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We study a realistic SU(5) grand unified model, where a 45 representation of scalar fields is added to the
Georgi-Glashow model in order to realize the gauge coupling unification and the masses and mixing of
quarks and leptons. The gauge coupling unification together with constraints from proton decay implies mass
splittings in scalar representations. We assume that an SU(2) triplet component of the 45 scalar, which is
called S3 leptoquark, has a TeV-scale mass, and color-sextet and color-octet ones have masses of the order of
106 GeV. We calculate one-loop beta functions for Yukawa couplings in the model, and derive the low-
energy values of the S3 Yukawa couplings which are consistent with the grand unification. We provide
predictions for lepton-flavor violation and lepton-flavor-universality violation induced by the S3 leptoquark,
and find that current and future experiments have a chance to find a footprint of our SU(5) model.
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I. INTRODUCTION

The idea of Grand Unification is an attractive candidate
for the fundamental theory behind the present under-
standing of particle physics described by the Standard
Model (SM) [1–6]. Although the SM has been established
as a successful effective model at the electroweak (EW)
scale by the discovery of the Higgs boson, reaching a
deeper understanding of nature is a desire of particle
physicists. Interestingly, some properties of the SM sug-
gest the existence of a Grand Unified Theory (GUT) as a
high-energy theory beyond the SM. For example, the
renormalization group (RG) runnings of the gauge cou-
plings in the SM show a unification tendency at a high
scale [4], and the charge quantization of the SM fermions
suggests the unification of matter. Once the SM gauge
groups for electromagnetic, weak, and strong interactions
are unified to a GUT gauge symmetry group, quarks and
leptons are consequently unified in a single or a few
representations of the GUT group. Various groups, such as
SU(5), SO(10), E6, etc., have been considered as the GUT
gauge symmetry group [7].
The SU(5) is the minimal simple group which contains

the SM gauge groups SUð3ÞC × SUð2ÞL × Uð1ÞY. The
minimal version of the GUT model based on the SU(5)
symmetry, called the minimal SU(5) GUT, was originally

proposed by Georgi and Glashow [3]. In the minimal SU(5)
GUT model, the right-handed down quarks and the left-
handed lepton doublets are embedded in 5̄ representations
of SU(5), and the left-handed quark doublets, the right-
handed up quarks, and the right-handed charged leptons are
embedded in 10 representations. The SM Higgs doublet is
embedded in a 5 representation of scalars. In addition, the
minimal model also contains a 24 representation of scalars,
which breaks the SU(5) gauge symmetry to the SM ones.
Although the concept of the minimal SU(5) GUT is

beautiful, there are two serious issues that have to be solved
to construct a more realistic model. First, the three gauge
couplings are not unified at a high-energy scale only with
the RG runnings in the SM. In the minimal SU(5) model,
there is a grand desert between the EWand the GUT scales,
where there is no new contribution to the RG runnings.
Second, the measured values of the masses of the charged
leptons and the down-type quarks cannot be accommodated
with the minimal SU(5) GUT, where they originate from a
common Yukawa interaction in the GUT Lagrangian.
The first issue on the gauge coupling unification can be

overcome by introducing extra fields in the grand desert,
since such fields modify the RG runnings of the gauge
couplings. A famous example of this direction is the
supersymmetric SU(5) GUT model, in which the super-
partners of the SM particles as well as the second Higgs
doublet are introduced and the gauge coupling unification
occurs at the scale of the order of 1016 GeV [8–12]. In
nonsupersymmetric SU(5) GUT models, a single or a few
particles in an extra representation of SU(5) are predicted to
lie in the grand desert in order to realize the gauge coupling
unification [13–30].
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The second issue on the masses of the charged leptons
and the down-type quarks can be resolved by introducing a
45 representation of scalar fields to the minimal SU(5)
GUT. Similar to the 5 scalar, the 45 scalar couples with
the 10 and the 5̄ fermions since 10 ⊗ 5̄ ¼ 5 ⊕ 45. This
coupling makes modifications in the relation between
the charged-lepton and the down-type-quark Yukawa
matrices at the GUT scale through the Georgi-Jarlskog
mechanism [31].
We combine the above two ideas on the extensions of

the minimal SU(5) GUT, and construct a concrete
example of a realistic SU(5) GUT model, where the
gauge coupling unification and the correct fermion
masses are realized simultaneously. This kind of model
having the 45 scalar can be found, for example, in
Refs. [13,15,18,21–25,27,28]. In the current study, we
introduce the 45 scalar to reproduce the charged-lepton
and the down-type-quark Yukawa matrices correctly, and
make an SU(2) triplet component of the 45 scalar light
enough to achieve the gauge coupling unification [18].
This triplet scalar is called S�3. The Yukawa interactions
between the 45 scalar and the 10 and the 5̄ fermions are
given by 10 · 10 · 45 and 10 · 5̄ · 45, where we omit the
former by hand to suppress baryon-number-violating
interactions mediated by the light S�3. In addition to the
S�3, we assume that color-sextet and color-octet compo-
nents in the 24 and the 45 scalars have masses of the order
of 106 GeV in order to avoid too rapid proton decay
mediated by the GUT gauge bosons.1 In this case, the
SU(2) triplet scalar has a mass of Oð103–106 GeVÞ, and
the GUT scale is of Oð1016–1017 GeVÞ. We do not
consider any mechanisms to generate the mass splittings
in the GUT multiplets and to forbid the 10 · 10 · 45
interactions, which are beyond the scope of the current
work. Moreover, we do not specify the origin of the
nonzero neutrino masses, which are studied in the frame-
work of the SU(5) GUTwith the 45 scalar, for example, in
Refs. [21,22,25,27,32–34].
This triplet scalar S�3 carries the SM gauge quantum

numbers ð3; 3;−1=3Þ, and has Yukawa couplings to a
lepton and a quark. The conjugate state of S�3, having
ð3̄; 3; 1=3Þ, is often called S3 leptoquark [35,36]. If the
mass of the S3 leptoquark lies at the TeV scale, S3 can affect
various flavor observables. Unlike the phenomenological
models where the S3 leptoquark is introduced by hand as,
for instance, in Refs. [37–48], the flavor structure of the
Yukawa couplings associated with S3 is constrained by the
measured values of the charged-lepton and the down-type
quark masses. It provides peculiar correlations in the flavor
observables. We study the impact of the S3 leptoquark at

the TeV scale in our model on the phenomenology of flavor
observables, such as leptonic and semileptonic B decays,
Bs − B̄s mixing, ϒðnSÞ decays, tau-lepton decays, and
Z → μ∓τ� decay. We show that Belle II with 50 ab−1 and
LHCb with 300 fb−1 have a chance to find a footprint of
our SU(5) GUT model.
This paper is organized as follows. In Sec. II, we

introduce an SU(5) GUT model with a 45 scalar, and
explain how it solves the issues in the minimal SU(5) GUT.
In Sec. III, we present and discuss phenomenological
implications of our model. Section IV contains our sum-
mary and conclusions. Some technical details are given in
the Appendixes.

II. MODEL

A. Lagrangian

We consider an SU(5) GUT model, where the SM
fermions reside in 10 and 5̄ representations of SU(5),
denoted by Ψ10i and Ψ5̄i with i ¼ 1, 2, 3 being the
generation index, and the scalar sector is composed of
one 24, one 5, and one 45-dimensional scalar representa-
tion, denoted by Σ, Φ5, and Φ45, respectively. The SU(5)-
symmetric renormalizable Lagrangian is given by

L ¼ −
1

4
ðVμνÞBAðVμνÞAB þ iðΨ̄10iÞABγμDμðΨ10iÞAB

þ iðΨ̄5̄iÞAγμDμðΨ5̄iÞA þ ½DμΣB
A�½DμΣA

B�
þ ½DμðΦ†

5ÞA�½DμðΦ5ÞA� þ ½DμðΦ†
45ÞCAB�½DμðΦ45ÞABC �

þ LY − VðΣ;Φ5;Φ45Þ; ð1Þ

where Vμν is the field strength tensor of the SU(5) gauge
bosons, A; B;C ¼ 1;…; 5 are SU(5) indices, and LY and
VðΣ;Φ5;Φ45Þ represent the Yukawa interactions and the
scalar potential, respectively. The summation over repeated
indices is implied. Here the fields Ψ10i, Σ, and Φ45 satisfy
the following relations:

ðΨ10iÞAB ¼ −ðΨ10iÞBA; ðΣB
AÞ� ¼ ΣA

B; ΣA
A ¼ 0;

ðΦ45ÞABC ¼ −ðΦ45ÞBAC ; ðΦ45ÞABA ¼ 0: ð2Þ

In general the Yukawa term LY in Eq. (1) consists of the
four interactions:

−LY ¼ 1

8
ðYU

5 ÞijϵABCDEðΨ10iÞABðΦ5ÞCðΨ10jÞDE

þ ðYD
5 ÞijðΨ10iÞABðΦ†

5ÞAðΨ5̄jÞB
þ 1

4
ðYU

45ÞijϵABCDEðΨ10iÞABðΦ45ÞCDF ðΨ10jÞEF

þ 1

2
ðYD

45ÞijðΨ10iÞABðΦ†
45ÞCABðΨ5̄jÞC þ H:c:; ð3Þ

1For example, one can increase the GUT scale to evade the
constraint from the proton decay by making the ð8; 2; 1=2Þ scalar
in the 45 representation light [13,18,30].
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where the totally antisymmetric tensor is defined as
ϵ12345 ¼ 1, and YU

5 and YU
45 are symmetric and antisym-

metric matrices in the generation space, respectively:

ðYU
5 Þij ¼ ðYU

5 Þji; ðYU
45Þij ¼ −ðYU

45Þji: ð4Þ

The explicit expression for the scalar potential
VðΣ;Φ5;Φ45Þ is given in Appendix A.
The SU(5) gauge symmetry is assumed to be broken

down to the SM gauge symmetry SUð3ÞC × SUð2ÞL ×
Uð1ÞY by the vacuum expectation value (VEV) of a SM-
singlet scalar field in Σ: hΣi ¼ v24diagð2; 2; 2;−3;−3Þ.
The field Σ is decomposed around the VEV as

ΣA
B ¼

0
BB@

ðΣ8Þâb̂ þ 2
�
v24 − 1

2
ffiffiffiffi
15

p Σ1

�
δâb̂

1ffiffi
2

p ðΣGÞâβ
1ffiffi
2

p ðΣ�
GÞαb̂ ðΣ3Þαβ − 3

�
v24 − 1

2
ffiffiffiffi
15

p Σ1

�
δαβ

1
CCA; ð5Þ

where â; b̂ ¼ 1, 2, 3 and α, β ¼ 1, 2 are SU(3) and SU(2)
indices, respectively. The spontaneous breaking of SU(5)
typically provides the masses of the scalars Σ1, Σ3, and Σ8

of the order of v24, while Σ
ð�Þ
G corresponds to the massless

would-be Nambu-Goldstone boson, which gives masses to
the gauge bosons associated with the broken symmetries.
These massive vector bosons are called X bosons.

B. Fermions

The SM fermions qLi, ucRi, dcRi, lLi, and ecRi are
embedded into the 10 and 5̄ representations as

ðΨ10iÞAB ¼ 1ffiffiffi
2

p
 
ϵâ b̂ ĉðVQUÞikucRkĉ qâβLi

−qb̂αLi ϵαβðVQEÞikecRk

!
;

ðΨ5̄iÞA ¼
�
dcRiâ ϵαβðVDLÞiklβ

Lk

�
;

ð6Þ

where i, k are the generation indices, and the totally
antisymmetric tensors are defined as ϵ12 ¼ ϵ12 ¼ 1 and
ϵ123 ¼ ϵ123 ¼ 1. Without loss of generality, one can rotate
the basis of Ψ10 and Ψ5̄ as

Ψ10 → U10Ψ10; Ψ5̄ → U5Ψ5̄; ð7Þ

where U10 and U5 are arbitrary unitary matrices in the
generation space. By using the degrees of freedom asso-
ciated with the unitary rotations, we can take the basis
where the up-type quarks and the charged leptons are in
their mass eigenstates:

qLi ¼
� ûLi
ðVCKMÞijd̂Lj

�
; uRi ¼ ûRi; dRi ¼ d̂Ri;

lLi ¼
�
ν̂Li

êLi

�
; eRi ¼ êRi; ð8Þ

where the mass eigenstates are denoted with a hat, and
VCKM is the Cabibbo-Kobayashi-Maskawa (CKM)
matrix in the Particle Data Group (PDG) phase convention
[49,50]. Analogous to the CKM matrix that represents a
mismatch of the bases in qL, the unitary matrices VQU,
VQE, and VDL are introduced in Ψ10 and Ψ5̄ as in Eq. (6).

C. Scalar spectrum and gauge coupling unification

The scalarΦ5 is decomposed to the so-called color triplet

Higgs Sð5Þ�1 and the SUð2ÞL doublet Hð5Þ:

ðΦ5ÞA ¼
�
Sð5Þ�â1

Hð5Þα

�
; ð9Þ

while the Φ45 consists of the scalars S̃1, R�
2, S

�
3, S

�
6, S8,

Hð45Þ, and Sð45Þ�1 as

ðΦ45Þâ b̂ĉ ¼ 1ffiffiffi
2

p ϵâ b̂ d̂
�
ðηaÞĉ d̂S�a6 −

1

2
ϵĉ d̂ êS

ð45Þ�ê
1

�
;

ðΦ45Þâ b̂γ ¼ 1ffiffiffi
2

p ϵâ b̂ d̂R�
2d̂γ

;

ðΦ45Þâβĉ ¼ 1ffiffiffi
2

p
�
1ffiffiffi
2

p ðλaÞâĉSaβ8 þ 1

2
ffiffiffi
3

p δâĉH
ð45Þβ

�
;

ðΦ45Þαβĉ ¼ 1ffiffiffi
2

p ϵαβS̃1ĉ;

ðΦ45Þαb̂γ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðσaÞαγS�b̂3 −
1

2
δαγS

ð45Þ�b̂
1

�
;

ðΦ45Þαβγ ¼ −
ffiffiffi
3

p

2
ffiffiffi
2

p ϵαβϵγδHð45Þδ; ð10Þ

where σa (a ¼ 1, 2, 3) are the Pauli matrices, λaða ¼
1; 2;…; 8Þ the Gell-Mann matrices, and ηaða ¼ 1; 2;…; 6Þ
the symmetric matrices defined by
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fη1;η2;η3;η4;η5;η6g ¼

8>><
>>:

0
B@

1 0 0

0 0 0

0 0 0

1
CA;

0
B@

0 0 0

0 1 0

0 0 0

1
CA;

0
B@

0 0 0

0 0 0

0 0 1

1
CA;

1ffiffiffi
2

p

0
B@

0 1 0

1 0 0

0 0 0

1
CA;

1ffiffiffi
2

p

0
B@

0 0 1

0 0 0

1 0 0

1
CA;

1ffiffiffi
2

p

0
B@

0 0 0

0 0 1

0 1 0

1
CA
9>>=
>>;
:

ð11Þ

The decompositions of Σ, Φ5, and Φ45 are summarized in

Table I. Here the scalar Hð45Þ (Sð45Þ1 ) has the same quantum

numbers under the SM gauge group as Hð5Þ (Sð5Þ1 ).
Therefore, they can mix with each other, and we define
the mass eigenstates H, H0, HC, and S1 by introducing the
mixing angles θH and θS and the phases δH and δS:

�
H

H0

�
¼
�

cH e−iδHsH
−eiδHsH cH

��
Hð5Þ

Hð45Þ

�
;

�
HC

S1

�
¼
�

cS e−iδSsS
−eiδSsS cS

� 
Sð5Þ1

Sð45Þ1

!
; ð12Þ

where cH¼ cosθH, sH¼ sinθH, cS¼ cosθS, and sS¼ sinθS.
The presence of the two doublet scalars allows us to explain
the masses of the down-type quarks and the charged leptons
simultaneously.
Owing to the symmetry breaking of SU(5) to the SM

gauge groups, mass splitting may occur among the scalar
fields embedded in the SU(5) multiplets. At least one
SUð2ÞL-doublet scalar has to be light to break the EW
symmetry spontaneously below the TeV scale.2 We assume
that the scalar H is light and corresponds to the SM Higgs
doublet.
It is well-known that the SM gauge couplings do not

unify only by naive RG running in the SM. The mass
splitting of the SU(5) scalar multiplets can improve the
situation. We consider the scenario where some of the
scalar fields, in addition to H, are much lighter than others.

At the energy scale above the mass of an additional light
scalar, the scalar contributes to the RG running of the gauge
couplings. The gauge coupling unification is realized if an
appropriate set of light scalars is considered. We define
α3ðμÞ, α2ðμÞ, and α1ðμÞ as

α3ðμÞ ¼ αsðμÞ ¼
gsðμÞ2
4π

; α2ðμÞ ¼
gðμÞ2
4π

;

α1ðμÞ ¼
5

3

g0ðμÞ2
4π

; ð13Þ

where gs, g, and g0 are the gauge couplings of SUð3ÞC,
SUð2ÞL, and Uð1ÞY, respectively, and μ is the renormaliza-
tion scale. Our analysis assumes that the SM gauge
couplings are unified at the scale MX, i.e., α3ðMXÞ ¼
α2ðMXÞ ¼ α1ðMXÞ≡ αXðMXÞ, and all the scalar masses
are not heavier than MX. Then, above the MX scale, all
the scalars contribute to the running as complete SU(5)
multiplets so that the coupling unification holds aboveMX.
We also make an ansatz that the mass of the X boson is
equal to the unification scale MX.
Solving the renormalization group equations (RGEs) in

Appendix C with the unification assumption, we get the
three relations,

α−1X ðMXÞ ¼ α−13 ðmZÞ−
�
BSM
gs

2π
log

MX

mZ
þ
X
ϕ

Bϕ
gs

2π
log

MX

mϕ

�
;

α−1X ðMXÞ ¼ α−12 ðmZÞ−
�
BSM
g

2π
log

MX

mZ
þ
X
ϕ

Bϕ
g

2π
log

MX

mϕ

�
;

α−1X ðMXÞ ¼ α−11 ðmZÞ−
3

5

�BSM
g0

2π
log

MX

mZ
þ
X
ϕ

Bϕ
g0

2π
log

MX

mϕ

�
;

ð14Þ

TABLE I. The decomposition of the scalar fields Σ, Φ5, and Φ45 under the SM gauge groups.

Field SU(5) Field SUð3ÞC SUð2ÞL Uð1ÞY Field SU(5) Field SUð3ÞC SUð2ÞL Uð1ÞY
Σ 24 Σ1 1 1 0 Φ45 45 S̃1 3̄ 1 4=3

Σ3 1 3 0 R�
2 3̄ 2̄ −7=6

ΣG 3 2̄ −5=6 S�3 3 3 −1=3
Σ�
G 3̄ 2 5=6 S�6 6̄ 1 −1=3

Σ�
8 8 1 0 S8 8 2 1=2

Φ5 5 Hð5Þ 1 2 1=2 Hð45Þ 1 2 1=2

Sð5Þ�1
3 1 −1=3 Sð45Þ�1

3 1 −1=3

2The EW symmetry breaking can also be driven by the VEVof
Σ3 below the TeV scale. However, we assume that Σ3 does not
develop a VEV since it causes a dangerous contribution to the ρ
parameter.
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where mZ is the Z-boson mass, ϕ is summed over all the
relevant scalars, and the coefficients BSM

gi and Bϕ
gi are given

in Table IV. Eliminating α−1X ðMXÞ [51], one can get two
independent equations,

2

5
log

mHC

mZ
þ 2

5
log

mS1

mH0
þ 7

5
log

mS̃1

mS3

þ 4

5
log

mR2

mS3

þ 9

5
log

mS6

mS3

þ 4

5
log

mS8

mS3

þ log
mΣ8

mΣ3

¼ 2π½−2α−13 ðmZÞ þ 3α−12 ðmZÞ − α−11 ðmZÞ�
≃ 79.8; ð15Þ

44 log
MX

mZ
þ 6 log

mS3

mR2

þ log
mS6

mS̃1

þ 4 log
mS8

mS̃1

þ log
mΣ3

mΣ8

M2
X

¼ 2π½−2α−13 ðmZÞ − 3α−12 ðmZÞ þ 5α−11 ðmZÞ�
≃ 1193; ð16Þ

where the gauge couplings at μ ¼ mZ are evaluated for six
active quark flavors [52] with the input values shown in
Table II.
As a general property, the S3 contribution improves the

gauge coupling unification [18]. In the case that only
the Higgs boson and S3 are lighter than MX in the scalar
sector, the gauge coupling unification occurs at MX ∼
Oð1014 GeVÞ with mS3 ∼Oð108 GeVÞ. However, MX is
severely constrained by proton decay search experiments,
since contributions from the GUT gauge-boson exchange
generate the dimension-six operators relevant to the
proton decay. Then the proton lifetime is naively expected
as [7,53]

τp ∼
M4

X

α2Xm
5
p
; ð17Þ

wheremp is the mass of proton, and one finds a naive lower
bound as

MX > 5 × 1015 GeV; ð18Þ
by using the experimental lower limit on the lifetime
τðp → π0eþÞ > 2.4 × 1034 years [54] and α2X ∼Oð10−3Þ.
In order to avoid the rapid proton decay by making

MX much heavier, we assume that S6, S8, and Σ8, in

addition to S3, are lighter than the unification scale MX.
With their contributions to the RGEs of the gauge
couplings, MX can be significantly heavier with keeping
the coupling unification. Therefore, we consider a
scenario where the masses of S6, S8, and Σ8 are below
MX. For simplicity, we assume that the other scalar
components, except for the SM-like Higgs doublet H,
are as heavy as MX.
Let us explain in more detail the masses of the other

scalars embedded in the GUT representations. The mass
parameterm2

H associated with the SM-like Higgs doubletH
is of the order of the weak scale according to the LHC
measurements, while the other scalars associated with the 5
and 45 representations obey the mass relation given in
Eq. (A13). We simply choose that Σ1, Σ3, H0, HC, S1, and
S̃1 have a common mass MX. As a consequence, the mass
of R2 is determined as m2

R2
≈ ð2þ 4s2HÞM2

X=3, where sH is
the sine of the mixing angle defined in Eq. (12). For
s2H < 1=4, mR2

is lighter than MX.
In Fig. 1(a), the contours ofMX andmΣ8

are shown in the
parameter space of mS3 and mS6 ¼ mS8 . The gauge cou-
pling unification favors rather light S3, which can be as
light as a TeV scale. The light gray regions are for
MX < 3 × 1015 GeV, which is disfavored by the proton
decay search as mentioned above. For example, if we take
mS3 ¼ 2 TeV, mS6 ¼ mS8 ¼ mΣ8

¼ 5.2 × 106 GeV, and
cot θH ¼ 50, the gauge coupling unification is realized at
MX ¼ 9.7 × 1016 GeV as shown in Fig. 1(b).
In the phenomenological analysis, we use a benchmark

scenario with the following mass spectrum:
(1) The masses of the quarks and leptons, the SM gauge

bosons, and the SM-like Higgs bosonH are set to be
consistent with their measurements;

(2) S3 has a TeV-scale mass: mS3 ∼Oð103 GeVÞ;
(3) S6, S8, and Σ8 have intermediate masses, and we set

them to an identical scale, i.e., mS6 ¼ mS8 ¼ mΣ8
≡

MI ∼Oð106 GeVÞ;
(4) The other particles including the X bosons have

masses of the order of the GUT scale MX.

D. Yukawa couplings

Below the GUT scale, the Yukawa interactions with the
scalars H, S3, S6, and S8 are given by

TABLE II. Input values for the Z-boson mass mZ, the gauge couplings αsðmZÞ and α−1ðmZÞ, the weak mixing angle sin2 θWðmZÞ, the
quark masses, and the CKM parameters sij and δ, taken from Ref. [50]. Other parameters, such as the pole masses of the charged leptons
me, mμ, and mτ, are also taken from Ref. [50].

Parameter Value Parameter Value Parameter Value Parameter Value

mZ 91.1876 GeV muð2 GeVÞ 0.00216 GeV mdð2 GeVÞ 0.00467 GeV s12 0.22650
αsðmZÞ 0.1179 mcðmcÞ 1.27 GeV msð2 GeVÞ 0.093 GeV s13 0.00361
α−1ðmZÞ 127.952 mpole

t
172.76 GeV mbðmbÞ 4.18 GeV s23 0.04053

sin2 θWðmZÞ 0.23121 δ 1.196 rad
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−LY ¼ ðYUÞijϵαβūRâiHαqâβLj þ ðYDÞijd̄RâiH�
αqâαLj þ ðYEÞijēRiH�

αlα
Lj þ

ðYQQ
3 Þij
2

ϵâ b̂ ĉϵαβq̄
−câα
Li ðσaÞβγS�ab̂3 qĉγLj

þ ðYQL
3 Þijϵαβq̄câγLi ðσaÞαγSa3âlβ

Lj þ
ðYQQ

6 Þij
2

ϵαβq̄câαLi ðηAÞâ b̂SA�
6 qb̂βLj þ ðYDU

6 Þijd̄RâiðηAÞâ b̂SA6ucRb̂j
þ ðYUQ

8 ÞijϵαβūRâiðλAÞâb̂SAα8 qb̂βLj þ ðYDQ
8 Þijd̄RâiðλAÞâb̂SA�

8αq
b̂α
Lj þ H:c:; ð19Þ

where the first three terms lead to the fermion mass terms
after the Higgs fieldH acquires a VEVat the EW scale. The
45 scalar plays an essential role in reproducing the masses
of the SM fermions. If the 45 scalar is absent, the Yukawa
matrices must obey a condition YE ¼ VT

QEY
T
DVDL at the

GUT scale. This condition conflicts with the low-energy
values of the masses of the down-type quarks and the
charged leptons. In the current model, this problem is
solved by the presence of the Yukawa coupling YD

45.
Because the SM-like Higgs field H is a mixture of Hð5Þ

and Hð45Þ as in Eq. (12), the Yukawa matrices YU, YD, and
YE are given at the GUT scale by

YU ¼ −
1

2
VT
QU

�
cHYU

5 þ
ffiffiffi
2

3

r
eiδHsHYU

45

�
T
;

YD ¼ −
1ffiffiffi
2

p
�
cHYD

5 −
1

2
ffiffiffi
6

p e−iδHsHYD
45

�
T
;

YE ¼ −
1ffiffiffi
2

p VT
QE

�
cHYD

5 þ
ffiffiffi
3

p

2
ffiffiffi
2

p e−iδHsHYD
45

�
VDL; ð20Þ

which can lead to realistic Yukawa matrices at the low
energy. Moreover, the GUT-scale matching conditions for
the other couplings in Eq. (19) read as

YQQ
3 ¼ 1

2
YU
45; YQQ

6 ¼−
1ffiffiffi
2

p YU
45; YUQ

8 ¼−
1

2
VT
QUY

U
45;

YQL
3 ¼−

1

2
ffiffiffi
2

p YD
45VDL; YDU

6 ¼ 1

2
ðYD

45ÞTVQU;

YDQ
8 ¼ 1

2
ffiffiffi
2

p ðYD
45ÞT: ð21Þ

The scalar S3 couples to a quark and a lepton simulta-
neously and thus is a leptoquark. The RGEs for these
couplings are given in Appendix C.
Let us count the physical degrees of freedom in the

Yukawa sector. In the general case, there are four Yukawa
matrices YU

5 , Y
U
45, Y

D
5 , and YD

45 in the GUT Lagrangian.
Since YU

5 and YU
45 are symmetric and antisymmetric

matrices, respectively, the four matrices contain 54 param-
eters in total. By the redefinitions of the fermion fields by
U10 and U5 in Eq. (7), 18 degrees of freedom out of the

FIG. 1. (a) The contours ofMX (solid) andmΣ8
(dashed) in the unit of GeV for realizing the coupling unification in the plane ofmS3 and

mS6 ¼ mS8 for cot θH ¼ 50. In the blue shaded region, the gauge coupling unification does not occur by RG running. The light gray region
is disfavored by the proton decay experiments because MX is too small. The green dot-dashed line corresponds to the case with mS6 ¼
mS8 ¼ mΣ8

. (b) RG runnings of the gauge couplings for mS3 ¼ 2 TeV, mS6 ¼ mS8 ¼ mΣ8
≡MI ¼ 5.2 × 106 GeV, and cot θH ¼ 50.
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54 can be eliminated. Thus there remain 36 physical
parameters in the Yukawa matrices. Taking the basis where
the up-type quarks and the charged leptons are their mass
eigenstates, the Yukawa matrices YU

5 , Y
U
45, Y

D
5 , and YD

45 are
written as

YU
5 ¼ −

1

cH
ðV�

QUŶU þ ŶUV
†
QUÞ;

YU
45 ¼

ffiffiffi
3

p
ffiffiffi
2

p
eiδHsH

ðV�
QUŶU − ŶUV

†
QUÞ;

YD
5 ¼ −

1

2
ffiffiffi
2

p
cH

ð3V�
CKMŶD þ V�

QEŶEV
†
DLÞ;

YD
45 ¼

ffiffiffi
3

p

e−iδHsH
ðV�

CKMŶD − V�
QEŶEV

†
DLÞ; ð22Þ

where ŶU, ŶD, and ŶE represent diagonal matrices in the
mass basis. It is noted that an overall phase in VQU and
three phases in VQE (and/or VDL) can be removed by
Uð1ÞB, Uð1Þe, Uð1Þμ, and Uð1Þτ transformations. The right-

hand sides of Eq. (22) then contain nine eigenvalues in ŶU,
ŶD, and ŶE, three mixing angles and one phase in VCKM,
eight parameters in VQU, and fifteen ones in VQE and VDL.
In general, the scalar S3 can have two types of Yukawa

couplings, YQQ
3 and YQL

3 , and the combination of these
couplings leads to baryon-number-violating dimension-six
operators, which cause too fast proton decay. For example,
the bound from p → π0eþ is estimated as

jðYQQ
3 Þ12ðYQL

3 Þ11ðVCKMÞ21j≲ 10−25
�

mS3

2 TeV

�
2

: ð23Þ

Because ðYQL
3 Þ11 ∼ yd=sH with yd being the Yukawa

coupling for down quark, this condition implies a strong
upper bound on ðYU

45Þ12:

jðYU
45Þ12j≲ 10−20

�
mS3

2 TeV

�
2

sH: ð24Þ

Other components in YU
45 also have to be highly suppressed

to avoid the constraints from the proton decay. As
explained in Appendix C, the coupling YQQ

3 in Eq. (19)
is forbidden in the whole range of the renormalization scale
by an accidental global symmetryUð1ÞB ×Uð1ÞL if YQQ

3 is
once set to be zero at the GUT scale. Therefore, in the
following, we make an ansatz that YU

45 ¼ 0 at the
GUT scale.
We here show a parametrization for the mixing matrices

VQU, VQE, and VDL. According to the matching condition
in Eq. (22), the ansatz YU

45 ¼ 0 at the GUT scale requires
that VQU should be a diagonal phase matrix:

VQU ¼

0
B@

1 0 0

0 eiα
QU
2 0

0 0 eiα
QU
3

1
CA: ð25Þ

The other two matrices VDL and VQE can be parametrized as

VQE ¼ VCKM

0
B@

1 0 0

0 eiα
QE
2 0

0 0 eiα
QE
3

1
CAV̂QE;

VDL ¼

0
B@

1 0 0

0 eiα
DL
2 0

0 0 eiα
DL
3

1
CAV̂DL

0
B@

eiβ
DL
1 0 0

0 eiβ
DL
2 0

0 0 eiβ
DL
3

1
CA;

ð26Þ

where V̂QE and V̂DL are the 3 × 3 unitary matrices para-
metrized by three angles and one phase as the CKM matrix,
and VCKM is extracted in VQE.
We define the coupling ȲQL

3 in the mass basis of the
down-type quarks and the charged leptons:

ȲQL
3 ¼VT

CKMY
QL
3 ¼−

ffiffiffi
6

p

4e−iδHsH
ðŶDVDL− V̄�

QEŶEÞ; ð27Þ

where V̄QE ¼ V†
CKMVQE. The mixings in V̄QE (VDL) cause

flavor transitions between different generations of the
down-type quarks (the charged leptons). To suppress
dangerous contributions to flavor-changing processes asso-
ciated with the first generation [44,47], such as K → πνν̄
and μ− → e−γ, we assume that V̂QE and V̂DL have only the
mixing between the second and the third generations at the
GUT scale:

V̂QE ¼

0
B@

1 0 0

0 cos θQE sin θQE

0 − sin θQE cos θQE

1
CA;

V̂DL ¼

0
B@

1 0 0

0 cos θDL sin θDL

0 − sin θDL cos θDL

1
CA; ð28Þ

where the mixing angles θQE and θDL are varied from 0 to
π=2. The three Yukawa matrices Y10, Y5, and YD

45 are then
determined at the GUT scale by the thirteen input param-
eters in addition to ŶU, ŶD, ŶE, and VCKM, i.e., the two
mixing angles θQE and θDL, the nine phases in VQU, VQE,
and VDL, and the two parameters sH ¼ sin θH and δH in the
Higgs sector.
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The YQL
3 term in Eq. (19) is decomposed in terms of the

fields in the EW broken phase as follows [36]:

LY ¼ − ¯̂ucLY
QL
3 êLS

1=3
3 −

ffiffiffi
2

p ¯̂d
c
LȲ

QL
3 êLS

4=3
3

þ
ffiffiffi
2

p
¯̂ucLY

QL
3 ν̂LS

−2=3
3 − ¯̂d

c
LȲ

QL
3 ν̂LS

1=3
3 þ H:c:; ð29Þ

where the hatted quark and lepton fields represent the mass
eigenstates as in Eq. (8), and SQ3 denotes a charge eigenstate
with charge Q defined in the matrix form

1ffiffiffi
2

p ðσAÞαβðS3ÞAĉ ¼

0
B@

1ffiffi
2

p ðS1=33 Þĉ ðS4=33 Þĉ
ðS−2=33 Þĉ − 1ffiffi

2
p ðS1=33 Þĉ

1
CA: ð30Þ

III. PHENOMENOLOGICAL ANALYSIS

A. Input parameters

We study low-energy phenomenology of the SU(5) GUT
model proposed in the last section, where there is an S3
leptoquark with a TeV-scale mass. As explained in Sec. II D
the S3 leptoquark has the Yukawa couplings with the
left-handed quarks and the left-handed leptons, which lead
to rich flavor phenomenology at the low-energy scale.
In particular, the S3 couplings generate processes with
lepton-flavor violation (LFV) and lepton-flavor-universal-
ity violation (LFUV), while such exotic flavor processes
are severely constrained by experiments. Our aim is to
investigate whether current and future flavor experiments
have a potential to explore our GUT-inspired scenario. The
S3 Yukawa matrix YQL

3 in our scenario cannot have an
arbitrary structure unlike that in phenomenological lepto-
quark models where S3 is introduced by hand. The
coupling YQL

3 originates from YD
45 in the GUT Lagrangian,

and YD
45 also contribute to the SM Yukawa couplings YD

and YE as in Eq. (20), which could help to explain the
observed masses of the down-type quarks and the charged
leptons. Thus, nontrivial correlations are expected among
flavor observables where the S3 leptoquark contributes.
The parameters in the GUT model, such as the Yukawa

couplings YU
5 , Y

D
5 , and YD

45 and the mixing matrices VQE

and VDL, are constrained by the low-energy values of the
SM fermion masses and the CKM matrix elements. We use
the fermion masses and the CKM matrix elements listed in
Table II as inputs, and calculate the running masses at the
EW scale by taking into account QCD corrections for
quarks with RunDec [55,56] and one-loop QED correc-
tions for charged leptons [52]. The masses and the CKM
matrix elements as well as the gauge couplings at the EW
scale are then evolved up to the GUT scale with the one-
loop RGEs in Appendix C, where the Yukawa couplings
YQL
3 , YDU

6 , and YDQ
8 are neglected at this stage. At the GUT

scale we calculate the couplings YU
5 , Y

D
5 , Y

D
45 with Eq. (22)

by inputting VQE and VDL, δH, and sH. The couplings YU,
YD, YE, Y

QL
3 , YDU

6 , and YDQ
8 are calculated at the GUT scale

with Eqs. (20) and (21), and we then perform the RG
evolution from the GUT scale to the low scale. The fermion
masses and the CKM elements at the low scale obtained
from this procedure are different from the original values due
to the effects from YQL

3 , YDU
6 , and YDQ

8 . We iterate the RG
running with the obtained values of YQL

3 , YDU
6 , and YDQ

8

together with the original values of the SM fermion masses
and the CKM elements until the difference in the masses and
the CKM elements becomes small enough. In this way we
can determine a set of the GUT parameters that are consistent
with the low-energy values of the SM fermion masses, the
CKM matrix elements, and the gauge couplings.
We fix the mass of the S3 leptoquark to be mS3 ¼ 2 TeV

to avoid constraints from high-pT searches at the LHC [57].
In addition, there are the thirteen arbitrary parameters: the
three mixing angles θQE, θDL, and θH, and the ten phases
αQU
2 , αQU

3 , αQE
2 , αQE

3 , αDL
2 , αDL

3 , βDL
1 , βDL

2 , βDL
3 , and δH. In

general the Yukawa couplings ðȲQL
3 Þij in Eq. (27) become

larger for a smaller Higgs mixing angle θH. We choose
cot θH ¼ 50 as a benchmark scenario, while the other
parameters are varied arbitrarily in their physical domain.
The S3 contributions to the flavor observables considered
below are reduced by taking a heavier mS3 and/or a
smaller cot θH.

B. Leptoquark couplings

The Yukawa couplings ðȲQL
3 Þij of the S3 leptoquark are

constrained by the GUT relation in Eq. (27) to accom-
modate with the measured masses of the down-type quarks
and the charged leptons at the low-energy scale. The RG
effects from the GUT scaleMX to the S3 mass scalemS3 are
shown in Fig. 2. It is noted that the magnitudes of the
couplings typically enhance at the lower scale. In particular,
the 22 coupling is increased by about a factor of 2,
receiving one-loop corrections with the other couplings.
Therefore, the inclusion of the RG evolution is essential to
study low-energy phenomenology associated with the
22 coupling, such as b → sμþμ− processes.
According to Fig. 2, the couplings with the second-

generation fermions are typically smaller than those with
the third-generation ones:

jðȲQL
3 Þ22j ≪ jðȲQL

3 Þ23j ∼ jðȲQL
3 Þ32j ≲ jðȲQL

3 Þ33j: ð31Þ

On the other hand, the couplings with the first-generation
fermions are negligibly small due to our ignorance of the
corresponding mixings in Eq. (28).

C. Matching onto low-energy theory

The gauge couplings and the Yukawa couplings in
Eq. (19) at the GUT scale are evolved down to the mass
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scale mS3 using the RGEs given in Appendix C, where S6,
S8, and Σ8 are decoupled at the intermediate scale MI . The
leptoquark S3 is then decoupled at the scale mS3 , and the
theory is matched onto the Standard Model Effective Field
Theory (SMEFT). The corresponding tree-level matching
conditions are presented in Refs. [58,59], while the one-
loop ones are calculated in Ref. [60]. In addition, the one-
loop anomalous dimensions in the SMEFT are found in
Refs. [61–63].
We adopt the dimension-six SMEFT operators in the so-

called Warsaw basis [64], where the Lagrangian in the
SMEFT is given by the sum of the renormalizable SM
Lagrangian and terms with higher-dimensional operators
Oi: LSMEFT ¼ LSM þPi CiOi. At the tree level, only the

semileptonic operators ½Oð1Þ
lq �ijkl ¼ ðlLiγ

μlLjÞðq̄LkγμqLlÞ
and ½Oð3Þ

lq �ijkl ¼ ðlLiγ
μσalLjÞðq̄LkγμσaqLlÞ are generated

by integrating out the S3 leptoquark, where the correspond-
ing Feynman diagram above the S3 mass scale is presented
in Fig. 3(a), and that below the S3 mass scale, i.e., in the
SMEFT, is in Fig. 3(b). The tree-level matching conditions
for the semileptonic operators are given by

h
Cð1Þlq ðmS3Þ

i
ijkl

¼ 3
h
Cð3Þlq ðmS3Þ

i
ijkl

¼ 3

4m2
S3

ðYQL�
3 ÞkiðYQL

3 Þlj;

ð32Þ

where YQL
3 in the right-hand side is the S3 Yukawa coupling

at the S3 mass scale, obtained from the coupling at the GUT
scale in Eq. (21) applying the RG evolution. We also define

the coefficients C̄ð1;3Þlq in the mass basis of the down-type
quarks and the charged leptons, and their matching con-
ditions read as

h
C̄ð1Þlq ðmS3Þ

i
ijkl

¼ 3
h
C̄ð3Þlq ðmS3Þ

i
ijkl

¼ 3

4m2
S3

ðȲQL�
3 ÞkiðȲQL

3 Þlj;

ð33Þ

where ȲQL
3 ¼ VT

CKMY
QL
3 .

The SMEFT coefficients in Eqs. (32) and (33) are
evolved down to the EW scale, at which the SMEFT is
matched onto the low-energy effective field theory
(LEFT) [65] by integrating out the EW gauge bosons,
the Higgs boson, and the top quark. The LEFT operators
used in our phenomenological analysis are listed in
Eq. (D2). The tree-level matching conditions for the
coefficients Li in the LEFT Lagrangian of Eq. (D1) can
be found in Refs. [65,66], while the one-loop ones are
calculated in Ref. [67]. Moreover, the RGEs for Li are
calculated at the one-loop level in Refs. [68,69]. We
decompose Li into the sum of SM and new physics
(NP) contributions as Li ¼ LSM

i þ LNP
i . In the current

model only the semileptonic operators with the left-handed
fermions are generated through the tree-level matching. For
example, we have the following coefficients at the weak
scale μ ¼ mZ:

h
LV;LL
νd ðmZÞ

i
NP

ijkl
¼
h
C̄ð1Þlq ðmZÞ

i
ijkl

−
h
C̄ð3Þlq ðmZÞ

i
ijkl

; ð34Þ
h
LV;LL
ed ðmZÞ

i
NP

ijkl
¼
h
C̄ð1Þlq ðmZÞ

i
ijkl

þ
h
C̄ð3Þlq ðmZÞ

i
ijkl

; ð35Þ
h
LV;LL
νedu ðmZÞ

i
NP

ijkl
¼ 2V�

wk

h
Cð3Þlq ðmZÞ

i
ijwl

; ð36Þ

where Vwk denotes a CKM matrix element.

FIG. 3. Diagrams for the tree-level matching at the S3 mass
scale. Corresponding diagrams (a) in the model above the S3
mass scale, and (b) in the SMEFT below the S3 mass scale.

FIG. 2. Comparisons of the Yukawa couplings of the S3 leptoquark at the GUT scale μ ¼ MX and at the S3 mass scale μ ¼ mS3 , where
they are identical to each other on the dotted lines.
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In our numerical analysis, we also include one-loop corrections to the matching onto the SMEFT, the RG evolution from
μ ¼ mS3 to μ ¼ mZ, the matching onto the LEFT, and the RG evolution from μ ¼ mZ to the lower energy scale. Let us
consider the LEFT coefficient LV;LL

ed for b → s processes as an example. Solving the RGEs in the leading-logarithmic
approximation, the coefficient LV;LL

ed is given at the bottom scale μ ¼ mb by

h
LV;LL
ed ðmbÞ

i
NP

ij23
¼ ðȲQL

3 Þ�2iðȲQL
3 Þ3j

m2
S3

	
1 −

α

2π
log

�
m2

S3

m2
b

�
þ g2ð1 − 4c4WÞ

32π2c2W

�
log

�
m2

S3

m2
Z

�
þ 11

6

�


þ y2t
64π2

	
2V�

tsVtb
ðYQL

3 Þ�3iðYQL
3 Þ3j

m2
S3

þ
�
V�
ts
ðYQL

3 Þ�3iðȲQL
3 Þ3j

m2
S3

þ Vtb
ðȲQL

3 Þ�2iðYQL
3 Þ3j

m2
S3

�
IedðxtÞ




−
3ðNc þ 1Þ

8

�ðȲQL†
3 ȲQL

3 ȲQL†
3 Þi2ðȲQL

3 Þ3j
ð4πÞ2m2

S3

þ ðȲQL
3 Þ�2iðȲQL

3 ȲQL†
3 ȲQL

3 Þ3j
ð4πÞ2m2

S3

�

−
5

4

ðȲQL†
3 ȲQL

3 ÞijðȲQL
3 ȲQL†

3 Þ32
ð4πÞ2m2

S3

− δij
α

6π

ðȲQL
3 ȲQL†

3 Þ32
m2

S3

�
log

�
m2

S3

m2
b

�
−
19

12

�
; ð37Þ

where cW ¼ cos θW is the cosine of the Weinberg angle,
yt represents the SM Yukawa coupling of the top quark,
xt ¼ m2

t =m2
W with mt and mW being the masses of the top

quark and the W boson, Nc ¼ 3 is the number of colors, α
is the electromagnetic coupling, and IedðxÞ is the loop
function defined by

IedðxÞ ¼ − log

�
m2

S3

m2
W

�
−
3ðxþ 1Þ
2ðx − 1Þ þ

x2 − 2xþ 4

ðx − 1Þ2 log x:

ð38Þ

In Eq. (37), the S3 couplings YQL
3 and ȲQL

3 should be
understood as those evaluated at the S3 mass scale. The
one-loop expressions for the other LEFT coefficients
relevant to our analysis are given in Appendix D.
It is convenient to convert the LEFT coefficients of the

b → s semileptonic operators into the coefficients in the
weak Hamiltonian [70]:

HW ¼ −
4GFffiffiffi

2
p α

4π
V�
tsVtb

h
½C9V �ijð ¯̂sLγμb̂LÞð ¯̂eiγμêjÞ

þ ½C10A�ijð ¯̂sLγμb̂LÞð ¯̂eiγμγ5êjÞ
þ ½CL�ijð ¯̂sLγμb̂LÞð ¯̂νiγμð1 − γ5Þν̂jÞ

i
þ H:c:; ð39Þ

whereGF is the Fermi constant, and the NP contributions to
the coefficients at the scale μ are related to the LEFTones as

h
CNP
9V ðμÞ

i
ij
¼ πffiffiffi

2
p

GFαV�
tsVtb

�h
LV;LL
ed ðμÞ

i
NP

ij23

þ
h
LV;LR
de ðμÞ

i
NP

23ij

�
; ð40Þ

½CNP
10AðμÞ�ij ¼

πffiffiffi
2

p
GFαV�

tsVtb

�
−
h
LV;LL
ed ðμÞ

i
NP

ij23

þ
h
LV;LR
de ðμÞ

i
NP

23ij

�
; ð41Þ

½CNP
L �ij ¼

πffiffiffi
2

p
GFαV�

tsVtb

h
LV;LL
νd

i
NP

ij23
: ð42Þ

The argument μ is omitted in Eq. (42), since the coefficients
½CNP

L �ij and ½LV;LL
νd �NPij23 have no scale dependence. Let us

consider the coefficients for the b → sμþμ− transition.
The coefficients ½CNP

9V ðμÞ�22 and ½CNP
10AðμÞ�22 in Eqs. (40)

and (41) are dominated by the LEFT coefficient
½LV;LL

ed ðμÞ�2223 generated at the tree level, while the con-
tributions from ½LV;LR

de ðμÞ�3222 induced at the one-loop level
are subdominant. Hence, the approximate relation
½CNP

9V ðμÞ�22 ≈ −½CNP
10AðμÞ�22 holds in the current model [38].

D. Constraints

In the current model, the S3 leptoquark has sizable
couplings to quarks and leptons in the second and third
generations. Strong constraints on the parameter space of
the model come from the mass difference of Bs and B̄s

mesons denoted by ΔMs, the branching ratios for the B →
Kð�Þνν̄ decays, the LFUV tests in the B → Kð�Þlþl−

(l ¼ e, μ) decays, and the branching ratio for the Bs →
μþμ− decay. NP contributions to ΔMs are generated at the
one-loop level, while those to the others are at the tree level.
The current experimental data for these observables are
summarized in Table III together with other relevant
observables. For the B → Kð�Þlþl− decays, we do not
consider their branching ratios and the angular observables
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that exhibit some tensions with the SM [71], since they
suffer from hadronic uncertainties [72–77].
For the mass difference ΔMs, we utilize the following

formula that is normalized to the SM value:

ΔMs

ΔMSM
s

¼
����1þ CLL;NP

bs ðmbÞ
Rloop
SM

����;

CLL;NP
bs ðmbÞ ¼ −

ffiffiffi
2

p

4GFðVtbV�
tsÞ2
�
LV;LL
dd ðmbÞ


NP
2323

; ð43Þ

where the SM loop contribution Rloop
SM ¼ ð1.310� 0.010Þ ×

10−3 and the SM prediction ΔMSM
s ¼ ð18.4þ0.7

−1.2Þ ps−1 are
evaluated in Ref. [45]. Our analysis includes the theoretical
uncertainty in ΔMSM

s , which is much larger than the
experimental one. In the current model, the LEFT coef-
ficient ½LV;LL

dd ðmbÞ�NP2323, given in Eq. (D10), is generated at

the one-loop level. Contributions from other coefficients
with the right-handed quarks are suppressed by the small
quark masses and neglected here. We use the PDG average
of the measurements forΔMs [81], which gives a constraint
on the product of the S3 Yukawa couplings ðȲQL

3 ȲQL†
3 Þ32.

Because of the hierarchy in the magnitudes of the cou-
plings, the product is dominated by ðȲQL

3 Þ�23ðȲQL
3 Þ33

compared with ðȲQL
3 Þ�21ðȲQL

3 Þ31 and ðȲQL
3 Þ�22ðȲQL

3 Þ32.
The product ðȲQL

3 ȲQL†
3 Þ32 is also constrained from the

branching ratios for B → Kð�Þνν̄, which are calculated as

BðB → Kð�Þνν̄Þ
BðB → Kð�Þνν̄ÞSM

¼ 1

3

X
ij

jCSM
L δij þ ½CNP

L �ijj2
jCSM

L j2 ; ð44Þ

where the SM coefficient is given by CSM
L ¼ −Xt=s2W

with Xt ¼ 1.469 and s2W ¼ 1 − c2W , and the SM predictions

TABLE III. Current measurements and future experimental sensitivities of flavor observables. The first column
represents the corresponding transition, and the second column shows the dominant coupling that induces the
transition, where Loop denotes a loop-level transition.

Transition Couplings Observable Current measurement Future sensitivity

b → sμþμ− ðȲQL�
3 Þ22ðȲQL

3 Þ32 RKþ ½0.1; 1.1� 0.994þ0.090þ0.029
−0.082−0.027 [78,79]

RK�0 ½0.1; 1.1� 0.927þ0.093þ0.036
−0.087−0.035 [78,79]

RKþ ½1.1; 6.0� 0.949þ0.042þ0.022
−0.041−0.022 [78,79] �0.007 [80]

RK�0 ½1.1; 6.0� 1.027þ0.072þ0.027
−0.068−0.026 [78,79] �0.008 [80]

BðBs → μþμ−Þ ð3.01� 0.35Þ × 10−9 [81] �0.16 × 10−9 [80]

Loop ðȲQL�
3 Þ23ðȲQL

3 Þ33 ΔMs ð17.765� 0.006Þ ps−1 [81]

b → sνν̄ ðȲQL�
3 Þ23ðȲQL

3 Þ33 BðBþ → Kþνν̄Þ < 1.6 × 10−5 (90%) [82] �11 % of SM [83]

BðB0 → KSνν̄Þ < 1.3 × 10−5 (90%)[84]
BðBþ → K�þνν̄Þ < 4.0 × 10−5 (90%) [85] �9.3 % of SM [83]
BðB0 → K�0νν̄Þ < 1.8 × 10−5 (90%) [84] �9.6 % of SM [83]

b → cτ−ν̄ ðȲQL�
3 Þ23ðȲQL

3 Þ33 RðDÞ 0.357� 0.029 [86] ð�2.0� 2.5Þ% [83]
RðD�Þ 0.284� 0.012 [86] ð�1.0� 2.0Þ% [83]

b → sτþτ− ðȲQL�
3 Þ23ðȲQL

3 Þ33 BðBs → τþτ−Þ < 5.2 × 10−3 (90%) [87] 5 × 10−4 [80]
BðBþ → Kþτþτ−Þ < 2.25 × 10−3 (90%) [88] 2.0 × 10−5 [83]
BðB0 → K�0τþτ−Þ < 3.1 × 10−3 (90%) [89] 5.3 × 10−4 [90]

b → sμþτ− ðȲQL
3 Þ�23ðȲQL

3 Þ32 BðBs → μ∓τ�Þ < 3.4 × 10−5 (90%) [91] 3 × 10−6 [80]
BðBþ → Kþμ−τþÞ < 5.9 × 10−6 (90%) [92] 3.3 × 10−6 [83]
BðB0 → K�0μ−τþÞ < 1.0 × 10−5 (90%) [93]

b → sμ−τþ ðȲQL
3 Þ�22ðȲQL

3 Þ33 BðBþ → Kþμþτ−Þ < 2.45 × 10−5 (90%) [92] 3.3 × 10−6 [83]
BðB0 → K�0μþτ−Þ < 8.2 × 10−6 (90%) [93]

τ− → μ−s̄s ðȲQL
3 Þ�22ðȲQL

3 Þ23 Bðτ− → μ−ϕÞ < 2.3 × 10−8 (90%) [94] 8.4 × 10−10 [95]

bb̄ → μ�τ∓ ðȲQL�
3 Þ32ðȲQL

3 Þ33 Bðϒð1SÞ → μ�τ∓Þ < 2.7 × 10−6 (90%) [96]
Bðϒð2SÞ → μ�τ∓Þ < 3.3 × 10−6 (90%) [97]
Bðϒð3SÞ → μ�τ∓Þ < 3.1 × 10−6 (90%) [97]

Loop ðȲQL�
3 Þ32ðȲQL

3 Þ33 Bðτ− → μ−γÞ < 4.2 × 10−8 (90%) [98] 6.9 × 10−9 [95]
Bðτ− → μ−μþμ−Þ < 2.1 × 10−8 (90%) [99] 3.6 × 10−10 [95]
BðZ → μ∓τ�Þ < 6.5 × 10−6 (95%) [100] Oð10−9Þ [101]
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are BðBþ → Kþνν̄ÞSM ¼ ð3.98� 0.43� 0.19Þ × 10−6,
BðB0→K0νν̄ÞSM¼ðτB0=τBþÞBðBþ→Kþνν̄ÞSM, BðB0 →
K�0νν̄ÞSM ¼ ð9.19� 0.86� 0.50Þ × 10−6, and BðBþ →
K�þνν̄ÞSM ¼ ðτBþ=τB0ÞBðB0 → K�0νν̄ÞSM with τBþ and
τB0 being the lifetimes of B mesons [102]. The NP
contribution CNP

L is defined by Eq. (42), where the one-
loop expression of the LEFT coefficient ½LV;LL

νd �NPij23 is given
in Eq. (D3). We select B0 → K�0νν̄ as a representative
of the B → Kð�Þνν̄ processes in our numerical analysis,
where the use of the other processes gives similar results.3

The upper limit on BðB0 → K�0νν̄Þ is reported from the
Belle experiment [84], and provides a constraint on
ðȲQL

3 Þ�23ðȲQL
3 Þ33.

In the left plot of Fig. 4, we present constraints in the
plane of ΔMs=ΔMSM

s and BðB0 → K�0νν̄Þ, where the gray
region is obtained with the model parameters that are
consistent with the low-energy values of the gauge cou-
plings, the fermion masses, and the CKM matrix elements.
Here and hereafter, we take mS3 ¼ 2 TeV and cot θH ¼ 50

as well as the input parameters in Table II. A large portion
of the parameter space is excluded by the measurement of
ΔMs (magenta vertical bands) [81] and by the upper limit
for BðB0 → K�0νν̄Þ (black horizontal dashed line) [84],
where the two bands for ΔMs correspond to the one-sigma
and two-sigma regions.
Moreover, the measurements for the b → sμþμ− proc-

esses listed in Table III provide constraints on the product
of the Yukawa couplings ðȲQL�

3 Þ22ðȲQL
3 Þ32. In particular,

experimental searches for the violation of the lepton-flavor-
universality (LFU) in b → s semileptonic decays provide
severe constraints on our scenario. The LFU ratios RH

(H ¼ Kþ; K�0) are defined by

RH½q2min; q
2
max� ¼

R q2max

q2min
dq2 dBðB→Hμþμ−Þ

dq2R q2max

q2min
dq2 dBðB→Heþe−Þ

dq2

; ð45Þ

where q2min and q2max are given in units of GeV2. For
example, approximate formulas for the region of
1.1 GeV2 < q2 < 6.0 GeV2 are given in Ref. [104]:

RK½1.1; 6.0� ≈ 1.00þ 0.23ReðΔCNP
9V Þ − 0.25ReðΔCNP

10AÞ;
ð46Þ

RK� ½1.1; 6.0� ≈ 1.00þ 0.20ReðΔCNP
9V Þ − 0.27ReðΔCNP

10AÞ;
ð47Þ

where ΔCNP
9V ≡ ½CNP

9V ðmbÞ�22 − ½CNP
9V ðmbÞ�11 and ΔCNP

10A ≡
½CNP

10AðmbÞ�22 − ½CNP
10AðmbÞ�11. These LFU ratios are calcu-

lated very accurately in the SM, where the hadronic
uncertainty is highly canceled by considering the ratios
[105], and the QED correction provides a positive con-
tribution to the ratios about less than 3% for 1 GeV2 <
q2 < 6 GeV2 [106,107]. The above approximate formulas
are derived by neglecting the QED corrections. The
theoretical uncertainties are negligible in our study. The
recent measurements at LHCb [79] listed in Table III
are compatible with the SM predictions. We adopt only
RK½1.1; 6.0� and RK� ½1.1; 6.0� as constraints, since the ratios
in the low q2 regions RK½0.1; 1.1� and RK� ½0.1; 1.1� have
larger experimental uncertainties. In addition, we also

FIG. 4. Left: constraints from ΔMs=ΔMSM
s and BðB0 → K�0νν̄Þ. The gray region represents the predictions which are consistent with

the low-energy values of the gauge couplings and the fermion masses and mixing. The vertical bands in magenta correspond to the
experimental measurements at the one and two sigma ranges, and the horizontal lines are the 90% upper limit at Belle (black dashed line)
and the SM prediction (blue solid line). Right: constraints on Re½ðCNP

9V Þ22� and Re½ðCNP
10AÞ22� at themb scale, where the oblique dotted line

represents Re½ðCNP
9V Þ22� ¼ −Re½ðCNP

10AÞ22�. The magenta region can satisfy the experimental bounds from ΔMs and BðB0 → K�0νν̄Þ,
while the cyan region can satisfy further with RKþ ½1.1; 6.0�, RK�0 ½1.1; 6.0�, and BðBs → μþμ−Þ. These regions are overlaid on top of the
gray one, which corresponds to that in the left plot.

3Very recently the Belle II collaboration has reported the first
evidence of the Bþ → Kþνν̄ decay as BðBþ → Kþνν̄Þ ¼ ð2.4�
0.5þ0.5

−0.4 Þ × 10−5 [103]. We do not take into account it in our
analysis.
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consider the branching ratio for the leptonic decay
Bs → μþμ−, which is written simply with the NP contri-
bution to C10A:

BðBs → μþμ−Þ ¼ BðBs → μþμ−ÞSM
����1þ ½CNP

10AðmbÞ�22
CSM
10AðmbÞ

����
2

;

ð48Þ

where the SM values are BðBs → μþμ−ÞSM ¼ ð3.65�
0.23Þ × 10−9 [108] and CSM

10AðmbÞ ¼ −4.2 [109]. It is noted
that a nonvanishing decay width difference ΔΓs of the Bs
system has to be taken into account when comparing the
theoretical value calculated using Eq. (48) with the exper-
imental data in Table III, since the time dependence of the
decay rate is integrated in the experiment [110,111]. This
gives only a minor effect on our numerical analysis. In the
current model, ½CNP

9V ðmbÞ�22 and ½CNP
10AðmbÞ�22 appearing in

RK½1.1; 6.0�, RK� ½1.1; 6.0�, and BðBs → μþμ−Þ are domi-
nated by the LEFT coefficient ½LV;LL

ed ðmbÞ�2223, which is
given in terms of the product of the S3 Yukawa couplings
ðȲQL�

3 Þ22ðȲQL
3 Þ32 at the tree level.

The right plot of Fig. 4 shows constraints on
Re½CNP

9V ðmbÞ�22 and Re½CNP
10AðmbÞ�22. The magenta region

can satisfy the experimental bounds from ΔMs within two
sigma and BðB0 → K�0νν̄Þ at 90% confidence level (CL),
while the cyan region can satisfy further RKþ½1.1; 6.0�,
RK�0 ½1.1; 6.0�, and BðBs → μþμ−Þ within two sigma. These

regions are overlaid on top of the gray one, which
corresponds to that in the left plot.
We also present allowed regions for the products of the

S3 Yukawa couplings at the S3 mass scale in Fig. 5. Here
the cyan regions show the parameter points that are
consistent with ΔMs, RKþ½1.1; 6.0�, RK�0 ½1.1; 6.0�, and
BðBs → μþμ−Þ within two sigma and BðB0 → K�0νν̄Þ at
90% CL. It is noted that the cyan regions are overlaid on top
of the gray regions that correspond to those in Fig. 4. The
magnitudes of the products in the upper row of Fig. 5
are smaller than those in the lower row because of the
hierarchy given in Eq. (31). The product ðȲQL�

3 Þ22ðȲQL
3 Þ32

is highly constrained by RKþ½1.1; 6.0�, RK�0 ½1.1; 6.0�, and
BðBs → μþμ−Þ, while ðȲQL�

3 Þ23ðȲQL
3 Þ33 is by ΔMs and

BðB0 → K�0νν̄Þ. The other products are less constrained by
these observables.

E. Predictions

The S3 leptoquark can generate various LFV and LFUV
with the second- and third-generation fermions. Under
the constraints studied in Sec. III D, we here consider
the following observables: RðDð�ÞÞ, BðBs → τþτ−Þ,
BðBs → μ∓τ�Þ, BðB → Kð�Þμ∓τ�Þ, BðϒðnSÞ → μ�τ∓Þ,
Bðτ− → μ−ϕÞ, Bðτ− → μ−γÞ, Bðτ− → μ−μþμ−Þ, and
BðZ → μ∓τ�Þ. The first six observables receive tree-level
contributions, while the rest are induced at the one-loop
level. Figures 6 and 7 show predictions for these observ-
ables in the current model. Here we only consider

FIG. 5. Allowed region for the products of the Yukawa couplings of the S3 leptoquark at the S3 mass scale, where the cyan region
shows the parameter points that are consistent with ΔMs, RKþ ½1.1; 6.0�, RK�0 ½1.1; 6.0�, and BðBs → μþμ−Þ within two sigma and
BðB0 → K�0νν̄Þ at 90% CL. The cyan regions are overlaid on top of the gray ones, which correspond to those in Fig. 4.
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flavor-changing-neutral-current processes except for
RðDð�ÞÞ, since the S3 effects on charged-current processes,
such as B0 → Dð�Þ−μþν andDþ

s → μþν, are not significant.
In Fig. 6, we present the predictions for the ratios

RðDð�ÞÞ ¼ BðB0 → Dð�ÞτþνÞ=BðB0 → Dð�ÞlþνÞ for l ¼
e, μ calculated under the constraints from ΔMs=ΔMSM

s ,
BðB0 → K�0νν̄Þ, RKþ½1.1; 6.0�, RK�0 ½1.1; 6.0�, and
BðBs → μþμ−Þ. At the tree level RðDð�ÞÞ are given by

RðDð�ÞÞ ≈ RðDð�ÞÞSMð1þ 2Re½CNP
V1
ðmbÞ�33Þ; ð49Þ

where we adopt the SM predictions RðDÞSM ¼ 0.298�
0.004 and RðD�ÞSM ¼ 0.254� 0.005 [86]. The coefficient
CNP
V1

is defined through the effective Lagrangian,

Leff ¼ −
4GFffiffiffi

2
p V�

cbðδij þ
�
CNP
V1
ðmbÞ


ijÞð ¯̂bLγμĉLÞð ¯̂νLiγμêLjÞ;

�
CNP
V1
ðmbÞ


33

¼ −
1

2
ffiffiffi
2

p
GFV�

cb

�
LV;LL
νedu ðmbÞ


NP
3332

; ð50Þ

where we use the tree-level result for the LEFT coefficient
½LV;LL

νedu ðmbÞ�NP3332 given in Eq. (36). We keep only the 33
component of CNP

V1
in Eq. (49), since the dominant NP

contributions arise in the 23, 32, and 33 ones in the current
model and only the 33 one has an interference with the SM
contribution. We use the average of the experimental data
by the Heavy Flavor Averaging Group (HFLAV) [86]. Here
the b → cτ−ν̄ transition is dominated by the contribution
from the product ðȲQL

3 Þ�23ðȲQL
3 Þ33, which also contributes to

b → sνν̄ and ΔMs. It is known that the S3 contribution that
explains the b → c anomaly is severely constrained by the
b → sνν̄ processes and ΔMs [40]. Consequently, the S3
contribution does not alter RðDð�ÞÞ significantly, and thus

the resolution of the RðDð�ÞÞ anomaly requires an extension
of the model [112,113]. We do not consider such a
possibility in the current paper.
Next, let us consider decay processes involving

b → sτþτ− transition. The studies of NP contributions to
this transition are found, for example, in Refs. [114,115]. In
the current model, the contributions to the b → sτþτ−
leptonic and semileptonic decays arise at the tree level
through the product ðȲQL

3 Þ�23ðȲQL
3 Þ33. As in the case of

Bs → μþμ− in Eq. (48), the leptonic mode receives NP
contribution to C10A:

BðBs → τþτ−Þ ¼ BðBs → τþτ−ÞSM
����1þ ½CNP

10AðmbÞ�33
CSM
10AðmbÞ

����
2

;

ð51Þ

where the SM prediction is BðBs → τþτ−ÞSM ¼ ð7.73�
0.49Þ × 10−7 [108]. Moreover, the branching ratios of the
semileptonic modes in the large q2 region are calculated
in Ref. [115]:

BðB → Kτþτ−Þ½15;22�
¼ 10−7ð1.20þ 0.15Re½CNP

9V ðmbÞ�33
− 0.42Re½CNP

10AðmbÞ�33 þ 0.02j½CNP
9V ðmbÞ�33j2

þ 0.05j½CNP
10AðmbÞ�33j2Þ; ð52Þ

BðB→K�τþτ−Þ½15;19�
¼10−7ð0.98þ0.38Re½CNP

9V ðmbÞ�33−0.14Re½CNP
10AðmbÞ�33

þ0.05j½CNP
9V ðmbÞ�33j2þ0.02j½CNP

10AðmbÞ�33j2Þ; ð53Þ

which are the averages of the charged and the neutral
modes. The predicted branching ratios in the SM are of
Oð10−7Þ [115]. The branching ratios for these leptonic and
semileptonic modes can largely deviate from their SM
values. Figure 7(a) shows that BðBs → τþτ−Þ can be as
large as Oð10−5Þ, which is an order of magnitude smaller
than the future sensitivity at LHCb with 300 fb−1 [80].
Similarly, the predictions for BðB → Kð�Þτþτ−Þ in the large
q2 region can be enhanced by an order of magnitude, but it
is still much smaller than the future sensitivity at Belle II
with 50 fb−1 [83].
We also study the LFV processes b → sμþτ− and b →

sμ−τþ, which are generated through the products of the S3
Yukawa couplings ðȲQL

3 Þ�23ðȲQL
3 Þ32 and ðȲQL

3 Þ�22ðȲQL
3 Þ33,

respectively. Because of the hierarchy in the magnitudes of
the S3 Yukawa couplings presented in Eq. (31) and Fig. 5,
the relation jðȲQL

3 Þ�23ðȲQL
3 Þ32j ≫ jðȲQL

3 Þ�22ðȲQL
3 Þ33j holds

typically. At the LHC experiments, the branching ratio
for the leptonic decay is measured as a sum of the two
channels Bs → μ−τþ and Bs → μþτ−. The corresponding
theoretical formula is given by [116]

FIG. 6. Predictions for RðDÞ and RðD�Þ (denoted by the red
points) with the HFLAV average of their experimental measure-
ments at the levels of one sigma, two sigma, and three sigma
(denoted by the orange ellipses) and the SM values (denoted by
the black cross). Theoretical uncertainties associated with the SM
errors are not included in the predictions.
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BðBs → μ∓τ�Þ ¼ BðBs → μ−τþÞ þ BðBs → μþτ−Þ;

¼ τBs
f2Bs

mBs
m2

τα
2G2

FjV�
tsVtbj2

64π3

�
1 −

m2
τ

m2
Bs

�
2

×
�
j½CNP

9V ðmbÞ�23j2 þ j½CNP
10AðmbÞ�23j2 þ j½CNP

9V ðmbÞ�32j2 þ j½CNP
10AðmbÞ�32j2

�
; ð54Þ

FIG. 7. Predictions on relevant flavor processes, where the colored regions satisfy the experimental bounds from RKþ ½1.1; 6.0�,
RK�0 ½1.1; 6.0�, BðBs → μþμ−Þ, and ΔMs within two sigma and BðB0 → K�0νν̄Þ at 90% CL. The red and black dashed lines show the
present upper bound on each processes by LHC experiments and B factories, respectively, and the red and black dotted lines show the
sensitivities expected at the LHCb with 300 fb−1 and the eþe− experiments (such as the Belle II with 50 ab−1 and FCC-ee), respectively.
The cyan regions in (a), (b), and (c) are excluded by the upper limit on BðBþ → Kþμ−τþÞ at Belle.
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wheremτ and ττ are the mass and the lifetime of τ lepton;mBs
, τBs

, and fBs
are the mass, the lifetime, and the decay constant

of Bs meson; and the muon mass is neglected. As shown in Fig. 7(a), the prediction on BðBs → μ∓τ�Þ
can be as large as Oð10−5Þ, which may be probed by the LHCb measurement with 300 fb−1 [80]. For the semileptonic
channels, approximate numerical formulas are given by [117]

BðBþ → Kþμ−τþÞ ¼ 10−9
�
12.5j½CNP

9V ðmbÞ�32j2 þ 12.9j½CNP
10AðmbÞ�32j2

� τBþ

τB0

; ð55Þ

BðBþ → Kþμþτ−Þ ¼ 10−9
�
12.5j½CNP

9V ðmbÞ�23j2 þ 12.9j½CNP
10AðmbÞ�23j2

� τBþ

τB0

; ð56Þ

BðB0 → K�0μ−τþÞ ¼ 10−9
�
22.1j½CNP

9V ðmbÞ�32j2 þ 20.6j½CNP
10AðmbÞ�32j2

�
; ð57Þ

BðB0 → K�0μþτ−Þ ¼ 10−9
�
22.1j½CNP

9V ðmbÞ�23j2 þ 20.6j½CNP
10AðmbÞ�23j2

�
: ð58Þ

It is noted that Bþ → Kþμ−τþ (B0 → K�0μ−τþ) and Bþ →
Kþμþτ− (B0 → K�0μþτ−) receive contributions from
jðȲQL

3 Þ�23ðȲQL
3 Þ32j and jðȲQL

3 Þ�22ðȲQL
3 Þ33j, respectively. We

here present results on Bþ → Kþμ∓τ�, since future
sensitivities at Belle II can be found for these processes
in Ref. [83]. As shown in Fig. 7(b), BðBþ → Kþμ−τþÞ
can be large enough to be observed at Belle II with
50 ab−1, while BðBþ → Kþμþτ−Þ is out of the reach of
Belle II. A part of the parameter space is already excluded
by the current measurement of BðBþ → Kþμ−τþÞ at
Belle, but it does not alter the other predictions in

Fig. 7 except for that of BðBs → μ∓τ�Þ. Figure 7(c)
shows a strong correlation between BðBs → μ∓τ�Þ and
BðBþ → Kþμ−τþÞ, since both of them are induced mainly
by jðȲQL

3 Þ�23ðȲQL
3 Þ32j. The current upper limit on BðBþ →

Kþμ−τþÞ directly leads to the limit on BðBs → μ∓τ�Þ.
These correlations among the b → sμþτ− and b → sμ−τþ
observables can be explored by the combination of the
Belle II and the LHCb measurements.
Besides, we consider the LFV decays of heavy quarko-

nia, ϒðnSÞ → μ∓τ� (n ¼ 1, 2, 3). The branching ratios for
these processes are given by [118–120]

BðϒðnSÞ → μ�τ∓Þ ¼ BðϒðnSÞ → eþe−ÞSM
1

2

�����
3m2

ϒðnSÞ
�
LV;LL
ed ðmϒðnSÞÞ


2333

8πα

�����
2

; ð59Þ

where mϒðnSÞ is the mass of ϒðnSÞ, and the charged-lepton masses are neglected. From the bottom-right plot in

Fig. 5, we estimate the magnitude of the LEFT coupling as j½LV;LL
ed ðmϒðnSÞÞ�2333j ∼ jðȲQL�

3 Þ32ðȲQL
3 Þ33j=m2

S3
≲

Oð10−8 GeV2Þ. Therefore, the branching ratios are as large as Oð10−11Þ, which are too small to be measured at current
and near-future experiments.
Furthermore, theS3 leptoquark contributions also induceLFVdecaysof tau lepton.At the tree level, the τ− → μ−ϕdecaywith

τ−→μ−s̄s transition is generated through the S3 exchange. The branching ratio for τ− → μ−ϕ is given by [121]

Bðτ− → μ−ϕÞ ¼ f2ϕm
3
τ ττ

128π

�
1 −

m2
ϕ

m2
τ

�
2
	�

1þ 2m2
ϕ

m2
τ

�����LV;LL
ed ðmτÞ


3222

þ �LV;LR
ed ðmτÞ


3222

���2

þ 8e
mτ

Re
��
LeγðmτÞ


23
ð�LV;LL

ed ðmτÞ

3222

þ �LV;LR
ed ðmτÞ


3222

�þ 16e2

9m2
ϕ

�
2þm2

ϕ

m2
τ

�����LeγðmτÞ

23

���2


; ð60Þ

where mϕ and fϕ are the mass and the decay constant of ϕ meson, e is the electric charge, and the LEFT coefficients
½LV;LL

ed ðmτÞ�3222, ½LV;LR
ed ðmτÞ�3222, and ½LeγðmτÞ�23 are given in Eqs. (D5), (D6), and (D9), respectively. In the current model, the

branching ratio for τ− → μ−ϕ is not significantly enhanced due to the smallness of the ðȲQL
3 Þ22 coupling in the tree-level

contribution.As shown in Fig. 7(d),Bðτ− → μ−ϕÞmight be observed at theBelle II experiment [83].We also consider the loop-
induced LFV processes of tau lepton, τ− → μ−γ and τ− → μ−μþμ−. The branching ratio for τ− → μ−γ is given by

Bðτ− → μ−γÞ ¼ m3
τ ττ
4π

���½LeγðmτÞ�NP23
���2; ð61Þ
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and that for τ− → μ−μþμ− can be found, e.g., in Refs. [122,123]:

Bðτ− → μ−μþμ−Þ ¼ m5
τ ττ

1536π3

	
2
����LV;LL

ee ðmτÞ

3222

þ �LV;LL
ee ðmτÞ


2232

���2þ����LV;LR
ee ðmτÞ


3222

���2

þ 8e
mτ

Re
��
LeγðmτÞ


23

�
2
�
LV;LL
ee ðmτÞ


3222

þ 2
�
LV;LL
ee ðmτÞ


2232

þ �LV;LR
ee ðmτÞ


3222

�i

þ 32e2

m2
τ

�
log

m2
τ

m2
μ
−
11

4

�����LeγðmτÞ�23
���2


: ð62Þ

The LEFT coefficients ½LV;LL
ee ðmτÞ�2232 ¼ ½LV;LL

ee ðmτÞ�3222,
½LV;LR

ee ðmτÞ�3222 and ½LeγðmτÞ�NP23 , evaluated at the τ mass
scale, are given in Eqs. (D7), (D8), and (D9), respectively. In
the expression of Bðτ− → μ−μþμ−Þ, contributions from the
RL and RR operators are neglected, since LFV occurs
dominantly in the left-handed leptons in the current model.
The predictions for Bðτ− → μ−γÞ and Bðτ− → μ−μþμ−Þ are
shown in Figs. 7(d) and 7(e). They exhibit a strong correlation
with each other, but are slightly smaller than the planned
sensitivities of Belle II with 50 fb−1 [83].
In the current model, the muon anomalous magnetic

moment (known as the muon g − 2) is generated through
the product ðYQL

3 Þ�32ðYQL
3 Þ32 via the dipole coupling

½LeγðmτÞ�NP22 . We find that this contribution is too small
to explain the long-standing tension between the measured
value and the SM prediction of the muon g − 2 [124,125].
The S3 leptoquark also affects W-boson and Z-boson

couplings with the SM fermions. We evaluate them with the
one-loop expressions in Ref. [126], which include radiative
corrections beyond the leading-logarithmic approximation.
The effects on theW-boson couplings are not significant to
be measured at the current and planned future experiments.
We here present only the result for BðZ → μ∓τ�Þ, which
is calculated with the formulas given in Appendix E.
Figure 7(f) shows a strong correlation between BðZ →
μ∓τ�Þ and Bðτ− → μ−γÞ. In our scenario, the BðZ →
μ∓τ�Þ can be as large as Oð10−9Þ. The present exper-
imental bounds are given by the LEP experiment as BðZ →
μ∓τ�Þ < 1.2 × 10−5 [127] and the LHC experiment as
BðZ → μ∓τ�Þ < 6.5 × 10−6 [100]. On the other hand, the
FCC-ee experiment has a sensitivity to Oð10−9Þ [101].
In the case that BðZ → μ∓τ�Þ is enhanced enough, Bðτ− →
μ−γÞ is also significantly enhanced.

IV. SUMMARY

We have constructed a realistic GUT model which
addresses two serious issues in the minimal SU(5) GUT:
the realization of the gauge coupling unification and that
of the flavor structures in the down-type-quark and the
charged-lepton sectors. By introducing a 45-dimensional
scalar representation Φ45 to the minimal SU(5) GUT, the
Yukawa matrices of the down-type quarks and the

charged leptons are reproduced correctly by the
Georgi-Jarlskog mechanism. In addition, we have shown
that the three gauge couplings can be unified through the
RG running under the constraint from proton decay, if S3,
S6, and S8 in Φ45 and Σ8 in the 24-dimensional scalar
representation Σ lie much below the GUT scale. In
particular, the mass of S3, which is a scalar leptoquark,
can be of the order of TeV.
The Yukawa couplings of the S3 leptoquark at the low-

energy scale is constrained by the matching condition at the
GUT scale in Eq. (22). In our scenario, the S3 leptoquark
couples strongly to the SM fermions in the second and third
generations, where the magnitudes of the couplings obey
the hierarchy shown in Eq. (31) and Fig. 2. In particular, the
coupling ðȲQL

3 Þ22 is suppressed compared with ðȲQL
3 Þ23,

ðȲQL
3 Þ32, and ðȲQL

3 Þ33. The smallness of ðȲQL
3 Þ22 leads to

the characteristic patterns of correlations among flavor
observables.
We have investigated flavor phenomenology in this

realistic GUT scenario with the S3 leptoquark at the TeV
scale. We have derived constraints on the S3 Yukawa
couplings from ΔMs, BðB → Kð�Þνν̄Þ, RKð�Þ , and BðBs →
μþμ−Þ, where the results are shown in Fig. 5. We have then
calculated various decays of B mesons, ϒðnSÞ, tau lepton,
and Z boson. In the current model, the RðDð�ÞÞ anomaly
cannot be explained by the S3 contribution due to the strong
constraints from ΔMs and BðB → Kð�Þνν̄Þ. The LFV
processes Bs → μ∓τ�, Bþ → Kþμ−τþ, and τ− → μ−ϕ
may be observed at Belle II with 50 ab−1 and LHCb with
300 fb−1. It is noted that BðBþ → Kþμþτ−Þ cannot reach
the future sensitivity at Belle II unlike BðBþ → Kþμ−τþÞ.
Therefore, the observation of Bþ → Kþμ−τþ together with
the nonobservation of Bþ → Kþμþτ− is a clear signal of
the current model. On the other hand, it is rather hard to
observe the other processes τ− → μ−γ, τ− → μ−μþμ−, and
Z → μ∓τ�, and much more data are needed for their
observations.
In general, it is challenging to probe a GUT model, since

the unification occurs at a very high-energy scale. The
proton decay is a direct probe for GUT, but it has not been
observed yet. We have provided a well-motivated bench-
mark scenario which may be able to be probed by the
precise measurements of the flavor observables at the
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Belle II and LHCb experiments. Besides, the S3 leptoquark
at the TeV scale can be directly searched for at the current
and future hadron-collider experiments. We thus conclude
that the precise flavor measurements as well as the direct
searches for the S3 leptoquark play complementary roles to
the searches for proton decay in probing our GUT scenario.
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APPENDIX A: SCALAR POTENTIAL AND MASSES

The scalar potential VðΣ;Φ5;Φ45Þ in the SU(5)-symmetric renormalizable Lagrangian in Eq. (1) is given by

VðΣ;Φ5;Φ45Þ ¼ V24 þ V5 þ V45 þ V24·5 þ V24·45 þ V5·45 þ V24·5·45; ðA1Þ

where each term is defined as

V24 ¼ m2
24trΣ2 þ χ24trΣ3 þ λð1Þ24 ðtrΣ2Þ2 þ λð2Þ24 trΣ4; ðA2Þ

V5 ¼ m2
5Φ

†
5Φ5 þ λ5ðΦ†

5Φ5Þ2; ðA3Þ

V45 ¼ m2
45ðΦ†

45ÞABCðΦ45ÞBCA þ λð1Þ45 ½ðΦ†
45ÞABCðΦ45ÞBCA �2 þ λð2Þ45 ðΦ†

45ÞABCðΦ45ÞBCD ðΦ†
45ÞDEFðΦ45ÞEFA

þ λð3Þ45 ðΦ†
45ÞABCðΦ45ÞBFA ðΦ†

45ÞDEFðΦ45ÞECD þ λð4Þ45 ðΦ†
45ÞABCðΦ45ÞBCF ðΦ†

45ÞDEAðΦ45ÞEFD
þ λð5Þ45 ðΦ†

45ÞABCðΦ†
45ÞBADðΦ45ÞECF ðΦ45ÞFDE þ λð6Þ45 ðΦ†

45ÞABCðΦ†
45ÞBDEðΦ45ÞCDF ðΦ45ÞEFA ; ðA4Þ

V24·5 ¼ χ5Φ
†
5ΣΦ5 þ að1ÞðtrΣ2ÞΦ†

5Φ5 þ að2ÞΦ†
5Σ

2Φ5; ðA5Þ

V24·45 ¼ χð1Þ45 ðΦ†
45ÞABCΣD

A ðΦ45ÞBCD þ χð2Þ45 ðΦ†
45ÞABCΣC

DðΦ45ÞBDA þ bð1ÞðtrΣ2ÞðΦ†
45ÞABCðΦ45ÞBCA

þ bð2ÞðΦ†
45ÞABCðΣ2ÞDA ðΦ45ÞBCD þ bð3ÞðΦ†

45ÞABCðΣ2ÞBDðΦ45ÞDC
A þ bð4ÞðΦ†

45ÞABCΣE
AΣB

DðΦ45ÞDC
E

þ bð5ÞðΦ†
45ÞABCΣC

EΣB
DðΦ45ÞDEA þ bð6ÞðΦ†

45ÞABCΣB
AΣE

DðΦ45ÞDC
E ; ðA6Þ

V5·45 ¼ cð1ÞðΦ†
45ÞABCðΦ45ÞBCA ðΦ†

5Φ5Þ þ cð2ÞðΦ†
5ÞAðΦ†

45ÞABCðΦ45ÞBCD ðΦ5ÞD þ cð3ÞðΦ†
5ÞCðΦ45ÞBCA ðΦ†

45ÞABDðΦ5ÞD
þ ½cð4ÞðΦ45ÞBCA ðΦ45ÞADB ðΦ†

5ÞCðΦ†
5ÞD þ cð5ÞðΦ†

45ÞABCðΦ45ÞBCD ðΦ45ÞDEA ðΦ†
5ÞE

þ cð6ÞðΦ†
45ÞABCðΦ45ÞBDA ðΦ45ÞCED ðΦ†

5ÞE þ H:c:�; ðA7Þ

V24·5·45 ¼ χ̃ðΦ†
5ÞCΣA

BðΦ45ÞBCA þ dð1ÞðΦ†
5ÞCðΣ2ÞABðΦ45ÞBCA þ dð2ÞðΦ†

5ÞDΣD
CΣA

BðΦ45ÞBCA þ H:c: ðA8Þ

The 24-representation scalar Σ gets the VEV as

hΣi ¼

0
BBBBBB@

2v24 0 0 0 0

0 2v24 0 0 0

0 0 2v24 0 0

0 0 0 −3v24 0

0 0 0 0 −3v24

1
CCCCCCA
; ðA9Þ

when the condition 2m2
24 þ 4ð30λð1Þ24 þ 7λð2Þ24 Þv224 − 3χ24v24 ¼ 0 is satisfied [128].4 From the potential, the squared masses

of the component fields in the scalars Σ, Φ5, and Φ45 can be read at the tree level as

4The minimization of the scalar potential for the 45 representation is studied in Refs. [129–131].
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m2
Σ1

¼ −2m2
24 þ

3

2
χ24v24; m2

Σ3
¼ 40λð2Þ24 v

2
24 −

15

2
χ24v24; m2

Σ8
¼ 10λð2Þ24 v

2
24 þ

15

2
χ24v24;

R†
H

 
m2

H 0

0 m2
H0

!
RH ¼

0
B@ m̃2

5 þ 3ãð2Þv224 − 5
ffiffi
3

p
2
ffiffi
2

p ðd̃ð1Þ þ 3dð2ÞÞv224
− 5

ffiffi
3

p
2
ffiffi
2

p ðd̃ð1Þ� þ 3dð2Þ�Þv224 m̃2
45 þ

�
7
4
b̃ð2Þ þ 19

8
b̃ð3Þ þ 8bð4Þ þ 17

4
bð5Þ þ 75

8
bð6Þ
�
v224

1
CA;

R†
S

 
m2

HC
0

0 m2
S1

!
RS ¼

0
B@

m̃2
5 − 2ãð2Þv224 − 5ffiffi

2
p ðd̃ð1Þ − 2dð2ÞÞv224

− 5ffiffi
2

p ðd̃ð1Þ� − 2dð2Þ�Þv224 m̃2
45 þ

�
1
2
b̃ð2Þ − 3

4
b̃ð3Þ þ 17

4
bð4Þ − 2bð5Þ þ 25

2
bð6Þ
�
v224

1
CA;

m2
S̃1

¼ m̃2
45 þ

�
−2b̃ð2Þ þ 3b̃ð3Þ −

9

2
bð4Þ þ 8bð5Þ

�
v224; m2

R2
¼ m̃2

45 þ
�
3b̃ð2Þ − 2b̃ð3Þ −

9

2
bð4Þ þ 3bð5Þ

�
v224;

m2
S3

¼ m̃2
45 þ

�
3b̃ð2Þ þ 1

2
b̃ð3Þ þ 3bð4Þ − 7bð5Þ

�
v224; m2

S6
¼ m̃2

45 þ
�
−2b̃ð2Þ − 2b̃ð3Þ þ 11

2
bð4Þ þ 3bð5Þ

�
v224;

m2
S8

¼ m̃2
45 þ

�
−2b̃ð2Þ þ 1

2
b̃ð3Þ þ 1

2
bð4Þ − 7bð5Þ

�
v224; ðA10Þ

where the following combinations of the parameters are introduced:

m̃2
5 ¼ m2

5 þ ð30að1Þ þ 6að2ÞÞv224; m̃2
45 ¼ m2

45 þ
�
30bð1Þ þ 6bð2Þ þ 6bð3Þ −

3

2
bð4Þ þ bð5Þ

�
v224;

ãð2Þ ¼ að2Þ −
χ5
v24

; b̃ð2Þ ¼ bð2Þ −
χð1Þ45

v24
; b̃ð3Þ ¼ bð3Þ −

χð2Þ45

v24
; d̃ð1Þ ¼ dð1Þ −

χ̃

v24
; ðA11Þ

and the rotation matrices RH and RS are given as in Eq. (12):

RH ¼
�

cH e−iδHsH
−eiδHsH cH

�
; RS ¼

�
cS e−iδSsS

−eiδSsS cS

�
: ðA12Þ

The masses of Σ1, Σ3, and Σ8 can be freely chosen, since V24 in Eq. (A8) contains a sufficient number of parameters. On the
other hand, the masses of the other scalars are constrained by the following relation:

−8ðs2Hm2
H þ c2Hm

2
H0 Þ þ 6ðs2Sm2

HC
þ c2Sm

2
S1
Þ þ 6m2

S̃1
− 6m2

R2
þ 9m2

S3
þ 3m2

S6
− 10m2

S8
¼ 0: ðA13Þ

APPENDIX B: MATCHING CONDITIONS AT THE GUT SCALE

Below the GUT scale, the Yukawa interactions are given in terms of the component fields in Eqs. (6), (9), and (10) as
follows:

−LY ¼ ðYUÞijϵαβūRâiHαqâβLj þ ðYDÞijd̄RâiH�
αqâαLj þ ðYEÞijēRiH�

αlα
Lj

þ ðY 0
UÞijϵαβūRâiH0αqâβLj þ ðY 0

DÞijd̄RâiH0�
α qâαLj þ ðY 0

EÞijēRiH0�
α lα

Lj

þ ðYQL
C Þijϵαβq̄câαLi HCâl

β
Lj þ ðYUE

C ÞijūRâiH�â
C ecRj þ ðYDU

C Þijϵâ b̂ ĉd̄RâiHCb̂u
c
Rĉj þ

ðYQQ
C Þij
2

ϵâ b̂ ĉϵαβq̄
câα
Li H

�b̂
C qĉβLj

þ ðYQL
1 Þijϵαβq̄câαLi S1âl

β
Lj þ ðYUE

1 ÞijūRâiS�â1 ecRj þ ðYDU
1 Þijϵâ b̂ ĉd̄RâiS1b̂ucRĉj þ

ðYQQ
1 Þij
2

ϵâ b̂ ĉϵαβq̄
câα
Li S

�b̂
1 qĉβLj

þ ðỸED
1 ÞijēRiS̃�â1 dcRâj þ

ðỸUU
1 Þij
2

ϵâ b̂ ĉūRâiS̃1b̂u
c
Rĉj þ ðYUL

2 ÞijϵαβūRâiRâα
2 lβ

Lj þ ðYEQ
2 ÞijēRiR�

2âαq
âα
Lj
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þ ðYQL
3 Þijϵαβq̄câγLi ðσaÞαγSa3âlβ

Lj þ
ðYQQ

3 Þij
2

ϵâ b̂ ĉϵαβq̄
câα
Li ðσaÞβγS�ab̂3 qĉγLj

þ ðYDU
6 Þijd̄RâiðηAÞâ b̂SA6ucRb̂j þ

ðYQQ
6 Þij
2

ϵαβq̄câαLi ðηAÞâ b̂SA�6 qb̂βLj

þ ðYUQ
8 ÞijϵαβūRâiðλAÞâb̂SAα8 qb̂βLj þ ðYDQ

8 Þijd̄RâiðλAÞâb̂SA�8αqb̂αLj þ H:c:; ðB1Þ

where YQQ
C and YQQ

1 are symmetric matrices in the flavor space, while ỸUU
1 , YQQ

3 , and YQQ
6 are antisymmetric matrices:

ðYQQ
C ÞT ¼ YQQ

C ; ðYQQ
1 ÞT ¼ YQQ

1 ; ðỸUU
1 ÞT ¼ −ỸUU

1 ; ðYQQ
3 ÞT ¼ −YQQ

3 ; ðYQQ
6 ÞT ¼ −YQQ

6 : ðB2Þ

The Yukawa couplings in Eq. (B1) are matched onto those in Eq. (3) at the tree level as

YU ¼ −
1

2
VT
QU

 
cHYU

5 þ
ffiffiffi
2

3

r
eiδHsHYU

45

!
T

; Y 0
U ¼ 1

2
VT
QU

 
e−iδHsHYU

5 −
ffiffiffi
2

3

r
cHYU

45

!
T

;

YD ¼ −
1ffiffiffi
2

p
�
cHYD

5 −
1

2
ffiffiffi
6

p e−iδHsHYD
45

�
T
; Y 0

D ¼ 1ffiffiffi
2

p
�
eiδHsHYD

5 þ 1

2
ffiffiffi
6

p cHYD
45

�
T
;

YE ¼ −
1ffiffiffi
2

p VT
QE

 
cHYD

5 þ
ffiffiffi
3

p

2
ffiffiffi
2

p e−iδHsHYD
45

!
VDL; Y 0

E ¼ 1ffiffiffi
2

p VT
QE

 
eiδHsHYD

5 −
ffiffiffi
3

p

2
ffiffiffi
2

p cHYD
45

!
VDL;

YQL
C ¼ 1ffiffiffi

2
p
�
cSYD

5 þ 1

2
ffiffiffi
2

p eiδSsSYD
45

�
VDL; YQL

1 ¼ 1ffiffiffi
2

p
�
−e−iδSsSYD

5 þ 1

2
ffiffiffi
2

p cSYD
45

�
VDL;

YUE
C ¼ 1

2
VT
QU

�
cSYU

5 −
ffiffiffi
2

p
e−iδSsSYU

45

�
VQE; YUE

1 ¼ −
1

2
VT
QU

�
eiδSsSYU

5 þ
ffiffiffi
2

p
cSYU

45

�
VQE;

YDU
C ¼ 1ffiffiffi

2
p
�
−cSYD

5 þ 1

2
ffiffiffi
2

p eiδSsSYD
45

�
T
VQU; YDU

1 ¼ 1ffiffiffi
2

p
�
e−iδSsSYD

5 þ 1

2
ffiffiffi
2

p cSYD
45

�
T
VQU;

YQQ
C ¼ 1

2
cSYU

5 ; YQQ
1 ¼ −

1

2
eiδSsSYU

5 ; ỸUU
1 ¼ 1ffiffiffi

2
p VT

QUY
U
45VQU; ỸED

1 ¼ 1

2
VT
QEY

D
45;

YEQ
2 ¼ 1ffiffiffi

2
p VT

QEY
U
45; YUL

2 ¼ 1

2
VT
QUY

D
45VDL; YQQ

3 ¼ 1

2
YU
45; YQL

3 ¼ −
1

2
ffiffiffi
2

p YD
45VDL;

YQQ
6 ¼ −

1ffiffiffi
2

p YU
45; YDU

6 ¼ 1

2
ðYD

45ÞTVQU; YUQ
8 ¼ −

1

2
VT
QUY

U
45; YDQ

8 ¼ 1

2
ffiffiffi
2

p ðYD
45ÞT: ðB3Þ

APPENDIX C: RENORMALIZATION GROUP
EQUATIONS

The scale dependence of the gauge couplings is gov-
erned by the RGEs,

dgi
d log μ

¼ βgi
ð4πÞ2 ; ðC1Þ

where gi ¼ gs, g and g0, and βgi denotes the corresponding
beta function. The one-loop contributions to the beta
functions are given by

βgi ¼
�
BSM
gi þ

X
ϕ

Bϕ
giθðmϕ − μÞ

�
g3i ; ðC2Þ

where ϕ ¼ H0, HC, S1, S̃1, R2, S3, S6, S8, Σ1, Σ3, and Σ8,
and the coefficients BSM

gi and Bϕ
gi are listed in Table IV.

The RGEs of the Yukawa couplings Yϕ
ψ̄ψ 0 associated with

the interaction of the form ½Yϕ
ψ̄ψ 0 �jkψ̄ jϕψ

0
k are given by

d
d log μ

Yϕ
ψ̄ψ 0 ¼ 1

ð4πÞ2 βYϕ

ψ̄ψ 0
; ðC3Þ

where the one-loop beta functions can generally be written
as [132–135]

βYϕ

ψ̄ψ 0
¼ −3

X
i

g2i ½Ci
2ðψÞYϕ

ψ̄ψ 0 þ Yϕ
ψ̄ψ 0Ci

2ðψ 0Þ�

þ 1

2
½Y2ðψÞYϕ

ψ̄ψ 0 þ Yϕ
ψ̄ψ 0Y2ðψ 0Þ�

þ Yϕ
ψ̄ψ 0ΘðϕÞ þ 2ΓYϕ

ψ̄ψ 0
: ðC4Þ
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Below we list explicit formulas for the Yukawa couplings defined in Eq. (B1)5: Yϕ
ψ̄ψ 0 ¼ YU, YD, YE, Y 0

U, Y
0
D, Y

0
E, Y

QL
C , YUE

C ,

YDU
C , YQQ

C , YQL
1 , YUE

1 , YDU
1 , YQQ

1 , ỸED
1 , ỸUU

1 , YUL
2 , YEQ

2 , YQL
3 , YQQ

3 , YDU
6 , YQQ

6 , YUQ
8 , and YDQ

8 . In the beta functions, the

coupling Yϕ
ψ̄ψ 0 should be understood as Yϕ

ψ̄ψ 0θðmϕ − μÞ by considering the decoupling of heavy particles, and for ϕ ¼
H;H0; HC and S1, the term Yϕ

ψ̄ψ 0ΘðϕÞ is replaced as

Yϕ
ψ̄ψ 0ΘðϕÞ →

8>>>>>><
>>>>>>:

YH
ψ̄ψ 0ΘðHÞ þ YH0

ψ̄ψ 0ΘðH0�HÞ for ϕ ¼ H;

YH0
ψ̄ψ 0ΘðH0Þ þ YH

ψ̄ψ 0ΘðH�H0Þ for ϕ ¼ H0;

YHC
ψ̄ψ 0ΘðHCÞ þ YS1

ψ̄ψ 0ΘðS�1HCÞ for ϕ ¼ HC;

YS1
ψ̄ψ 0ΘðS1Þ þ YHC

ψ̄ψ 0ΘðH�
CS1Þ for ϕ ¼ S1:

ðC5Þ

(1) Gauge-boson-loop contributions:

X
i

g2i C
i
2ðqLÞ ¼

4

3
g2s þ

3

4
g2 þ 1

36
g02;

X
i

g2i C
i
2ðuRÞ ¼

4

3
g2s þ

4

9
g02;

X
i

g2i C
i
2ðdRÞ ¼

4

3
g2s þ

1

9
g02;

X
i

g2i C
i
2ðlLÞ ¼

3

4
g2 þ 1

4
g02;

X
i

g2i C
i
2ðeRÞ ¼ g02; ðC6Þ

where Ci
2ðψcÞ ¼ Ci

2ðψÞ.
(2) Self-energy contributions to the fermions:

Y2ðqLÞ ¼ Y†
UYU þ Y†

DYD þ Y 0†
UY

0
U þ Y 0†

DY
0
D þ YQL�

C ðYQL
C ÞT þ 2YQQ†

C YQQ
C þ YQL�

1 ðYQL
1 ÞT þ 2YQQ†

1 YQQ
1

þ YEQ†
2 YEQ

2 þ 6YQQ†
3 YQQ

3 þ 3YQL�
3 ðYQL

3 ÞT þ 2YQQ†
6 YQQ

6 þ 16

3
YUQ†
8 YUQ

8 þ 16

3
YDQ†
8 YDQ

8 ;

Y2ðuRÞ ¼ 2YUY
†
U þ 2Y 0

UY
0†
U þ YUE

C YUE†
C þ 2ðYDU

C ÞTYDU�
C þ YUE

1 YUE†
1 þ 2ðYDU

1 ÞTYDU�
1 þ 2ỸUU

1 ỸUU†
1

þ 2YUL
2 YUL†

2 þ 2ðYDU
6 ÞTYDU�

6 þ 32

3
YUQ
8 YUQ†

8 ;

Y2ðdRÞ ¼ 2YDY
†
D þ 2Y 0

DY
0†
D þ 2YDU

C YDU†
C þ 2YDU

1 YDU†
1 þ ðỸED

1 ÞTỸED�
1 þ 2YDU

6 YDU†
6 þ 32

3
YDQ
8 YDQ†

8 ;

Y2ðlLÞ ¼ Y†
EYE þ Y 0†

EY
0
E þ 3YQL†

C YQL
C þ 3YQL†

1 YQL
1 þ 3YUL†

2 YUL
2 þ 9YQL†

3 YQL
3 ;

Y2ðeRÞ ¼ 2YEY
†
E þ 2Y 0

EY
0†
E þ 3ðYUE

C ÞTYUE�
C þ 3ðYUE

1 ÞTYUE�
1 þ 3ỸED

1 ỸED†
1 þ 6YEQ

2 YEQ†
2 ; ðC7Þ

where Y2ðψcÞ ¼ ½Y2ðψÞ�T .

TABLE IV. BSM
gi and Bϕ

gi for the RGEs of the gauge couplings.

gi BSM
gi BH0

gi BHC
gi BS1

gi BS̃1
gi BR2

gi BS3
gi BS6

gi BS8
gi BΣ1

gi BΣ3
gi BΣ8

gi

gs −7 0 1=6 1=6 1=6 1=3 1=2 5=6 2 0 0 1=2
g −19=6 1=6 0 0 0 1=2 2 0 4=3 0 1=3 0
g0 41=6 1=6 1=9 1=9 16=9 49=18 1=3 2=9 4=3 0 0 0

5The RGEs for the SM, S1, and S3 Yukawa couplings were recently studied in Refs. [136,137].
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(3) Self-energy contributions to the scalars:

ΘðHÞ ¼ trð3Y†
UYU þ 3Y†

DYD þ Y†
EYEÞ; ΘðH0Þ ¼ trð3Y 0†

UY
0
U þ 3Y 0†

DY
0
D þ Y 0†

EY
0
EÞ;

ΘðHCÞ ¼ trð2YQL†
C YQL

C þ YUE†
C YUE

C þ 2YDU†
C YDU

C þ 2YQQ†
C YQQ

C Þ;
ΘðS1Þ ¼ trð2YQL†

1 YQL
1 þ YUE†

1 YUE
1 þ 2YDU†

1 YDU
1 þ 2YQQ†

1 YQQ
1 Þ;

ΘðS̃1Þ ¼ trðỸED†
1 ỸED

1 þ ỸUU†
1 ỸUU

1 Þ; ΘðR2Þ ¼ trðYUL†
2 YUL

2 þ YEQ†
2 YEQ

2 Þ;
ΘðS3Þ ¼ trð2YQL†

3 YQL
3 þ 2YQQ†

3 YQQ
3 Þ; ΘðS6Þ ¼ trðYDU†

6 YDU
6 þ YQQ†

6 YQQ
6 Þ;

ΘðS8Þ ¼ trð2YDQ†
8 YDQ

8 þ 2YUQ†
8 YUQ

8 Þ; ΘðH�H0Þ ¼ trð3Y†
UY

0
U þ 3YDY

0†
D þ YEY

0†
E Þ;

ΘðS�1HCÞ ¼ trð2YQL†
1 YQL

C þ YUE
1 YUE†

C þ 2YDU†
1 YDU

C þ 2YQQ
1 YQQ†

C Þ; ðC8Þ

where Θðϕ�Þ ¼ ΘðϕÞ, ΘðH0�HÞ ¼ ½ΘðH�H0Þ��, and ΘðH�
CS1Þ ¼ ½ΘðS�1HCÞ��.

(4) Vertex corrections:

Γ
Yð0Þ
U
¼ −YUY

ð0Þ†
D YD − Y 0

UY
ð0Þ†
D Y 0

D − YUE
C Yð0Þ�

E ðYQL
C ÞT þ 2ðYDU

C ÞTYð0Þ�
D YQQ

C − YUE
1 Yð0Þ�

E ðYQL
1 ÞT

þ 2ðYDU
1 ÞTYð0Þ�

D YQQ
1 − YUL

2 Yð0Þ†
E YEQ

2 þ 2ðYDU
6 ÞTYð0Þ�

D YQQ
6 −

16

3
YUQ
8 Yð0Þ†

D YDQ
8 ;

Γ
Yð0Þ
D
¼ −YDY

ð0Þ†
U YU − Y 0

DY
ð0Þ†
U Y 0

U þ 2YDU
C Yð0Þ�

U YQQ
C þ 2YDU

1 Yð0Þ�
U YQQ

1 − 2YDU
6 Yð0Þ�

U YQQ
6 −

16

3
YDQ
8 Yð0Þ†

U YUQ
8 ;

Γ
Yð0Þ
E
¼ −3ðYUE

C ÞTYð0Þ�
U YQL

C − 3ðYUE
1 ÞTYð0Þ�

U YQL
1 − 3YEQ

2 Yð0Þ†
U YUL

2 ;

ΓYQL
i

¼ −YT
UY

UE�
i YE − Y 0T

U Y
UE�
i Y 0

E − 2YQQ
C YQQ†

i YQL
C − 2YQQ

1 YQQ†
i YQL

1 þ ðYEQ
2 ÞTYUE†

i YUL
2

þ 6YQQ
3 YQQ†

i YQL
3 ði ¼ C; 1Þ;

ΓYUE
i

¼ −2YUY
QL�
i YT

E − 2Y 0
UY

QL�
i Y 0T

E − 2ðYDU
C ÞTYDU�

i YUE
C − 2ðYDU

1 ÞTYDU�
i YUE

1 − 2ỸUU
1 YDU†

i ðỸED
1 ÞT

þ 2YUL
2 YQL†

i ðYEQ
2 ÞTði ¼ C; 1Þ;

ΓYDU
i

¼ 2YDY
QQ†
i YT

U þ 2Y 0
DY

QQ†
i Y 0T

U − YDU
C YUE�

i ðYUE
C ÞT − YDU

1 YUE�
i ðYUE

1 ÞT − ðỸED
1 ÞTYUE†

i ỸUU
1

−
16

3
YDQ
8 YQQ†

i ðYUQ
8 ÞTði ¼ C; 1Þ;

ΓYQQ
i

¼ YT
DY

DU�
i YU þ YT

UY
DU†
i YD þ Y 0T

DY
DU�
i Y 0

U þ Y 0T
U Y

DU†
i Y 0

D − YQL
C YQL†

i YQQ
C − YQQ

C YQL�
i ðYQL

C ÞT

− YQL
1 YQL†

i YQQ
1 − YQQ

1 YQL�
i ðYQL

1 ÞT − 3YQQ
3 YQL�

i ðYQL
3 ÞT þ 3YQL

3 YQL†
i YQQ

3

−
8

3
ðYUQ

8 ÞTYDU†
i YDQ

8 −
8

3
ðYDQ

8 ÞTYDU�
i YUQ

8 ði ¼ C; 1Þ;
ΓỸED

1
¼ 2ðYUE

C ÞTỸUU†
1 ðYDU

C ÞT þ 2ðYUE
1 ÞTỸUU†

1 ðYDU
1 ÞT;

ΓỸUU
1

¼ −YUE
C ỸED�

1 YDU
C þ ðYDU

C ÞTỸED†
1 ðYUE

C ÞT − YUE
1 ỸED�

1 YDU
1 þ ðYDU

1 ÞTỸED†
1 ðYUE

1 ÞT;
ΓYUL

2
¼ −YUY

EQ†
2 YE − Y 0

UY
EQ†
2 Y 0

E þ YUE
C YEQ�

2 YQL
C þ YUE

1 YEQ�
2 YQL

1 ;

ΓYEQ
2

¼ −YEY
UL†
2 YU − Y 0

EY
UL†
2 Y 0

U þ ðYUE
C ÞTYUL�

2 ðYQL
C ÞT þ ðYUE

1 ÞTYUL�
2 ðYQL

1 ÞT;
ΓYQL

3
¼ 2YQQ

C YQQ†
3 YQL

C þ 2YQQ
1 YQQ†

3 YQL
1 þ 2YQQ

3 YQQ†
3 YQL

3 ;

ΓYQQ
3

¼ −YQQ
C YQL�

3 ðYQL
C ÞT þ YQL

C YQL†
3 YQQ

C − YQQ
1 YQL�

3 ðYQL
1 ÞT þ YQL

1 YQL†
3 YQQ

1 þ YQQ
3 YQL�

3 ðYQL
3 ÞT

þ YQL
3 YQL†

3 YQQ
3 ;

ΓYDU
6

¼ −2YDY
QQ†
6 YT

U − 2Y 0
DY

QQ†
6 Y 0T

U −
8

3
YDQ
8 YQQ†

6 ðYUQ
8 ÞT;
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ΓYQQ
6

¼ −YT
UY

DU†
6 YD þ YT

DY
DU�
6 YU − Y 0T

U Y
DU†
6 Y 0

D þ Y 0T
DY

DU�
6 Y 0

U −
4

3
ðYUQ

8 ÞTYDU†
6 YDQ

8

þ 4

3
ðYDQ

8 ÞTYDU�
6 YUQ

8 ;

ΓYUQ
8

¼ −YUY
DQ†
8 YD − Y 0

UY
DQ†
8 Y 0

D − ðYDU
C ÞTYDQ�

8 YQQ
C − ðYDU

1 ÞTYDQ�
8 YQQ

1 þ 1

2
ðYDU

6 ÞTYDQ�
8 YQQ

6

þ 2

3
YUQ
8 YDQ†

8 YDQ
8 ;

ΓYDQ
8

¼ −YDY
UQ†
8 YU − Y 0

DY
UQ†
8 Y 0

U − YDU
C YUQ�

8 YQQ
C − YDU

1 YUQ�
8 YQQ

1 −
1

2
YDU
6 YUQ�

8 YQQ
6

þ 2

3
YDQ
8 YUQ†

8 YUQ
8 : ðC9Þ

Notice that the coupling YQQ
3 is shown to be vanishing in

the whole range of the renormalization scale below the
GUT scale if YQQ

3 ¼ 0 and HC, S1, and S̃1 decouple at the
GUT scale. In fact, the Yukawa interaction Lagrangian in
Eq. (B1) becomes invariant under Uð1ÞB and Uð1ÞL
separately if the terms with HC, S1, and S̃1 are removed
and if YQQ

3 is set to vanish. The latter condition is satisfied if
YU
45 ¼ 0 at the GUT scale in the tree-level approximation.

The appropriate assignment of the baryon and lepton
numbers in the above case is listed in Table V.

APPENDIX D: LEFT LAGRANGIAN

The LEFT Lagrangian is given by

LLEFT ¼ LQCDþQED þ
X
i

LiQi; ðD1Þ

where LQCDþQED is the renormalizable QCD and QED
Lagrangian with the SM fermions except for top quark. The
LEFT operators Qi up to dimension six are classified in
Ref. [65]. The operators relevant to the current study are

�
QV;LL

νd


ijkl ¼ ð ¯̂νLiγμν̂LjÞð ¯̂dLkγμd̂LlÞ;

�
QV;LL

ed


ijkl ¼ ð ¯̂eLiγμêLjÞð ¯̂dLkγμd̂LlÞ;�

QV;LL
ee �ijkl ¼ ð ¯̂eLiγμêLjÞð ¯̂eLkγμêLlÞ; ½QV;LR

ee

ijkl ¼ ð ¯̂eLiγμêLjÞð ¯̂eRkγμêRlÞ;�

QV;LL
dd


ijkl ¼ ð ¯̂dLiγμd̂LjÞð ¯̂dLkγμd̂LlÞ;

�
Qeγ


ij ¼ ð ¯̂eLiσμνêRjÞFμν;�

QV;LR
ed


ijkl ¼ ð ¯̂eLiγμêLjÞð ¯̂dRkγμd̂RlÞ;

�
QV;LR

de


ijkl ¼ ð ¯̂dLiγμd̂LjÞð ¯̂eRkγμêRlÞ;�

QV;LL
νedu


ijkl ¼ ð ¯̂νLiγμêLjÞð ¯̂dLkγμûLlÞ; ðD2Þ

where there also exist the Hermitian conjugates of the non-
self-conjugate operators.
The Wilson coefficients for these operators are calcu-

lated as follows.
(1) The S3 field is integrated out at the S3 mass scale,

and the model is matched onto the SMEFT at the

one-loop level. The one-loop matching formulas
from a model with the S1 and S3 leptoquarks to
the SMEFT are listed in Refs. [58–60].

(2) The RG running effects of the SMEFT operators are
taken into account. The anomalous dimensions for
the dimension-six operators in the SMEFT are listed
in Refs. [61–63].

(3) The SMEFT is matched onto the LEFT at the weak
scale. The one-loop matching formulas are listed in
Refs. [65–67].

(4) The RG effects in the LEFT are taken into account.
The corresponding anomalous dimensions are given
in Refs. [68,69].

The coefficients in the LEFT Lagrangian at the relevant
scale for the process under consideration are given in the
leading-logarithmic approximation by

TABLE V. Assignment of the baryon and lepton numbers to the
scalars, where the Yukawa interactions in Eq. (B1) are invariant
under Uð1ÞB and Uð1ÞL separately ifHC, S1, and S̃1 decouple and
YQQ
3 is set to vanish at the GUT scale.

R�
2 S�3 S�6 S8

3B −1 1 −2 0
L 1 1 0 0
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�
LV;LL
νd


NP
ij23 ¼

ðȲQL
3 Þ�2iðȲQL

3 Þ3j
2m2

S3

	
1þ g2ð1þ 2c2WÞ

32π2c2W

�
log

�
m2

S3

m2
Z

�
þ 11

6

�
−

3g2

16π2

�
log

�
m2

S3

m2
W

�
þ 11

6

�


þ y2t
64π2

	
4V�

tsVtb
ðYQL

3 Þ�3iðYQL
3 Þ3j

m2
S3

þ 1

2

�
V�
ts
ðYQL

3 Þ�3iðȲQL
3 Þ3j

m2
S3

þ Vtb
ðȲQL

3 Þ�2iðYQL
3 Þ3j

m2
S3

�
IνdðxtÞ




−
3ðNc þ 1Þ

16

�ðȲQL†
3 ȲQL

3 ȲQL†
3 Þi2ðȲQL

3 Þ3j
ð4πÞ2m2

S3

þ ðȲQL
3 Þ�2iðȲQL

3 ȲQL†
3 ȲQL

3 Þ3j
ð4πÞ2m2

S3

�

−
1

4

ðȲQL†
3 ȲQL

3 ÞijðȲQL
3 ȲQL†

3 Þ32
ð4πÞ2m2

S3

; ðD3Þ

½LV;LR
de ðmbÞ�NP23ij ¼ −δij

α

6π

ðȲQL
3 ȲQL†

3 Þ32
m2

S3

�
log

�
m2

S3

m2
b

�
−
19

12

�
; ðD4Þ

½LV;LL
ed ðmτÞ�NP3222 ¼

ðȲQL
3 Þ�23ðȲQL

3 Þ22
m2

S3

	
1 −

α

2π
log

�
m2

S3

m2
τ

�
þ g2ð1 − 4c4WÞ

32π2c2W

�
log

�
m2

S3

m2
Z

�
þ 11

6

�


þ y2t
64π2

	
2V�

tsVts
ðYQL

3 Þ�33ðYQL
3 Þ32

m2
S3

þ
�
V�
ts
ðYQL

3 Þ�33ðȲQL
3 Þ22

m2
S3

þ Vts
ðȲQL

3 Þ�23ðYQL
3 Þ32

m2
S3

�
IedðxtÞ




−
3ðNc þ 1Þ

8

�ðȲQL†
3 ȲQL

3 ȲQL†
3 Þ32ðȲQL

3 Þ22
ð4πÞ2m2

S3

þ ðȲQL
3 Þ�23ðȲQL

3 ȲQL†
3 ȲQL

3 Þ22
ð4πÞ2m2

S3

�

−
5

4

ðȲQL†
3 ȲQL

3 Þ32ðȲQL
3 ȲQL†

3 Þ22
ð4πÞ2m2

S3

−
α

6π
NcQ2

d

�ðYQL
3 Þ�33ðYQL

3 Þ32
m2

S3

log

�
m2

t

m2
b

�
−
3

4

ðYQL†
3 YQL

3 Þ32
m2

S3

�

− NcðI3dL −Qds2WÞy2t
ðYQL

3 Þ�33ðYQL
3 Þ32

ð4πÞ2m2
S3

�
log

�
m2

S3

m2
t

�
− 1

�
; ðD5Þ

½LV;LR
ed ðmτÞ�NP3222 ¼ −

α

6π
NcQ2

d

�ðYQL
3 Þ�33ðYQL

3 Þ32
m2

S3

log

�
m2

t

m2
b

�
−
3

4

ðYQL†
3 YQL

3 Þ32
m2

S3

�

− Ncð−Qds2WÞy2t
ðYQL

3 Þ�33ðYQL
3 Þ32

ð4πÞ2m2
S3

�
log

�
m2

S3

m2
t

�
− 1

�
; ðD6Þ

½LV;LL
ee ðmτÞ�3222 ¼ −

5Nc

8

ðYQL†
3 YQL

3 Þ32ðYQL†
3 YQL

3 Þ22
ð4πÞ2m2

S3

−
α

12π
NcQdQe

�ðYQL
3 Þ�33ðYQL

3 Þ32
m2

S3

log
�
m2

t

m2
b

�
−
3

4

ðYQL†
3 YQL

3 Þ32
m2

S3

�

−
Nc

2
ðI3eL −Qes2WÞy2t

ðYQL
3 Þ�33ðYQL

3 Þ32
ð4πÞ2m2

S3

�
log

�
m2

S3

m2
t

�
− 1

�
; ðD7Þ

½LV;LR
ee ðmτÞ�3222 ¼ −

α

6π
NcQdQe

�ðYQL
3 Þ�33ðYQL

3 Þ32
m2

S3

log

�
m2

t

m2
b

�
−
3

4

ðYQL†
3 YQL

3 Þ32
m2

S3

�

− Ncð−Qes2WÞy2t
ðYQL

3 Þ�33ðYQL
3 Þ32

ð4πÞ2m2
S3

�
log

�
m2

S3

m2
t

�
− 1

�
; ðD8Þ

½LeγðmτÞ�NPij ¼ eNcmej

8

ðYQL†
3 YQL

3 Þij
ð4πÞ2m2

S3

; ðD9Þ
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½LV;LL
dd ðmbÞ�NP2323 ¼ −

5

8

ðȲQL
3 ȲQL†

3 Þ32ðȲQL
3 ȲQL†

3 Þ32
ð4πÞ2m2

S3

; ðD10Þ

where Qd ¼ −1=3, Qe ¼ −1, I3dL ¼ I3eL ¼ −1=2, and
IνdðxÞ is the loop function defined by

IνdðxÞ ¼ − log

�
m2

S3

m2
W

�
−
3ðxþ 1Þ
2ðx − 1Þ þ

x2 þ 10x − 8

ðx − 1Þ2 log x:

ðD11Þ

Similar one-loop expressions for the low-energy coeffi-
cients can also be found in Refs. [138–141].

APPENDIX E: Z → μ∓τ�

The S3 affects the Z-boson effective couplings with
charged leptons which are defined as

L ¼ e
sWcW

Zμ½ēLiγμðgeLÞijeLj þ ēRiγμðgeRÞijeRj�; ðE1Þ

where ðgeLÞij ¼ ge;SML δij þ ðgeLÞNPij and ðgeRÞij ¼ ge;SMR δij þ
ðgeRÞNPij with the SM tree-level couplings ge;SML ¼ I3eL −
Qes2W and ge;SMR ¼ −Qes2W . According to Ref. [126] (see
also Refs. [141–143]), the S3 contribution to the left-
handed coupling reads as

ðgeLÞNPij ¼ Nc

ð4πÞ2
�
ðgu;SML − gu;SMR Þ xtðxt − 1 − log xtÞ

ðxt − 1Þ2 þ xZ
12

FðxtÞ þOðx2ZÞ
�
ðYQL�

3 Þ3iðYQL
3 Þ3j

þ NcxZ
3ð4πÞ2

�
gu;SML

�
log xZ − iπ −

1

6

�
þ ge;SML

6

�X2
w¼1

ðYQL�
3 ÞwiðYQL

3 Þwj

þ 2NcxZ
3ð4πÞ2

�
gd;SML

�
log xZ − iπ −

1

6

�
þ ge;SML

6

�X3
w¼1

ðȲQL�
3 ÞwiðȲQL

3 Þwj; ðE2Þ

where xZ ¼ m2
Z=m

2
S3
, xt ¼ m2

t =m2
S3
, gu;SML , gu;SMR and gd;SML are the SM couplings for up-type and down-type quarks defined

analogous to those for charged leptons, and the function FðxÞ is defined as

FðxÞ ¼ −gu;SML
ðx − 1Þð5x2 − 7xþ 8Þ − 2ðx3 þ 2Þ log x

ðx − 1Þ4 − gu;SMR
ðx − 1Þðx2 − 5x − 2Þ þ 6x log x

ðx − 1Þ4

þ ge;SML
ðx − 1Þð−11x2 þ 7x − 2Þ þ 6x3 log x

3ðx − 1Þ4 : ðE3Þ

Using the above effective coupling, the branching ratio for Z → μ∓τ� is given by

BðZ → μ∓τ�Þ ¼ BðZ → μ−τþÞ þ BðZ → μþτ−Þ ¼ GFm3
Z

3π
ffiffiffi
2

p
ΓZ

ðjðgeLÞNP23 j2 þ jðgeLÞNP32 j2Þ; ðE4Þ

where ΓZ is the total decay width of Z boson.
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[34] M. J. Pérez, M. H. Rahat, P. Ramond, A. J. Stuart, and B.

Xu, Phys. Rev. D 101, 075018 (2020).
[35] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B 191,

442 (1987); 448, 320(E) (1999).
[36] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N.

Košnik, Phys. Rep. 641, 1 (2016).
[37] Y. Sakaki, R. Watanabe, M. Tanaka, and A. Tayduganov,

Phys. Rev. D 88, 094012 (2013).
[38] G. Hiller and M. Schmaltz, Phys. Rev. D 90, 054014

(2014).
[39] A. K. Alok, B. Bhattacharya, D. Kumar, J. Kumar, D.

London, and S. U. Sankar, Phys. Rev. D 96, 015034
(2017).

[40] I. Doršner, S. Fajfer, D. A. Faroughy, and N. Košnik,
J. High Energy Phys. 10 (2017) 188.

[41] L. Di Luzio, M. Kirk, and A. Lenz, Phys. Rev. D 97,
095035 (2018).

[42] S. Fajfer, N. Košnik, and L. Vale Silva, Eur. Phys. J. C 78,
275 (2018).

[43] J. Alda, J. Guasch, and S. Penaranda, Eur. Phys. J. C 79,
588 (2019).

[44] R. Mandal and A. Pich, J. High Energy Phys. 12 (2019)
089.

[45] L. Di Luzio, M. Kirk, A. Lenz, and T. Rauh, J. High
Energy Phys. 12 (2019) 009.

[46] A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo,
and O. Sumensari, Phys. Rev. D 104, 055017 (2021).

[47] A. Crivellin, D. Müller, and L. Schnell, Phys. Rev. D 103,
115023 (2021); 104, 055020(A) (2021).

[48] N. Košnik and A. Smolkovič, Phys. Rev. D 104, 115004
(2021).

[49] L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802
(1984).

[50] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[51] J. Hisano, H. Murayama, and T. Yanagida, Nucl. Phys.
B402, 46 (1993).

[52] H. Arason, D. J. Castano, B. Kesthelyi, S. Mikaelian, E. J.
Piard, P. Ramond, and B. D. Wright, Phys. Rev. D 46, 3945
(1992).

[53] P. Nath and P. Fileviez Perez, Phys. Rep. 441, 191 (2007).
[54] A. Takenaka et al. (Super-Kamiokande Collaboration),

Phys. Rev. D 102, 112011 (2020).
[55] K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Comput.

Phys. Commun. 133, 43 (2000).
[56] F. Herren and M. Steinhauser, Comput. Phys. Commun.

224, 333 (2018).
[57] A. Juste Rozas (on behalf of the ATLAS and CMS

Collaborations), Report No. ATL-PHYS-SLIDE-2023-
034, 2023.

[58] J. de Blas, M. Chala, M. Perez-Victoria, and J. Santiago,
J. High Energy Phys. 04 (2015) 078.

[59] J. de Blas, J. Criado, M. Perez-Victoria, and J. Santiago,
J. High Energy Phys. 03 (2018) 109.

[60] V. Gherardi, D. Marzocca, and E. Venturini, J. High
Energy Phys. 07 (2020) 225; 01 (2021) 006.

[61] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy
Phys. 10 (2013) 087.

[62] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy
Phys. 01 (2014) 035.

[63] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott,
J. High Energy Phys. 04 (2014) 159.

[64] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
J. High Energy Phys. 10 (2010) 085.

[65] E. E. Jenkins, A. V. Manohar, and P. Stoffer, J. High
Energy Phys. 03 (2018) 016.

[66] J. Aebischer, A. Crivellin, M. Fael, and C. Greub, J. High
Energy Phys. 05 (2016) 037.

[67] W. Dekens and P. Stoffer, J. High Energy Phys. 10 (2019)
197.

[68] J. Aebischer, M. Fael, C. Greub, and J. Virto, J. High
Energy Phys. 09 (2017) 158.

[69] E. E. Jenkins, A. V. Manohar, and P. Stoffer, J. High
Energy Phys. 01 (2018) 084.

[70] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev.
Mod. Phys. 68, 1125 (1996).

[71] N. Gubernari, M. Reboud, D. van Dyk, and J. Virto,
J. High Energy Phys. 09 (2022) 133.

[72] S. Jäger and J. Martin Camalich, J. High Energy Phys. 05
(2013) 043.

[73] J. Lyon and R. Zwicky, arXiv:1406.0566.
[74] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto,

J. High Energy Phys. 12 (2014) 125.

GOTO, MISHIMA, and SHINDOU PHYS. REV. D 108, 095012 (2023)

095012-26

https://doi.org/10.1142/S0217732392000070
https://doi.org/10.1142/S0217732392000070
https://doi.org/10.1016/0370-2693(91)91289-8
https://doi.org/10.1016/0370-2693(91)91289-8
https://doi.org/10.1016/j.nuclphysb.2005.06.016
https://doi.org/10.1016/j.nuclphysb.2005.06.016
https://doi.org/10.1016/j.nuclphysb.2006.05.006
https://doi.org/10.1016/j.nuclphysb.2006.05.006
https://doi.org/10.1016/j.physletb.2006.09.034
https://doi.org/10.1016/j.physletb.2006.09.034
https://doi.org/10.1103/PhysRevD.75.125007
https://doi.org/10.1103/PhysRevD.75.125007
https://doi.org/10.1088/1126-6708/2007/08/014
https://doi.org/10.1088/1126-6708/2007/08/014
https://doi.org/10.1016/j.physletb.2007.07.075
https://doi.org/10.1016/j.nuclphysb.2007.12.004
https://doi.org/10.1103/PhysRevD.78.015013
https://doi.org/10.1103/PhysRevD.78.015013
https://doi.org/10.1103/PhysRevD.81.055009
https://doi.org/10.1103/PhysRevD.81.055009
https://doi.org/10.1103/PhysRevD.94.075014
https://doi.org/10.1103/PhysRevD.94.075014
https://doi.org/10.1007/JHEP03(2017)035
https://doi.org/10.1140/epjc/s10052-017-4987-2
https://doi.org/10.1140/epjc/s10052-017-4987-2
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1140/epjc/s10052-019-6878-1
https://doi.org/10.1103/PhysRevD.99.075018
https://doi.org/10.1103/PhysRevD.99.075018
https://doi.org/10.1016/0370-2693(79)90842-6
https://doi.org/10.1103/PhysRevD.98.055030
https://doi.org/10.1103/PhysRevD.98.055030
https://doi.org/10.1103/PhysRevD.100.075008
https://doi.org/10.1103/PhysRevD.101.075018
https://doi.org/10.1016/0370-2693(87)90637-X
https://doi.org/10.1016/0370-2693(87)90637-X
https://doi.org/10.1016/S0370-2693(99)00014-3
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1103/PhysRevD.88.094012
https://doi.org/10.1103/PhysRevD.90.054014
https://doi.org/10.1103/PhysRevD.90.054014
https://doi.org/10.1103/PhysRevD.96.015034
https://doi.org/10.1103/PhysRevD.96.015034
https://doi.org/10.1007/JHEP10(2017)188
https://doi.org/10.1103/PhysRevD.97.095035
https://doi.org/10.1103/PhysRevD.97.095035
https://doi.org/10.1140/epjc/s10052-018-5757-5
https://doi.org/10.1140/epjc/s10052-018-5757-5
https://doi.org/10.1140/epjc/s10052-019-7092-x
https://doi.org/10.1140/epjc/s10052-019-7092-x
https://doi.org/10.1007/JHEP12(2019)089
https://doi.org/10.1007/JHEP12(2019)089
https://doi.org/10.1007/JHEP12(2019)009
https://doi.org/10.1007/JHEP12(2019)009
https://doi.org/10.1103/PhysRevD.104.055017
https://doi.org/10.1103/PhysRevD.103.115023
https://doi.org/10.1103/PhysRevD.103.115023
https://doi.org/10.1103/PhysRevD.104.055020
https://doi.org/10.1103/PhysRevD.104.115004
https://doi.org/10.1103/PhysRevD.104.115004
https://doi.org/10.1103/PhysRevLett.53.1802
https://doi.org/10.1103/PhysRevLett.53.1802
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/0550-3213(93)90636-4
https://doi.org/10.1016/0550-3213(93)90636-4
https://doi.org/10.1103/PhysRevD.46.3945
https://doi.org/10.1103/PhysRevD.46.3945
https://doi.org/10.1016/j.physrep.2007.02.010
https://doi.org/10.1103/PhysRevD.102.112011
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1007/JHEP04(2015)078
https://doi.org/10.1007/JHEP03(2018)109
https://doi.org/10.1007/JHEP07(2020)225
https://doi.org/10.1007/JHEP07(2020)225
https://doi.org/10.1007/JHEP01(2021)006
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP04(2014)159
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1007/JHEP03(2018)016
https://doi.org/10.1007/JHEP03(2018)016
https://doi.org/10.1007/JHEP05(2016)037
https://doi.org/10.1007/JHEP05(2016)037
https://doi.org/10.1007/JHEP10(2019)197
https://doi.org/10.1007/JHEP10(2019)197
https://doi.org/10.1007/JHEP09(2017)158
https://doi.org/10.1007/JHEP09(2017)158
https://doi.org/10.1007/JHEP01(2018)084
https://doi.org/10.1007/JHEP01(2018)084
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1007/JHEP09(2022)133
https://doi.org/10.1007/JHEP05(2013)043
https://doi.org/10.1007/JHEP05(2013)043
https://arXiv.org/abs/1406.0566
https://doi.org/10.1007/JHEP12(2014)125


[75] S. Jäger and J. Martin Camalich, Phys. Rev. D 93, 014028
(2016).

[76] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L.
Silvestrini, and M. Valli, J. High Energy Phys. 06 (2016)
116.

[77] M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini,
and M. Valli, Phys. Rev. D 107, 055036 (2023).

[78] LHCb Collaboration, Phys. Rev. Lett. 131, 051803 (2023).
[79] LHCb Collaboration, Phys. Rev. D 108, 032002 (2023).
[80] R. Aaij et al. (LHCb Collaboration), arXiv:1808.08865.
[81] R. L. Workman et al. (Particle Data Group), Prog. Theor.

Exp. Phys. 2022, 083C01 (2022).
[82] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 87,

112005 (2013).
[83] W. Altmannshofer et al. (Belle-II Collaboration), Prog.

Theor. Exp. Phys. 2019, 123C01 (2019); 2020, 029201(E)
(2020).

[84] J. Grygier et al. (Belle Collaboration), Phys. Rev. D 96,
091101 (2017); 97, 099902(E) (2018).

[85] O. Lutz et al. (Belle Collaboration), Phys. Rev. D 87,
111103 (2013).

[86] Y. S. Amhis et al. (Heavy Flavor Averaging Group), Phys.
Rev. D 107, 052008 (2023).

[87] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118,
251802 (2017).

[88] J. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 118,
031802 (2017).

[89] T. V. Dong et al. (Belle Collaboration), Phys. Rev. D 108,
L011102 (2023).

[90] L. Aggarwal et al. (Belle-II Collaboration), arXiv:2207
.06307.

[91] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 123,
211801 (2019).

[92] S. Watanuki et al. (Belle Collaboration), Phys. Rev. Lett.
130, 261802 (2023).

[93] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys.
06 (2023) 143.

[94] N. Tsuzuki et al. (Belle Collaboration), J. High Energy
Phys. 06 (2023) 118.

[95] S. Banerjee et al. arXiv:2203.14919.
[96] S. Patra et al. (Belle Collaboration), J. High Energy Phys.

05 (2022) 095.
[97] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett.

104, 151802 (2010).
[98] A. Abdesselam et al. (Belle Collaboration), J. High Energy

Phys. 10 (2021) 19.
[99] K. Hayasaka et al., Phys. Lett. B 687, 139 (2010).

[100] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 127,
271801 (2022).

[101] M. Dam, SciPost Phys. Proc. 1, 041 (2019).
[102] A. J. Buras, J. Girrbach-Noe, C. Niehoff, and D. M. Straub,

J. High Energy Phys. 02 (2015) 184.
[103] E. Ganiev (Belle-II Collaboration), Proceedings of the

European Physical Society Conference on High Energy
Physics (EPS-HEP), Hamburg, 2023.

[104] A. Celis, J. Fuentes-Martin, A. Vicente, and J. Virto, Phys.
Rev. D 96, 035026 (2017).

[105] B. Capdevila, S. Descotes-Genon, L. Hofer, and J. Matias,
J. High Energy Phys. 04 (2017) 016.

[106] M. Bordone, G. Isidori, and A. Pattori, Eur. Phys. J. C 76,
440 (2016).

[107] G. Isidori, S. Nabeebaccus, and R. Zwicky, J. High Energy
Phys. 12 (2020) 104.

[108] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E.
Stamou, and M. Steinhauser, Phys. Rev. Lett. 112,
101801 (2014).

[109] T. Blake, G. Lanfranchi, and D. M. Straub, Prog. Part.
Nucl. Phys. 92, 50 (2017).

[110] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg,
M. Merk, and N. Tuning, Phys. Rev. D 86, 014027 (2012).

[111] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg,
M. Merk, A. Pellegrino, and N. Tuning, Phys. Rev. Lett.
109, 041801 (2012).

[112] A. Crivellin, D. Müller, and T. Ota, J. High Energy Phys.
09 (2017) 040.

[113] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca,
J. High Energy Phys. 11 (2017) 044.

[114] C. Bobeth and U. Haisch, Acta Phys. Pol. B 44, 127
(2013).

[115] B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer,
and J. Matias, Phys. Rev. Lett. 120, 181802 (2018).

[116] A. Dedes, J. Rosiek, and P. Tanedo, Phys. Rev. D 79,
055006 (2009).

[117] D. Bečirević, O. Sumensari, and R. Zukanovich Funchal,
Eur. Phys. J. C 76, 134 (2016).

[118] A. Abada, D. Bečirević, M. Lucente, and O. Sumensari,
Phys. Rev. D 91, 113013 (2015).

[119] D. E. Hazard and A. A. Petrov, Phys. Rev. D 94, 074023
(2016).

[120] L. Calibbi, T. Li, X. Marcano, and M. A. Schmidt, Phys.
Rev. D 106, 115039 (2022).

[121] T. Goto, Y. Okada, and Y. Yamamoto, Phys. Rev. D 83,
053011 (2011).

[122] Y. Okada, K.-i. Okumura, and Y. Shimizu, Phys. Rev. D
61, 094001 (2000).

[123] Y. Kuno and Y. Okada, Rev. Mod. Phys. 73, 151 (2001).
[124] T. Aoyama et al., Phys. Rept. 887, 1 (2020).
[125] D. P. Aguillard et al. (Muon g-2 Collaboration), arXiv:

2308.06230.
[126] P. Arnan, D. Becirevic, F. Mescia, and O. Sumensari,

J. High Energy Phys. 02 (2019) 109.
[127] P. Abreu et al. (DELPHI Collaboration), Z. Phys. C 73,

243 (1997).
[128] A. J. Buras, J. R. Ellis, M. K. Gaillard, and D. V.

Nanopoulos, Nucl. Phys. B135, 66 (1978).
[129] P. H. Frampton, S. Nandi, and J. J. G. Scanio, Phys. Lett.

85B, 225 (1979).
[130] P. Kalyniak and J. N. Ng, Phys. Rev. D 26, 890 (1982).
[131] P. Eckert, J. M. Gerard, H. Ruegg, and T. Schucker, Phys.

Lett. 125B, 385 (1983).
[132] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B222, 83

(1983).
[133] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B236, 221

(1984).
[134] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B249, 70

(1985).
[135] M.-x. Luo, H.-w. Wang, and Y. Xiao, Phys. Rev. D 67,

065019 (2003).

FLAVOR PHYSICS IN SU(5) GUT WITH SCALAR FIELDS IN … PHYS. REV. D 108, 095012 (2023)

095012-27

https://doi.org/10.1103/PhysRevD.93.014028
https://doi.org/10.1103/PhysRevD.93.014028
https://doi.org/10.1007/JHEP06(2016)116
https://doi.org/10.1007/JHEP06(2016)116
https://doi.org/10.1103/PhysRevD.107.055036
https://doi.org/10.1103/PhysRevLett.131.051803
https://doi.org/10.1103/PhysRevD.108.032002
https://arXiv.org/abs/1808.08865
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.87.112005
https://doi.org/10.1103/PhysRevD.87.112005
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptaa008
https://doi.org/10.1093/ptep/ptaa008
https://doi.org/10.1103/PhysRevD.96.091101
https://doi.org/10.1103/PhysRevD.96.091101
https://doi.org/10.1103/PhysRevD.97.099902
https://doi.org/10.1103/PhysRevD.87.111103
https://doi.org/10.1103/PhysRevD.87.111103
https://doi.org/10.1103/PhysRevD.107.052008
https://doi.org/10.1103/PhysRevD.107.052008
https://doi.org/10.1103/PhysRevLett.118.251802
https://doi.org/10.1103/PhysRevLett.118.251802
https://doi.org/10.1103/PhysRevLett.118.031802
https://doi.org/10.1103/PhysRevLett.118.031802
https://doi.org/10.1103/PhysRevD.108.L011102
https://doi.org/10.1103/PhysRevD.108.L011102
https://arXiv.org/abs/2207.06307
https://arXiv.org/abs/2207.06307
https://doi.org/10.1103/PhysRevLett.123.211801
https://doi.org/10.1103/PhysRevLett.123.211801
https://doi.org/10.1103/PhysRevLett.130.261802
https://doi.org/10.1103/PhysRevLett.130.261802
https://doi.org/10.1007/JHEP06(2023)143
https://doi.org/10.1007/JHEP06(2023)143
https://doi.org/10.1007/JHEP06(2023)118
https://doi.org/10.1007/JHEP06(2023)118
https://arXiv.org/abs/2203.14919
https://doi.org/10.1007/JHEP05(2022)095
https://doi.org/10.1007/JHEP05(2022)095
https://doi.org/10.1103/PhysRevLett.104.151802
https://doi.org/10.1103/PhysRevLett.104.151802
https://doi.org/10.1007/JHEP10(2021)019
https://doi.org/10.1007/JHEP10(2021)019
https://doi.org/10.1016/j.physletb.2010.03.037
https://doi.org/10.1103/PhysRevLett.127.271801
https://doi.org/10.1103/PhysRevLett.127.271801
https://doi.org/10.21468/SciPostPhysProc.1.041
https://doi.org/10.1007/JHEP02(2015)184
https://doi.org/10.1103/PhysRevD.96.035026
https://doi.org/10.1103/PhysRevD.96.035026
https://doi.org/10.1007/JHEP04(2017)016
https://doi.org/10.1140/epjc/s10052-016-4274-7
https://doi.org/10.1140/epjc/s10052-016-4274-7
https://doi.org/10.1007/JHEP12(2020)104
https://doi.org/10.1007/JHEP12(2020)104
https://doi.org/10.1103/PhysRevLett.112.101801
https://doi.org/10.1103/PhysRevLett.112.101801
https://doi.org/10.1016/j.ppnp.2016.10.001
https://doi.org/10.1016/j.ppnp.2016.10.001
https://doi.org/10.1103/PhysRevD.86.014027
https://doi.org/10.1103/PhysRevLett.109.041801
https://doi.org/10.1103/PhysRevLett.109.041801
https://doi.org/10.1007/JHEP09(2017)040
https://doi.org/10.1007/JHEP09(2017)040
https://doi.org/10.1007/JHEP11(2017)044
https://doi.org/10.5506/APhysPolB.44.127
https://doi.org/10.5506/APhysPolB.44.127
https://doi.org/10.1103/PhysRevLett.120.181802
https://doi.org/10.1103/PhysRevD.79.055006
https://doi.org/10.1103/PhysRevD.79.055006
https://doi.org/10.1140/epjc/s10052-016-3985-0
https://doi.org/10.1103/PhysRevD.91.113013
https://doi.org/10.1103/PhysRevD.94.074023
https://doi.org/10.1103/PhysRevD.94.074023
https://doi.org/10.1103/PhysRevD.106.115039
https://doi.org/10.1103/PhysRevD.106.115039
https://doi.org/10.1103/PhysRevD.83.053011
https://doi.org/10.1103/PhysRevD.83.053011
https://doi.org/10.1103/PhysRevD.61.094001
https://doi.org/10.1103/PhysRevD.61.094001
https://doi.org/10.1103/RevModPhys.73.151
https://doi.org/10.1016/j.physrep.2020.07.006
https://arXiv.org/abs/2308.06230
https://arXiv.org/abs/2308.06230
https://doi.org/10.1007/JHEP02(2019)109
https://doi.org/10.1007/s002880050313
https://doi.org/10.1007/s002880050313
https://doi.org/10.1016/0550-3213(78)90214-6
https://doi.org/10.1016/0370-2693(79)90584-7
https://doi.org/10.1016/0370-2693(79)90584-7
https://doi.org/10.1103/PhysRevD.26.890
https://doi.org/10.1016/0370-2693(83)91308-4
https://doi.org/10.1016/0370-2693(83)91308-4
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1103/PhysRevD.67.065019
https://doi.org/10.1103/PhysRevD.67.065019


[136] K. Kowalska, E. M. Sessolo, and Y. Yamamoto, Eur. Phys.
J. C 81, 272 (2021).

[137] M. Fedele, F. Wuest, and U. Nierste, arXiv:2307
.15117.

[138] A. Crivellin, D. Müller, and F. Saturnino, J. High Energy
Phys. 06 (2020) 020.

[139] V. Gherardi, D. Marzocca, and E. Venturini, J. High
Energy Phys. 01 (2021) 138.
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