4Þ

This has N first-order poles; the massive states associated
with the higher-derivative quadratic terms have masses
m2

j ≡ ðN − 1Þ=l2
j . The results of Refs. [16–19] were not

sensitive to how the N → ∞, lj → l limit was reached. A
convenient parametrization was given by

m2
j ¼

N
l2

1

1 − j
2NP

; for j ¼ 1…N − 1; ð2:5Þ

for P > 1. Away from the limit point, the propagator in
Eq. (2.4) can be decomposed using partial fractions as a sum
over simple poles with residues of alternating signs (a
familiar outcome in higher-derivative theories [22]). These
correspond to an alternating tower of ordinary particles and
ghosts.We refer the reader toRef. [16] for the construction of
an auxiliary field formulation that holds for arbitrary N. We
will discuss an auxiliary field formulation that is useful in the
case where N ¼ 2 in Sec. III.
Writing the tree-level propagator in terms of the reso-

nance masses mj, one has

DFðp2Þ ¼ i
ðp2 −m2

ϕÞ
Q

N−1
j¼1 ð1 − p2=m2

jÞ
: ð2:6Þ

The product in the denominator approaches a growing
exponential for Euclidean momentum, which accounts for
the better convergence properties of loop amplitudes
discussed in Refs. [16–19]. To study the consequences
of this form in scattering, we couple the ϕ field to complex
scalar fields χa, for a ¼ 1, 2:

Ltoy ¼ Lð2Þ
N − χa�ð□þm2

χÞχa − gϕχa�χa: ð2:7Þ

Here the summation on a is implied, andLð2Þ
N represents the

quadratic terms

Lð2Þ
N ¼ −

1

2
ϕð□þm2

ϕÞ
�YN−1

j¼1

�
1þ l2

j□

N − 1

��
ϕ: ð2:8Þ

Motivated by simplicity, we have assumed that the ϕχa�χa
coupling is the only scalar interaction term, and we
consider the s-channel scattering process χ1χ1 → χ2χ2 in
the center-of-mass frame. We focus on s-channel processes
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as they are often associated with large momentum transfers
in realistic theories at colliders, and they provide a
relatively direct way to study the energy dependence
implied by the distinctive form of the propagators found
in asymptotically nonlocal theories. We expect that the
example we study will provide a qualitative understanding
of s-channel processes in these theories, independent of the
precise choice of fields appearing on the external lines or
the spin of the exchanged particle. The study of a
completely general scalar potential may be interesting
but goes beyond the scope of the present work. The
product in the denominator of Eq. (2.6) approaches an
exponential that rapidly decreases as a function of the
squared center-of-mass energy s, above the emergent
nonlocal scale Mnl ≡ 1=l. What prevents arbitrary growth
of the propagator is the widths of the resonances (just as it
would be had we chosen, for example, s ¼ m2

ϕ). To capture
that physics, we define the one-particle irreducible self-
energy function −iM2ðp2Þ and compute the full propagator
shown in Fig. 1. The diagrammatic resummation gives

Dfull
F ¼ i

ðp2 −m2
ϕÞ
Q

N−1
j¼1 ð1 − p2=m2

jÞ −M2ðp2Þ ; ð2:9Þ

which reduces to the familiar expression [23] when N ¼ 1,
where the product is replaced by the identity. We will see in
Sec. IV that the imaginary part of M2ðp2Þ limits the
maximum value of the scattering amplitude.

III. EQUIVALENT APPROACHES

Before considering the implications of the momentum
dependence of Eq. (2.9), we briefly digress to consider the
general form of this expression. In an auxiliary field
formulation of the higher-derivative theory, the higher-
derivative terms are eliminated in favor of additional fields
(each corresponding to a propagator pole). In that theory,
there are a number of possible one-particle irreducible self
energy diagrams, depending on the choice of external lines.
Here we look at the scattering process χ1χ1 → χ2χ2 in the
auxiliary theory in the simplest case of N ¼ 2 and show
how the loop corrections conspire to exactly reproduce the
corrected form of the higher-derivative propagator in
Eq. (2.9). We expect this to hold for arbitrary N on general
grounds; however, this example illustrates how computa-
tions that are easy in the higher-derivative form of the
theory can become prohibitively complicated in its aux-
iliary form. Hence, in Sec. IV, we return to working with the
higher-derivative theory.

In the case where N ¼ 2, the Lagrangian is given by

L ¼ −
1

2
ϕ̂ð□þm2

ϕÞð1þ l2
□Þϕ̂þ Lint; ð3:1Þ

where the Lee-Wick partner to the particle with mass mϕ

has mass M ≡ 1=l, and Lint contains the coupling to the χ
fields. We assumeM > mϕ. We place a hat on the field that
appears in the higher-derivative form of the theory for later
notational convenience. An equivalent theory can be
identified using an auxiliary field ϕ̃:

L¼−
1

2

�
1þm2

ϕ

M2

�
ϕ̂□ϕ̂− ϕ̃□ϕ̂þ1

2
M2ϕ̃2−

1

2
m2

ϕϕ̂
2þLint:

ð3:2Þ

The ϕ̃ is nondynamical and can be eliminated from the
generating functional for the theory by performing the
corresponding Gaussian functional integral. Operationally,
the resulting Lagrangian is what one obtains from Eq. (3.2)
by replacing ϕ̃ using its equation of motion,

ϕ̃ ¼ 1

M2
□ϕ̂: ð3:3Þ

With this substitution, one recovers Eq. (3.1). It is con-
venient to rescale ϕ̂ ¼ ξ−1ϕ̂1 and ϕ̃ ¼ ξϕ̃1, with

ξ≡
�
1þ m2

ϕ

M2

�1=2

; ð3:4Þ

so that

L¼−
1

2
ϕ̂1□ϕ̂1− ϕ̃1□ϕ̂1þ

1

2
M2ξ2ϕ̃2

1−
1

2
ξ−2m2

ϕϕ̂
2
1þLint:

ð3:5Þ

Shifting ϕ̂1 ¼ ϕ1 − ϕ̃1 leads to the following form:

L ¼ −
1

2
ΦT

□KΦ −
1

2
ΦTMΦþ Lint; ð3:6Þ

where

Φ≡
�
ϕ1

ϕ̃1

�
; K ¼

�
1 0

0 −1

�
and

M ¼ ξ−2m2
ϕ

� 1 −1
−1 1 − ξ4 M2

m2
ϕ

�
: ð3:7Þ

FIG. 1. Full ϕ propagator.
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The kinetic matrix K has the form one expects in a Lee-
Wick theory, with one field having a canonically normal-
ized, but wrong-sign kinetic term. The mass squared matrix
M is off diagonal. A transformation of the form Φ ¼ RΦ0

with

R ¼
�
cosh θ sinh θ

sinh θ cosh θ

�
ð3:8Þ

will leave K unchanged but can be used to diagonalizeM.
We find that this is the case for

θ ¼ 1

2
ln

�
M2 −m2

ϕ

M2 þm2
ϕ

�
; ð3:9Þ

which leads to the simple form

R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 −m4

ϕ

q � M2 −m2
ϕ

−m2
ϕ M2

�
: ð3:10Þ

In terms of the mass eigenstate fields Φ0, the Lagrangian
becomes

L ¼ −
1

2
ΦT

0 ð□K0 þM0ÞΦ0 þ Lint; ð3:11Þ

where

Φ0≡
�
ϕ0

ϕ̃0

�
; K0¼

�
1 0

0 −1

�
and M0¼

�
m2

ϕ 0

0 −M2

�
:

ð3:12Þ

This result reproduces the same propagator poles expected
in the higher-derivative theory, Eq. (3.1).
The field redefinitions that led to Eq. (3.12) allow us to

rewrite ϕ̂ in terms of the mass eigenstate fields

ϕ̂ ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2

ϕ

q ½ϕ0 − ϕ̃0�: ð3:13Þ

The interaction assumed in our toy model, shown in
Eq. (2.7), then becomes

Lint ¼ −g
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −m2
ϕ

q vT0Φ0χ
�χ; ð3:14Þ

where we define vT0 ≡ ð1;−1Þ. In the Φ0 field basis, the
self-energy function can be written as a two-by-two matrix,
−iM2ðp2Þαβ, where the indices represent either ϕ0 or ϕ̃0.
The full matrix propagator takes the form

Dfull
F ðp2Þ ¼ i½p2K0 −M0 −M2ðp2Þ�−1: ð3:15Þ

However, the self-energy matrix in Eq. (3.15) can be
expressed in terms of the self-energy function that appears
in the higher-derivative theory:

M2ðp2Þαβ ¼ ½v0vT0 �αβ
M2

M2 −m2
ϕ

M̂2ðp2Þ: ð3:16Þ

One can understand Eq. (3.16) as follows: the one-χ-loop
amplitude following from Eq. (3.14) is the same as in the
higher-derivative theory, up to the prefactors appearing in
Eq. (3.16). Higher-loop contributions may involve addi-
tional internal χ loops, as well as ϕ0 and ϕ̃0 internal lines,
where the latter will always appear together and resum to
give the higher-derivative propagator for ϕ̂. Hence, the
function M̂2ðp2Þ is diagrammatically the same as the one
appearing in the higher-derivative theory. Using the vertex
in Eq. (3.14), the Feynman amplitude for the s-channel
process χ1χ1 → χ2χ2 is given by

iAðχ1χ1 → χ2χ2Þ

¼ −ig2M2

M2−m2
ϕ

vT0

×

�
p2K0−M0− ½v0vT0 �

M2

M2−m2
ϕ

M̂2ðp2Þ
�−1

v0: ð3:17Þ

With the matrix structure of Eq. (3.17) completely speci-
fied, one may evaluate the inverse and simplify. One finds

iAðχ1χ1 → χ2χ2Þ¼−g2
i

ðp2−m2
ϕÞð1−p2=M2Þ− M̂2ðp2Þ ;

ð3:18Þ

which precisely reproduces the form expected in the higher-
derivative formulation, following from Eq. (2.9), when
N ¼ 2. For larger N, it is clearly preferable to work directly
with the higher-derivative form of the loop-corrected propa-
gator, avoiding the field redefinitions and other avoidable
algebra that was illustrated by this example. We use the
higher-derivative approach in the section that follows.

IV. ENERGY DEPENDENCE OF AMPLITUDES

To evaluate a scattering amplitude that contains the full
propagator in Eq. (2.9), we must adopt an explicit form for
the self-energy functionM2ðp2Þ. In the theory presented in
Eq. (2.7), one finds at one-loop using dimensional regu-
larization1 that

1Alternatively, one could use a cutoff regulator with the on-
shell renormalization scheme discussed later, with no effect on
the results.
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M2ðp2Þ ¼ −
nχg2

16π2

Z
1

0

dx

�
2

ϵ
− γ þ ln 4π − ln

Δ
μ2

�

¼ −
nχg2

16π2

�Z
1

0

dx

�
2

ϵ
− γ þ ln 4π − ln

jΔj
μ2

�
þ iπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

p2

s
Θðp2 − 4m2

χÞ
�
; ð4:1Þ

where nχ ¼ 2 is the number of χ fields, Δ≡m2
χ − xð1 −

xÞp2 and Θ is the Heaviside step function. For p2 > 4m2
χ,

the self-energy has an imaginary part, which approaches a
constant value when p2 ≫ m2

χ . The logarithmic divergence
in Eq. (4.1) is absent in physical quantities after mass and
wave function renormalization.2 Since the quadratic oper-
ator in our theory takes the form of a polynomial in □, as
can be seen in Eq. (2.3), we can define our renormalized
theory as

LN ¼−
1

2
ϕð□þm2

ϕÞ
�YN−1

j¼1

�
1þ □

m2
j

�
−
XN
k¼0

δk□
k

�
ϕ−VðϕÞ;

ð4:2Þ

wheremϕ and theN − 1massesmj are physical masses and
the δk correspond to counterterms that will be determined
by renormalization conditions. It follows from Eq. (4.2)
that the renormalized propagator is

Dfull
F ¼ i

ðp2 −m2
ϕÞ
Q

N−1
j¼1 ð1 − p2=m2

jÞ −M2
rðp2Þ ; ð4:3Þ

where

M2
rðp2Þ ¼ M2ðp2Þ −

XN
k¼0

akp2k; ð4:4Þ

with ak ≡ −δkð−1Þk. This is represented diagrammatically
in Fig. 2. The coefficients ak need to be fixed by N þ 1
renormalization conditions. Taking into account that Lee-
Wick particles are unstable, we require that the location of
the propagator poles on the real axis correspond to the
physical masses mj, giving us N conditions

ReM2
rðm2

jÞ ¼ 0; j ¼ 0…N − 1; ð4:5Þ

where m0 ≡mϕ. Fixing the wave function renormalization
of the ϕ field in the higher-derivative theory gives us the
remaining condition. As ϕ is only relevant for internal lines
in the diagrams of interest to us, there are no problems

introduced by leaving the wave function renormalization at
any pole noncanonical, as no compensating factors need to
be introduced in the scattering amplitudes of interest.
Hence, we make a convenient choice for the remaining
condition:

ReM2
rð0Þ ¼ 0: ð4:6Þ

Note that this is equivalent to identifying g as the
physical coupling defined at the reference point p2 ¼ 0.
Equation (4.6) determines the coefficient a0 which absorbs
the divergent part of Eq. (4.1):

a0 ¼ −
nχg2

16π2

�
2

ϵ
− γ þ ln 4π − ln

m2
χ

μ2

�
: ð4:7Þ

With this choice, the remaining conditions, Eq. (4.5), may
be written

ReM2
rðm2

jÞ ¼
nχg2

16π2

Z
1

0

dx ln

 
jm2

χ − xð1 − xÞm2
j j

m2
χ

!

−
XN
k¼1

akm2k
j ¼ 0; ð4:8Þ

for j ¼ 0…N − 1. These N equations allow one to solve for
the remaining coefficients and therefore the full loop-
corrected propagator. Defining ReM2

rðm2
jÞ ¼ M̃2ðm2

jÞ−P
N
k¼1 akm

2k
j ¼ 0, we may write Eq. (4.8) in matrix form:

0
BBBBBB@

M̃2ðm2
0Þ

M̃2ðm2
1Þ

..

.

M̃2ðm2
N−1Þ

1
CCCCCCA

¼

0
BBBBBB@

m2
0 m4

0 � � � m2N
0

m2
1 m4

1 � � � m2N
1

..

.

m2
N−1 m4

N−1 � � � m2N
N−1

1
CCCCCCA

0
BBBBB@

a1
a2

..

.

aN

1
CCCCCA;

ð4:9Þ

FIG. 2. One-loop diagram corresponding to the ϕ self-energy
with counterterms proportional to akp2k.

2One could alternatively consider the possibility that the χ
sector is asymptotically nonlocal, which would lead to a much
more cumbersome, but finite, one-loop self-energy function.
Such a complication is unnecessary for the present study.
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or more compactly, M̃i ¼ mijaj. Hence, the desired coef-
ficients may be computed numerically by evaluating

ak ¼ ½m−1�kjM̃j: ð4:10Þ

Note that the ak for k ¼ 1…N are independent of 1=ϵ and
represent finite radiative corrections that vanish when g → 0.
As discussed earlier, we focus on the s-channel scatter-

ing process χ1χ1 → χ2χ2. The choice of different χ fields in
the initial and final state eliminates t- and u-channel
diagrams, which do not affect our qualitative conclusions
but would complicate the discussion. We plot the s
dependence of the scattering amplitudes for both P ¼ 1
and P ¼ 1.5, where P is the parameter appearing in
Eq. (2.5). Note that for P > 1, Eq. (2.5) implies that all
themj approach a common value asN → ∞. This is not the
case for P ¼ 1 when j is of order N. However, it was found
in Ref. [16] that even in this case loop amplitudes approach
the asymptotically nonlocal form, with Euclidean loop
momenta exponentially suppressed above an emergent
nonlocal scale. Hence, we present this case here as well.
Results for the scattering cross section, for a number of

choices for N (the total number of poles), and for P ¼ 1
and P ¼ 1.5 are shown in Fig. 3. The cross section results
are normalized to their values when

ffiffiffi
s

p
is set equal to the

nonlocal scale, i.e., s ¼ M2
nl. We see that the results for

P ¼ 1 and P ¼ 1.5 are qualitatively similar. The cross
section plots have a region in s immediately above the
nonlocal scale where the cross section grows, with the
growth gradually approaching the exponential form
expected in the nonlocal limiting theory as N becomes
large. The cross section levels off in the resonance region
above the mass of the first Lee-Wick particle, with hints of
resonant peaks visible at the smaller values of N and P, due
to the smaller overlap between adjacent resonances. We do
not expect the product in Eq. (4.3) to approximate an

exponential as the resonance region is approached for two
reasons: (1) mathematically, the product deviates from its
exponential limiting form as s increases at finite N, and
(2) this rapidly decreasing term is eventually surpassed by
the contribution from the self-energy term as s increases.
Above the resonance region, the result falls off as the
square of the highest power of momentum in the poly-
nomial that appears in the propagator denominator. Our
numerical results in Fig. 3 are consistent with these
expectations. We also note that the normalization factor
σðs0Þ asymptotes to a constant as N becomes large, so the
results shown do not hide any uncontrolled growth or
suppression.3

Previous work on asymptotic nonlocality focused on
loop amplitudes where momentum is Euclidean after Wick
rotation. At higher-loop order, the full propagator may
appear within other loops, which motivates us to check the
behavior of Eq. (4.3) for Euclidean momentum. In Fig. 4,
we plot the magnitude of the propagator for Euclidean
values of the s-channel momentum (normalized to the same
quantity evaluated at s ¼ −M2

nl), as a point of comparison.
We see that the results monotonically decrease with
increasing jsj and approach the exponential form of the
limiting theory with increasing N. This is qualitatively
consistent with the behavior encountered in the study of
loop amplitudes in Refs. [16–18].
Finally, it is interesting to note that in the cross section

examples we present in Fig. 3, the range in
ffiffiffi
s

p
that we

consider is relatively small, a factor of at most ∼4.5
between the smallest and largest values. Yet within this
range, one can see an energy dependence for the scattering

FIG. 3. Dependence of the scattering cross section for χ1χ1 → χ2χ2 with the squared center of mass energy s, normalized to the cross
section at s0 ¼ M2

nl for the values ofN and P shown. In units whereMnl ¼ 1, this example corresponds to the choices g ¼ 1,mϕ ¼ 0.01,
and mχ ¼ mϕ=4.

3For example, in units where Mnl ¼ 1 and s0 ¼ M2
nl, we find

numerically that σðs0Þ ¼ a0 þ b0=N þ c0=N2 þOð1=N3Þ, with
a0 ¼ 17.187, b0 ¼ 7.826, and c0 ¼ 5.526, in the case where
P ¼ 1, assuming the other parameter choices given in the caption
of Fig. 3.
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cross section that differs from what one might expect to find
in either a simple Lee-Wick theory or a ghost-free nonlocal
theory. This may make these class of theories phenomeno-
logically distinguishable from the other two in realistic
theories, at least in the case where it is possible experimen-
tally to probe the relevant range of center-of-mass energies.

V. CONCLUSIONS

Asymptotically nonlocal theories are a sequence of Lee-
Wick theories that approach a ghost-free nonlocal theory in
their low-energy limit [16–19]. The nonlocal modification
of the quadratic terms that is obtained in the limiting theory
suggests that a derived nonlocal regulator scale will emerge
in theories with a finite number of Lee-Wick particles, as
the appropriate limit is approached. This regulator scale is
hierarchically smaller than the mass of the lightest Lee-
Wick resonance, and its emergence has been explored in
past work on scalar field theories [16], gauge theories
[17,18], and in linearized gravity [19]. The regulator
appears because the nonlocal form factor in the limiting
theory provides a suppression factor for Euclidean momen-
tum, and hence a faster falloff in the Wick-rotated propa-
gators that appear in loop diagrams. For simple scattering
processes, where momentum transfers are not Euclidean,
one may worry that the effect of the form factor is to cause
all scattering amplitudes to diverge. This is not the case, for
the same reason that propagators are not infinite when the
center-of-mass energy sits exactly at a resonance value: the
growth is limited by the resonance width. In the present
case, we take the resonance widths into account by
including the self-energy in the propagator, working in
the higher-derivative form of the theory for arbitrary N. We
showed in the simple case where N ¼ 2 that the same
results are obtained whether one formulates the problem in
the higher derivative or Lee-Wick forms of the theory,
where the latter exchanges higher-derivative terms for

additional fields; however, the higher-derivative form is
easier to work with as the number of propagator poles N
becomes large.
With the self-energy included in the propagator in an

s-channel scattering process in a simple toy model, we
identified mass and wave function renormalization condi-
tions and explored how the propagator behaves as moved
towards the asymptotically nonlocal limit; we considered the
case where the squared momentum transfer s flowing
through the propagator is positive (relevant for scattering)
or negative (relevant for loop amplitudes due to Wick
rotation). For s > 0 we found that cross sections will grow
above the nonlocal scale, will plateau in the region of Lee-
Wick resonances, and then fall off at s larger than the heaviest
resonance. The region of growth gradually approaches an
exponential form as N increases and the maximum is
determined by the imaginary part of the self-energy in the
higher-derivative theory. On the other hand, for s < 0, one
finds monotonic suppression as jsj becomes large, with the
magnitude of the propagator approaching a dying exponen-
tial in the sameway.4 This is consistent with the behavior that
leads to an emergent regulator scale in loop amplitudes
discussed in our earlier work [16–19].
The growth of cross sections with center-of-mass energy

followed by a broad resonant plateau and then subsequent
falloff is neither the qualitative behavior of a simple Lee-
Wick theory nor a ghost-free nonlocal theory; this is not
surprising since the model we study interpolates between
the two. Qualitatively, the first signs of growth in the cross
section due to emergent nonlocality might not look very
different at a collider experiment (assuming a realistic
theory) from what one might expect from the tail of a heavy
resonance whose mass is just outside an experiment’s

FIG. 4. Dependence of the magnitude of the full propagator, at one loop, for Euclidean s, normalized to the same quantity evaluated at
sE ¼ −M2

nl for the values of N and P shown. In units where Mnl ¼ 1, this example corresponds to the choices g ¼ 1, mϕ ¼ 0.01,
and mχ ¼ mϕ=4.

4In fact, one can show that the deviation of the finite-N result
from the exponential limiting form is what one would expect for
an exponential that is approximated by a product, as in Eq. (2.3).
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kinematic reach. Since such heavy resonances are not
observed, the bounds on the emergent nonlocality scale
are likely in the multi-TeV range. An exact bound would
require a dedicated collider analysis in a realistic theory,
which may be of interest for future work.
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