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In this work, we explore the low-energy effects induced from the integration of the heavy Higgs boson
modes H, A, and H� within the two-Higgs-doublet model (2HDM) by assuming that the lightest Higgs
boson h is the one observed experimentally atmh ∼ 125 GeV. Wework within the context of effective field
theories, focusing on the Higgs effective field theory (HEFT), although some comparisons with the
Standard Model effective field theory case are also discussed through this work. Our main focus is placed in
the computation of the nondecoupling effects from the heavy Higgs bosons and the capture of such effects
by means of the HEFT coefficients which are expressed in terms of the input parameters of the 2HDM. Our
approach to solve this issue is by matching the amplitudes of the 2HDM and the HEFT for physical
processes involving the light Higgs boson h in the external legs instead of the most frequently used
matching procedure at the Lagrangian level. More concretely, we perform the matching at the amplitudes

level for the following physical processes, including scattering and decays: h → WW� → Wff̄0,
h → ZZ� → Zff̄, WW → hh, ZZ → hh, hh → hh, h → γγ, and h → γZ. One important point of this
work is that the matching is required to happen at low energies compared to the heavy Higgs boson masses,
and these are heavier than the other particle masses. The proper expansion for this heavy mass limit is also
defined here, which provides the results for the nondecoupling effects presented in this work. We finally
discuss the implications of the resulting effective coefficients and remark on the interesting correlations
detected among them.
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I. INTRODUCTION

The use of effective field theories (EFTs) to describe new
physics effects from scenarios beyond the Standard Model
(BSM) is nowadays a powerful and convenient tool in
many aspects—first, because they are built mainly from
symmetry requirements, therefore providing a model-in-
dependent framework, and, second, because the absence of
new particles discoveries at the experiments indicates no
preference from data for any particular fundamental under-
lying theory to describe the BSM physics. In the EFT
context, the information on the new physics is exclusively

contained in the specific values of the effective coefficients
(named in different ways in the literature: Wilson coef-
ficients, effective parameters, effective low-energy con-
stants, etc.). On the other hand, the direct comparison with
data of the predictions from EFTs for observable quantities
is a valuable task and of great interest nowadays. In
particular, we focus here on the EFTs that describe the
BSMHiggs boson physics and that contain the Higgs boson
observed experimentally with a mass value of mh ∼
125 GeV [1–3]. The two most popular EFTs are the
Standard Model effective field theory (SMEFT) and the
Higgs effective field theory (HEFT); see, for instance,
the reviews [4,5]. In contrast to the so-called κ framework,
which is usually preferred by the experimental community to
constraint the BSM effective couplings (also called anoma-
lous effective couplings), these two gauge theories are well-
defined quantum EFTs which are built under the gauge
symmetry guiding principle. SMEFT and HEFT preserve
both the gauge symmetries of the SM; i.e., they are both built
from SUð3ÞC × SUð2ÞL × Uð1ÞY gauge-invariant effective
operators and both are renormalizable theories, using
the more relaxed definition of renormalization in EFTs.
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This accounts for renormalization in the truncated series of
effective operators for the given EFT.
In this work, we choose the HEFT to describe the BSM

Higgs physics, because it is better suited for scenarios
where the underlying UV theory generating such EFT at
low energies could be strongly interacting. By strongly
interacting dynamics, here we simply mean UV scenarios
that include the possibility of large couplings, in contrast to
weakly interacting scenarios where all couplings are small.
We will, in particular, focus here on the bosonic part of the
HEFTwhose effective Lagrangian was called in its origins
electroweak chiral lagrangian (EChL), in close analogy to
the chiral Lagrangian (ChL) and chiral perturbation theory
(ChPT) for low-energy QCD. Similarly to ChPT being the
proper tool to describe the low-energy hadronic physics
with QCD as the UV theory containing large couplings,
the HEFT is the proper tool to describe the low-energy
Higgs physics from the given UV theory containing large
couplings.
Ourmain interest here is the use ofHEFTas the proper tool

to capture all the potential nondecoupling effects from the
heavy BSM Higgs bosons in the case where the UV under-
lying theory is the well-known two-Higgs-doublet Model
(2HDM); for a review, see, for instance, [6,7]. Our single
assumption for the 2HDM is the following: Out of the five
physical Higgs bosons, the lightest one h is identified with
the observed Higgs particle, and the other fourH,H�, and A
are assumed to be heavier than the electroweak (EW) scale,
namely, heavier than v ¼ 246 GeV. Given the present
constraints from all experimental searches, this seems a very
reasonable assumption. Then, under this assumption, the
immediate question comes: What are the low-energy effects
from the integration out of these heavy modes (tree and one-
loop level) that could be observed in an experiment? In
general, if the heavy modes leave nondecoupling effects in
the low-energy observables, they could be more easily
detected, in contrast to the so-called decoupling effects that
leave weaker hints in the low-energy physics. To be more
precise, the definition of decoupling versus nondecoupling
effects in the low-energy physics is well established in the
famous decoupling theorem of Appelquist and Carazzone
[8]. In short, it is a statement on the behavior with the heavy
particle mass of the one-particle irreducible (1PI) proper
verticeswith light particles in the external legs after the heavy
particles have been integrated out (at any order). It says that
there is decoupling when all these heavy particle effects can
be absorbed into redefinitions of the couplings, parameters,
and fields of the low-energy theory (i.e., renormalizing these
quantities) or else they are suppressed by inverse powers
of the heavy masses. In contrast, when this behavior does
not happen, and the heavy particle effects in the physical
observables do not decrease as inverse powers of the heavy
masses (hence, leading to hints at low energies), they are said
to be nondecoupling. The most clear examples of non-
decoupling effects appear in theories with spontaneous

symmetry breaking and, in particular, when the particle
masses are generated by a Higgs mechanism, providing a
relation between the generated mass, the coupling, and the
vacuum expectation value which defines the broken phase.
For instance, within the SM itself, it applies to the Higgs
boson case with self-coupling and mass being related by
λ ¼ m2

h=ð2v2Þ. It also happens in the top quark case with
Yukawa coupling and mass being related by yt ¼

ffiffiffi
2

p
mt=v.

These two particles leave nondecoupling effects (i.e., non-
decreasing with inverse powers of their masses) in several
observables at low energieswhich indeed have been explored
in past experiments. For instance, in Δρ, which defines the
radiative corrections to the W and Z boson mass relation,
ρ ¼ m2

W=ðm2
Z cos

2 θWÞ, with respect to the tree-level pre-
diction ρtree ¼ 1. These and other nondecoupling effects
from the heavy SMHiggs in the 1PI one-loop functions with
external EW gauge bosons were computed long ago and
collected in a set of effective coefficients of the EChL
in [9,10]. Similarly, we aim to explore here the 2HDM case
with the BSM heavy Higgs bosons leaving nondecoupling
effects in low-energy observables which can be collected in a
set of effective coefficients of the HEFT.
It should be noticed that these kind of BSM nondecou-

pling effects cannot be encoded within the SMEFT frame-
work, since, by construction, the effective operators
describing the BSM Higgs physics at low energies carry
Wilson coefficients that are suppressed by inverse powers
of the UV energy scale. Therefore, in the present case of
integrating out the 2HDM heavy Higgs bosons, they lead to
decoupling effects that go as inverse powers of the heavy
Higgs boson massesmheavy, i.e.,∼ð1=m2

heavyÞ for dimension
six operators, ∼ð1=m4

heavyÞ for dimension eight operators,
and so on. For instance, in [11], the SMEFT dimension six
low-energy effects for 2HDM are derived at the Lagrangian
level, and they find such decoupling behavior with the
heavy mass. The necessity to move beyond dimension six
interactions within the SMEFT for any scenario that
contains Higgs boson mixing and the inclusion of dimen-
sion eight operator effects are discussed in [12–14], where
they also find such decoupling behavior. Then, within the
SMEFT, these decoupling effects from the heavy Higgs
bosons disappear, in the heavy mass limit, and the 2HDM
converges to the SM. The case of the HEFT is different,
and the convergence of the 2HDM to the SM is reached
in a different way, as will be discussed here. The relation
between the HEFT and the SMEFT is by itself an
interesting field of research, and it has been considered
under different approaches. For instance, a geometrical
approach and the issue of nondecoupling effects described
by means of the HEFT, but not for the SMEFT, has also
been considered in [15–20]. Some relations between the
SMEFT and the HEFT, within the context of the 2HDM,
have also been considered recently in [21]. They require
matching at the Lagrangian level and also require decou-
pling and perturbativity as a principle guide, arriving to
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results for the amplitudes were they find no relevant
differences among HEFT and SMEFT. In summary, all
effects from the 2HDM heavy Higgs bosons being
described by EFTs in the previous works are found to
be decoupling at low-energy observables. This is in contrast
with our study here.
In this work, we will present a computation of the

nondecoupling effects from the heavy Higgs bosons of the
2HDM by matching the predictions at the amplitude level
of the 2HDM with the predictions from the HEFT,
considering the leading effects in each observable, at either
the tree level or the one-loop level depending on the
process. The result of this matching will provide the values
of the HEFT effective coefficients containing these non-
decoupling effects. It should be noticed that, a priori, a
nondecoupling behavior is expected to happen in the
2HDM case, because the triple Higgs couplings can have
large values due to the relations of these couplings with the
heavy masses. For instance, λhHþH− can be large for heavy
mH� , since the derived λhHþH− in terms of the physical
masses contains a Oðm2

H�=v2Þ term. One crucial difference
with respect to other approaches is that we have chosen
here to do this matching of predictions at the amplitude
level, i.e., with observable and measurable physical quan-
tities. In general, there are three alternatives to do matching
among the UV theory and the low-energy EFT, and they are
not totally equivalent. The matching can be done (i) at the
Lagrangian level, (ii) at the effective action level (or,
equivalently, identifying the full set of 1PI functions),
and (iii) at the amplitude level. The simplest and most
frequently used method in the literature is the first one. The
most complete framework for matching is the second one,
since it implies the identification in the two theories of all
the 1PI renormalized functions with external light particles,
being generically off shell. However, we have preferred to
match amplitudes (with external physical particles on
shell), since we believe it is more physical, free from
ambiguities in field redefinitions, choice of operator basis,
and renormalization prescriptions. Furthermore, it does
not require the use of pseudo-observables (like in the κ
framework) to connect with data, since the prediction of
the amplitude is directly comparable with data. By requir-
ing the matching at the amplitude level between the
predictions from the HEFT and the 2HDM with large
heavy Higgs masses and solving these matching equations,
we will be able to extract the values of the HEFT
coefficients in terms of the 2HDM input parameters.
These are chosen here to be the physical masses mh,
mH, mH� , and mA, the ratio of the two Higgs vacuum
expectation values (vevs), tan β, the parameter cosðβ − αÞ,
and the Z2 soft-breaking mass parameter m12. To be more
precise, we do the matching of the 2HDM and HEFT
amplitudes after performing a large mass expansion of
the 2HDM amplitude in terms of the inverse powers of
the heavy Higgs boson masses. Notice that this is a

well-defined and convergent expansion, as will be shown
here. We have selected to match the amplitudes of some
specific processes (scattering and decays) involving the
light Higgs boson in the external legs which contain
the most relevant nondecoupling effects. Concretely,
h→WW�→Wff̄0, h→ZZ�→Zff̄, WW→hh, ZZ→hh,
hh → hh, h → γγ, and h → γZ. The explicit computations
of the 2HDM amplitudes for these processes will be
presented and discussed here. Some of these processes
have also been considered within the HEFT previously
in the literature for different purposes. In particular,
WW → hh, h → γγ, and h → γZ have been computed
within the next-to-leading-order (NLO) HEFT including
renormalization of the one-loop corrections and doing the
computation in a generic Rξ gauge [22–24]. The cases of
WW → hh and hh → hh scattering processes have also
been studied within the NLO HEFT in [5,25–28]. The
Higgs decays h → WW� → Wff̄0, h → ZZ� → Zff̄,
h → γγ, and h → γZ and the vector boson fusion scattering
VV → hh have also been studied within the NLO HEFT
in [29] focusing in the implications for LHC physics. In the
present paper, it will be shown that, in order to capture the
leading nondecoupling effects from the 2HDM heavy
Higgs bosons in these processes, it is sufficient to do the
matching at Oðℏ0Þ in all cases except in the h → γγ and
h → γZ decays, where the matching must be done atOðℏ1Þ.
Once we solve analytically these matching equations and
find the expressions of the effective coefficients in terms of
the 2HDM input parameters, wewill analyze the predictions
for those coefficients, both analytically and numerically. We
will do that analysis in several interesting scenarios that,
following the usual terminology, we classify as (i) alignment
[cosðβ − αÞ ¼ 0], (ii) misalignment [cosðβ − αÞ ≠ 0], and
(iii) quasialignment [cosðβ − αÞ ≪ 1]. In the final part of this
work, we will discuss on the interesting correlations found
here among the HEFT coefficients in these three different
limits.
The paper is organized as follows: Section II provides a

brief introduction to the HEFT focusing on its comparison
to the SMEFT approach. The relevant part of the HEFT
Lagrangian for the present computation is also included in
this section. Section III contains the relevant details of the
2HDM, in particular, the expressions of the derived triple
Higgs couplings in terms of the selected input parameters
of this model. The analytical expressions of the amplitudes
for the considered processes in the SM, HEFT, and 2HDM
are collected in Sec. IV. The matching procedure is
described in Sec. V. The way to the solution for the
HEFT coefficients in terms of the input 2HDM parameters
that summarizes the nondecoupling effects in the heavy
mass limit is also included in this section. Also, the
correlations found among the HEFT coefficients from
the 2HDM are presented in this section. The numerical
analysis of the previous results are presented in Sec. VI.
Finally, we conclude in Sec. VII. The details of the
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Feynman rules and the one-loop functions are given in the
Appendixes.

II. HEFT VERSUS SMEFT

As stated above, we have focused in this paper on the
HEFT. However, before reviewing the details of the HEFT
Lagrangian that are needed for the present computation,
we would like first to comment shortly on the most
relevant aspects that crucially differentiate HEFT versus
SMEFT. These differences will allow us to better under-
stand the decoupling versus the nondecoupling effects
of the heavy Higgs boson modes in the two low-energy
theories.
The main differences between these two EFTs can be

summarized as follows. (i) In the SMEFT the Higgs boson
is introduced as a component of a SUð2Þ doublet, whereas
in the HEFT it is introduced as a singlet. (ii) The would-be
Goldstone bosons (GBs) associated to the EW symmetry
breaking, SUð2ÞL ×Uð1ÞY → Uð1Þem, in the SMEFT are
identified with the other components in this doublet,
therefore completing together the simplest linear realiza-
tion. In contrast, in the HEFT, the GBs transform non-
linearly under the global symmetry of the scalar sector
SUð2ÞL × SUð2ÞR, usually called the EW chiral symmetry,
and they are frequently parametrized by an exponential
function. (iii) The ordering of the effective operators in the
SMEFT is done in terms of the canonical dimension
(cd ¼ 4; 6; 8, etc.), whereas in the HEFT this ordering is
done in terms of the chiral dimension (chd ¼ 2; 4, etc.).
This different counting (cd versus chd) leads to a different
classification in both theories of what is the leading order
(LO) versus what is the NLO. The ordering in cd implies
that the LO SMEFT Lagrangian with cd ¼ 4 is the SM
Lagrangian, the NLO SMEFT includes the cd ¼ 6 oper-
ators with coefficients being suppressed by inverse powers
of the ultraviolet (UV) Λ scale, as ∼Λ−2, and so on. In
contrast, the HEFT reaches the SM for an specific choice of
the effective coefficients in the LO Lagrangian with chd ¼
2 and setting the NLO effective coefficients to zero.
(iv) The predictions for observables in both EFTs are also
very different. In particular, the HEFT, due to the chd
counting (involving derivatives and soft masses), provides
predictions for the amplitudes of physical processes that are
organized typically as expansions in powers of the relevant
process energy (and powers of the soft masses involved).
This is not the case in the SMEFT, which, in contrast,
provides predictions for the amplitudes that are organized
in terms of the expansion in inverse powers of Λ. (v) The
renormalization programs in both EFTs are also very
different. In the SMEFT, all the operators are renormalized
together, without doing any distinction in the renormaliza-
tion procedure between the LO and the NLO contributions.
In contrast, in the HEFT, there is a hierarchy in the
renormalization procedure between the LO and the NLO
contributions. In the chiral counting the divergent loops

computed with the LO Lagrangian (chd ¼ 2) are renor-
malized by the effective coefficients of the NLO
Lagrangian (chd ¼ 4), providing a well-defined framework
for renormalization to one-loop order (like in ChPT), with a
marked hierarchy LO/NLO and where the relevant scale in
this loop counting is given typically by 4πv ∼ 3 TeV. The
one-loop renormalization program in the bosonic sector of
the HEFT has been studied using a Rξ general covariant
gauge in [22–24]. The renormalization in the SMEFT, via
the renormalization group equations, was studied in [30–32].
The SMEFT for Rξ gauges was studied in [33,34]. Some
illustrative discussion on the matching at the 1PI functions
level can also be found in [35]. On the other hand, the
matching of tree-level amplitudes predicted by the HEFT
and the SMEFT also leads to some relations between the
HEFT and the SMEFT coefficients [36]. But all these
attempts of matchings among the HEFT and the SMEFT
provide just partial relations among these two theories,
since they assume a specific given order in the expansion of
both theories (LO, NLO, etc.) and also a given order in the
loop expansion [i.e., in the OðℏnÞ expansion], so they are
not complete comparisons. Furthermore, to conclude that
one theory contains the other one should proceed with a
complete comparison of the full quantum EFTs (i.e., not
truncated, and to all orders in the loop expansion). But this
is a difficult task.
Next, we proceed with the short summary of the needed

ingredients of the HEFT Lagrangian for the present
computation. For this presentation and the notation, we
follow closely [22–24]. First, we recall that in the bosonic
sector the active degrees of freedom are the EW gauge
bosons Bμ and Wa

μ (a ¼ 1; 2; 3), their corresponding GBs
πa (a ¼ 1, 2, 3), and the Higgs boson h. The Lagrangian is
invariant under EW gauge, SUð2ÞL ×Uð1ÞY , transforma-
tions, and the scalar sector of the EChL has an additional
invariance under the EW chiral SUð2ÞL × SUð2ÞR sym-
metry. The Higgs boson field is invariant under all
transformations; i.e., it is a singlet of the EW chiral
symmetry and the EW gauge symmetry. Therefore, the
interactions of h are introduced via generic polynomials,
since there are not limitations from symmetry arguments.
On the other hand, the GBs πa (a ¼ 1; 2; 3) transform
nonlinearly under this EW chiral transformation. Then
they are introduced in a nonlinear representation via the
exponential parametrization, by means of the matrix U,
which transforms linearly under the EW chiral trans-
formations:

UðπaÞ ¼ eiπ
aτa=v; ð2:1Þ

where τa, a ¼ 1; 2; 3, are the Pauli matrices and
v ¼ 246 GeV. In addition, the EW gauge bosons are
introduced by the gauge invariance principle, and they
appear in the following combinations:
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B̂μ ¼ g0Bμτ
3=2; Ŵμ ¼ gWa

μτ
a=2;

DμU ¼ ∂μU þ iŴμU − iUB̂μ; B̂μν ¼ ∂μB̂ν − ∂νB̂μ;

Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�: ð2:2Þ

In the chiral dimension counting, all derivatives and
masses count as momentum:

∂μ; mW; mZ; mh; gv; g0v; λv ∼OðpÞ: ð2:3Þ

The HEFT organizes the effective operators in the EChL
into terms with increasing chiral dimension, starting at
chd ¼ 2, then chd ¼ 4, and so on. Notice again that this
chiral counting differs from the usual SMEFT expansion
with operators having growing canonical dimension, start-
ing at cd ¼ 4, then cd ¼ 6: etc., and terms suppressed with
the heavy scale Λ.
For the bosonic sector of the HEFT, we consider the

leading-order Lagrangian, with chiral dimension two, L2,
and the next-to-leading-order one with chiral dimension
four, L4:

LHEFT ¼ LEChL ¼ L2 þ L4: ð2:4Þ

First, the leading-order Lagrangian is given by

L2 ¼
v2

4

�
1þ 2a

h
v
þ b

�
h
v

�
2

þ � � �
�
Tr½DμU†DμU�

þ 1

2
∂μh∂μh − VEChLðhÞ −

1

2g2
Tr½ŴμνŴ

μν�

−
1

2g02
Tr½B̂μνB̂

μν� þ LGF þ LFP: ð2:5Þ

Here, VEChLðhÞ is the EChL Higgs potential, and LGF and
LFP are the gauge-fixing and Faddeev-Popov Lagrangian,
respectively. The dots stand for terms that do not enter in
our processes of interest, neither at tree level nor at one-
loop level. The EChL Higgs potential in L2 is given by

VEChLðhÞ ¼
m2

h

2
h2 þ κ3λvh3 þ κ4

λ

4
h4; ð2:6Þ

where m2
h ¼ 2λv2 as in the SM and values for κ3 and κ4

different from 1 encode the physics beyond SM.
We implement the linear covariant Rξ gauges [37] with

the gauge-fixing Lagrangian, given by

LGF ¼ −FþF− −
1

2
F2
Z −

1

2
F2
A

¼ −
1

ξ
ð∂μWþ

μ − ξmWπ
þÞð∂μW−

μ − ξmWπ
−Þ

−
1

2ξ
ð∂μZμ − ξmZπ

3Þ2 − 1

2ξ
ð∂μAμÞ2; ð2:7Þ

and the corresponding Faddeev-Popov Lagrangian [38],
given by

LFP ¼
X

i;j¼þ;−;Z;A
c̄i
δFi

δαj
cj; ð2:8Þ

where ξ is the generic gauge-fixing parameter of the Rξ

gauges, cj are the ghost fields, and αj (j ¼ þ;−; Z; A) are
the corresponding gauge transformation parameters. Notice
that LGF in Eq. (2.7) is the same as in the SM and for the
2HDM. Formally, the expressions in Eq. (2.8) are also the
same as in the SM and 2HDM. However, the Higgs and
GBs transformations in this nonlinear EFT differ from the
corresponding ones in the SM, yielding to different
interactions among those scalars and the ghost fields.
In the case that a given observable require a one-loop

computation with the L2 terms, the L4 operators must be
included in order to be consistent with the chiral counting
and also to use the coefficients in L4 as counterterms to
renormalize the divergences generated by the loops from
L2, following the usual procedure with chiral Lagrangians.
For the present work, we will compute the one-loop Higgs
decays h → γγ and h → γZ; then the relevant terms of the
next-to-leading-order contributions are included in the
following Lagrangian [22–24]:

L4 ¼ −
�
aHBB

h
v
þ aHHBB

h2

v2

�
Tr½B̂μνB̂

μν�

−
�
aHWW

h
v
þ aHHWW

h2

v2

�
Tr½ŴμνŴ

μν�

þ
�
aH1

h
v
þ aHH1

h2

v2

�
Tr½UB̂μνU†Ŵμν� þ � � � ; ð2:9Þ

where the relevant coefficients for the Higgs decays under
consideration, h → γγ and h → γZ, are given in terms of
the coefficients in Eq. (2.9) by the following relations:

ahγγ ¼ aHBB þ aHWW − aH1; ð2:10Þ

ahγZ ¼ 1

c2w

�
−aHBBs2w þ aHWWc2w −

1

2
aH1ðc2w − s2wÞ

�
:

ð2:11Þ

These coefficients in Eq. (2.9) and others (see Refs. [22–24])
also enter in other observables when they are predicted at
the one-loop level. In addition to the mentioned scattering
amplitudes WW → hh and ZZ → hh, these coefficients
will also enter in other vector boson scattering amplitudes
for double Higgs production when computed to one loop
like γγ → hh and γZ → hh. Nevertheless, we do not study
these one-loop amplitudes here, since the focus of our
interest is to capture the most relevant nondecoupling
effects from the heavy modes of the UV theory, which,
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as we will see, are summarized in the tree-level coefficients
from L2, a, b, κ3, and κ4 and in the NLO coefficients from
L4, ahγγ , and ahγZ.
One important point to recall is the way the SM is

embedded within the HEFT. It is clear that the comparison
cannot be done at the Lagrangian level, since within the SM
the Higgs field is introduced into a doublet, whereas in the
HEFT it is a singlet. Thus, the Lagrangians themselves are
not directly comparable. The Feynman rules for the
couplings with scalar fields (h and the GBs) are also
different in the HEFT and the SM due to the nonlinear
parametrization used in the HEFT. Thus, the comparison
between the SM and the HEFT should be done via their
predictions for the observables instead of via their corre-
sponding Lagrangians. Specifically, in order to reach the
SM predictions from the HEFT predictions, one has to fix
the HEFT coefficients as follows: (i) The LO coefficients
must be set to the following particular values: a ¼ 1, b ¼ 1,
κ3 ¼ 1, and κ4 ¼ 1. Equivalently, if we write the coef-
ficients in terms of the corresponding Δ’s, which are
defined by a ¼ 1 − Δa, b ¼ 1 − Δb, κ3 ¼ 1 − Δκ3, and
κ4 ¼ 1 − Δκ4, then the SM predictions can be obtained
from the HEFT predictions by setting Δa ¼ 0, Δb ¼ 0,
Δκ3 ¼ 0, and Δκ4 ¼ 0. Additionally, all the NLO coef-
ficients must also be set to zero; i.e., generically, ai ¼ 0 for
all coefficients in L4.
We have summarized the Feynman rules of the HEFT

that are relevant for the present computation in Table I in
Appendix A (for a full set see Refs. [22–24]). The
corresponding Feynman rules of the SM are also included
for comparison.
The embedding of the SM into the SMEFT is very

different than in the HEFT, since the SM Lagrangian is
explicitly included in the SMEFT Lagrangian as its first
term contribution of canonical dimension 4:

LSMEFT ¼ LSM þL6 þL8 þ � � � ; with Ld ¼
ci

Λd−4O
ðdÞ
i :

ð2:12Þ

And both the SM and the SMEFT place the Higgs boson
into the standard Higgs doublet. It is usually parametrized
as follows:

Φ ¼
� −iπþ

vþh−iπ3ffiffi
2

p

�
¼

� Gþ

vþhþiG0ffiffi
2

p

�
: ð2:13Þ

Thus, to reach the SM predictions from the SMEFT
predictions, this can be done at the Lagrangian level, by
simply setting all Wilson coefficients ci to zero in the
Lagrangian terms with canonical dimension 6, 8, etc.
Finally, before ending this section, it is worth recalling

the previous relations found in [36] among the HEFT and
SMEFT coefficients by the same procedure that we choose
in the present paper of matching amplitudes. This matching

was done for the particular scattering process WW → hh,
and the assumption for both EFTs was to work at the tree
level and with the truncated Lagrangian L2 þ L4 for the
HEFT and the truncated Lagrangian up to cd ¼ 8 for the
SMEFT. The result of this matching provides interesting
relations among the effective coefficients of both theories.
These include the following relations (for a full set see
Ref. [36]):

ΔajSMEFT ¼ −
1

4

v2

Λ2
δcϕD;

ΔbjSMEFT ¼ −
v2

Λ2
δcϕD;

Δκ3jSMEFT ¼ −
5

4

v2

Λ2
δcϕD;

aHWW jSMEFT ¼ −
v2

2m2
W

v2

Λ2
cϕW;

aHHWW jSMEFT ¼ −
v2

4m2
W

v2

Λ2
cϕW; ð2:14Þ

where the definitions for the Wilson coefficients ci above
can also be found in the mentioned reference (there, a
different notation ai was used instead of the ci here). It is
interesting to note that the above relations among the
coefficients of the HEFT and the SMEFT occur across the
different orders in both EFTs. In particular, LO coefficients
of chd ¼ 2 in the HEFT appear related to coefficients of
cd ¼ 6 in the SMEFT, NLO coefficients of chd ¼ 4 in the
HEFT are related to coefficients of cd ¼ 6 in the SMEFT
(and also to the coefficients of cd ¼ 8), and so on. This also
implies that capturing the nondecoupling effects using the
HEFT, i.e., effects nonsuppressed by inverse powers of
the heavy mass of the UV underlying theory, cannot be
reproduced by the SMEFT, since by construction all the
UVeffects in the SMEFT are suppressed by inverse powers
of the heavy scale; i.e., they produce contributions in the
amplitudes of Oð1=Λ2Þ, Oð1=Λ4Þ, etc., and they all
decouple for large Λ. Finally, it is worth mentioning that
the previous values in Eq. (2.14) also indicate the existence
of correlations among HEFT coefficients when they are
matched to the SMEFT. In particular, in the subset given
above, they are correlated as ΔbjSMEFT ¼ 4ΔajSMEFT and
aHWW jSMEFT ¼ 2aHHWW jSMEFT.

III. HEAVY HIGGS BOSONS WITHIN THE 2HDM

In this section, we recall the basic aspects of the 2HDM
that are relevant for the present computation. The 2HDM is
the simplest extension of the SM that includes two Higgs
doublets, Φ1 and Φ2, instead of one doublet Φ. These two
doublets are linear parametrizations of the four complex
scalar fields (hence, eight real scalar fields) defining the
2HDM scalar sector. They are usually defined as
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Φ1¼
� ϕþ

1

1ffiffi
2

p ðv1þρ1þ iη1Þ
�
; Φ2¼

� ϕþ
2

1ffiffi
2

p ðv2þρ2þ iη2Þ
�
;

ð3:1Þ

where v1 and v2 are the real VEVs acquired by the fieldsΦ1

and Φ2, respectively, with tan β ¼ v2=v1, and they satisfy
the relation v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv21 þ v22Þ

p
, where v ¼ 246 GeV is the

SM VEV. The eight degrees of freedom above, ϕ�
1;2, ρ1;2,

and η1;2, give rise to three Goldstone bosonsG� andG0 and
five massive physical scalar fields: two CP-even scalar
fields h and H, one CP-odd one A, and one charged pair
H�. Here, the mixing angles α and β diagonalize the CP-
even and -odd sectors, respectively. These rotations define
the physical mass eigenstates h, H, A, and H� in terms of
the EW interaction eigenstates (or the other way around)
and are given by

ϕ�
1 ¼ cos βG� − sin βH�;

ϕ�
2 ¼ sin βG� þ cos βH�;

η1 ¼ cos βG0 − sin βA;

η2 ¼ sin βG0 þ cos βA;

ρ1 ¼ cos αH − sin αh;

ρ2 ¼ sin αH þ cos αh:

The relations among the two usual notations for the GBs
inside the doublets are as in Eq. (2.13), i.e., G� ¼ −iπ�
and G0 ¼ −π0.
The self-interactions among the above scalar fields are

provided by the 2HDM potential. Since a general potential
with two Higgs doublets can lead to flavor-changing
neutral currents at the tree level, which are strongly
discouraged by experimental measurements, we will
impose a Z2 symmetry [39,40] meaning invariance under
Φ1 → Φ1 and Φ2 → −Φ2. Furthermore, we will allow this
Z2 symmetry to be only softly broken by the parameterm2

12,
which has dimensions of mass squared. Thus, the relevant
potential for the present work of the CP-conserving 2HDM
with the Z2 soft breaking included, expressed in terms of
the two doublets Φ1 and Φ2, is given by [6,7,39]

V2HDMðΦ1;Φ2Þ ¼m2
11ðΦ†

1Φ1Þ þm2
22ðΦ†

2Φ2Þ−m2
12ðΦ†

1Φ2

þΦ†
2Φ1Þ þ

λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ λ5
2
½ðΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2�: ð3:2Þ

After the EW symmetry breaking, SUð2ÞL ×Uð1ÞY →
Uð1Þem, the minimization conditions for the above
2HDM potential lead to the existence of five physical

Higgs bosons: two CP-even Higgs bosons h and H, one
CP-odd Higgs boson A, and two charged Higgs bosonsH�
with masses given by mh, mH (with mh < mH), mA, and
mH� , respectively. In addition, the three would-be
Goldstone bosons disappear from the physical spectrum
and provide the needed physical masses for the EW gauge
bosons mW and mZ. In this work, we will identify the h
state with the Higgs boson discovered in the LHC with a
mass mh ¼ 125 GeV [1–3]. The other Higgs bosons will
be assumed here to be heavier than the EW scale v, a
hypothesis which is well justified given the present tight
experimental constraints [41,42].
The previous potential also contains the self-interactions

among the scalars of the 2HDM which are very relevant for
the present work. In addition, the interactions of the Higgs
bosons with the gauge bosons are given by the gauge-
invariant Lagrangian built with the covariant derivatives of
the two doublets and the interactions with fermions are given
by the Yukawa part of the 2HDMLagrangian. They are well
known in the literature, and we do not explicit them here for
shortness (see, for instance, [6,7,39]). The set of Feynman
rules within the 2HDM that are relevant for the present
computation are summarized in Table I in Appendix A.
In order to make predictions for observables, one may

use different choices for the 2HDM input parameters. Here,
since we are going to consider later the hypothesis of very
heavy BSM Higgs bosons and to deal with the expansion at
large heavy masses, we believe that the most convenient
choice for the input parameters should contain the physical
Higgs masses. Concretely, we choose in this work the
following 2HDM input parameters:

v; mh; mH; mA; mH� ; tβ; cβ−α; m12; ð3:3Þ

where we have adopted the shorthand notation cos x ¼ cx,
sin x ¼ sx, and tan x ¼ tx. All the remaining 2HDM
parameters and couplings are, therefore, derived quantities.
The choice of cβ−α as an input parameter is motivated by

the so-called alignment limit, defined as cβ−α ¼ 0. Under
this limit, the interactions of h with the gauge bosons and
with the fermions recover their SM values. For example,
the h (H) coupling to WW and ZZ relative to the SM is
given by sβ−α (cβ−α). Currently, the measurements of the
Higgs boson signal strengths are compatible with the SM
prediction (within the experimental uncertainties), and,
therefore, the parameter cβ−α is constrained to be not far
away from the alignment limit (see, for instance, [41,42]).
This motivates our posterior study being classified into
three qualitative different scenarios defined as (i) alignment,
defined by setting cβ−α ¼ 0, (ii) misalignment, defined by
arbitrary cβ−α ≠ 0, and (iii) quasialignment, defined by
cβ−α ≪ 1. As we will see in Sec. V, the solutions for the
matching will differ in these three situations.
It is convenient to have in mind that taking the alignment

condition does not imply the absence of BSM interactions,
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because several couplings, in addition to the SM ones,
remain nonvanishing when cβ−α ¼ 0, indeed, some of them
involving the light Higgs boson h. For example, the
couplings hHH, hAA, hHþH−, ZHA, γHþH−, hhHH,
hhAA, hhHþH−, and others do not vanish in the alignment
limit. This implies that the integration out of the heavy
modes H, A, and H� could leave some nondecoupling
effects that differentiate the 2HDM with respect to the SM
via these couplings that could leave an important track at
low-energy observables, at both tree and one-loop levels.
This is our main motivation in this work and will be
discussed in the following sections.
One interesting phenomenological feature of the 2HDM

compared to the SM is the existence of triple and quartic
interactions between the new scalar states. The 2HDM
prediction of these couplings can be written in terms of the
input parameters in Eq. (3.3). Under our notation, the tree-
level Feynman rules of the scalar interactions involving the
light Higgs that are relevant to this work are given in Table I
in Appendix A and are summarized also here:

iΓhhh ¼ −6ivλhhh; ð3:4Þ

iΓhhH ¼ −2ivλhhH; ð3:5Þ

iΓhHþH− ¼ −ivλhHþH− ; ð3:6Þ

iΓhhhh ¼ −6iλhhhh; ð3:7Þ

where we are following the notation from [41,42]. Other
scalar interactions involving the light Higgs like ΓhHH,
ΓhHH, and ΓhAA do not participate in the present compu-
tation and are not given explicitly here, for shortness. One
important aspect in this work is that these triple and quartic
couplings above are not input parameters, but instead they
are derived parameters. Thus, once the input parameters
have been fixed to those in Eq. (3.3), the derived couplings
for the physical eigenstates, i.e., the λx couplings, are fixed
in terms of the input parameters at a given order in the loop
expansion. In particular, at the tree level, these derived λx
couplings are given by

v2λhhh ¼ sβ−αð1þ 2c2β−αÞ
m2

h

2
− sβ−αc2β−α

m2
12

sβcβ
þ c3β−α cot 2β

�
m2

h −
m2

12

sβcβ

�
; ð3:8Þ

v2λhhH ¼ cβ−α
2

�
−2ð3c2β−α − 2Þ m

2
12

sβcβ
− 2cβ−αsβ−α cot 2β

�
−3

m2
12

sβcβ
þ 2m2

h þm2
H

�
þ ð2c2β−α − 1Þð2m2

h þm2
HÞ
�
; ð3:9Þ

v2λhHþH− ¼
�
m2

h þ 2m2
H� − 2

m2
12

sβcβ

�
sβ−α þ 2 cot 2β

�
m2

h −
m2

12

sβcβ

�
cβ−α; ð3:10Þ

v2λhhhh ¼
m2

h

2
þ c2β−α

2

�
−4s2β−α

m2
12

sβcβ
þ 4c2β−αcot

22β

�
−
m2

12

sβcβ
þ c2β−αm

2
h þ s2β−αm

2
H

�

þ 4cβ−αsβ−α cot 2β

�
−2

m2
12

sβcβ
þ ð2c2β−α þ 1Þm2

h þ ð1 − 2c2β−αÞm2
H

�

þ 4c4β−αðm2
H −m2

hÞ − 4c2β−αm
2
H þ 3m2

h þm2
H

�
; ð3:11Þ

where, to present more compact formulas, we have included some derived parameters in these formulas like sβ−α, sβ, cβ, and
cot 2β, that are related with the input parameters cβ−α and tan β by the following trigonometric identities:

sβ−α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β−α

q
; sβ ¼

tβffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2β

q ; cβ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2β

q ; cot 2β ¼ 1 − t2β
2tβ

: ð3:12Þ

For the discussion in the following sections, it is interesting to display the specific values of the couplings above in the
simplest scenario with alignment, i.e., for cβ−α ¼ 0, which are named λalx here:
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v2λalhhh ¼
m2

h

2
;

v2λalhhH ¼ 0;

v2λalhHþH− ¼ m2
h þ 2m2

H� − 2
m2

12

sβcβ
;

v2λalhhhh ¼
m2

h

2
: ð3:13Þ

We see that, in the alignment limit, λhhh and λhhhh tend to
λ ¼ m2

h=ð2v2Þ, which give, respectively, the triple and
quartic Higgs couplings predicted by the SM. The triple
coupling of the two light Higgs bosons to one heavy Higgs
boson vanishes in the alignment limit. However, the
coupling of one light Higgs boson to two charged Higgs
bosons is not vanishing. Regarding the above value of
λalhHþH− , we confirm that the size of this triple coupling can
be very large for large input values of mH� . For instance,
values of mH� ∼ 800 GeV can provide large couplings of
λalhHþH− ∼Oð10Þ which, according to the detailed analysis
in [41,42], are yet allowed by all the present theoretical and
experimental constraints. This is the situation in which we
are interested in this work. Then, when doing a large mass
expansion of the amplitudes in the following sections, we
simply mean an expansion in powers of a small dimension-
less parameter ∼ðv=mheavyÞ which should be convergent
whenever v=mheavy ≪ 1. Thus, we have in mind that our
forthcoming results for heavy boson masses mH, mA, and
mH� , which are collectively namedmheavy, should apply for
these masses being above v and close to the TeV scale.
Within the 2HDM, the Higgs couplings to fermions also

differ with respect to the SM. However, since in this work
we consider only interactions in the bosonic sector of the
2HDM, they are not relevant to this work, and we will not
describe them here.

IV. ANALYTICAL RESULTS OF THE
AMPLITUDES

In this section, we present the amplitudes for the
different observables considered in this work. We focus
on the following scattering and decay processes that
involve the light Higgs boson and EW gauge bosons in
the external legs: h → WW� → Wff̄0, h → ZZ� → Zff̄,
WþW− → hh, ZZ → hh, hh → hh, h → γγ, and h → γZ.
All these amplitudes were computed for the three models
under consideration, SM, HEFT, and 2HDM, using an
arbitrary Rξ gauge and verifying the gauge parameter ξ
independence for the on-shell amplitudes. Thus, all the
results presented here for the amplitudes are gauge invari-
ant, as expected.
The following expressions were obtained using FeynArts

[43] and FormCalc [44]. The relevant Feynman rules are
collected in Table I in Appendix A (for a full set, see
Refs. [19–21]).

A. h → WW� → Wf f̄ 0 and h → ZZ� → Zf f̄

For these decay amplitudes, we follow a similar presen-
tation as in [29], where these decays were also studied
within the HEFT context. We focus in this work on the tree-
level amplitudes for these decays. We represent collectively
these decay processes as h → VV� → Vff̄, where the EW
gauge boson V can be W or Z, and the corresponding
Feynman diagram is shown in Fig. 1. The tree-level
amplitude can be generically written as

A ¼ Aμϵ�μ ¼ ðiΓμν
hVVÞΔVV

νρ ðiΓρ
ffVÞϵ�μ; ð4:1Þ

where ϵ�μ is the polarization vector of the outgoing on-shell
gauge boson, Γμν

hVV is the 1PI with three legs corresponding
to hVV,ΔVV

νρ is the gauge boson propagator, and Γρ
ffV is the

1PI with three legs corresponding to ffV.
First, it should be noticed that the gauge boson propa-

gator is the same in the three considered models SM, HEFT,
and 2HDM. On the other hand, it should also be noticed
that the fermion interactions with the gauge bosons are also
the same as in the SM. Therefore, the above decay
amplitudes differ in each model only on the interaction
hVV, which can be read from Table I:

iΓμν
hVV jSM ¼ 2im2

V

v
gμν;

iΓμν
hVV jHEFT ¼ 2im2

V

v
agμν;

iΓμν
hVV j2HDM ¼ 2im2

V

v
sβ−αgμν: ð4:2Þ

Then, it is clear from the above expressions that the SM is
recovered from the HEFT when a ¼ 1 (i.e., Δa ¼ 0) and
from the 2HDM in the alignment limit, i.e., for cβ−α ¼ 0, as
expected. Notice that, at the tree level, there is no
dependence on the heavy Higgs boson masses in these
decays.

B. W +W − → hh

Next, we study this WW scattering process at the tree
level in the three considered models, SM, HEFT, and

FIG. 1. Generic Feynman diagram for the Higgs decays
h → VV� → Vff̄, with V ¼ W, Z.
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2HDM. First, to fix the notation, we set the momenta and
Lorentz indices involved in this scattering as follows:

Wþ
μ ðpþÞW−

ν ðp−Þ → hðk1Þhðk2Þ; ð4:3Þ

where p� and k1;2 (with pþ þ p− ¼ k1 þ k2) are the
incoming and outgoing momenta, respectively, of the
bosons. The W� polarization vectors are ϵ�, respectively.
We present the results by separating the contributions from
the various scattering channels s, t, u, and contact c
channels, since we will compare the different Lorentz
structures and energy dependence in our posterior study
of the matching equations:

A ¼ Ajs þAjt þAju þAjc: ð4:4Þ

Notice that the cancellation of the ξ-dependent terms
occurs when the external bosons are taken on shell, and it
happens for the t and u channels separately. Furthermore,
this cancellation proceeds when adding the two kind of
diagrams, with EW gauge boson and GB internal propa-
gators that are present in both the t and u channels. One can
also check that the final result for the amplitude of the Rξ

gauges is the same as the result obtained using the unitary
gauge (with the W propagator given in the unitary gauge
and where no diagrams with GB modes appear in the
computation), as expected, since the result of the amplitude
must be gauge invariant.
The SM diagrams are shown in Fig. 2, and the resulting

amplitude by channels is given by

ASMjs ¼ 3g2
λv2

s −m2
h

ϵþ · ϵ−;

ASMjt ¼ g2
m2

Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2
t −m2

W
;

ASMju ¼ g2
m2

Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1
u −m2

W
;

ASMjc ¼
g2

2
ϵþ · ϵ−; ð4:5Þ

where λ ¼ m2
h=ð2v2Þ.

Within the HEFT, the diagrams are also collected in
Fig. 2, and the result for the amplitude is also gauge
invariant. The corresponding LO contributions (i.e., from
L2) from the various channels, at the tree level, are given by

AHEFTjs ¼ 3g2aκ3
λv2

s −m2
h

ϵþ · ϵ−;

AHEFTjt ¼ g2a2
m2

Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2
t −m2

W
;

AHEFTju ¼ g2a2
m2

Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1
u −m2

W
;

AHEFTjc ¼
g2

2
bϵþ · ϵ−; ð4:6Þ

where again the relation λ ¼ m2
h=ð2v2Þ is understood.

Regarding the prediction of the amplitude for the 2HDM
in covariant Rξ gauges, we notice that in addition to the

FIG. 2. Tree-level diagrams contributing to WW → hh in the SM and the HEFT for arbitrary Rξ gauge.

FIG. 3. Additional tree-level diagrams contributing toWþW− → hh in the 2HDM for arbitrary Rξ gauge. The triple scalar interaction
vertices of the light Higgs with heavy Higgs bosons are denoted with a big dot colored in red.

ARCO, DOMENECH, HERRERO, and MORALES PHYS. REV. D 108, 095013 (2023)

095013-10



SM-like diagrams in Fig. 2, where the interchanged Higgs
boson is the light Higgs h, there are also the contributions
from the exchange of a heavy neutral Higgs boson in the s
channel and from the heavy charged Higgs bosons in the t

and u channels, as is shown in Fig. 3. Notice also that the
contributions from all these diagrams are ξ independent.
And the total result for the amplitude is again gauge
invariant. The corresponding amplitudes by channels are

A2HDMjs ¼ g2
�
3λhhhv2

s −m2
h

sβ−α þ
λhhHv2

s −m2
H
cβ−α

�
ϵþ · ϵ−;

A2HDMjt ¼ g2s2β−α
m2

Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2
t −m2

W
þ g2c2β−α

ϵþ · k1ϵ− · k2
t −m2

H�
;

A2HDMju ¼ g2s2β−α
m2

Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1
u −m2

W
þ g2c2β−α

ϵþ · k2ϵ− · k1
u −m2

H�
;

A2HDMjc ¼
g2

2
ϵþ · ϵ−: ð4:7Þ

In the s channel, we have used the compact notation for the
derived triple Higgs couplings λhhh and λhhH in Eqs. (3.8)
and (3.9).
It is important to remark that the SM predictions of

Eq. (4.5) are recovered from the HEFTones of Eq. (4.6) by
taking a ¼ b ¼ κ3 ¼ 1 (i.e., for Δa ¼ Δb ¼ Δκ3 ¼ 0). On
the other hand, we have also checked that the 2HDM results
of Eq. (4.7) in the alignment limit (i.e., for cβ−α ¼ 0)
coincide with the SM ones. In Sec. V, we will analyze the
effect of the heavy Higgs boson masses away from the
alignment limit.

C. ZZ → hh

We follow a similar presentation here as in the previous
process. The corresponding notation for the momenta in
this case is

Zμðp1ÞZνðp2Þ → hðk1Þhðk2Þ; ð4:8Þ

where p1;2 and k1;2 (with p1 þ p2 ¼ k1 þ k2) are the
incoming and outgoing momenta, respectively, of the
bosons. The Z polarization vectors are ϵ1;2, respectively.
The resulting diagrams in the SM and EChL are collected

FIG. 4. Tree-level diagrams contributing to ZZ → hh in the SM and the HEFT for arbitrary Rξ gauge.

FIG. 5. Additional tree-level diagrams contributing to ZZ → hh in the 2HDM for arbitrary Rξ gauge. The triple scalar interaction
vertices of the light Higgs with heavy Higgs bosons are denoted with a big dot colored in red.

NONDECOUPLING EFFECTS FROM HEAVY HIGGS BOSONS BY … PHYS. REV. D 108, 095013 (2023)

095013-11



in Fig. 4, and the additional diagrams in the 2HDM are
shown in Fig. 5.
Notice that the amplitudes in this case can also be

derived from the previous ones by multiplying them by c−2w
and replacing mW → mZ and mH� → mA. Explicitly, the
SM amplitude by channels is

ASMjs ¼ 3
g2

c2w

λv2

s −m2
h

ϵ1 · ϵ2;

ASMjt ¼
g2

c2w

m2
Zϵ1 · ϵ2 þ ϵ1 · k1ϵ2 · k2

t −m2
Z

;

ASMju ¼
g2

c2w

m2
Zϵ1 · ϵ2 þ ϵ1 · k2ϵ2 · k1

u −m2
Z

;

ASMjc ¼
g2

2c2w
ϵ1 · ϵ2: ð4:9Þ

The HEFT amplitude by channels is

AHEFTjs ¼ 3
g2

c2w
aκ3

λv2

s −m2
h

ϵ1 · ϵ2;

AHEFTjt ¼
g2

c2w
a2

m2
Zϵ1 · ϵ2 þ ϵ1 · k1ϵ2 · k2

t −m2
Z

;

AHEFTju ¼
g2

c2w
a2

m2
Zϵ1 · ϵ2 þ ϵ1 · k2ϵ2 · k1

u −m2
Z

;

AHEFTjc ¼
g2

2c2w
bϵ1 · ϵ2: ð4:10Þ

The 2HDM amplitude by channels is

A2HDMjs ¼
g2

c2w

�
3v2

s −m2
h

λhhhsβ−α þ
v2

s −m2
H
λhhHcβ−α

�
ϵ1 · ϵ2;

A2HDMjt ¼
g2

c2w
s2β−α

m2
Zϵ1 · ϵ2 þ ϵ1 · k1ϵ2 · k2

t −m2
Z

þ g2

c2w
c2β−α

ϵ1 · k1ϵ2 · k2
t −m2

A
;

A2HDMju ¼
g2

c2w
s2β−α

m2
Zϵ1 · ϵ2 þ ϵ1 · k2ϵ2 · k1

u −m2
Z

þ g2

c2w
c2β−α

ϵ1 · k2ϵ2 · k1
u −m2

A
;

A2HDMjc ¼
g2

2c2w
ϵ1 · ϵ2: ð4:11Þ

In particular, the SM results are also recovered from the
HEFT ones when a ¼ b ¼ κ3 ¼ 1 (i.e., for Δa ¼ Δb ¼
Δκ3 ¼ 0) and from the 2HDM in the alignment limit (i.e.,
for cβ−α ¼ 0).

D. hh → hh

The tree-level diagrams contributing in the SM and the
HEFT are the same set and are collected in Fig. 6. In the
case of the 2HDM, these four diagrams in Fig. 6 also
contribute, and besides them there are also diagrams where
the heavy neutral Higgs boson propagates in the s, t, and u
channels. These additional diagrams are collected in Fig. 7.
It should be noted that all these diagrams are independent
of the ξ gauge parameter, and, therefore, the results for the
amplitudes in the three models are gauge invariant, as
expected.

FIG. 6. Tree-level diagrams contributing to hh → hh in the SM
and in the HEFT for arbitrary Rξ gauge.
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The SM amplitude by channels is

ASMjs ¼ −
36λ2v2

s −m2
h

;

ASMjt ¼ −
36λ2v2

t −m2
h

;

ASMju ¼ −
36λ2v2

u −m2
h

;

ASMjc ¼ −6λ; ð4:12Þ

where, again, λ ¼ m2
h=ð2v2Þ.

The HEFT amplitude by channels is

AHEFTjs ¼ −
36λ2v2

s −m2
h

κ23;

AHEFTjt ¼ −
36λ2v2

t −m2
h

κ23;

AHEFTju ¼ −
36λ2v2

u −m2
h

κ23;

AHEFTjc ¼ −6λκ4: ð4:13Þ

The 2HDM amplitude by channels is

A2HDMjs ¼ −
36v2

s −m2
h

λ2hhh −
4v2

s −m2
H
λ2hhH;

A2HDMjt ¼ −
36v2

t −m2
h

λ2hhh −
4v2

t −m2
H
λ2hhH;

A2HDMju ¼ −
36v2

u −m2
h

λ2hhh −
4v2

u −m2
H
λ2hhH;

A2HDMjc ¼ −6λhhhh; ð4:14Þ

where the derived values for the triple λhhh, λhhH, and
quartic λhhhh couplings are given in Eqs. (3.8), (3.9), and
(3.11), respectively.
As in the previous observables, the SM results are

recovered from the HEFT ones for κ3 ¼ κ4 ¼ 1 (i.e., for
Δκ3 ¼ Δκ4 ¼ 0) and from the 2HDM in the alignment
limit (i.e., for cβ−α ¼ 0).

E. h → γγ

This decay occurs at one-loop level in the three consid-
ered models; thus, the predictions for their corresponding
amplitudes are all ofOðℏ=ð16π2ÞÞ. The computation of this
observable in Rξ covariant gauges was presented in [45] for
the SM and in [22] for the HEFT, where it was also
recomputed the SM case, for comparison. In this presen-
tation, we follow the computation as described in [22].
In the SM case, when adding all the one-loop diagrams

in the Rξ gauges given in Fig. 8, the total one-loop
amplitude is UV finite and does not need renormalization
nor counterterms. The ξ-dependence cancellation among
the various loop diagrams, leading to the gauge invariance
of the resulting one-loop amplitude, was also fully dis-
cussed in [22]. Notice that, for the purpose of the present
work where we are interested only in the bosonic part of the
models, we do not need to compute the loops with
fermions.
The result of the SM one-loop amplitude for the decay

hðqÞ → γðk1Þγðk2Þ in covariant Rξ gauges respects the
Lorentz structure expected by the Uð1Þ Ward identity and
can be written as

ASMðh→ γγÞ¼ 1

v
Fhγγðm2

hðϵ1ϵ2Þ−2ðϵ1k2Þðϵ2k1ÞÞ; ð4:15Þ

where the explicit computation of all the bosonic loops
gives

Fhγγ¼
g2s2w
8π2m2

h

�
12

m2
W

m2
h

ðm2
h−2m2

WÞf
�
4m2

W

m2
h

�
þm2

hþ6m2
W

�
:

ð4:16Þ

The definition of the one-loop function fðrÞ in the above
formula is given in Appendix B. The result has also been
checked to be the same when computing the loop con-
tributions to the amplitude in the unitary gauge (see
also [22]).
For the HEFT case, the same one-loop diagrams dis-

played in Fig. 8 contribute to the decay amplitude but with
different values than in the SM. Recall that the Feynman
rules in both theories are different. In particular, the ghost
diagrams are absent within the HEFT (i.e., diagram 3 in this
figure vanishes) due to the vanishing couplings of the h
with the ghosts in this nonlinear theory (see Ref. [22] for

FIG. 7. Additional tree-level diagrams contributing to hh → hh in the 2HDM for arbitrary Rξ gauge. The triple scalar interaction
vertices of the light Higgs with heavy Higgs bosons are denoted with a big dot colored in red.
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details and also for the interesting comparison between the
computation in the covariant gauges and the unitary gauge).
The additional diagrams in the HEFT are represented in
Fig. 9. All the loop diagrams come from L2 in Eq. (2.5) and
the tree-level contribution comes from the L4 in Eq. (2.9).
Diagrams (a) and (b) appear in the HEFT due to the
nonlinear representation for the GBs that provide new
couplings for them that are not present in the SM. Diagram
(c) appears due to the tree-level contributions from the
effective operators in L4 which provide a term in the decay
amplitude involving the effective coefficient ahγγ . It is
interesting to recall that the sum all the one-loop diagrams
in the HEFT gives also a UV finite result. This means that
ahγγ does not need to be renormalized; i.e., in this h decay,

the relevant coefficient in L4 does not need to act as a
counterterm for the loops from L2, since they provide a
finite result.
The result of the HEFT amplitude for this decay is

AHEFTðh → γγÞ ¼ ALloop
2 þALtree

4

¼ 1

v
ðaFhγγ þ g2s2wahγγÞ

× ðm2
hðϵ1ϵ2Þ − 2ðϵ1k2Þðϵ2k1ÞÞ;

ð4:17Þ
where aFhγγ collects the contributions from the loops
computed with L2 and the term proportional to ahγγ
corresponds to the tree-level contribution from L4.

FIG. 8. Bosonic one-loop diagrams contributing to h → γγ within the SM in covariant Rξ gauges. In the HEFT case, these one-loop
diagrams also contribute to the amplitude. The contributions from these diagrams are different in the SM and HEFT cases. In the 2HDM
case, these one-loop diagrams also contribute but again with different values than in the SM and in the HEFT. Within the HEFT, there are
additional diagrams as summarized in Fig. 9. Within the 2HDM, there are additional diagrams as summarized in Fig. 10.

FIG. 9. Additional diagrams contributing to h → γγ in the HEFT for arbitrary Rξ gauge. The black box represents the contribution
from ahγγ in L4.
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The computation of the one-loop amplitude in the
2HDM case for the generic Rξ gauges involves the
computation [6,46] of the one-loop diagrams in Fig. 8
and the additional one-loop diagrams in Fig. 10. We have
checked that the sum of all loops are ξ independent. Notice
that these additional diagrams correspond to the one-loop
contributions involving the charged Higgs bosons in the
internal propagators and are ξ independent. We have
checked that after adding all the loop diagrams the result
is also ξ independent. The resulting amplitude (bosonic
contributions) within the 2HDM is the following:

A2HDMðh → γγÞ ¼ 1

v
ðsβ−αFhγγ þ FH�

hγγÞ
× ðm2

hðϵ1ϵ2Þ − 2ðϵ1k2Þðϵ2k1ÞÞ; ð4:18Þ

where sβ−αFhγγ corresponds to the diagrams in Fig. 8 and

FH�
hγγ is the extra contribution from the H� loops in Fig. 10.

This latter is given by

FH�
hγγ ¼

g2v2λhHþH−s2w
8π2m2

h

�
1 −

4m2
H�

m2
h

f

�
4m2

H�

m2
h

��
: ð4:19Þ

Again, the function fðrÞ is given in Appendix B. An
important point to remark here is that FH�

hγγ depends on the

triple coupling λhHþH− whose derived value in terms of the
input parameters is given in Eq. (3.10).

F. h → γZ

The computation of the decay amplitude in the h → γZ is
similar to the previous h → γγ case (with slight differences
commented below), and it was also presented in [22] for
arbitrary Rξ gauge within both SM and HEFT. We recall
here just the most relevant points. The main set of one-loop
diagrams in the SM are the same as in Fig. 8 replacing one
photon by a Z boson. In this case, however, the sum of all
the one-loop diagrams in this figure is not UV convergent,
and the contributions in Fig. 11 must be included in order to
get a UV finite and ξ-independent amplitude respecting the
Ward identity. In particular, we include the counterterm of
the three-leg 1PI Green function (left diagram in Fig. 11)
and the loop and counterterm contributions yielding to the
two-leg renormalized 1PI self-energy photon-Z (repre-
sented by the black ball in the right diagram of this figure).
The result of the SM one-loop amplitude (bosonic

contributions) for hðqÞ → γðk1ÞZðk2Þ in a Rξ gauge is
the following:

ASMðh→ γZÞ¼ 1

v
FhγZððm2

h−m2
ZÞðϵ1ϵ2Þ−2ðϵ1k2Þðϵ2k1ÞÞ;

ð4:20Þ

where

FhγZ ¼ g2swcw
16π2ðm2

h −m2
ZÞ

�
2m2

h þ 12m2
W −

m2
Z

m2
W
m2

h − 2m2
Z

−
4m2

W

m2
h −m2

Z

�
−6m2

h þ 12m2
W þ m2

Z

m2
W
m2

h þ 6m2
Z −

2m4
Z

m2
W

��
f

�
4m2

W

m2
h

�
− f

�
4m2

W

m2
Z

��

−
2m2

Z

m2
h −m2

Z

�
2m2

h þ 12m2
W −

m2
Z

m2
W
m2

h − 2m2
Z

��
g

�
4m2

W

m2
h

�
− g

�
4m2

W

m2
Z

���
: ð4:21Þ

The definitions of the one-loop functions fðrÞ and gðrÞ are given in Appendix B.
The result of the HEFTone-loop amplitude (bosonic contributions) for hðqÞ → γðk1ÞZðk2Þ in a Rξ gauge is the following:

AHEFTðh → γZÞ ¼ ALloop
2 þALtree

4 ¼ 1

v
ðaFhγZ þ g2swcwahγZÞððm2

h −m2
ZÞðϵ1ϵ2Þ − 2ðϵ1k2Þðϵ2k1ÞÞ; ð4:22Þ

FIG. 10. Additional diagrams contributing to h → γγ in the
2HDM for arbitrary Rξ gauge. The triple scalar interaction
vertices of the light Higgs with heavy Higgs bosons are denoted
with a big dot colored in red.

FIG. 11. Additional diagrams contributing to h → γZ that are
not present in h → γγ. The black box represents the tree-level
contribution of the counterterms. The big black ball represents the
renormalized two-point 1PI γZ function.
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where aFhγZ summarizes the one-loop contributions from L2 and the term proportional to ahγZ comes from L4 at the tree
level. In this case, the coefficient ahγZ also acts as counterterm.
The result of the 2HDM one-loop amplitude [6,46] (bosonic contributions) for hðqÞ → γðk1ÞZðk2Þ in a Rξ gauge is the

following:

A2HDMðh → γZÞ ¼ 1

v
ðsβ−αFhγZ þ FH�

hγZÞððm2
h −m2

ZÞðϵ1ϵ2Þ − 2ðϵ1k2Þðϵ2k1ÞÞ; ð4:23Þ

where sβ−αFhγZ comes from the one-loop diagrams and counterterms already present in the SM and FH�
hγZ is the additional

contribution from the H� loops:

FH�
hγZ ¼ λhHþH−swcwð2m2

W −m2
ZÞ

4π2ðm2
h −m2

ZÞ2

0
B@m2

h −m2
Z − 2m2

Z

�
g

�
4m2

H�

m2
h

�
− g

�
4m2

H�

m2
Z

��

−m2
H� log2

0
B@2m2

H� −m2
Z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

Zð4m2
H� −m2

ZÞ
q
2m2

H�

1
CAþm2

H� log2

0
B@2m2

H� −m2
h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

hð4m2
H� −m2

hÞ
q
2m2

H�

1
CA
1
CA: ð4:24Þ

Once again, this contribution is proportional to the triple
coupling of the light Higgs with the charged Higgs
bosons Eq. (3.10).

V. MATCHING HEFT AND 2HDM AMPLITUDES

In this section, we first set the matching equations relating
the HEFTand the 2HDM amplitudes, and, second, we solve
these equations analytically providing the solutions for the
HEFT coefficients in terms of the 2HDM input parameters.
First, we define this matching by equating the amplitudes
from the HEFT with the amplitudes from the 2HDM in the
heavy Higgs bosons limit. This heavy Higgs boson limit
refers to consider heavyH,A, andH� with respect to the EW
scale v or, equivalently, respect to all EW masses involved:
mH;mA;mH� ≫ mW;mZ;mh; v;m12. In the case of scatter-
ing amplitudes, by heavy BSM Higgs boson limit, we also
mean heavy with respect to the energy of the scattering
process, i.e.,mheavy ≫

ffiffiffi
s

p
, wheremheavy denotes collectively

any of the heavy masses involved,mH, mA, and mH� . Thus,
for shortness, in the following, we will refer generically to
this large heavy mass limit by requiring a big hierarchy
among the two scales, i.e., by considering

mheavy ≫ mEW; ð5:1Þ

where, generically, we are assuming that mheavy is closer to
the TeV scale andmEW, the masses and energies involved, is
closer to the EW scale. Then, for a given amplitude A our
generic matching condition reads as follows:

AHEFT ¼ A2HDM
heavy ; ð5:2Þ

where AHEFT is the prediction from the HEFT and A2HDM
heavy

means the result of the 2HDMamplitude after integrating out
the heavymodes. This integration is performed in practice by
means of an expansion of the 2HDM amplitude in inverse
powers of the heavy boson masses. Generically, this large
mass expansion will lead to terms in the total amplitude with
increasing powers in a small mass ratio, namely, with
increasing orders in ∼ðm2

EW=m
2
heavyÞn with n ¼ 0; 2; 4;….

On the other hand, this matching condition can be set at any
order in the loop expansion, i.e., toOðℏ0Þ,Oðℏ1Þ, etc., but in
any case this order must be fixed equally in both sizes of the
matching equations. Correspondingly, the solutions to the
matching equations will be provided at a fixed order, i.e.,
either at the tree level or at the one-loop level, etc. Finally,
since we are mainly interested in capturing the nondecou-
pling effects from the heavy Higgs bosons, encoded in those
solutions, we will need to focus only on the leading terms of
this large mass expansion. Therefore, we will keep in this
work only those leading terms in A2HDM

heavy that go with the
n ¼ 0 power or, equivalently, the contributions which are
constant with the heavy massmheavy in the heavy mass limit.
As we will see, there are no contributions with negative n;
i.e., the total result of the amplitude never grows with the
heavy masses, thus demonstrating that the large mass
expansion is convergent. The final comment regarding the
previous matching equation is that, when solving it, we must
write the solutions for BSMwith respect to theSMones. This
is equivalent to saying that the solutions of the matching
equations at the leading order in the large mass expansion
must be provided at the end forΔa, Δb, Δκ3, Δκ4, ahγγ, and
ahγZ, and thesemust be given in terms of the input parameters
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(other than the heavymasses) of the 2HDM, namely, in terms
of v, mh, cβ−α, tβ, and m12, as set in Eq. (3.3).
Our matching procedure systematically solves the above

Eq. (5.2) by taking into account all the Lorentz structures
involved and considering both the energy and scattering
angle dependencies of the scattering amplitudes A ¼
Aðs; θÞ (or masses and momenta dependence in the case
of decay amplitudes). Then we solve the matching con-
ditions sequentially and process by process. In this match-
ing, we consider the full set of seven amplitudes presented
in the previous section. Notice that some HEFT coefficients
are present in various amplitudes; therefore, once we solve
them from one subset of amplitudes, the remaining ones are
used to cross-check the results. This is useful to check that
our solutions for the HEFT coefficients in terms of the
2HDM input parameters are the same for all the considered
processes, and, therefore, they are process-independent
results.

A. Amplitudes for large mheavy in
the 2HDM and solutions to the matching

As announced above, we keep here just the dominant
contributions in the large mheavy expansion that define the
nondecoupling effects from the heavy modes, which for the
selected amplitudes here correspond to the resulting con-
tributions that are independent of the heavy Higgs boson
masses; i.e., they behave as ðmEW=mheavyÞ0. The next-to-
leading terms in these expansions are decoupling, going as

ðmEW=mheavyÞn with n ¼ 2; 4;…, etc., and are not included
in our solutions to the matching equations. In the compu-
tation of this expansion, it is crucial to take into account that
λhhH, λhHþH− , and λhhhh depend on the heavy masses of the
BSM Higgs bosons as it is shown in Eqs. (3.9)–(3.11).
Another important point to take into account is that, due
to the previously shown ξ independence of the separate
contributions to the amplitudes from the various channels s,
t, u, and c, the matching equations can be analyzed by
channels.

1. h → VV� → Vf f̄

The starting matching equation is for the decay ampli-
tudes of the light Higgs boson into a gauge boson W or Z
and a fermion pair, at the tree level. The solution of the
matching equation in this case is trivial, since the 2HDM
amplitude does not depend on mheavy. Therefore, the
solution to the matching equation in these two decays
gives simply

a ¼ 1 − Δa ¼ sβ−α: ð5:3Þ

2. W +W − → hh

The next matching equation is for the WþW− → hh
scattering. In this case, the large heavy mass expansion
gives the following results for the 2HDM amplitude,
presented here by channels:

A2HDM
heavy js ¼ g2

�
3sβ−α
s −m2

h

�
sβ−αð1þ 2c2β−αÞ

m2
h

2
− sβ−αc2β−α

m2
12

sβcβ
þ c3β−α cot 2β

�
m2

h −
m2

12

sβcβ

��

−
c2β−α
2

ð−2cβ−αsβ−α cot 2β þ 2c2β−α − 1Þ
�
ϵþ · ϵ−;

A2HDM
heavy jt ¼ g2s2β−α

m2
Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2

t −m2
W

;

A2HDM
heavy ju ¼ g2s2β−α

m2
Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1

u −m2
W

;

A2HDM
heavy jc ¼

g2

2
ϵþ · ϵ−: ð5:4Þ

By comparing first the t and u channels in Eq. (4.6) with those in Eq. (5.4), we confirm the previous solution for a in
Eq. (5.3). Second, by comparing the contact channel in Eq. (4.6) with the s-independent contribution of the s-channel and
the contact channel in Eq. (5.4), we arrive to

b ¼ 1 − Δb ¼ 1þ c2β−αð1 − 2c2β−α þ 2cβ−αsβ−α cot 2βÞ: ð5:5Þ

Finally, by plugging the previous solution for a in Eq. (5.3) in the s channel in Eq. (4.6) and comparing it with the
s-dependent contribution of the s channel in Eq. (5.4), we find

κ3 ¼ 1 − Δκ3 ¼ sβ−αð1þ 2c2β−αÞ þ c2β−α

�
−2sβ−α

m2
12

m2
hsβcβ

þ 2cβ−α cot 2β

�
1 −

m2
12

m2
hsβcβ

��
: ð5:6Þ
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3. ZZ → hh

The procedure here is similar to in the previousWW scattering. From Eq. (4.11), we get the following large heavy mass
expansion results for the 2HDM amplitude, presented again by channels:

A2HDM
heavy js ¼

g2

c2w

�
3sβ−α
s −m2

h

�
sβ−αð1þ 2c2β−αÞ

m2
h

2
− sβ−αc2β−α

m2
12

sβcβ
þ c3β−α cot 2β

�
m2

h −
m2

12

sβcβ

��

−
c2β−α
2

ð−2cβ−αsβ−α cot 2β þ 2c2β−α − 1Þ
�
ϵ1 · ϵ2;

A2HDM
heavy jt ¼

g2

c2w
s2β−α

m2
Wϵ1 · ϵ2 þ ϵ1 · k1ϵ2 · k2

t −m2
W

;

A2HDM
heavy ju ¼

g2

c2w
s2β−α

m2
Wϵ1 · ϵ2 þ ϵ1 · k2ϵ2 · k1

u −m2
W

;

A2HDM
heavy jc ¼

g2

2c2w
ϵ1 · ϵ2: ð5:7Þ

By comparing the amplitudes from the HEFT in Eq. (4.10) with the previous 2HDM results and by solving the matching
equations in this ZZ → hh case, we arrive at the same results as Eqs. (5.3)–(5.6). Therefore, this channel serves as a cross-
check of the previous solutions.

4. hh → hh

For the case of hh → hh scattering, the results from Eq. (4.14) in the large heavy mass limit are given by the following
expressions, also presented by channels:

A2HDM
heavy js ¼ −

36

v2ðs −m2
hÞ
�
sβ−αð1þ 2c2β−αÞ

m2
h

2
− sβ−αc2β−α

m2
12

sβcβ
þ c3β−α cot 2β

�
m2

h −
m2

12

sβcβ

��
2

þm2
H

v2
c2β−αð2c2β−α − 1 − 2cβ−αsβ−α cot 2βÞ2

þ 2cβ−α
v2

ð2c2β−α − 1 − 2cβ−αsβ−α cot 2βÞ
�
s
cβ−α
2

ð2c2β−α − 1 − 2cβ−αsβ−α cot 2βÞ

þm2
h þ c2β−α

�
−4s2β−α

m2
12

sβcβ
þ 4c2β−αcot

22β

�
−
m2

12

sβcβ
þ c2β−αm

2
h

�

þ4cβ−αsβ−α cot 2β

�
−2

m2
12

sβcβ
þ ð2c2β−α þ 1Þm2

h

�
− 4c4β−αm

2
h þ 3m2

h

��
;

A2HDM
heavy jt ¼ A2HDM

heavy js with s → t;

A2HDM
heavy ju ¼ A2HDM

heavy js with s → u;

A2HDM
heavy jc ¼ −3

m2
H

v2
c2β−αð2c2β−α − 1 − 2cβ−αsβ−α cot 2βÞ2 −

3

v2

�
4c3β−αsβ−α cot 2β

�
ð1þ 2c2β−αÞm2

h − 2
m2

12

sβcβ

�

−ð−1þ c2β−αÞ
�
ð1þ 2c2β−αÞ2m2

h − 4c2β−α
m2

12

sβcβ

�
þ4cot22β

�
c6β−αm

2
h − c4β−α

m2
12

sβcβ

��
: ð5:8Þ

Notice the m2
H dependence in the separate contributions

from the various channels. In this particular case with scalar
particles in all the external legs, the result is not organized
in different Lorentz structures that can be compared in

solving the matching. Thus, the matching cannot be
analyzed separately by channels, and it must be done
instead by using the total sum; i.e., the matching quantity is
the total amplitude. Then, when adding the contributions
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from all the channels, one finds that the potentially growing
terms with the heavy mass of Oðm2

HÞ in the separate
contributions are totally canceled in the sum. We have
checked this cancellation explicitly in the total amplitude.
Thus, the leading dependence on the heavy mass of the
total amplitude, after the integration of the heavy modes, is
again of Oðm2

EW=m
2
heavyÞ0, providing nondecoupling con-

tributions that are constant with mheavy.
In addition, the growing energy behavior in the con-

tributions from the separate s, t, and u channels also

disappear in the total amplitude after summing over them
using the relation sþ tþ u ¼ 4m2

h. The resulting total
amplitude has contributions decreasing with the s, t, and u
variables, and, comparing them with the corresponding
HEFT contributions of Eq. (4.13), we arrive to the same
solution for κ3 as obtained previously in Eq. (5.6). Thus,
this part serves as a cross-check for κ3. Finally, by solving
the matching equation looking at the contribution to the
total amplitude that is constant in energy, one gets the
following result for κ4:

κ4 ¼ 1 − Δκ4 ¼ 1þ c2β−α
3

�
−7þ 64c2β−α − 76c4β−α þ 12ð1 − 6c2β−α þ 6c4β−αÞ

m2
12

m2
hsβcβ

þ 4cβ−αsβ−α cot 2β

�
−13þ 38c2β−α − 3ð−5þ 12c2β−αÞ

m2
12

m2
hsβcβ

�

þ 4c2β−αcot
22β

�
3c2β−α − 16s2β−α þ 3ð−1þ 6s2β−αÞ

m2
12

m2
hsβcβ

��
: ð5:9Þ

5. h → γγ and h → γZ

Finally, for the Higgs boson decays h → γγ and h → γZ,
the results for the one-loop amplitude summarizing the
heavy mass limit of the charged Higgs boson loops are
obtained from Eqs. (4.19) and (4.24) and by taking into
account the large mass behavior of the functions fðrÞ and
gðrÞ given in Eq. (B7). The results for the functions
defining those amplitudes are the following:

FH�
hγγjheavy ¼ −

g2s2wsβ−α
48π2

;

FH�
hγZjheavy ¼ −

g2swð2c2w − 1Þsβ−α
96cwπ2

: ð5:10Þ

Plugging these results into the respective matching
equations, we finally find the solutions for the HEFT
coefficients:

ahγγ ¼ −
sβ−α
48π2

;

ahγZ ¼ −
ð2c2w − 1Þsβ−α

96c2wπ2
: ð5:11Þ

In addition, these decay channels also confirm the solution
for a given in Eq. (5.3). Notice that these two coefficients
do not vanish in the alignment limit; therefore, they may
have relevant phenomenological implications. In particular,
the implications of the nondecoupling H� loops in
BRðh → γγÞ have been recently analyzed in the context
of the LHC physics in [47], and they find sizable departures
with respect to the SM rates, even for large mH� near the
TeV. Other nondecoupling effects in the 2HDM from loops
with heavy H� have also been found in flavor-changing
Higgs decays h → bs̄ and h → sb̄, in [48]. In both works,
the role of a large triple Higgs coupling λhHþH− has been
pointed out.

B. HEFT coefficients from nondecoupling
heavy Higgs bosons

Finally, we put together here all the analytical results for
the HEFT coefficients found in the previous section by
solving the full set of matching equations. We provide these
results in terms of the HEFT coefficients that define the
BSM contributions from the 2HDMwith respect to the SM.
These are the following (we add explicitly here the label
2HDM for completeness):
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Δaj2HDM ¼ 1 − sβ−α;

Δbj2HDM ¼ −c2β−αð1 − 2c2β−α þ 2cβ−αsβ−α cot 2βÞ;

Δκ3j2HDM ¼ 1 − sβ−αð1þ 2c2β−αÞ − c2β−α

�
−2sβ−α

m2
12

m2
hsβcβ

þ 2cβ−α cot 2β

�
1 −

m2
12

m2
hsβcβ

��
;

Δκ4j2HDM ¼ −
c2β−α
3

�
−7þ 64c2β−α − 76c4β−α þ 12ð1 − 6c2β−α þ 6c4β−αÞ

m2
12

m2
hsβcβ

þ 4cβ−αsβ−α cot 2β

�
−13þ 38c2β−α − 3ð−5þ 12c2β−αÞ

m2
12

m2
hsβcβ

�

þ 4c2β−αcot
22β

�
3c2β−α − 16s2β−α þ 3ð−1þ 6s2β−αÞ

m2
12

m2
hsβcβ

��
;

ahγγj2HDM ¼ −
sβ−α
48π2

;

ahγZj2HDM ¼ −
ð2c2w − 1Þsβ−α

96c2wπ2
: ð5:12Þ

Some comments are in order. First, for shortness, in the
previous formulas we have used again a compact form.
To get the explicit result in terms of the 2HDM input
parameters, the values of sβ−α, sβ, cβ, and cot 2β given in
Eq. (3.12) should be plugged into all these formulas. Then,
the first conclusion is that these HEFT coefficients,
capturing the nondecoupling effects from the heavy Higgs
bosons in the 2HDM, depend on the subset of input
parameters given by cβ−α, tan β, mh, and m12. Second,
the above results are valid for arbitrary −1 ≤ cβ−α ≤ 1;
therefore, they set the coefficient values for the generic
scenario with misalignment (cβ−α ≠ 0). Third, in the case
of an scenario with alignment, i.e., with cβ−α ¼ 0, we get
vanishing LO HEFT Δ’s. More interestingly, we get non-
vanishing values in this alignment limit for the NLO HEFT
coefficients ahγγ and ahγZ. Specifically, we get

Δajal2HDM ¼ 0;

Δbjal2HDM ¼ 0;

Δκ3jal2HDM ¼ 0;

Δκ4jal2HDM ¼ 0;

ahγγjal2HDM ¼ −
1

48π2
;

ahγZjal2HDM ¼ −
2c2w − 1

96c2wπ2
: ð5:13Þ

Fourth, in the case of an scenario with quasialignment,
namely, with small but not vanishing jcβ−αj ≪ 1, we can
approximate the above results in Eq. (5.12) by doing an
additional Taylor expansion in powers of the small param-
eter cβ−α and keeping just the leading term in this
expansion, which for the LO HEFT Δ’s is of Oðc2β−αÞ.

Thus, we get the following results for these Δ’s in this
quasialignment (qal) scenario:

Δajqal2HDM ¼ c2β−α
2

;

Δbjqal2HDM ¼ −c2β−α;

Δκ3jqal2HDM ¼ −c2β−α

�
3

2
− 2

m2
12

m2
h

1þ t2β
tβ

�
;

Δκ4jqal2HDM ¼ c2β−α

�
7

3
− 4

m2
12

m2
h

1þ t2β
tβ

�
: ð5:14Þ

Fifth, we remark that in the previous quasialignment
limit we find some simple correlations among the LO
HEFT coefficients that we find interesting to comment:

Δajqal2HDM ¼ −
1

2
Δbjqal2HDM; ð5:15Þ

Δκ3jqal2HDM ¼ −
9

14
Δκ4jqal2HDM −

4

7
c2β−α

m2
12

m2
h

1þ t2β
tβ

: ð5:16Þ

The first one is independent on m12 and tan β. Notice the
different correlation between these two Δ’s here in the
2HDM and in the SMEFTwhich was commented at the end
of Sec. II. For the result regarding the κ’s in Eq. (5.16), the
correlation gets further simplified if m12 ¼ 0:

Δκ3jqal2HDM ¼ −
9

14
Δκ4jqal2HDM ðm12 ¼ 0Þ: ð5:17Þ

On the other hand, one can also write together Δκ3jqal2HDM

and Δκ4jqal2HDM in Eq. (5.14) in the following alternative
form:
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2Δκ3jqal2HDM þ Δκ4jqal2HDM ¼ −
2

3
c2β−α; ð5:18Þ

which is interesting because it is independent on the value
of m12 and tan β. Then, from Eqs. (5.14) and (5.18), it is
immediate to check that the following relation among the
four Δ’s holds in the quasialignment case:

2Δκ3jqal2HDM þ Δκ4jqal2HDM ¼ 2

3
Δbjqal2HDM ¼ −

4

3
Δajqal2HDM:

ð5:19Þ

Our final comment refers to the comparison of our results
for the HEFT coefficients with those found in [21]. They do
not consider one-loop generated coefficients and work
close to the alignment limit; thus, we can compare only
our simplified results in the quasialignment limit in
Eq. (5.14) with their results. Except for Δa, where we
agree, the rest of Δ’s are clearly different. In fact, they
express the results for the HEFT coefficients in terms of a
common heavy mass Λ and the splittings among the heavy
Higgs boson masses which they assume to be of OðvÞ.
They also assume a value for cβ−α of Oðv2=Λ2Þ. None of
these assumptions are done in the present work, since we
deal with generic input cβ−α and generic mass splittings, so
these different results are not surprising. Our interpretation
of these differences is that they follow different paths to
move through the 2HDM parameter space in the heavy
mass limit. In particular, they “freeze” the values of the
triple Higgs couplings λx by their perturbativity require-
ment, whereas we do not. Thus, they do not get non-
decoupling effects from the heavy Higgs bosons, whereas
we do.

VI. NUMERICAL RESULTS

In this section, we present our numerical results for the
HEFT coefficients in Eq. (5.12) in terms of the 2HDM
input parameters. First, we comment on the one-loop
generated coefficients ahγγj2HDM and ahγZj2HDM. Since they
depend only on the value of sβ−α, and this lies in the interval
0 ≤ sβ−α ≤ 1, then the predicted coefficients in Eq. (5.12)
fulfill

−
1

48π2
≤ ahγγj2HDM ≤ 0; ð6:1Þ

−
2c2w − 1

96c2wπ2
≤ ahγZj2HDM ≤ 0: ð6:2Þ

Then, they are numerically small quantities, as is expected
since they are one-loop generated coefficients. In particular,
the values reached for alignment are the following:

ahγγjal2HDM ¼ −0.00211; ð6:3Þ

ahγZjal2HDM ¼ −0.000944: ð6:4Þ

Next, we comment on the LOHEFT coefficients. We start
with the simplest case ofm12 ¼ 0. The numerical predictions
for Δaj2HDM, Δbj2HDM, Δκ3j2HDM, and Δκ4j2HDM in this
m12 ¼ 0 case depend just oncβ−α and tan β. Their predictions
in terms of these two parameters are presented in Fig. 12, as
contours lines in the ðcβ−α; tan βÞ plane. The predictions in
the generic (full) case, using Eq. (5.12), are collected in the
left plots and the predictions in the quasialignment (approxi-
mate) case, usingEq. (5.14), in the right plots. The black solid
lines in these plots represent the predictionswhere theΔ’s are
zero. This always coincides with the alignment limit, but the
Δ’s can also vanish in other regions with concrete configu-
rations of the 2HDM input parameters. The intervals dis-
played in the axes of these plots are chosen to roughly cover
the allowed experimental values. In particular, the interval
explored in cβ−α is shortened to jcβ−αj < 0.2 and the one in
tan β is shortened to 0.5 < tan β < 20. The numerical
values predicted in those reduced intervals range roughly
as follows: 0 < Δaj2HDM < 0.02, −0.2 < Δbj2HDM < 0.12,
−0.22 < Δκ3j2HDM < 0.11, and −0.05 < Δκ4j2HDM < 4.5.
Their maximumvalues are reached for the largest considered
jcβ−αj values and the largest considered tan β values (except
for Δa that is independent on tan β). Regarding the com-
parison between the generic and quasialignment results, we
see that the predictions for Δaj2HDM (left) versus those for
Δajqal2HDM (right) look very similar. We also see that the
predictions for the otherΔ’s look also very similar in the low
region of tan β. The largest differences among generic and
quasialignment occur in the upper right corner for Δb and
Δκ3 and in the upper left corner forΔκ4. In any case, we can
conclude that the simple formulas in Eq. (5.14) (applied for
m12 ¼ 0) provide a very good approximation to the full result
of Eq. (5.12) in the low tan β < 2 region.
The values of Δκ3 and Δκ4 for the m12 ≠ 0 case are

explored in Fig. 13. We consider two different input values
of m12 ¼ 100 GeV and m12 ¼ 400 GeV. The same inter-
vals in the axes as before are considered in these contours in
the ðcβ−α; tan βÞ plane for the m12 ≠ 0 case. Looking at the
generic plots (left), we see that the size of Δκ3 increases for
larger m12 reaching values of up to 10 in the upper left
corner (with tan β close to 20) of the second plot for
m12 ¼ 400 GeV. The size of Δκ4 also reaches the largest
values of about 5 for the larger m12 ¼ 400 GeV case, but it
happens at lower values of tan β below 10. In addition, Δκ4
can also reach large, but negative, values below −20 in the
regions of large tan β and far from the alignment limit in
both cases where m12 ¼ 100, 400 GeV. Comparing the
plots on the left (generic) with those in the right (quasia-
lignment), we find again that these latter provide a
reasonable approximation in the low tan β region, roughly
below 5 for Δκ3 and below 2 for Δκ4.
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FIG. 12. LO HEFT parameters Δa, Δb, Δκ3, and Δκ4 from 2HDM: contours in the ðcβ−α; tan βÞ plane form12 ¼ 0. Generic (full) case
in left plots, using Eq. (5.12), versus quasialignment (approximate) case in right plots, using Eq. (5.14).
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FIG. 13. LO HEFT parameters Δκ3 and Δκ4 from 2HDM: contours in the ðcβ−α; tan βÞ plane for m12 ≠ 0. Generic (full) case in left
plots, using Eq. (5.12), versus quasialignment (approximate) case in right plots, using Eq. (5.14).
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FIG. 14. Correlations between LO HEFT coefficients from the 2HDM Δaj2HDM and − 1
2
Δbj2HDM in the generic (full) case, using

Eq. (5.12).

FIG. 15. Correlations between LO HEFT coefficients from the 2HDM Δκ3j2HDM and − 9
14
Δκ4j2HDM in the generic (full) case, using

Eq. (5.12).
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Finally, we study numerically the interesting correlations
found among the HEFT coefficients, Δa versus Δb and
Δκ3 versus Δκ4 in Figs. 14 and 15, respectively. Notice that
we have chosen to plot in Figs. 14 and 15 the quantities
Δaj2HDM versus − 1

2
Δbj2HDM and Δκ3j2HDM versus

− 9
14
Δκ4j2HDM motivated by the particular combinations

appearing in the quasialignment results of Eqs. (5.15) and
(5.16), respectively. These are all studied for the general
case with misalignment; namely, we use the full formulas in
Eq. (5.12). One can see in Fig. 14 that a clear correlation
between Δaj2HDM and − 1

2
Δbj2HDM is manifested for

tan β < 5, and this correlation is well represented by our
approximate results of the quasialignment scenario.
Regarding Δκ3 and Δκ4, we see in the upper plots in
Fig. 15 that for low tan β ¼ 2 a clear correlation between
Δκ3j2HDM and − 9

14
Δκ4j2HDM is manifested for m12 <

300 GeV. Increasing tan β worsens this correlation.
From the two lower plots, for tan β ¼ 10, we see that this
correlation manifests only in the very narrow region with
very small cβ−α values close to alignment. Therefore, this
correlation is well represented by our approximated for-
mulas of the quasialignment scenario for sufficiently small
cβ−α values, namely, for jcβ−αj < 0.05.

VII. CONCLUSIONS

In this work, we have computed the most relevant
nondecoupling effects from the BSM Higgs bosons within
the 2HDM, H, A, and H�. The light Higgs boson h is
assumed here to be the one observed experimentally with a
massmh ∼ 125 GeV. Our simple hypothesis for the masses
of the BSM Higgs bosons is that they are very heavy
compared to the EW masses mZ, mW , mf, mh, v, and m12.
We have worked within the framework of EFTs, and, more
concretely, we have assumed the HEFT to be the proper
EFT to describe the low-energy effects from the 2HDM
heavy Higgs bosons. We focus here on just the bosonic
sector. Specifically, we have found that the low-energy
effects that result from the integration of the heavy Higgs
boson modes H, A, and H� can be collected into a set of
HEFT coefficients which turn out not to be suppressed
by inverse powers of the heavy masses but instead are
constant with these masses. Those values constant with
mheavy summarize the nondecoupling effects from the
heavy Higgs bosons.
Our approach to compute such nondecoupling effects is

by solving the matching between the 2HDM and the HEFT
at low energies compared to the heavy masses. Instead of
the usual matching at the Lagrangian level, we impose here
a more physical matching which requires the equality
between the amplitudes predicted by the 2HDM in the
heavy mass limit of the BSM Higgs bosons with those
predicted by the HEFT. Furthermore, we do this matching
at the amplitude level by considering specific processes
involving the light Higgs boson in the external legs that

include scattering and decays. Concretely, we have studied
and solved the matching between the 2HDM and the HEFT
amplitudes for the following seven processes: h→
WW�→Wff̄0, h→ZZ� →Zff̄, WþW− → hh, ZZ → hh,
hh → hh, h → γγ, and h → γZ. All amplitudes have been
computed in a covariant Rξ gauge to get control on the
gauge invariance of the results. The amplitudes for the five
first processes have been computed at the tree level in the
HEFT, 2HDM, and also the SM for comparison. The
amplitudes of the two last decays have been computed
to one-loop level in the three models. We have shown that
the expansion of the 2HDM amplitudes in inverse powers
of the heavy masses provides convergent results for the
HEFT coefficients in the heavy mass limit. In addition, we
have identified the triple couplings of the light Higgs with
the heavy Higgs bosons as being the responsible for the
nondecoupling effects from the heavy Higgs bosons in the
amplitudes.
The nondecoupling effects found here are summarized in

the values of the HEFT coefficients collected in Eq. (5.12)
which have been given in terms of the input 2HDM
parameters. These input parameters have been chosen in
this work to be mh, mH, mA, mH� , v, cβ−α, tan β, and m12.
In fact, the analytical results found here for the HEFT
coefficients turn out to depend on just a subset of them.
Concretely, Δa, ahγγ , and ahγZ are given in terms of just
cβ−α. Δb is given in terms of cβ−α and tan β, and Δκ3 and
Δκ4 are given on terms of cβ−α, tan β, and m12. We wish to
emphasize that these results are valid for a generic value of
cβ−α; i.e., they apply for the generic misalignment case. We
have also provided their analytical values in the simpler
cases of alignment with cβ−α ¼ 0 and of quasialignment
with cβ−α ≪ 1, summarized in Eqs. (5.13) and (5.14),
respectively. In looking at those solutions from the match-
ing, we have detected some correlations among the HEFT
coefficients, which can be of much interest in the future
colliders searches of BSM physics.
Finally, we have also explored numerically the values of

the HEFT coefficients as a function of the 2HDM input
parameters. For the considered intervals in the relevant
2HDM input parameters, which are roughly allowed by the
present constraints, we find values of 0 < Δaj2HDM < 0.02,
−0.2 < Δbj2HDM < 0.12, −0.22 < Δκ3j2HDM < 0.11, and
−0.05 < Δκ4j2HDM < 4.5 in the simplest case of m12 ¼ 0.
The correlations among the HEFT coefficients have also

been explored numerically. We have found that a clear
correlation between Δaj2HDM and − 1

2
Δbj2HDM is mani-

fested for tan β < 5, and this correlation is well represented
by our approximate results of the quasialignment scenario.
Regarding the κ’s, we have found that for low tan β ¼ 2 a
clear correlation between Δκ3j2HDM and − 9

14
Δκ4j2HDM is

manifested for m12 < 300 GeV. Increasing tan β worsens
this correlation. For instance, for tan β ¼ 10, we see that
this correlation manifests only in the very narrow region
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with very small cβ−α values close to alignment. Therefore,
this correlation is well represented by our approximated
formulas of the quasialignment scenario for sufficiently
small cβ−α values, namely, for jcβ−αj < 0.05.
All in all, we conclude that the nondecoupling effects

found in this work could serve in the future as a guide to look
for indirect hints from the 2HDM heavy Higgs bosons, even
if they are too heavy to be produced directly at colliders.
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APPENDIX A: RELEVANT FEYNMAN RULES

In this section, we provide in Table I all relevant
Feynman rules for the computation of the scattering and
decay amplitudes discussed in this work. We include only
those interactions among fields that are external legs in the
considered processes. The three models in consideration,
SM, HEFT, and 2HDM, are showed for comparison.
The relevant Feynman rules for Higgs boson scalar

TABLE I. Relevant Feynman rules involving the SM-like Higgs boson in the SM, HEFT, and 2HDM for
comparison. All momenta are incoming. The relations among the tree-level EW parameters are as in the SM:
mW ¼ ðgvÞ=2, mZ ¼ mW=cw, and m2

h ¼ 2λv2.

Interaction SM HEFT 2HDM

2im2
W

v gμν 2im2
W

v agμν 2im2
W

v sβ−αgμν

2im2
Z

v gμν 2im2
Z

v agμν 2im2
Z

v sβ−αgμν

0 2g2s2w
v ahγγðk1 · k2gμν − kμ2k

ν
1Þ 0

0 2g2swcw
v ahγZðk1 · k2gμν − kμ2k

ν
1Þ 0

i g
2

2
gμν i g

2

2
bgμν i g

2

2
gμν

(Table continued)
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interactions in the 2HDM can also be found in
Eqs. (3.4)–(3.7).

APPENDIX B: ONE-LOOP FUNCTIONS

The one-loop computation is performed with dimen-
sional regularization in D ¼ 4 − ϵ dimensions, and we use
the standard definitions for the associated divergence:

Δϵ ¼
1

4 −D
− γE þ logð4πÞ; ðB1Þ

where μ0 is the usual scale. We implement the compact
notation for the momentum integral given by

Z
k
¼ μ4−D0

Z
dDk
ð2πÞD : ðB2Þ

To display some results, we also use the scalar two- and
three-point one-loop integral functions in the Passarino-
Veltman notation [49], with the following conventions:

i
16π2

A0ðm1Þ ¼
Z
k

1

½k2 −m2
1�
;

i
16π2

B0ðq1; m1; m2Þ ¼
Z
k

1

½k2 −m2
1�½ðkþ q1Þ2 −m2

2�
;

i
16π2

C0ðq1; q2; m1; m2; m3Þ ¼
Z
k

1

½k2 −m2
1�½ðkþ q1Þ2 −m2

2�½ðkþ q1 þ q2Þ2 −m2
3�
: ðB3Þ

We introduce

fðrÞ ¼ −
1

4
log2

�
−
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�

¼

8>><
>>:

arcsin2
�

1ffiffi
r

p
�

r ≥ 1;

− 1
4

�
ln

�
1þ ffiffiffiffiffiffi

1−r
p

1−
ffiffiffiffiffiffi
1−r

p
�
− iπ

�
2

0 < r < 1
ðB4Þ

and

TABLE I. (Continued)

Interaction SM HEFT 2HDM

i g2

2c2w
gμν i g2

2c2w
bgμν i g2

2c2w
gμν

−6iλv −6iλvκ3 −6iλhhhv

−6iλ −6iλκ4 −6iλhhhh
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gðrÞ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
log

�
−
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�

¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffi
r − 1

p
arcsin

�
1ffiffi
r

p
�

r ≥ 1;

1
2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p �
ln
�

1þ ffiffiffiffiffiffi
1−r

p
1−

ffiffiffiffiffiffi
1−r

p
�
− iπ

�
0 < r < 1;

ðB5Þ

with the relations

B0ðq;M;MÞ ¼ Δϵ þ log

�
μ20
M2

�
þ 2 − 2g

�
4M2

q2

�
;

C0ð0; q;M;M;MÞ ¼ −
2

q2
f

�
4M2

q2

�
: ðB6Þ

The relevant regime for the matching in Eq. (5.10) is large r, in which case

fðrÞjr≫1 ∼
1

r
þ 1

3r2
þOðr−3Þ;

gðrÞjr≫1 ∼ 1 −
1

3r
−

2

15r2
þOðr−3Þ: ðB7Þ
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